1
|
Liu P, Lavine JA, Fawzi A, Quaggin SE, Thomson BR. Angiopoietin-1 Is Required for Vortex Vein and Choriocapillaris Development in Mice. Arterioscler Thromb Vasc Biol 2022; 42:1413-1427. [PMID: 36172864 PMCID: PMC9613622 DOI: 10.1161/atvbaha.122.318151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The choroidal vasculature, including the choriocapillaris and vortex veins, is essential for providing nutrients to the metabolically demanding photoreceptors and retinal pigment epithelium. Choroidal vascular dysfunction leads to vision loss and is associated with age-related macular degeneration and the poorly understood pachychoroid diseases including central serous chorioretinopathy and polypoidal choroidal vasculopathy that are characterized by formation of dilated pachyvessels throughout the choroid. METHODS Using neural crest-specific Angpt1 knockout mice, we show that Angiopoietin 1, a ligand of the endothelial receptor TEK (also known as Tie2) is essential for choriocapillaris development and vortex vein patterning. RESULTS Lacking choroidal ANGPT1, neural crest-specific Angpt1 knockout eyes exhibited marked choriocapillaris attenuation and 50% reduction in number of vortex veins, with only 2 vortex veins present in the majority of eyes. Shortly after birth, dilated choroidal vessels resembling human pachyvessels were observed extending from the remaining vortex veins and displacing the choriocapillaris, leading to retinal pigment epithelium dysfunction and subretinal neovascularization similar to that seen in pachychoroid disease. CONCLUSIONS Together, these findings identify a new role for ANGPT1 in ocular vascular development and demonstrate a clear link between vortex vein dysfunction, pachyvessel formation, and disease.
Collapse
Affiliation(s)
- Pan Liu
- Section of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago IL, USA
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
| | - Jeremy A. Lavine
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amani Fawzi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E Quaggin
- Section of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago IL, USA
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
| | - Benjamin R. Thomson
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Makrides N, Wang Q, Tao C, Schwartz S, Zhang X. Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development. Open Biol 2022; 12:210265. [PMID: 35016551 PMCID: PMC8753161 DOI: 10.1098/rsob.210265] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A central question in development biology is how a limited set of signalling pathways can instruct unlimited diversity of multicellular organisms. In this review, we use three ocular tissues as models of increasing complexity to present the astounding versatility of fibroblast growth factor (FGF) signalling. In the lacrimal gland, we highlight the specificity of FGF signalling in a one-dimensional model of budding morphogenesis. In the lens, we showcase the dynamics of FGF signalling in altering functional outcomes in a two-dimensional space. In the retina, we present the prolific utilization of FGF signalling from three-dimensional development to homeostasis. These examples not only shed light on the cellular basis for the perfection and complexity of ocular development, but also serve as paradigms for the diversity of FGF signalling.
Collapse
Affiliation(s)
- Neoklis Makrides
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Qian Wang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel Schwartz
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Xin Zhang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Nagaoka N, Yoshida T, Cao K, Iwasaki Y, Nakahama KI, Morita I, Ohno-Matsui K. Visual arrestin modulates gene expression in the retinal pigment epithelium: Implications for homeostasis in the retina. Biochem Biophys Rep 2019; 20:100680. [PMID: 31467992 PMCID: PMC6711849 DOI: 10.1016/j.bbrep.2019.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/17/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
The retinal pigment epithelium (RPE) is essential for maintaining retinal homeostasis by removing and recycling photoreceptor outer segment (POS) in membranes. It also produces and secretes growth factors involved in retinal homeostasis. Arrestin 1 (ARR1) is specifically expressed in photoreceptors (PRs) and a vital molecule for keeping visual cycle between PRs and RPE. In the present study, we showed the expression of ARR1 was decreased by form-deprivation (FD) in retina of rat. The ARR1 was detected in the RPE of the controls but not in the RPE of FD, which indicates RPE phagocytes POS containing ARR1. Furthermore, we overexpressed ARR1 in cultured human RPE and revealed the ARR1 upregulates bFGF expression and downregulates TGF-β1, -β2 and bone morphogenetic protein-2 (BMP-2). The upregulation of bFGF by ARR1 directly works for PR survival and the downregulation of TGF-βs by ARR1 inhibits epithelial mesenchymal transition (EMT) of RPE, which is the underlying mechanism of keeping retinal homeostasis. Our results also indicate the regulation of ARR1 expression in RPE might become a novel therapeutic option for various ocular diseases. Arr1 is predominantly expressed in photoreceptors. The expression of ARR1 is decreased by form-deprivation in the RPE. ARR1 altered bFgf and Tgf-β in the RPE, which have roles in retinal homeostasis.
Collapse
|
4
|
Devoldere J, Peynshaert K, Dewitte H, Vanhove C, De Groef L, Moons L, Özcan SY, Dalkara D, De Smedt SC, Remaut K. Non-viral delivery of chemically modified mRNA to the retina: Subretinal versus intravitreal administration. J Control Release 2019; 307:315-330. [PMID: 31265881 DOI: 10.1016/j.jconrel.2019.06.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/20/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Abstract
mRNA therapeutics have recently experienced a new wave of interest, mainly due to the discovery that chemical modifications to mRNA's molecular structure could drastically reduce its inherent immunogenicity and perceived instability. On this basis, we aimed to explore the potential of chemically stabilized mRNA for ocular applications. More specifically, we investigated the behavior of mRNA-loaded lipid-based carriers in human retinal cells (in vitro), in bovine retinal explants (ex vivo) and in mouse retinas (in vivo). We demonstrate a clear superiority of mRNA over pDNA to induce protein expression in different retinal cell types, which was further enhanced by chemical modification of the mRNA, providing up to ~1800-fold higher reporter gene expression compared to pDNA. Moreover, transgene expression could be detected for at least 20 days after a single administration of chemically modified mRNA in vitro. We furthermore determined the localization and extent of mRNA expression depending on the administration route. After subretinal (SR) administration, mRNA expression was observed in vivo and ex vivo. By contrast, intravitreal (IVT) administration resulted in limited expression in vivo. Using ex vivo bovine explants with an intact vitreoretinal (VR) interface we could attribute this to the inner limiting membrane (ILM), which presents a large barrier for non-viral delivery of mRNA, trapping mRNA complexes at the vitreal side. When the vitreous was removed, which compromises the ILM, mRNA expression was apparent and seemed to colocalize with Müller cells or photoreceptors after respectively IVT or SR administration. Taken together, this study represents a first step towards mRNA-mediated therapy for retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1050 Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Christian Vanhove
- Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Sinem Yilmaz Özcan
- Neurological Sciences and Psychiatry Institute; Hacettepe University, Ankara, Turkey
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Expression, regulation and function of miR-126 in the mouse choroid vasculature. Exp Eye Res 2018; 170:169-176. [PMID: 29501382 PMCID: PMC5993209 DOI: 10.1016/j.exer.2018.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
MicroRNA miR-126 has been shown to be required for proper angiogenesis in several models. However, its expression, regulation and function in the mouse choroid remain unclear. Our previous data has shown that miR-126 expression is enriched in the endothelial cells (ECs) of the mouse choroid. Here we report that a 5.5 kb Egfl7/miR-126 promoter drives the expression of miR-126 in the choroid ECs during choroidal vascular development. The expression of miR-126 in the ECs is regulated by flow stress likely through Krüppel-like transcriptional factors. miR-126−/− mice show mildly delayed choroidal vascular development, but adult knockout mice develop periphery choroidal vascular lesions. This study suggests that miR-126 is largely dispensable for mouse choroidal development but required for maintaining choroidal vasculature integrity.
Collapse
|
6
|
Spencer C, Abend S, McHugh KJ, Saint-Geniez M. Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium. J Cell Mol Med 2017; 21:2542-2552. [PMID: 28402065 PMCID: PMC5618686 DOI: 10.1111/jcmm.13175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
The retinal pigment epithelium located between the neurosensory retina and the choroidal vasculature is critical for the function and maintenance of both the photoreceptors and underlying capillary endothelium. While the trophic role of retinal pigment epithelium on choroidal endothelial cells is well recognized, the existence of a reciprocal regulatory function of endothelial cells on retinal pigment epithelium cells remained to be fully characterized. Using a physiological long‐term co‐culture system, we determined the effect of retinal pigment epithelium‐endothelial cell heterotypic interactions on cell survival, behaviour and matrix deposition. Human retinal pigment epithelium and endothelial cells were cultured on opposite sides of polyester transwells for up to 4 weeks in low serum conditions. Cell viability was quantified using a trypan blue assay. Cellular morphology was evaluated by H&E staining, S.E.M. and immunohistochemistry. Retinal pigment epithelium phagocytic function was examined using a fluorescent bead assay. Gene expression analysis was performed on both retinal pigment epithelium and endothelial cells by quantitative PCR. Quantification of extracellular matrix deposition was performed on decellularized transwells stained for collagen IV, fibronectin and fibrillin. Our results showed that presence of endothelial cells significantly improves retinal pigment epithelium maturation and function as indicated by the induction of visual cycle‐associated genes, accumulation of a Bruch's membrane‐like matrix and increase in retinal pigment epithelium phagocytic activity. Co‐culture conditions led to increased expression of anti‐angiogenic growth factors and receptors in both retinal pigment epithelium and endothelial cells compared to monoculture. Tube‐formation assays confirmed that co‐culture with retinal pigment epithelium significantly decreased the angiogenic phenotype of endothelial cells. These findings provide evidence of critical interdependent interactions between retinal pigment epithelium and endothelial cell involved in the maintenance of retinal homeostasis.
Collapse
Affiliation(s)
- Carrie Spencer
- Schepens Eye Research Institute, Mass. Eye and Ear, Boston, MA, USA
| | - Stephanie Abend
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kevin J McHugh
- Schepens Eye Research Institute, Mass. Eye and Ear, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute, Mass. Eye and Ear, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Woad KJ, Robinson RS. Luteal angiogenesis and its control. Theriogenology 2016; 86:221-8. [PMID: 27177965 DOI: 10.1016/j.theriogenology.2016.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is critical to luteal structure and function. In addition, it is a complex and tightly regulated process. Not only does rapid and extensive angiogenesis occur to provide the corpus luteum with an unusually high blood flow and support its high metabolic rate, but in the absence of pregnancy, the luteal vasculature must rapidly regress to enable the next cycle of ovarian activity. This review describes a number of key endogenous stimulatory and inhibitory factors, which act in a delicate balance to regulate luteal angiogenesis and ultimately luteal function. In vitro luteal angiogenesis cultures have demonstrated critical roles for fibroblast growth factor 2 (FGF2) in endothelial cell proliferation and sprouting, although other factors such as vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor were important modulators in the control of luteal angiogenesis. Post-transcriptional regulation by small non-coding microRNAs is also likely to play a central role in the regulation of luteal angiogenesis. Appropriate luteal angiogenesis requires the coordinated activity of numerous factors expressed by several cell types at different times, and this review will also describe the role of perivascular pericytes and the importance of vascular maturation and stability. It is hoped that a better understanding of the critical processes underlying the transition from follicle to corpus luteum and subsequent luteal development will benefit the management of luteal function in the future.
Collapse
Affiliation(s)
- Kathryn J Woad
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
| | - Robert S Robinson
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| |
Collapse
|
8
|
Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2014; 2:14003. [PMID: 26273516 PMCID: PMC4472122 DOI: 10.1038/boneres.2014.3] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing, 400042, China
| |
Collapse
|
9
|
Kwiatkowski S, Munjaal RP, Lee T, Lwigale PY. Expression of pro- and anti-angiogenic factors during the formation of the periocular vasculature and development of the avian cornea. Dev Dyn 2013; 242:738-51. [PMID: 23444323 DOI: 10.1002/dvdy.23956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/31/2013] [Accepted: 02/14/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND During embryonic development, endothelial precursor cells (angioblasts) migrate relatively long distances to form the primary vascular plexus. The migratory behavior of angioblasts and localization of the primitive blood vessels is tightly regulated by pro-angiogenic and anti-angiogenic factors encountered in the embryonic environment. Despite the importance of corneal avascularity to proper vision, it is not known when avascularity is established in the developing cornea and how pro- and anti-angiogenic factors regulate this process. RESULTS AND DISCUSSION Using Tg(tie1:H2B:eYFP) transgenic quail embryos to visualize fluorescently labeled angioblasts, we show that the presumptive cornea remains avascular despite the invasion of cells from the periocular region where migratory angioblasts reside and form the primary vasculature. Semiquantitative reverse transcriptase polymerase chain reaction analysis and spatiotemporal examination of gene expression revealed that pro- and anti-angiogenic factors were expressed in patterns indicating their potential roles in angioblast guidance. CONCLUSIONS Our findings show for the first time that chick corneal avascularity is established and maintained during development as the periocular vasculature forms. We also identify potential candidate pro- and anti-angiogenic factors that may play crucial roles during vascular patterning in the anterior eye.
Collapse
Affiliation(s)
- Sam Kwiatkowski
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77025, USA
| | | | | | | |
Collapse
|
10
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
11
|
Changes in fibroblast growth factor-2 and FGF receptors in the frog visual system during optic nerve regeneration. J Chem Neuroanat 2012; 46:35-44. [PMID: 22940608 DOI: 10.1016/j.jchemneu.2012.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023]
Abstract
We have previously shown that application of fibroblast growth factor-2 (FGF-2) to cut optic nerve axons enhances retinal ganglion cell (RGC) survival in the adult frog visual system. These actions are mediated via activation of its high affinity receptor FGFR1, enhanced BDNF and TrkB expression, increased CREB phosphorylation, and by promoting MAPK and PKA signaling pathways. The role of endogenous FGF-2 in this system is less well understood. In this study, we determine the distribution of FGF-2 and its receptors in normal animals and in animals at different times after optic nerve cut. Immunohistochemistry and Western blot analysis were conducted using specific antibodies against FGF-2 and its receptors in control retinas and optic tecta, and after one, three, and six weeks post nerve injury. FGF-2 was transiently increased in the retina while it was reduced in the optic tectum just one week after optic nerve transection. Axotomy induced a prolonged upregulation of FGFR1 and FGFR3 in both retina and tectum. FGFR4 levels decreased in the retina shortly after axotomy, whereas a significant increase was detected in the optic tectum. FGFR2 distribution was not affected by the optic nerve lesion. Changes in the presence of these proteins after axotomy suggest a potential role during regeneration.
Collapse
|
12
|
Hochmann S, Kaslin J, Hans S, Weber A, Machate A, Geffarth M, Funk RHW, Brand M. Fgf signaling is required for photoreceptor maintenance in the adult zebrafish retina. PLoS One 2012; 7:e30365. [PMID: 22291943 PMCID: PMC3266925 DOI: 10.1371/journal.pone.0030365] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Genetically Modified
- Cell Death/genetics
- Cell Death/physiology
- Cell Survival/genetics
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/physiology
- Gene Expression Regulation, Developmental
- Photoreceptor Cells, Vertebrate/metabolism
- Photoreceptor Cells, Vertebrate/physiology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Fibroblast Growth Factor/physiology
- Retina/cytology
- Retina/metabolism
- Retina/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish/physiology
Collapse
Affiliation(s)
- Sarah Hochmann
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jan Kaslin
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anke Weber
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anja Machate
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Michaela Geffarth
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Richard H. W. Funk
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence (CRTD), Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
13
|
Woad KJ, Hunter MG, Mann GE, Laird M, Hammond AJ, Robinson RS. Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction 2012; 143:35-43. [DOI: 10.1530/rep-11-0277] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factor (FGF) 2 and vascular endothelial growth factor (VEGF) A are thought to be key controllers of luteal angiogenesis; however, their precise roles in the regulation and coordination of this complex process remain unknown. Thus, the temporal and spatial patterns of endothelial network formation were determined by culturing mixed cell types from early bovine corpora lutea on fibronectin in the presence of FGF2 and VEGFA (6 h to 9 days). Endothelial cells, as determined by von Willebrand factor immunohistochemistry, initially grew in cell islands (days 0–3), before undergoing a period of vascular sprouting to display a more tubule-like appearance (days 3–6), and after 9 days in culture had formed extensive intricate networks. Mixed populations of luteal cells were treated with SU1498 (VEGF receptor 2 inhibitor) or SU5402 (FGF receptor 1 inhibitor) or control on days 0–3, 3–6 or 6–9 to determine the role of FGF2 and VEGFA during these specific windows. The total area of endothelial cells was unaffected by SU1498 treatment during any window. In contrast, SU5402 treatment caused maximal reduction in the total area of endothelial cell networks on days 3–6 vs controls (mean reduction 81%;P<0.001) during the period of tubule initiation. Moreover, SU5402 treatment on days 3–6 dramatically reduced the total number of branch points (P<0.001) and degree of branching per endothelial cell island (P<0.05) in the absence of changes in mean island area. This suggests that FGF2 is a key determinant of vascular sprouting and hence critical to luteal development.
Collapse
|
14
|
Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 2011; 31:89-119. [PMID: 22108059 DOI: 10.1016/j.preteyeres.2011.11.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
Abstract
Photoreceptors and other cells of the retina consume large quantities of energy to efficiently convert light information into a neuronal signal understandable by the brain. The necessary energy is mainly provided by the oxygen-dependent generation of ATP in the numerous mitochondria of retinal cells. To secure the availability of sufficient oxygen for this process, the retina requires constant blood flow through the vasculature of the retina and the choroid. Inefficient supply of oxygen and nutrients, as it may occur in conditions of disturbed hemodynamics or vascular defects, results in tissue ischemia or hypoxia. This has profound consequences on retinal function and cell survival, requiring an adaptational response by cells to cope with the reduced oxygen tension. Central to this response are hypoxia inducible factors, transcription factors that accumulate under hypoxic conditions and drive the expression of a large variety of target genes involved in angiogenesis, cell survival and metabolism. Prominent among these factors are vascular endothelial growth factor and erythropoietin, which may contribute to normal angiogenesis during development, but may also cause neovascularization and vascular leakage under pathologically reduced oxygen levels. Since ischemia and hypoxia may have a role in various retinal diseases such as diabetic retinopathy and retinopathy of prematurity, studying the cellular and molecular response to reduced tissue oxygenation is of high relevance. In addition, the concept of preconditioning with ischemia or hypoxia demonstrates the capacity of the retina to activate endogenous survival mechanisms, which may protect cells against a following noxious insult. Part of these mechanisms is the local production of protective factors such as erythropoietin. Due to its plethora of effects in the retina including neuro- and vaso-protective activities, erythropoietin has gained strong interest as potential therapeutic factor for retinal degenerative diseases.
Collapse
Affiliation(s)
- Christian Caprara
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
15
|
Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose. Gene Ther 2011; 19:886-98. [DOI: 10.1038/gt.2011.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.
Collapse
Affiliation(s)
- Yureeda Qazi
- Department of Ophthalmology, John Moran Eye Center, University of Utah, Salt Lake City, UT-84132, USA
| | | | | |
Collapse
|
17
|
Le YZ, Bai Y, Zhu M, Zheng L. Temporal requirement of RPE-derived VEGF in the development of choroidal vasculature. J Neurochem 2010; 112:1584-92. [PMID: 20067573 DOI: 10.1111/j.1471-4159.2010.06573.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vascular endothelial growth factor (VEGF-A or VEGF) is a potent growth factor for the development of retinal and choroidal vasculatures. To define the temporal requirement of the retinal pigmented epithelium (RPE)-derived VEGF in choroidal vascular development, we generated conditional VEGF knockout mice using an inducible Cre/lox system. The loss of the RPE-derived VEGF was confirmed with immunoblotting and immunohistochemistry. Retinal function and structure were assessed with electroretinography and histology, respectively. Choroidal vascular density was analyzed with computer-assisted semi-quantitative assay using fluorescently labeled choroidal flat-mounts. Induction of RPE-specific VEGF disruption at embryonic day 10 (E10) or E13 for 2 days caused regulatable decreases in choroidal vascular density, photoreceptor function, and photoreceptor outer nuclear layer thickness. The loss of the RPE-produced VEGF after E15 did not cause detectable defects in choroidal vasculatures and photoreceptor function and morphology. These results suggest that the RPE-derived VEGF plays a critical role in choroidal vascular development during organogenesis before E15.
Collapse
Affiliation(s)
- Yun-Zheng Le
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
Collapse
Affiliation(s)
- Arie Horowitz
- Angiogenesis Research Center and Section of Cardiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | |
Collapse
|
20
|
Dakubo GD, Mazerolle C, Furimsky M, Yu C, St-Jacques B, McMahon AP, Wallace VA. Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Dev Biol 2008; 320:242-55. [PMID: 18582859 DOI: 10.1016/j.ydbio.2008.05.528] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 05/02/2008] [Accepted: 05/08/2008] [Indexed: 01/21/2023]
Abstract
The development of extraocular orbital structures, in particular the choroid and sclera, is regulated by a complex series of interactions between neuroectoderm, neural crest and mesoderm derivatives, although in many instances the signals that mediate these interactions are not known. In this study we have investigated the function of Indian hedgehog (Ihh) in the developing mammalian eye. We show that Ihh is expressed in a population of non-pigmented cells located in the developing choroid adjacent to the RPE. The analysis of Hh mutant mice demonstrates that the RPE and developing scleral mesenchyme are direct targets of Ihh signaling and that Ihh is required for the normal pigmentation pattern of the RPE and the condensation of mesenchymal cells to form the sclera. Our findings also indicate that Ihh signals indirectly to promote proliferation and photoreceptor specification in the neural retina. This study identifies Ihh as a novel choroid-derived signal that regulates RPE, sclera and neural retina development.
Collapse
Affiliation(s)
- Gabriel D Dakubo
- University of Ottawa Eye Institute, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
21
|
Lange C, Ehlken C, Martin G, Konzok K, Moscoso Del Prado J, Hansen LL, Agostini HT. Intravitreal injection of the heparin analog 5-amino-2-naphthalenesulfonate reduces retinal neovascularization in mice. Exp Eye Res 2007; 85:323-7. [PMID: 17662276 DOI: 10.1016/j.exer.2007.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 11/16/2022]
Abstract
The effect of the heparin analog 5-amino-2-naphthalenesulfonate (5-amino-2-NMS) on retinal neovascularization was investigated in the mouse model for oxygen-induced retinopathy (OIR). From postnatal day 7 (P7) until P12, mice were kept in a 75% oxygen environment. On P12, they received an intravitreal injection of 10mM 5-amino-2-NMS in one eye and PBS as control substance in the fellow eye. The animals were intracardially perfused with fluorescein-dextran solution on P17. Retinal whole mounts were prepared and ischemic retinopathy was evaluated in 30 animals using a standardized retinopathy score. A single intravitreal injection of 5-amino-2-NMS reduces significantly angioproliferative changes (blood vessel tufts, extra-retinal neovascularization, and blood vessel tortuosity) compared to the contralateral control eye (p=0.025). The median retinopathy score (maximal 13) for the 5-amino-2-NMS treated eyes was 6 versus 8 for the control eyes. 5-Amino-2-NMS binds to the heparin-binding site of FGF1 and FGF2 and thus may be a promising substance for the local treatment of retinal neovascularization.
Collapse
Affiliation(s)
- Clemens Lange
- Augenklinik, Universitätsklinikum Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Pisati F, Belicchi M, Acerbi F, Marchesi C, Giussani C, Gavina M, Javerzat S, Hagedorn M, Carrabba G, Lucini V, Gaini SM, Bresolin N, Bello L, Bikfalvi A, Torrente Y. Effect of Human Skin-Derived Stem Cells on Vessel Architecture, Tumor Growth, and Tumor Invasion in Brain Tumor Animal Models. Cancer Res 2007; 67:3054-63. [PMID: 17409412 DOI: 10.1158/0008-5472.can-06-1384] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastomas represent an important cause of cancer-related mortality with poor survival. Despite many advances, the mean survival time has not significantly improved in the last decades. New experimental approaches have shown tumor regression after the grafting of neural stem cells and human mesenchymal stem cells into experimental intracranial gliomas of adult rodents. However, the cell source seems to be an important limitation for autologous transplantation in glioblastoma. In the present study, we evaluated the tumor targeting and antitumor activity of human skin-derived stem cells (hSDSCs) in human brain tumor models. The hSDSCs exhibit tumor targeting characteristics in vivo when injected into the controlateral hemisphere or into the tail vein of mice. When implanted directly into glioblastomas, hSDSCs distributed themselves extensively throughout the tumor mass, reduced tumor vessel density, and decreased angiogenic sprouts. In addition, transplanted hSDSCs differentiate into pericyte cell and release high amounts of human transforming growth factor-beta1 with low expression of vascular endothelial growth factor, which may contribute to the decreased tumor cell invasion and number of tumor vessels. In long-term experiments, the hSDSCs were also able to significantly inhibit tumor growth and to prolong animal survival. Similar behavior was seen when hSDSCs were implanted into two different tumor models, the chicken embryo experimental glioma model and the transgenic Tyrp1-Tag mice. Taken together, these data validate the use of hSDSCs for targeting human brain tumors. They may represent therapeutically effective cells for the treatment of intracranial tumors after autologous transplantation.
Collapse
Affiliation(s)
- Federica Pisati
- Stem Cell Laboratory, Department of Neurological Science, Centro Dino Ferrari, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Murisier F, Guichard S, Beermann F. A conserved transcriptional enhancer that specifies Tyrp1 expression to melanocytes. Dev Biol 2006; 298:644-55. [PMID: 16934245 DOI: 10.1016/j.ydbio.2006.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/01/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Pigment cells of mammals originate from two different lineages: melanocytes arise from the neural crest, whereas cells of the retinal pigment epithelium (RPE) originate from the optic cup of the developing forebrain. Previous studies have suggested that pigmentation genes are controlled by different regulatory networks in melanocytes and RPE. The promoter of the tyrosinase-related family gene Tyrp1 has been shown to drive detectable transgene expression only to the RPE, even though the gene is also expressed in melanocytes as evident from Tyrp1-mutant mice. This indicates that the regulatory elements responsible for Tyrp1 gene expression in the RPE are not sufficient for expression in melanocytes. We thus searched for a putative melanocyte-specific regulatory sequence and demonstrate that a bacterial artificial chromosome (BAC) containing the Tyrp1 gene and surrounding sequences is able to target transgenic expression to melanocytes and to rescue the Tyrp1b (brown) phenotype. This BAC contains several highly conserved non-coding sequences that might represent novel regulatory elements. We further focused on a sequence located at -15 kb, which we identified as a melanocyte-specific enhancer as shown by cell culture and transgenic mice experiments. In addition, we show that the transcription factor Sox10 can activate this conserved enhancer. The presence of a distal Tyrp1 regulatory element, which specifies melanocyte-specific expression, supports the idea that separate regulatory sequences can mediate differential gene expression in melanocytes and RPE.
Collapse
Affiliation(s)
- Fabien Murisier
- ISREC (Swiss Institute for Experimental Cancer Research), National Center of Competence in Research (NCCR) Molecular Oncology, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | |
Collapse
|
24
|
Dorrell MI, Friedlander M. Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog Retin Eye Res 2006; 25:277-95. [PMID: 16515881 DOI: 10.1016/j.preteyeres.2006.01.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Accepted: 01/04/2006] [Indexed: 01/12/2023]
Abstract
The appropriate guidance and patterning of vessels during vascular development is critical for proper tissue function. The loss of these guidance mechanisms can lead to abnormal vascularization and a number of pathological conditions. The molecular basis of endothelial cell guidance and subsequent tissue specific vascular patterning remains largely unknown in spite of its clinical relevance and biological importance. In this regard, retinal vascular development offers many advantages for studying endothelial cell guidance and the mechanisms by which characteristic vascular patterns are formed. In this review, we will provide an overview of the known mechanisms that mediate vascular patterning during mouse retinal development, synthesizing these data to formulate a model of how growth factors, cellular adhesion molecules, and vascular-associated cells mediate directed endothelial cell migration and appropriate vascular remodeling. Finally, we will discuss the many aspects of retinal vascular development that remain unknown and cite evidence that many of these gaps may be addressed by further studying the guidance cues shared by vascular and neuronal elements in the retina and other parts of the central nervous system.
Collapse
Affiliation(s)
- Michael I Dorrell
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. MB216, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Marneros AG, Fan J, Yokoyama Y, Gerber HP, Ferrara N, Crouch RK, Olsen BR. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1451-9. [PMID: 16251428 PMCID: PMC1603772 DOI: 10.1016/s0002-9440(10)61231-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The choroid in the eye provides vascular support for the retinal pigment epithelium (RPE) and the photoreceptors. Vascular endothelial growth factor (VEGF) derived from the RPE has been implicated in the physiological regulation of the choroidal vasculature, and overexpression of VEGF in this epithelium has been considered an important factor in the pathogenesis of choroidal neovascularization in age-related macular degeneration. Here, we demonstrate that RPE-derived VEGF is essential for choriocapillaris development. Conditional inactivation of VEGF expression in the RPE (in VEGFrpe-/- mice) results in the absence of choriocapillaris, occurrence of microphthalmia, and the loss of visual function. Severe abnormalities of RPE cells are already observed when VEGF expression in the RPE is only reduced (in VEGFrpe+/- mice), despite the formation of choroidal vessels at these VEGF levels. Finally, using Hif1arpe-/- mice we demonstrate that these roles of VEGF are not dependent on hypoxia-inducible factor-1alpha-mediated transcriptional regulation of VEGF expression in the RPE. Thus, hypoxia-inducible factor-1alpha-independent expression of VEGF is essential for choroid development.
Collapse
Affiliation(s)
- Alexander G Marneros
- Department of Cell Biology, Harvard Medical School, 188 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lanning JL, Wallace JS, Zhang D, Diwakar G, Jiao Z, Hornyak TJ. Altered melanocyte differentiation and retinal pigmented epithelium transdifferentiation induced by Mash1 expression in pigment cell precursors. J Invest Dermatol 2005; 125:805-17. [PMID: 16185282 DOI: 10.1111/j.0022-202x.2005.23819.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription factor genes governing pigment cell development that are associated with spotting mutations in mice include members of several structural transcription factor classes but not members of the basic helix-loop-helix (bHLH) class, important for neurogenesis and myogenesis. To determine the effects of bHLH factor expression on pigment cell development, the neurogenic bHLH factor Mash1 was expressed early in pigment cell development in transgenic mice from the dopachrome tautomerase (Dct) promoter. Dct:Mash1 transgenic founders exhibit variable microphthalmia and patchy coat color hypopigmentation. Transgenic F1 mice exhibit microphthalmia with complete coat color dilution. Marker analysis demonstrates that Mash1 expression in the retinal pigmented epithelium (RPE) initiates neurogenesis in this cell layer, whereas expression in remaining neural crest-derived melanocytes alters their differentiation, in part by profoundly downregulating expression of the p (pink-eyed dilution) gene, while maintaining their cell fate. The effects of transcriptional perturbation of pigment cell precursors by Mash1 further highlight differences between pigment cells of distinct developmental origins, and suggest a mechanism for the alteration of melanogenesis to result in marked coat color dilution.
Collapse
Affiliation(s)
- Jessica L Lanning
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
27
|
Makanya AN, Stauffer D, Ribatti D, Burri PH, Djonov V. Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech 2005; 66:275-88. [PMID: 16003781 DOI: 10.1002/jemt.20169] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Embryonic development is associated with extensive vascular growth and remodeling. We used immunohistochemical, light and electron microscopical techniques, as well as vascular casting methods to study the developing chick embryo kidney with special attention to the interplay between sprouting and intussusceptive vascular growth modes. During inauguration at embryonic day 5 (E5), the early mesonephros was characterised by extensive microvascular sprouting. By E7, the vascular growth mode switched to intussusception, which contributed to rapid kidney vasculature growth up to E11, when the first obvious signs of vascular degeneration were evident. The metanephros underwent similar phases of vascular development inaugurating at E8 with numerous capillary sprouts and changing at E13 to intussusceptive growth, which was responsible for vascular amplification and remodeling. A phenomenal finding was that future renal lobules arose as large glomerular tufts, supplied by large vessels, which were split into smaller intralobular feeding and draining vessels with subsequent formation of solitary glomeruli. This glomerular duplication was achieved by intussusception, i.e., by formation of pillars in rows and their successive merging to delineate the vascular entities. Ultimately, the maturation of the vasculature was achieved by intussusceptive pruning and branching remodeling. An interesting finding was that strong VEGF expression was associated with the sprouting phase of angiogenesis while bFGF was upregulated during the phase of intussusceptive microvascular growth. We conclude that microvascular growth and remodeling in avian kidney follows an adroitly crafted pattern, which entails a precise spaciotemporal interplay between sprouting and intussusceptive angiogenic growth modes supported partly by VEGF and bFGF.
Collapse
Affiliation(s)
- Andrew N Makanya
- Institute of Anatomy, University of Berne, CH-3000 Berne 9, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Mitsuda S, Yoshii C, Ikegami Y, Araki M. Tissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster. Dev Biol 2005; 280:122-32. [PMID: 15766753 DOI: 10.1016/j.ydbio.2005.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 01/06/2005] [Accepted: 01/12/2005] [Indexed: 11/18/2022]
Abstract
Complete retinal regeneration in adult animals occurs only in certain urodele amphibians, in which the retinal pigmented epithelial cells (RPE) undergo transdifferentiation to produce all cell types constituting the neural retina. A similar mechanism also appears to be involved in retinal regeneration in the embryonic stage of some other species, but the nature of this mechanism has not yet been elucidated. The organ culture model of retinal regeneration is a useful experimental system and we previously reported RPE transdifferentiation of the newt under this condition. Here, we show that cultured RPE cells proliferate and differentiate into neurons when cultured with the choroid attached to the RPE, but they did not exhibit any morphological changes when cultured alone following removal of the choroid. This finding indicates that the tissue interactions between the RPE and the choroid are essential for the former to proliferate. This tissue interaction appears to be mediated by diffusible factors, because the choroid could affect RPE cells even when the two tissues were separated by a membrane filter. RPE transdifferentiation under the organotypic culture condition was abolished by a MEK (ERK kinase) inhibitor, U0126, but was partially suppressed by an FGF receptor inhibitor, SU5402, suggesting that FGF signaling pathway has a central role in the transdifferentiation. While IGF-1 alone had no effect on isolated RPE, combination of FGF-2 and IGF-1 stimulated RPE cell transdifferentiation similar to the results obtained in organ-cultured RPE and choroid. RT-PCR revealed that gene expression of both FGF-2 and IGF-1 is up-regulated following removal of the retina. Thus, we show for the first time that the choroid plays an essential role in newt retinal regeneration, opening a new avenue for understanding the molecular mechanisms underlying retinal regeneration.
Collapse
Affiliation(s)
- Sanae Mitsuda
- Developmental Neurobiology Laboratory, Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
29
|
Montoliu L, Larue L, Beermann F. On the Use of Regulatory Regions from Pigmentary Genes to Drive the Expression of Transgenes in Mice. ACTA ACUST UNITED AC 2004; 17:188-90. [PMID: 15016310 DOI: 10.1046/j.1600-0749.2003.00124.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Rousseau B, Larrieu-Lahargue F, Javerzat S, Guilhem-Ducléon F, Beermann F, Bikfalvi A. The tyrp1-Tag/tyrp1-FGFR1-DN Bigenic Mouse. Cancer Res 2004; 64:2490-5. [PMID: 15059903 DOI: 10.1158/0008-5472.can-03-3623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe herein a new transgenic mouse tumor model in which fibroblast growth factor (FGF) receptor activity is selectively inhibited. Tyrp1-Tag mice that develop early vascularized tumors of the retinal pigment epithelium were crossed with tyrp1-FGFR1-DN mice that express dominant-negative FGF receptors in the retinal pigment epithelium to generate bigenic mice. Initial angiogenesis-independent tumor growth progressed equally in tyrp1-Tag and bigenic mice with no significant differences in the number of dividing and apoptotic cells within the tumor. By contrast, at a later stage when tyrp1-Tag tumors rapidly expanded to fill the entire eye posterior chamber and migrate along the optic nerve toward the chiasma, bigenic tumors remained small and were poorly vascularized. Secondary tumors of small size developed in only 20% of bigenic mice by 1 month. Immunohistochemical analysis of secondary tumors from bigenic mice showed a reduction of angiogenesis and an increase in apoptosis in tumor cells. Tumor cells from bigenic mice expressed high levels of truncated FGF receptors and did not induce endothelial tube formation in vitro. All in all, this indicates that the tyrp1-Tag mouse may be a useful model to study selective tumor inhibition and the effect of antitumor therapy that targets a specific growth factor pathway. FGF receptors are required at the onset of tumor invasion and angiogenesis in ocular tumors and are good therapeutic targets in this model. The bigenic mouse may also constitute a useful model to answer more fundamental questions of cancer biology such as the mechanism of tumor escape.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/blood supply
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Cattle
- Cell Division/genetics
- Cell Division/physiology
- Cell Line, Tumor
- Coculture Techniques
- Endothelium, Vascular/cytology
- Female
- Male
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Neoplasm Invasiveness
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Oxidoreductases
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Retinal Neoplasms/blood supply
- Retinal Neoplasms/genetics
- Retinal Neoplasms/pathology
Collapse
Affiliation(s)
- Benot Rousseau
- Molecular Angiogenesis Laboratory, Institut National de la Santé et de la Recherche Médicale, Université de Bordeaux, Talence, France
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Numerous growth factors have been implicated in glioma angiogenesis. This chapter focuses on the role of scatter factor/hepatocyte growth factor, fibroblast growth factor, platelet-derived growth factor and transforming growth factor beta. We review the expression pattern of these factors in gliomas, their functional contribution to tumor angiogenesis - also in relation to vascular endothelial growth factor, and the effects resulting from their inhibition or overexpression in gliomas in vivo.
Collapse
Affiliation(s)
- Katrin Lamszus
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf Germany
| | | | | |
Collapse
|
32
|
Russell C. The roles of Hedgehogs and Fibroblast Growth Factors in eye development and retinal cell rescue. Vision Res 2003; 43:899-912. [PMID: 12668059 DOI: 10.1016/s0042-6989(02)00416-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Knowledge of normal eye development is crucial for the development of retinal rescue strategies. I shall focus on two signalling pathways that affect retinal development. Fibroblast growth factors function in retinal cell proliferation, retinal ganglion cell axon guidance and target recognition, craniofacial patterning and lens induction. Hedgehog proteins are required for progression of the neurogenic wave, cell proliferation, photoreceptor differentiation, retinal ganglion cell axon growth and craniofacial patterning. These signalling pathways have pleiotropic effects, can interact and have the potential to be used therapeutically. The zebrafish model organism may be well suited to studying how signalling pathways interact.
Collapse
Affiliation(s)
- Claire Russell
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
33
|
Kablar B. Determination of retinal cell fates is affected in the absence of extraocular striated muscles. Dev Dyn 2003; 226:478-90. [PMID: 12619134 DOI: 10.1002/dvdy.10256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Neural retinas of genetically modified mouse embryos and fetuses entirely lacking extraocular striated muscles (designated as Myf5-/-:MyoD-/- or amyogenic) are used to study in vivo the role of extraocular muscle (i.e., fetal ocular movements) in the genesis of retinal cell diversity. Although retinal lamination and the total number of cells per retinal layer appeared unaffected in amyogenic fetuses, electron microscopy and histochemistry revealed the absence of cholinergic amacrine cell type. By contrast, the amounts of other amacrine cell subpopulations (calretinin-, tyrosine hydroxylase-, and parvalbumin-expressing) were increased, whereas the amounts of Islet1/2-expressing retinal ganglion cells were decreased. Surprisingly, it was not possible to detect any change in proliferation or cell death. Consistently, the number of progenitors for retinal ganglion cells (nestin-expressing precursors) were increased, whereas the amounts of precursors for amacrine cells (syntaxin- and VC1.1-expressing precursors) were decreased in the mutant retinas. The difference in requirements for extraocular muscle support in regulation of precise ratios of retinal neuronal cell types suggests an essential role of extrinsic cues in the determination of retinal cell fates. Taken together, it appears that patterning mechanisms intrinsic to the neural retina specify the basic organization of retinal spatial organization (e.g., retinal layers and total number of cells). However, extrinsic cues seem to change intrinsic properties (e.g., competence) of retinal progenitor cells and influence the ratios of the differentiated cell types (i.e., cell fate choice) they produce.
Collapse
Affiliation(s)
- Boris Kablar
- Dalhousie University, Department of Anatomy and Neurobiology, Halifax, Nova Scotia, Canada.
| |
Collapse
|
34
|
Abstract
Fibroblast growth factors (FGFs) are considered angiogenic factors, yet the exact relationship between FGF and vascular development in normal and pathological tissue has long remained elusive. However, recent results from gene inactivation and transgenic studies in mice and in culture systems have demonstrated the role of FGFs in vessel assembly and sprouting. FGFs also promote blood-vessel branching and induce lymphangiogenesis. Novel players in FGF-mediated angiogenesis have been identified, such as p38 mitogen-activated protein kinase. Tumour angiogenesis is regulated by FGFs directly or indirectly via secondary angiogenesis factors, such as vascular endothelial growth factor. The newly established angiogenic role of FGFs makes FGF or molecules targeting FGF and its receptor promising candidates for the development of novel therapeutics.
Collapse
Affiliation(s)
- Sophie Javerzat
- INSERM EMI 0113, Molecular Mechanisms of Angiogenesis & Growth Factor and Cell Differentiation Laboratory, Université Bordeaux I, Avenue des Facultés, 33 405 Talence, France
| | | | | |
Collapse
|
35
|
Wahlin KJ, Adler R, Zack DJ, Campochiaro PA. Neurotrophic signaling in normal and degenerating rodent retinas. Exp Eye Res 2001; 73:693-701. [PMID: 11747369 DOI: 10.1006/exer.2001.1078] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several types of insult cause up-regulation of neurotrophic factors and their receptors in the retina resulting in decreased photoreceptor cell death from subsequent injury. This phenomenon is more prominent in rats than in mice and neurotrophic factors are more efficacious in rats than mice. If up-regulation of neurotrophic factor receptors on photoreceptor cells early in the course of degenerations contributes to neurotrophic factor survival-promoting activity, it may also increase the ability to detect neurotrophic factor-induced signaling in photoreceptors, particularly in rats. In this study, these hypotheses were investigated by performing immunohistochemical staining for the phosphorylated form of extracellular receptor kinase (pERK) or c-fos after intravitreous injection of neurotrophic factors in wild type rats or mice, or those with inherited retinal degenerations. In both rats and mice either early or late in the course of degeneration, or in wild type animals, intravitreous injection of brain-derived neurotrophic factor, ciliary neurotrophic factor, or fibroblast growth factor-2 caused immunostaining for pERK and c-fos in cells of the inner retina, particularly Müller cells, but not in photoreceptors. These data add to the mounting evidence suggesting that neurotrophic factors act indirectly through Müller cells to promote photoreceptor survival.
Collapse
Affiliation(s)
- K J Wahlin
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-9277, USA
| | | | | | | |
Collapse
|