1
|
Segars KL, Trinkaus-Randall V. Glycosaminoglycans: Roles in wound healing, formation of corneal constructs and synthetic corneas. Ocul Surf 2023; 30:85-91. [PMID: 37657650 PMCID: PMC11059988 DOI: 10.1016/j.jtos.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Maintaining the clarity of the cornea is essential for vision, and is achieved through an exquisite array of collagen fibrils and proteoglycans in the corneal stroma. Alterations in the identity and modifications of the glycosaminoglycans (GAGs) are seen both throughout the normal wound healing process and in pathological conditions resulting in corneal opacity. Understanding these changes has been essential for the development of corneal prostheses and corneal reconstruction. The goal of this review article is to summarize and consolidate research in the alterations seen in glycosaminoglycans in injured and hypoxic states, address the role of proteins that can regulate glycosaminoglycans in the corneal wound healing process, and apply these findings to the context of corneal restoration through reconstruction or the insertion of synthetic devices.
Collapse
Affiliation(s)
- Kristen L Segars
- Departments of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Vickery Trinkaus-Randall
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA; Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
2
|
Tsui MC, Liu HY, Chu HS, Chen WL, Hu FR, Kao WWY, Wang IJ. The versatile roles of lumican in eye diseases: A review. Ocul Surf 2023; 29:388-397. [PMID: 37327869 DOI: 10.1016/j.jtos.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Lumican is a keratan sulfate proteoglycan that belongs to the small leucine-rich proteoglycan family. Research has lifted the veil on the versatile roles of lumican in the pathogenesis of eye diseases. Lumican has pivotal roles in the maintenance of physiological tissue homogenesis and is often upregulated in pathological conditions, e.g., fibrosis, scar tissue formation in injured tissues, persistent inflammatory responses and immune anomaly, etc. Herein, we will review literature regarding the role of lumican in pathogenesis of inherited congenital and acquired eye diseases, e.g., cornea dystrophy, cataract, glaucoma and chorioretinal diseases, etc.
Collapse
Affiliation(s)
- Mei-Chi Tsui
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hsin-Yu Liu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Winston W-Y Kao
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
He J, Pham TL, Bazan HEP. Neuroanatomy of Adult and Aging Chicken Cornea. Curr Eye Res 2022; 47:1374-1380. [PMID: 35904450 PMCID: PMC9844890 DOI: 10.1080/02713683.2022.2104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE To provide a complete nerve architecture and main sensory neuropeptide distribution in the chicken cornea. METHODS Adult chickens aged 6 months and 4 years were used. The whole cornea was stained with protein gene product (PGP) 9.5 antibody-a pan marker for nerve fibers, calcitonin gene-related peptide (CGRP), and substance P (SP) antibodies; whole-mount images were acquired to build an entire view of corneal innervation. Relative corneal epithelial nerve fiber densities, including subbasal bundles and superficial terminals, were assessed by computer-assisted analysis. RESULTS An average of about 76.3 ± 5.7 (n = 8 corneas, 4 M/4F) stromal nerve trunks enter the cornea radially and are evenly distributed around the limbus with no significant difference between male and female chickens. The subbasal nerve bundles do not extend in a given direction and, as a result, do not form a vortex in the center of the cornea. Furthermore, the chicken cornea contains more SP-positive nerves than CGRP-positive nerves. It is also shown that aging significantly reduces corneal epithelial nerve density in chickens. CONCLUSIONS This is the first study to provide a complete map of the entire corneal nerves and CGRP and SP sensory neuropeptide distribution in the adult chicken cornea. The findings show chicken corneal innervation has many differences to human and mammal cornea.
Collapse
Affiliation(s)
- Jiucheng He
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Thang Luong Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Haydee E. P. Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| |
Collapse
|
4
|
Koudouna E, Spurlin J, Babushkina A, Quantock AJ, Jester JV, Lwigale P. Recapitulation of normal collagen architecture in embryonic wounded corneas. Sci Rep 2020; 10:13815. [PMID: 32796881 PMCID: PMC7427794 DOI: 10.1038/s41598-020-70658-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is characterized by cell and extracellular matrix changes mediating cell migration, fibrosis, remodeling and regeneration. We previously demonstrated that chick fetal wound healing shows a regenerative phenotype regarding the cellular and molecular organization of the cornea. However, the chick corneal stromal structure is remarkably complex in the collagen fiber/lamellar organization, involving branching and anastomosing of collagen bundles. It is unknown whether the chick fetal wound healing is capable of recapitulating this developmentally regulated organization pattern. The purpose of this study was to examine the three-dimensional collagen architecture of wounded embryonic corneas, whilst identifying temporal and spatial changes in collagen organization during wound healing. Linear corneal wounds that traversed the epithelial layer, Bowman´s layer, and anterior stroma were generated in chick corneas on embryonic day 7. Irregular thin collagen fibers are present in the wounded cornea during the early phases of wound healing. As wound healing progresses, the collagen organization dramatically changes, acquiring an orthogonal arrangement. Fourier transform analysis affirmed this observation and revealed that adjacent collagen lamellae display an angular displacement progressing from the epithelium layer towards the endothelium. These data indicate that the collagen organization of the wounded embryonic cornea recapitulate the native macrostructure.
Collapse
Affiliation(s)
- Elena Koudouna
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA.,Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - James Spurlin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna Babushkina
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Andrew J Quantock
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - James V Jester
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
5
|
Costa RA, Martins RST, Capilla E, Anjos L, Power DM. Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish. BMC Evol Biol 2018; 18:191. [PMID: 30545285 PMCID: PMC6293640 DOI: 10.1186/s12862-018-1310-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment. Results The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro. Conclusions Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage. Electronic supplementary material The online version of this article (10.1186/s12862-018-1310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - L Anjos
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - D M Power
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
6
|
Karamanou K, Perrot G, Maquart FX, Brézillon S. Lumican as a multivalent effector in wound healing. Adv Drug Deliv Rev 2018; 129:344-351. [PMID: 29501701 DOI: 10.1016/j.addr.2018.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/31/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022]
Abstract
Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing.
Collapse
Affiliation(s)
- Konstantina Karamanou
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
| | - Gwenn Perrot
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France
| | - Francois-Xavier Maquart
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; CHU Reims, Laboratoire Central de Biochimie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France.
| |
Collapse
|
7
|
Merayo-Lloves J, Blanco-Mezquita T, Ibares-Frías L, Fabiani L, Alvarez-Barcia A, Martinez-García C. Induction of Controlled Wound Healing with PMMA Segments in the Deep Stroma in Corneas of Hens. Eur J Ophthalmol 2018; 20:62-70. [DOI: 10.1177/112067211002000108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose Polymethylmethacrylate (PMMA) segments are normally used in additive surgery to treat both corneal ectasia post laser-assisted in situ keratomileusis and keratoconus. The aim of this work was to develop an experimental animal model to induce wound healing in the deep stroma in corneas of hens. Methods PMMA segments were implanted in the right eyes of 40 adult hens without suture in the wound incision. Animals were randomized for 5 time points to histopathology study (1, 3, 15, 30, and 90 days) being clinically evaluated during the experiment. Results Thirty-four eyes (85%) had a successful clinical outcome and intraoperative mistakes occurred in 6 eyes (15%), including anterior chamber perforation resulting in abscess (1), excess of lamellar dissection with segment migration (3), and peripheral incisions evolving with neovascularization (2). At 24 hours, all the epithelial injuries were completed in integrity, but a persistent stromal incision, with a fish mouth form, was observed until day 15. Corneal edema disappeared at the fifth day. Haze, keratocyte cell death, keratocyte proliferation, myofibroblast differentiation, and new matrix production were observed in length around the segment. Conclusions Wound healing was induced in the deep corneal stroma by means of PMMA segment implantation in a new animal model developed in hens.
Collapse
|
8
|
Jiang Z, Liu G, Meng F, Wang W, Hao P, Xiang Y, Wang Y, Han R, Li F, Wang L, Li X. Paracrine effects of mesenchymal stem cells on the activation of keratocytes. Br J Ophthalmol 2017; 101:1583-1590. [DOI: 10.1136/bjophthalmol-2016-310012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/20/2017] [Accepted: 07/30/2017] [Indexed: 12/11/2022]
|
9
|
Gallego‐Muñoz P, Ibares‐Frías L, Garrote JA, Valsero‐Blanco MC, Cantalapiedra‐Rodríguez R, Merayo‐Lloves J, Carmen Martínez‐García M. Human corneal fibroblast migration and extracellular matrix synthesis during stromal repair: Role played by platelet‐derived growth factor‐BB, basic fibroblast growth factor, and transforming growth factor‐β1. J Tissue Eng Regen Med 2017; 12:e737-e746. [DOI: 10.1002/term.2360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Patricia Gallego‐Muñoz
- Departamento de Biología Celular, Histología y Farmacología. Facultad de Medicina. Grupo de Investigación Reconocido: Técnicas Ópticas para el DiagnósticoUniversidad de Valladolid Valladolid Spain
| | - Lucía Ibares‐Frías
- Departamento de Biología Celular, Histología y Farmacología. Facultad de Medicina. Grupo de Investigación Reconocido: Técnicas Ópticas para el DiagnósticoUniversidad de Valladolid Valladolid Spain
- Servicio de OftalmologíaHospital Clínico Universitario de Valladolid Valladolid Spain
| | - José A. Garrote
- Servicio de Análisis Clínicos. Laboratorio de GenéticaHospital Universitario Rio Hortega de Valladolid Valladolid Spain
| | | | - Roberto Cantalapiedra‐Rodríguez
- Departamento de Biología Celular, Histología y Farmacología. Facultad de Medicina. Grupo de Investigación Reconocido: Técnicas Ópticas para el DiagnósticoUniversidad de Valladolid Valladolid Spain
| | | | - M. Carmen Martínez‐García
- Departamento de Biología Celular, Histología y Farmacología. Facultad de Medicina. Grupo de Investigación Reconocido: Técnicas Ópticas para el DiagnósticoUniversidad de Valladolid Valladolid Spain
| |
Collapse
|
10
|
DeCarlo AA, Whitelock JM. The Role of Heparan Sulfate and Perlecan in Bone-regenerative Procedures. J Dent Res 2016; 85:122-32. [PMID: 16434729 DOI: 10.1177/154405910608500203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tissue engineering, grafting procedures, regeneration, and tissue remodeling are developing therapeutic modalities with great potential medical value, but these regenerative modalities are not as effective or predictable as clinicians and patients would like. Greater understanding of growth factors, cytokines, extracellular matrix molecules, and their roles in cell-mediated healing processes have made these regenerative therapies more clinically viable and will continue advancing the fields of tissue engineering and grafting. However, millions of oral and non-oral bone-grafting procedures are performed annually, and only a small percentage yield the most desirable results. Here we review the heparan-sulfate-decorated extracellular biomolecule named perlecan and the research relating to its potential as an adjunct in bone-regenerative procedures. The review includes an overview of bone graft substitutes and biological adjuncts to bone-regenerative procedures in medicine as they apply to periodontal disease, alveolar ridge augmentation, and barrier membrane therapy. Perlecan is discussed as a potential biological adjunct in terms of growth factor sequestration and delivery, and promoting cell adhesion, proliferation, differentiation, and angiogenesis. Further, we propose delivery and application schemes for perlecan and/or its domains in bone-regenerative procedures, with particular emphasis on its heparan-sulfate-decorated domain I. The perlecan molecule, with its heparan sulfate glycosylation, may provide a multi-faceted approach for the delivery of a more comprehensive stimulus than other single potential adjuncts currently available for bone-regenerative procedures.
Collapse
Affiliation(s)
- A A DeCarlo
- Agenta Biotechnologies, Inc., OADI Technology Center, Birmingham, AL 35211, USA.
| | | |
Collapse
|
11
|
Massoudi D, Malecaze F, Galiacy SD. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders. Cell Tissue Res 2015. [PMID: 26205093 DOI: 10.1007/s00441-015-2233-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cornea represents the external part of the eye and consists of an epithelium, a stroma and an endothelium. Due to its curvature and transparency this structure makes up approximately 70% of the total refractive power of the eye. This function is partly made possible by the particular organization of the collagen extracellular matrix contained in the corneal stroma that allows a constant refractive power. The maintenance of such an organization involves other molecules such as type V collagen, FACITs (fibril-associated collagens with interrupted triple helices) and SLRPs (small leucine-rich proteoglycans). These components play crucial roles in the preservation of the correct organization and function of the cornea since their absence or modification leads to abnormalities such as corneal opacities. Thus, the aim of this review is to describe the different corneal collagens and proteoglycans by highlighting their importance in corneal transparency as well as their implication in corneal visual disorders.
Collapse
Affiliation(s)
| | - Francois Malecaze
- EA4555, Université Toulouse III Paul Sabatier, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service d'Ophtalmologie, Toulouse, France
| | - Stephane D Galiacy
- EA4555, Université Toulouse III Paul Sabatier, Toulouse, France.
- CHU Toulouse, Hôpital Purpan, Service d'Ophtalmologie, Toulouse, France.
| |
Collapse
|
12
|
Parapuram SK, Hodge W. The integrin needle in the stromal haystack: emerging role in corneal physiology and pathology. J Cell Commun Signal 2014; 8:113-24. [PMID: 24604397 DOI: 10.1007/s12079-014-0230-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/14/2014] [Indexed: 01/22/2023] Open
Abstract
Several studies have established the role of activated corneal keratocytes in the fibrosis of the cornea. However, the role of keratocytes in maintaining the structural integrity of a normal cornea is less appreciated. We focus on the probable functions of integrins in the eye and of the importance of integrin-mediated keratocyte interactions with stromal matrix in the maintenance of corneal integrity. We point out that further understanding of how keratocytes interact with their matrix could establish a novel direction in preventing corneal pathology including loss of structural integrity as in keratoconus or as in fibrosis of the corneal stroma.
Collapse
Affiliation(s)
- Sunil K Parapuram
- Department of Ophthalmology, University of Western Ontario, London, Ontario, N6A 4V2, Canada,
| | | |
Collapse
|
13
|
Spurlin JW, Lwigale PY. Wounded embryonic corneas exhibit nonfibrotic regeneration and complete innervation. Invest Ophthalmol Vis Sci 2013; 54:6334-44. [PMID: 24003085 PMCID: PMC3783042 DOI: 10.1167/iovs.13-12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Wound healing in adult corneas is characterized by activation of keratocytes and extracellular matrix (ECM) synthesis that results in fibrotic scar formation and loss of transparency. Since most fetal wounds heal without scaring, we investigated the regenerative potential of wounded embryonic corneas. METHODS On embryonic day (E) 7 chick corneas were wounded by making a linear incision traversing the epithelium and anterior stroma. Wounded corneas were collected between E7 and E18, and analyzed for apoptosis, cell proliferation, staining of ECM components, and corneal innervation. RESULTS Substantial wound retraction was observed within 16-hours postwounding (hpw) and partial re-epithelialized by 5-days postwounding (dpw). Corneal wounds were fully re-epithelialized by 11 dpw with no visible scars. There was no difference in the number of cells undergoing apoptosis between wounded and control corneas. Cell proliferation was reduced in the wounded corneas, albeit mitotic cells in the regenerating epithelium. Staining for alpha-smooth muscle actin (α-SMA), tenascin, and fibronectin was vivid but transient at the wound site. Staining for procollagen I, perlecan, and keratan sulfate proteoglycan was reduced at the wound site. Wounded corneas were fully regenerated by 11 dpw and showed similar patterns of staining for ECM components, albeit an increase in perlecan staining. Corneal innervation was inhibited during wound healing, but regenerated corneas were innervated similar to controls. CONCLUSIONS These data show that minimal keratocyte activation, rapid ECM reconstruction, and proper innervation occur during nonfibrotic regeneration of the embryonic cornea.
Collapse
Affiliation(s)
- James W Spurlin
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas
| | | |
Collapse
|
14
|
The role of lumican in ocular disease. ISRN OPHTHALMOLOGY 2013; 2013:632302. [PMID: 24558602 PMCID: PMC3914189 DOI: 10.1155/2013/632302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/30/2013] [Indexed: 11/17/2022]
Abstract
Lumican is keratan sulfate proteoglycan of the small leucine rich proteoglycan family. Through studies in animal models lumican has been found to be critical in maintaining corneal clarity. It maintains ordered collagen fibrils which are vital in keeping the cornea transparent. It may also be important in primary open angle glaucoma influencing aqueous outflow. Lumican deficiency in mice results in increased axial length with fibromodulin deficiency and thinner sclerae. There is evidence suggesting that this characteristic may be pertinent in humans and lumican gene polymorphisms could be related to high myopia. Lumican plays a fundamental role in inflammation and wound healing. It localises macrophages to the site of corneal injury and recruits neutrophils in lipopolysaccharide-induced keratitis in mice. It has also been shown to bind lipopolysaccharide which may be critical in inflammatory diseases such as uveitis. Lumican is also important in wound healing revealing decreased synthesis in scar tissue and mediating Fas-Fas ligand interactions. It is present in human placenta and amniotic membrane suggesting that it may ensure viable amniotic membrane grafts. Lumican may also be involved in the formation of posterior capsular opacification following cataract surgery. Research into the pivotal role of lumican in the pathogenesis of ocular disease has resulted in greater understanding of the key role which proteoglycans play in human disease.
Collapse
|
15
|
Boote C, Du Y, Morgan S, Harris J, Kamma-Lorger CS, Hayes S, Lathrop KL, Roh DS, Burrow MK, Hiller J, Terrill NJ, Funderburgh JL, Meek KM. Quantitative assessment of ultrastructure and light scatter in mouse corneal debridement wounds. Invest Ophthalmol Vis Sci 2012; 53:2786-95. [PMID: 22467580 DOI: 10.1167/iovs.11-9305] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The mouse has become an important wound healing model with which to study corneal fibrosis, a frequent complication of refractive surgery. The aim of the current study was to quantify changes in stromal ultrastructure and light scatter that characterize fibrosis in mouse corneal debridement wounds. METHODS Epithelial debridement wounds, with and without removal of basement membrane, were produced in C57BL/6 mice. Corneal opacity was measured using optical coherence tomography, and collagen diameter and matrix order were quantified by x-ray scattering. Electron microscopy was used to visualize proteoglycans. Quantitative PCR (Q-PCR) measured mRNA transcript levels for several quiescent and fibrotic markers. RESULTS Epithelial debridement without basement membrane disruption produced a significant increase in matrix disorder at 8 weeks, but minimal corneal opacity. In contrast, basement membrane penetration led to increases in light scatter, matrix disorder, and collagen diameter, accompanied by the appearance of abnormally large proteoglycans in the subepithelial stroma. This group also demonstrated upregulation of several quiescent and fibrotic markers 2 to 4 weeks after wounding. CONCLUSIONS Fibrotic corneal wound healing in mice involves extensive changes to collagen and proteoglycan ultrastructure, consistent with deposition of opaque scar tissue. Epithelial basement membrane penetration is a deciding factor determining the degree of ultrastructural changes and resulting opacity.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen J, Wong-Chong J, SundarRaj N. FGF-2- and TGF-β1-induced downregulation of lumican and keratocan in activated corneal keratocytes by JNK signaling pathway. Invest Ophthalmol Vis Sci 2011; 52:8957-64. [PMID: 22025571 DOI: 10.1167/iovs.11-8078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Downregulation of lumican and keratocan expression is an undesirable phenotypic change that occurs during corneal wound healing. The present study was intended to determine whether the activation of Jun N-terminal kinase (JNK)-signaling pathway is involved in their downregulation in TGF-β1- and FGF-2-activated keratocytes. METHODS Keratocytes, isolated from rabbit corneal stroma, and cultured in a serum-free medium, pretreated or not treated with JNK inhibitor (SP600125), were activated with FGF-2/heparin sulfate (HS) or TGF-β1 in the presence or absence of SP600125. In another set of experiments, keratocytes were transfected with JNK1/2 Dicer-substrate RNA (DsiRNA) and then activated with TGF-β1 or FGF-2/HS. Specific phenotypic changes were analyzed immunocytochemically and correlated with Western blot analyses. The relative levels of specific mRNAs were estimated by quantitative RT-PCR using specific reagents. RESULTS The FGF-2/HS- or TGF-β-induced activation of corneal stromal keratocytes to fibroblast- or myofibroblast-phenotype, respectively, resulted in marked decreases in cell surface-associated and secreted keratan sulfate proteoglycans (KSPGs). Both keratocan and lumican proteins and their mRNAs were downregulated in the activated keratocytes. However, JNK inhibition during the activation of keratocytes, pretreated with the JNK inhibitor, suppressed the reduction in the cell-surface associated and secreted KSPGs (lumican and keratocan), and their mRNA transcripts. Downregulation of total KSPGs and their mRNAs was also inhibited by decreasing JNK1 and JNK2 levels via JNK1/2 DsiRNA transfection of keratocytes before their activation. CONCLUSIONS Extrapolating from the present study, FGF-2- and TGF-β1-activation of JNK signaling pathway may be partly responsible for the downregulation of keratocan and lumican expression in activated corneal keratocytes observed during corneal stromal wound healing.
Collapse
Affiliation(s)
- Jian Chen
- Department of Ophthalmology, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
17
|
Moon BG, Kim JH, Lee JE, Kim MJ, Kim JY, Tchah H. Long-term Clinical Outcomes of Femtosecond LASER-Assisted Descemet's Stripping Endothelial Keratoplasty. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2011. [DOI: 10.3341/jkos.2011.52.6.679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Byung Gil Moon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hyung Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Eun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res 2010; 91:326-35. [PMID: 20599432 DOI: 10.1016/j.exer.2010.06.021] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 11/18/2022]
Abstract
The cornea consists primarily of three layers: an outer layer containing an epithelium, a middle stromal layer consisting of a collagen-rich extracellular matrix (ECM) interspersed with keratocytes and an inner layer of endothelial cells. The stroma consists of dense, regularly packed collagen fibrils arranged as orthogonal layers or lamellae. The corneal stroma is unique in having a homogeneous distribution of small diameter 25-30 nm fibrils that are regularly packed within lamellae and this arrangement minimizes light scattering permitting transparency. The ECM of the corneal stroma consists primarily of collagen type I with lesser amounts of collagen type V and four proteoglycans: three with keratan sulfate chains; lumican, keratocan, osteoglycin and one with a chondroitin sulfate chain; decorin. It is the core proteins of these proteoglycans and collagen type V that regulate the growth of collagen fibrils. The overall size of the proteoglycans are small enough to fit in the spaces between the collagen fibrils and regulate their spacing. The stroma is formed during development by neural crest cells that migrate into the space between the corneal epithelium and corneal endothelium and become keratoblasts. The keratoblasts proliferate and synthesize high levels of hyaluronan to form an embryonic corneal stroma ECM. The keratoblasts differentiate into keratocytes which synthesize high levels of collagens and keratan sulfate proteoglycans that replace the hyaluronan/water-rich ECM with the densely packed collagen fibril-type ECM seen in transparent adult corneas. When an incisional wound through the epithelium into stroma occurs the keratocytes become hypercellular myofibroblasts. These can later become wound fibroblasts, which provides continued transparency or become myofibroblasts that produce a disorganized ECM resulting in corneal opacity. The growth factors IGF-I/II are likely responsible for the formation of the well organized ECM associated with transparency produced by keratocytes during development and by the wound fibroblast during repair. In contrast, TGF-beta would cause the formation of the myofibroblast that produces corneal scaring. Thus, the growth factor mediated synthesis of several different collagen types and the core proteins of several different leucine-rich type proteoglycans as well as posttranslational modifications of the collagens and the proteoglycans are required to produce collagen fibrils with the size and spacing needed for corneal stromal transparency.
Collapse
Affiliation(s)
- John R Hassell
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612-4799, USA.
| | | |
Collapse
|
19
|
Etheredge L, Kane BP, Valkov N, Adams S, Birk DE, Hassell JR. Enhanced cell accumulation and collagen processing by keratocytes cultured under agarose and in media containing IGF-I, TGF-β or PDGF. Matrix Biol 2010; 29:519-24. [PMID: 20580823 DOI: 10.1016/j.matbio.2010.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/29/2022]
Abstract
We previously showed an agarose overlay on keratocytes cultured in media containing pharmacological levels of insulin enhanced collagen processing and collagen fibril formation. In this study, we compared collagen processing by keratocytes cultured in media containing physiological levels of IGF-I, TGF-β, FGF-2, and PDGF in standard and in agarose overlay cultures. Pepsin digestion/SDS PAGE was used to determine the levels of procollagen secreted into the media and the collagen content of the ECM associated with the cell layer. Distribution of collagen type I and fibronectin in the ECM of the agarose cultures was determined by immunoflorescence. Collagen fibril and keratocyte morphology was evaluated by electron microscopy. The agarose overlay significantly enhanced the cell number in the IGF-I, TGF-β and PDGF treated cultures by 2-3 fold. The overlay also significantly enhanced the processing of procollagen to collagen fibrils from 29% in standard cultures to 63-68% in agarose cultures for the IGF-I and PDGF cultures, and from 66% in standard culture to 85% in agarose culture for the TGF-β cultures. Cell accumulation and collagen processing was not enhanced by agarose overlay of the FGF-2 treated cultures. Collagen type I and fibronectin were more uniformly distributed and the collagen fibrils smaller in the ECM of the TGF-β treated cultures. Keratocytes in the FGF-2 treated cultures were in close cell contact with few collagen fibrils while IGF-I, TGF-β, and PDGF cultures had an extensive ECM with abundant collagen fibrils. The results of this study indicate that the agarose overlay enhances collagen fibril assembly and cell accumulation by keratocytes when both collagen synthesis and cell proliferation are stimulated.
Collapse
Affiliation(s)
- LaTia Etheredge
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, Tampa, FL 33612-4799, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Huh MIL, Kim YH, Park JH, Bae SW, Kim MH, Chang Y, Kim SJ, Lee SR, Lee YS, Jin EJ, Sonn JK, Kang SS, Jung JC. Distribution of TGF-β isoforms and signaling intermediates in corneal fibrotic wound repair. J Cell Biochem 2009; 108:476-88. [DOI: 10.1002/jcb.22277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Meade ML, Shiyanov P, Schlager JJ. Enhanced detection method for corneal protein identification using shotgun proteomics. Proteome Sci 2009; 7:23. [PMID: 19563675 PMCID: PMC2711935 DOI: 10.1186/1477-5956-7-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/29/2009] [Indexed: 01/06/2023] Open
Abstract
Background The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea. Results Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10-3 and peptides with a probability of 10-2 or less with at least two unique peptides isolated within the run along with default Xcorr values. These parameters resulted in the identification of over 350 proteins, including over 225 new proteins not previously detected in the cornea by mass spectrometry. In addition, corneal layer separation resulted in identification of nearly every protein that was identified in the complete cornea assay. The epithelium and endothelium each revealed many unique proteomes specific to each layer. In the endothelium, the protein olfactomedin-like 3 was identified for the first time in the cornea by this analysis. Olfactomedin-3 is a neuronal expressed protein also known as optimedin that stimulates formation of cell adherent and cell-cell tight junctions and its expression modulates cytoskeleton organization and cell migration. However, the function of this protein in rabbit corneal endothelium is currently unknown. Conclusion This manuscript presents a description of a more comprehensive proteomic profile for mammalian cornea compared to past methods. The use of simple dissection procedures of the tissue and the application of long chromatographic gradients, many more proteins can be identified.
Collapse
Affiliation(s)
- Mitchell L Meade
- Applied Biotechnology Branch, Biosciences and Protection Division, Wright-Patterson AFB, Ohio, USA.
| | | | | |
Collapse
|
22
|
Guerriero E, Chen J, Sado Y, Mohan RR, Wilson SE, Funderburgh JL, SundarRaj N. Loss of alpha3(IV) collagen expression associated with corneal keratocyte activation. Invest Ophthalmol Vis Sci 2007; 48:627-35. [PMID: 17251459 PMCID: PMC2714546 DOI: 10.1167/iovs.06-0635] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether changes in the expression of type IV alpha1, alpha2, or alpha3 collagen isoforms are stringently associated with corneal stromal cell activation. METHODS Keratocytes isolated from rabbit corneal stroma by collagenase digestion were plated in serum-free or insulin-, bFGF/heparin sulfate (HS)-, TGF-beta1-, or fetal bovine serum (FBS)-supplemented DMEM/F12 medium. Expression of type IV collagen isoforms and keratan sulfate proteoglycans (KSPGs) was evaluated by immunocytochemical analysis, Western blot analysis, or both. Concentrations of mRNAs were estimated by quantitative RT-PCR using SYBR Green RT-PCR reagents. RESULTS Immunohistochemical analysis indicated that type IV alpha1, alpha2, and alpha3 collagens were expressed in normal rabbit corneal stroma and in keratocytes cultured in serum-free and insulin-supplemented media. However, alpha3(IV) collagen was not detectable in the regenerating stroma after photorefractive keratectomy (PRK) in rabbit or in corneal stromal cells cultured in media supplemented with FBS, bFGF/HS, or TGF-beta1. alpha3(IV) collagen mRNA levels were also diminished in the stromal cells cultured in these growth factor-supplemented media. KSPGs (lumican and keratocan) were expressed and secreted in serum-free medium. Although the expression of KSPGs was promoted by insulin, the expression and intracellular levels of lumican and keratocan mRNAs were downregulated by TGF-beta1 and FBS. bFGF/HS promoted the downregulation of intracellular keratocan but not lumican mRNA levels. CONCLUSIONS The loss in the expression of alpha3(IV) collagen is a stringent phenotypic change associated with activation of keratocytes in vivo and in vitro. This phenotypic change in activated corneal stromal cells is induced by bFGF/HS and by TGF-beta1, and it accompanies the downregulation of keratocan expression.
Collapse
Affiliation(s)
- Emily Guerriero
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian Chen
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yoshikazu Sado
- Division of Immunology, Shigei Medical Research Institute, Okayama, Japan
| | - Rajiv R. Mohan
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Steven E. Wilson
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - James L. Funderburgh
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nirmala SundarRaj
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Acosta AC, Espana EM, Stoiber J, Lamar PD, Marangon F, Alfonso E, Parel JM. Corneal stroma regeneration in felines after supradescemetic keratoprosthesis implantation. Cornea 2006; 25:830-8. [PMID: 17068461 DOI: 10.1097/01.ico.0000220769.19402.86] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To show corneal regeneration in 3 cats that underwent lamellar keratectomy (90%) depth during supradescemetic keratoprosthetic implantation. METHODS Three 2-year-old cats that underwent spontaneous keratoprosthesis extrusion between 15 and 150 days after implanting a supradescemetic prosthesis into their right eyes were studied. Corneal structures and stroma thickness were evaluated by slit-lamp photographs, pachymetry, and confocal microscopy. Regenerated corneal epithelial cells, stroma matrix, and keratocyte morphology were studied with histology and transmission electron microscopy. Epithelial and stromal cell immunocharacterization was performed. RESULTS Corneas progressively regained normal thickness and improved clarity within 40 to 60 days. Slit-lamp photographs and pachymetry showed gains in stromal thickness until 600 microm or more. In vivo confocal microscopy showed the restoration of normal epithelium and stroma in all cats. Corneal nerves were seen in the regenerated stroma of 2 cats. Immunostaining showed absent alpha-smooth muscle actin (SMA) expression and a keratin K3-expressing epithelium. Electron microscopy showed regeneration of normal epithelium with a well-formed basement membrane, organized corneal lamellae, and the presence of normal keratocytes. CONCLUSION Felines are capable of regenerating corneal structures including epithelium and reinnervated stroma matrix after deep lamellar keratectomy. The use of feline models in corneal keratoprosthesis is therefore questionable.
Collapse
Affiliation(s)
- Ana C Acosta
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kawakita T, Espana EM, He H, Smiddy R, Parel JM, Liu CY, Tseng SCG. Preservation and expansion of the primate keratocyte phenotype by downregulating TGF-beta signaling in a low-calcium, serum-free medium. Invest Ophthalmol Vis Sci 2006; 47:1918-27. [PMID: 16638999 PMCID: PMC1569676 DOI: 10.1167/iovs.05-1040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To demonstrate whether the original keratocyte phenotype is maintained with proliferative activity by suppressing TGF-beta signaling in rhesus monkey keratocytes expanded in a serum-free and low-[Ca2+] medium. METHODS Rhesus monkey keratocytes were isolated from central corneal buttons by collagenase digestion for 16 hours, seeded on plastic in Dulbecco's modified Eagle's medium (DMEM) containing insulin-transferrin-sodium selenite (ITS) supplement (DMEM/ITS) or 10% fetal bovine serum (DMEM/10% FBS), or in a defined keratinocyte serum-free medium (KSFM). After confluence, cells in KSFM were continuously subcultured at a 1-to-3 split. Cellular proliferation was analyzed by immunostaining for Ki67 and the MTT assay. The cellular phenotype was determined by immunostaining for aldehyde dehydrogenase (ALDH), keratocan, and CD34 and by the expression of keratocan promoter-driven enhanced cyan fluorescent protein (ECFP). The stability of the keratocyte phenotype was examined by switching KSFM to DMEM/ITS and DMEM/10% FBS. TGF-beta signaling was monitored by measuring the promoter activity of TGF-beta1, -beta2, and -beta RII after transient adenoviral transfection, and cytolocalization of Smad2 and Smad4. RESULTS In KSFM, monkey keratocytes proliferated while maintaining the expression of keratocan, CD34, and ALDH proteins and keratocan promoter-driven ECFP for at least 15 passages. The nuclear accumulation of Smad2 and Smad4 and the promoter activities of TGF-beta1 and -beta RII were significantly downregulated in KSFM compared with DMEM/10% FBS. In KSFM, an increase of [Ca2+] to 1.8 mM and addition of 10% FBS synergistically downregulated the keratocan promoter activity, facilitated Smad2 and Smad4 nuclear translocation, and upregulated TGF-beta1 and -beta RII promoter activities. CONCLUSIONS The normal monkey keratocyte phenotype can be maintained in a low-calcium, serum-free medium by downregulating Smad-mediated TGF-beta signaling.
Collapse
Affiliation(s)
- Tetsuya Kawakita
- From TissueTech, Inc., Ocular Surface Center, Miami, Florida; and the
| | - Edgar M. Espana
- From TissueTech, Inc., Ocular Surface Center, Miami, Florida; and the
| | - Hua He
- From TissueTech, Inc., Ocular Surface Center, Miami, Florida; and the
| | - Robert Smiddy
- From TissueTech, Inc., Ocular Surface Center, Miami, Florida; and the
| | - Jean-Marie Parel
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida
| | - Chia-Yang Liu
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida
| | - Scheffer C. G. Tseng
- From TissueTech, Inc., Ocular Surface Center, Miami, Florida; and the
- Corresponding author: Scheffer C. G. Tseng, Ocular Surface Center, 7000 SW 97 Avenue, Suite 213, Miami, FL 33176;
| |
Collapse
|
25
|
Torres RM, Merayo-Lloves J, Blanco-Mezquita JT, Günther CP, Rodríguez G, Gutiérez R, Martínez-García C. Experimental Model of Laser in situ Keratomileusis in Hens. J Refract Surg 2005; 21:392-8. [PMID: 16128338 DOI: 10.3928/1081-597x-20050701-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To develop an experimental animal model of laser in situ keratomileusis (LASIK) in hens. METHODS One hundred adult hens underwent a 60-microm corneal flap followed by -4 diopter excimer laser ablation. Surgical technique, clinical course, and pathology correlations are presented. RESULTS Sixty percent of animals had a successful LASIK outcome according to clinical observations. Pathology showed the integrity of Bowman's layer and homogeneous flap in all eyes with good clinical outcomes. Flap complications such as buttonholes (5%), free-flaps (2%), and slipped flaps (3.4%) occurred with the surgical technique. Corneal abscess (2.9%) was also present. Loss of transparency was noted in 26.4%, which correlates with epithelial ingrowth detected by light histology study. CONCLUSIONS An experimental animal model of LASIK was successfully developed in adult hens. This model could be useful in the study of wound healing and pharmacological modulation after LASIK in an animal with Bowman's layer.
Collapse
Affiliation(s)
- Rodrigo M Torres
- Instituto Universitario de Oftalmobiología Aplicada, University of Valladolid, Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Vij N, Roberts L, Joyce S, Chakravarti S. Lumican suppresses cell proliferation and aids Fas-Fas ligand mediated apoptosis: implications in the cornea. Exp Eye Res 2004; 78:957-71. [PMID: 15051477 DOI: 10.1016/j.exer.2003.12.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 12/19/2003] [Indexed: 11/24/2022]
Abstract
Lumican, an extracellular matrix (ECM) keratan sulfate proteoglycan, binds fibrillar collagen and limits collagen fibril diameter in the cornea, skin and tendon. Lumican-deficient mice (Lum(-/-)) develop abnormally thick collagen fibrils, translucent corneas and fragilities of the skin and the tendon. In addition to modulating interstitial ECM structure, here we hypothesized that lumican regulates proliferation and apoptosis of cells residing in the interstitium. Corneal and embryonic fibroblasts from the Lum(-/-) mouse show increased growth in culture. Lum(-/-) mouse embryonic fibroblasts (MEF), compared to their wild type counterparts, display increased rates of proliferation and decreased apoptosis. Ectopic expression of lumican in Lum(-/-) MEF or exogenous recombinant lumican in the culture medium reduces proliferation to rates seen in the Lum(+/+) MEF. We further investigated the implications of lumican's proliferation and apoptosis regulatory role in the cornea where lumican is a major component of the stromal matrix. Stromal keratocytes undergo proliferation and apoptosis during corneal maturation and in the healing of injured cornea. The Lum(-/-) mouse shows increased proliferation and decreased apoptosis of stromal keratocytes during postnatal corneal maturation at the 10-day age. Apoptosis is also significantly down regulated in Lum(-/-) vis-à-vis Lum(+/+) mice during stromal wound healing in the adult 6-week age. Lumican appears to regulate these cellular functions by modulating specific cell growth and apoptosis mediators. Thus, Lum(-/-) MEF have decreased p21(WAF1/CIP1), a universal inhibitor of cyclin-dependent kinases and a consequent increase in cyclins A, D1 and E. Furthermore, the tumor suppressor p53, an upstream regulator of p21 is down regulated in the MEF and the cornea of Lum(-/-) mice. The evidence suggests regulation of p21 by lumican in a p53-dependent way. The MEF and the cornea of Lum(-/-) mice also show a dramatic decrease in Fas (CD95). The Lum(-/-) MEF fail to induce Fas upon treatment with Fas ligand. Fas-Fas ligand interaction is an initiating event in apoptosis and its disruption in lumican-deficiency may partly explain the observed decrease in apoptosis. Fas-Fas ligand mediated apoptosis is critical for maintaining the immune privileged status of the cornea, which implies a new and exciting role for lumican in the cornea.
Collapse
Affiliation(s)
- Neeraj Vij
- Departments of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 935, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
27
|
Saika S, Okada Y, Miyamoto T, Yamanaka O, Ohnishi Y, Yamanaka A, Ooshima A. Protein expression pattern of collagen type XV in mouse cornea. Graefes Arch Clin Exp Ophthalmol 2004; 242:432-6. [PMID: 14752666 DOI: 10.1007/s00417-003-0854-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 11/25/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To examine the alteration of protein expression pattern of collagen type XV in cornea during embryonic development and adult tissue repair. Collagen type XV is a basement membrane collagen of a subfamily of multiplexins (multiple triple helix domains and interruptions). Its COOH-terminal peptide has an anti-angiogenic effect and its distribution in avascular tissue of cornea is of interest. METHODS Eyes of mouse embryos [day (E) 10.5-18.5] and healing adult mouse corneas following either débridement injury or incision were embedded in paraffin. Deparaffinized sections were processed for immunofluorescent staining with anti-collagen XV antibody. RESULTS At E14.5 embryonic corneal epithelium, as well as fibroblasts in eyelids, began to express this collagen type very faintly, and at E18.5, besides corneal epithelial expression, epidermis, palpebral conjunctiva, and keratocytes started to express collagen type XV. In adult mouse cornea, collagen type XV was observed in basal and suprabasal epithelial cells and stroma, but not in the subepithelial basement membrane. Healing epithelial cells following débridement or incision injury down-regulated its protein expression. CONCLUSIONS Mouse embryonic corneal epithelium and keratocytes begin to express collagen type XV before birth. Healing murine corneal epithelium down-regulates collagen XV expression. The presence of collagen XV in corneal stroma may play a part in avascularity.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, 641-0012, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Montiani-Ferreira F, Cardoso F, Petersen-Jones S. Postnatal development of central corneal thickness in chicks of Gallus gallus domesticus. Vet Ophthalmol 2004; 7:37-9. [PMID: 14738505 DOI: 10.1111/j.1463-5224.2004.00319.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the changes in corneal thickness that occur during maturation of the Gallus gallus domesticus chick eye over the first 450 days of life. ANIMALS STUDIED Twenty-nine chicks, of which 12 were males and 17 were females. PROCEDURES The central corneal thickness (CCT) was measured by ultrasonic pachymetry from hatch until 450 days of age. Segmented regression was applied to capture the two phases observed in the CCT plotted against age. Eye and gender were also included in the model. RESULTS Mean CCT values initially decreased, with the lowest point being reached at around 12 days of age. CCT then gradually increased as the chick matured. At 70 days of age the animals have completed corneal development and reached the plateau value of 0.242 +/- 0.0002 mm. CCT differences between gender or between left and right eyes were not statistically significant. Prediction equations for mean CCT according to the bird's age are presented. CONCLUSIONS There is an initial decrease in corneal thickness until approximately 12 days of age, which presumably mirrors maturation of corneal endothelial cell function. The pattern of changes in corneal thickness during the first phase of development of the chick CCT was similar to the one reported for dogs and humans. However, a unique feature of the development of CCT in chicks is that after reaching a plateau at 70 days corneal thickness did not significantly change over the remainder of the study period. Additionally, unlike in humans and dogs, there is no gender difference for corneal thickness in chicks.
Collapse
Affiliation(s)
- Fabiano Montiani-Ferreira
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, D-208 Veterinary Medical Center, East Lansing, MI 48824-1314, USA
| | | | | |
Collapse
|
29
|
Song J, Lee YG, Houston J, Petroll WM, Chakravarti S, Cavanagh HD, Jester JV. Neonatal corneal stromal development in the normal and lumican-deficient mouse. Invest Ophthalmol Vis Sci 2003; 44:548-57. [PMID: 12556382 PMCID: PMC1853375 DOI: 10.1167/iovs.02-0592] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to characterize temporally stromal growth and transparency in lumican-deficient and normal neonatal mice. METHODS Lumican-deficient mice and CD1 wild-type mice were evaluated by in vivo confocal microscopy through-focusing (CMTF) to quantify stromal and epithelial thickness and corneal light-scattering and by laser scanning CM to determine density of keratocytes from 1 day to 12 weeks after birth. RESULTS CD1 corneas showed a rapid loss of light-scattering, decreasing by 50% from day 1 to day 12, that paralleled a 60% decrease in density of keratocytes. By contrast, the stroma demonstrated a marked swelling from day 8 to day 12, followed by thinning at day 14. Compared to corneas from CD1 mice, lumican-deficient corneas showed significantly increased (P < 0.05) light-scattering beginning at week 3 that remained elevated above wild-type levels for the duration of the study. Stromal development was also markedly altered, with thinning detected at week 3, followed by no detectable stromal growth for the duration of the study. Density of keratocytes was significantly increased, but the total cell number was similar compared with that in the wild-type cornea, suggesting no effect on keratocyte differentiation. CONCLUSIONS Development of normal neonatal corneal transparency appears related to changes in density of keratocytes. The stroma, however, undergoes a marked swelling and thinning at the time of eyelid opening (days 8-14). In the lumican-deficient mouse, stromal swelling is abolished, indicating that this critical phase in stromal development is lumican dependent and essential for normal stromal growth and maintenance of stromal transparency.
Collapse
Affiliation(s)
- Julia Song
- From the Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Young-Ghee Lee
- From the Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jennifer Houston
- From the Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - W. Matthew Petroll
- From the Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Shukti Chakravarti
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - H. Dwight Cavanagh
- From the Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - James V. Jester
- From the Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
30
|
Flügel-Koch C, Ohlmann A, Piatigorsky J, Tamm ER. Disruption of anterior segment development by TGF-β1 overexpression in the eyes of transgenic mice. Dev Dyn 2002; 225:111-25. [PMID: 12242711 DOI: 10.1002/dvdy.10144] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous experiments showed that transgenic mice expressing a secreted self-activating transforming growth factor (TGF) -beta1 did not show a phenotype in the lens and cornea until postnatal day 21, when anterior subcapsular cataracts, sporadic thickening of the corneal stroma, and thinning of the corneal epithelium were noted (Srinivasan et al., 1998). To examine the effects of higher concentrations of TGF-beta1 on the lens and cornea, we constructed transgenic mice harboring the strong, lens-specific chicken betaB1-crystallin promoter driving an activated porcine TGF-beta1 gene. In contrast to the earlier study, the transgenic mice had microphthalmic eyes with closed eyelids. Already at embryonic day (E) 13.5, the future cornea of the transgenic mice was threefold thicker than that of wild-type littermates due to increased proliferation of corneal stromal mesenchyme cells. Staining of fibronectin and thrombospondin-1 was increased in periocular mesenchyme. At E17.5, the thickened transgenic corneal stroma was vascularized and densely populated by abundant star-shaped, neural cell adhesion molecule-positive cells of mesenchymal appearance surrounded by irregular swirls of collagen and extracellular matrix. The corneal endothelium, anterior chamber, and stroma of iris/ciliary body did not develop, and the transgenic cornea was opaque. Fibronectin, perlecan, and thrombospondin-1 were elevated, whereas type VI collagen decreased in the transgenic corneal stroma. Stromal mesenchyme cells expressed alpha-smooth muscle actin as did lens epithelial cells and cells of the retinal pigmented epithelium. By E17.5, lens fiber cells underwent apoptotic cell death that was followed by apoptosis of the entire anterior lens epithelium between E18.5 and birth. Posteriorly, the vitreous humor was essentially absent; however, the retina appeared relatively normal. Thus, excess TGF-beta1, a mitogen for embryonic corneal mesenchyme, severely disrupts corneal and lens differentiation. Our findings profoundly contrast with the mild eye phenotype observed with presumably lower levels of ectopic TGF-beta and illustrate the complexity of TGF-beta utilization and the importance of dose when assessing the effects of this growth factor.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis
- Blotting, Northern
- Blotting, Western
- Bromodeoxyuridine/pharmacology
- Cell Adhesion
- Cell Differentiation
- Cornea/embryology
- Eye/embryology
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- In Situ Nick-End Labeling
- Lens, Crystalline/cytology
- Lens, Crystalline/embryology
- Mice
- Mice, Transgenic
- Microscopy, Electron
- Muscle, Smooth/cytology
- Neural Crest/embryology
- Phenotype
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Time Factors
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Cassandra Flügel-Koch
- Department of Anatomy, Molecular Anatomy and Embryology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
31
|
Miyagawa A, Kobayashi M, Fujita Y, Hamdy O, Hirano K, Nakamura M, Miyake Y. Surface ultrastructure of collagen fibrils and their association with proteoglycans in human cornea and sclera by atomic force microscopy and energy-filtering transmission electron microscopy. Cornea 2001; 20:651-6. [PMID: 11473170 DOI: 10.1097/00003226-200108000-00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We aimed to investigate the possible association of proteoglycans with D-periodic collagen fibrils in the human cornea and sclera, using energy-filtering transmission electron microscopy (EF-TEM) and atomic force microscopy (AFM). METHODS Human cornea and sclera were digested with keratanase to eliminate keratan sulfate proteoglycans (KSPGs). For EF-TEM observation, surface proteoglycans were detected by cupromeronic blue (CB) staining. For AFM observation, cornea and sclera were treated with sodium hydroxide before and after keratanase digestion, and the surface topology of collagen fibrils was analyzed. RESULTS With CB staining, numerous CB-positive short filaments of surface proteoglycans (proteoglycan filaments) were observed in the interfibrillar spaces of cornea and sclera associated with collagen fibrils. AFM imaging showed that the depth and periodicity of D-periodic collagen fibrils in keratanase-treated corneal collagens were deeper and more regular than in untreated ones. Moreover, the depth and periodicity of keratanase-untreated corneal collagens were shallow and irregular in comparison with keratanase-untreated scleral collagens. On the other hand, there was no difference in depth or regularity between keratanase-treated and -untreated scleral collagen fibrils. Using AFM imaging, additional thin grooves sub-bands were detected on the surface of keratanase-treated corneal collagen fibrils. The grooves were not detected in keratanase-untreated collagen fibrils nor in scleral collagen fibrils with or without keratanase digestion. Comparing densitometry waves, the grooves of D-periodic corneal collagen sub-bands corresponded to a and c bands. CONCLUSION Using AFM and EF-TEM to study corneal and scleral collagen fibrils and their association with proteoglycans, we conclude that KSPG is found in ample amounts in the human cornea in comparison with sclera. Moreover, we topologically detected KSPG attached to a and c bands of collagen fibrils.
Collapse
Affiliation(s)
- A Miyagawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Dunlevy JR, Beales MP, Berryhill BL, Cornuet PK, Hassell JR. Expression of the keratan sulfate proteoglycans lumican, keratocan and osteoglycin/mimecan during chick corneal development. Exp Eye Res 2000; 70:349-62. [PMID: 10712821 DOI: 10.1006/exer.1999.0789] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The corneal proteoglycans belong to the Leu-rich proteoglycan (LRP) gene family and contain chondroitin/dermatan (CS/DS) or keratan sulfate (KS) chains. These proteoglycans play a critical role in generating and maintaining a transparent matrix within the corneal stroma. Decorin which has CS/DS chains and lumican which has KS chains, were first to be identified in the cornea. Two other corneal KS proteoglycans (KSPGs), keratocan and osteoglycin/mimecan were recently identified in bovine corneas. We cloned and sequenced chick osteoglycin/mimecan and found it to contain a stretch of 60 amino acids that showed no identity to the presumed mammalian homolog. The 177 base pair DNA coding for this unique sequence shows 47% identity to an 189 base pair sequence between exons 4 and 5 of the bovine osteoglycin/mimecan gene. This indicates that this cDNA represents an alternatively spliced form of osteoglycin/mimecan containing a unique N-terminal sequence. The expression of each of the three corneal KSPGs in the developing and mature chick cornea was investigated by competitive PCR and immuno-biochemical analysis of corneal extracts. Competitive PCR was used to determine the message levels for chick lumican, keratocan and osteoglycin in embryonic day 9, 12, 15, 18 and adult corneas. Results showed that lumican mRNA fluctuated during development but remained at a relatively high level while keratocan and osteoglycin message levels declined steadily from day 9 to adult. Additionally, lumican mRNA was present at higher levels, during all stages of corneal development, than keratocan and at much higher levels than osteoglycin. Antibodies shown to be specific for each KSPG were used to characterize proteoglycans isolated from embryonic and adult chick corneas. KSPGs from embryonic corneas eluted 1-2 fractions earlier on Q-Sepharose than KSPG from adult corneas. Additionally, Western blot analysis showed that embryonic KSPGs were more keratanase-resistant, endo-beta-galactosidase sensitive than adult KSPGs. The results of this study indicate an alteration in sulfation or the fine structure of the glycosaminoglycan chains occurs during corneal maturation for the 3 KSPGs.
Collapse
Affiliation(s)
- J R Dunlevy
- Shriners Hospitals for Children-Tampa, College of Medicine, University of South Florida, 12502 North Pine Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|