1
|
Abstract
Diabetic retinopathy (DR) is one of the major microvascular complications of diabetes. In developed countries, it is the most common cause of preventable blindness in diabetic adults. Dyslipidemia, a major systemic disorder, is one of the most important risk factors for cardiovascular disease. Patients with diabetes have an increased risk of suffering from dyslipidemia concurrently. The aim of this article is to review the association between diabetic retinopathy (DR) and traditional/nontraditional lipid markers, possible mechanisms involving lipid metabolism and diabetic retinopathy, and the effect of lipid-lowering therapies on diabetic retinopathy. For traditional lipid markers, evidence is available that total cholesterol and low-density lipoprotein cholesterol are associated with the presence of hard exudates in patients with DR. The study of nontraditional lipid markers is advancing only in recently years. The severity of DR is inversely associated with apolipoprotein A1 (ApoA1), whereas ApoB and the ApoB-to-ApoA1 ratio are positively associated with DR. The role of lipid-lowering medication is to work as adjunctive therapy for better control of diabetes-related complications including DR.
Collapse
Affiliation(s)
- Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chuan Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
McDowell RE, McGeown JG, Stitt AW, Curtis TM. Therapeutic potential of targeting lipid aldehydes and lipoxidation end-products in the treatment of ocular disease. Future Med Chem 2013; 5:189-211. [PMID: 23360143 DOI: 10.4155/fmc.12.202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipoxidation reactions and the subsequent accumulation of advanced lipoxidation end products (ALEs) have been implicated in the pathogenesis of many of the leading causes of visual impairment. Here, we begin by outlining some of the major lipid aldehydes produced through lipoxidation reactions, the ALEs formed upon their reaction with proteins, and the endogenous aldehyde metabolizing enzymes involved in protecting cells against lipoxidation mediated damage. Discussions are subsequently focused on the clinical and experimental evidence supporting the contribution of lipid aldehydes and ALEs in the development of ocular diseases. From these discussions, it is clear that inhibition of lipoxidation reactions and ALE formation could represent a new therapeutic avenue for the treatment of a broad range of ocular disorders. Current and emerging pharmacological strategies to prevent or neutralize the effects of lipid aldehydes and ALEs are therefore considered, with particular emphasis on the potential of these drugs for treatment of diseases of the eye.
Collapse
Affiliation(s)
- Rosemary E McDowell
- Centre for Vision & Vascular Science, Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK
| | | | | | | |
Collapse
|
3
|
Kim J, Lee YM, Kim CS, Sohn E, Jo K, Shin SD, Kim JS. Ethyl pyruvate prevents methyglyoxal-induced retinal vascular injury in rats. J Diabetes Res 2013; 2013:460820. [PMID: 23671872 PMCID: PMC3647584 DOI: 10.1155/2013/460820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/31/2013] [Indexed: 01/26/2023] Open
Abstract
Pyruvate is an endogenous antioxidant substance. The aim of this study was to investigate the protective effects of ethyl pyruvate (EP) on retinal vascular injury in diabetic retinopathy. To investigate the protective effect of EP on vascular cell apoptosis and blood-retinal barrier (BRB) breakage, we have used intravitreally methylglyoxal-(MGO-) injected rat eyes. Apoptosis of the retinal vascular cell that was stimulated by the intravitreal injection of MGO was evidently attenuated by the EP treatment. EP exerts inhibitory effect on MGO-induced vascular cell apoptosis by blocking oxidative injury. In addition, EP treatment prevented MGO-induced BRB breakage and the degradation of occludin, an important tight junction protein. These observations suggest that EP acts through an antioxidant mechanism to protect against oxidative stress-induced apoptosis in retinal vessels.
Collapse
Affiliation(s)
- Junghyun Kim
- Korean Medicine Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Yun Mi Lee
- Korean Medicine Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Chan-Sik Kim
- Korean Medicine Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Kyuhyung Jo
- Korean Medicine Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - So Dam Shin
- Korean Medicine Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Jin Sook Kim
- Korean Medicine Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdaero, Yuseong-gu, Daejeon 305-811, Republic of Korea
- *Jin Sook Kim:
| |
Collapse
|
4
|
|
5
|
Neurovascular interaction and the pathophysiology of diabetic retinopathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:693426. [PMID: 21747832 PMCID: PMC3124285 DOI: 10.1155/2011/693426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 01/08/2023]
Abstract
Diabetic retinopathy (DR) is the most severe of the several ocular complications of diabetes, and in the United States it is the leading cause of blindness among adults 20 to 74 years of age. Despite recent advances in our understanding of the pathogenesis of DR, there is a pressing need to develop novel therapeutic treatments that are both safe and efficacious. In the present paper, we identify a key mechanism involved in the development of the disease, namely, the interaction between neuronal and vascular activities. Numerous pathological conditions in the CNS have been linked to abnormalities in the relationship between these systems. We suggest that a similar situation arises in the diabetic retina, and we propose a logical strategy aimed at therapeutic intervention.
Collapse
|
6
|
Salceda R, Contreras-Cubas C. Ascorbate uptake in normal and diabetic rat retina and retinal pigment epithelium. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:175-179. [PMID: 17395543 DOI: 10.1016/j.cbpc.2007.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 01/09/2007] [Accepted: 02/26/2007] [Indexed: 02/02/2023]
Abstract
Oxidative stress is an important causative factor in the pathogenesis of diabetic retinopathy. Therefore, it becomes important to understand the mechanisms that help maintain appropriate levels of a small molecule antioxidant such as ascorbate in the retina. The outer blood-barrier which results from the tight junctions between the retinal pigment epithelial cells (RPE) restricts the flow of nutrients reaching the retina. In this study, we characterized the transport properties of carboxyl-(14)C ascorbate (AA) in normal rat retina and RPE, and compared them with those in streptozotocin-diabetic rats. Retina and RPE accumulated AA by a temperature-sensitive and energy-dependent kinetic mechanism with an apparent K(M) of 380 and 420 microM, respectively. Accumulation of AA was significantly reduced in a sodium-free medium. Although high glucose concentrations reduced AA uptake by 40%, this was not affected by cytochalasin B. The RPE and retina of diabetic rats presented lower levels of AA accumulation. These findings suggest the presence of the specific vitamin C transporter SVCT in retina and RPE, which may be involved in the manifestation of diabetic retinopathy.
Collapse
Affiliation(s)
- Rocío Salceda
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., México.
| | - Cecilia Contreras-Cubas
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., México
| |
Collapse
|
7
|
El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:235-44. [PMID: 16400026 PMCID: PMC1592672 DOI: 10.2353/ajpath.2006.050500] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diabetic retinopathy is characterized by blood-retinal barrier (BRB) breakdown and neurotoxicity. These pathologies have been associated with oxidative stress and proinflammatory cytokines, which may operate by activating their downstream target p38 MAP kinase. In the present study, the protective effects of a nonpsychotropic cannabinoid, cannabidiol (CBD), were examined in streptozotocin-induced diabetic rats after 1, 2, or 4 weeks. Retinal cell death was determined by terminal dUTP nick-end labeling assay; BRB function by quantifying extravasation of bovine serum albumin-fluorescein; and oxidative stress by assays for lipid peroxidation, dichlorofluorescein fluorescence, and tyrosine nitration. Experimental diabetes induced significant increases in oxidative stress, retinal neuronal cell death, and vascular permeability. These effects were associated with increased levels of tumor necrosis factor-alpha, vascular endothelial growth factor, and intercellular adhesion molecule-1 and activation of p38 MAP kinase, as assessed by enzyme-linked immunosorbent assay, immunohistochemistry, and/or Western blot. CBD treatment significantly reduced oxidative stress; decreased the levels of tumor necrosis factor-alpha, vascular endothelial growth factor, and intercellular adhesion molecule-1; and prevented retinal cell death and vascular hyperpermeability in the diabetic retina. Consistent with these effects, CBD treatment also significantly inhibited p38 MAP kinase in the diabetic retina. These results demonstrate that CBD treatment reduces neurotoxicity, inflammation, and BRB breakdown in diabetic animals through activities that may involve inhibition of p38 MAP kinase.
Collapse
Affiliation(s)
- Azza B El-Remessy
- Department of Pharmacology and Toxicology, Medical College of Georgia, 1120 15th St., Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
8
|
Obrosova IG. Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Signal 2005; 7:1543-52. [PMID: 16356118 DOI: 10.1089/ars.2005.7.1543] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic diabetic complications, in particular, nephropathy, peripheral and autonomic neuropathy, "diabetic foot," retinopathy, and cardiovascular disease, remain the major cause of morbidity and mortality in patients with diabetes mellitus. Growing evidence indicates that both increased activity of the sorbitol pathway of glucose metabolism and enhanced oxidative stress are the leading factors in the pathogenesis of diabetic complications. The relation between the two mechanisms remains the area of controversy. One group has reported that increased sorbitol pathway activity has a protective rather than detrimental role in complication-prone tissues because the pathway detoxifies toxic lipid peroxidation products. Others put forward a so-called "unifying hypothesis" suggesting that activation of several major pathways implicated in diabetic complications (e.g., sorbitol pathway) occurs due to increased production of superoxide anion radicals in mitochondria and resulting poly(ADP-ribose) polymerase activation. This review (a) presents findings supporting a key role for the sorbitol pathway in oxidative stress and oxidative stress-initiated downstream mechanisms of diabetic complications, and (b) summarizes experimental evidence against a detoxifying role of the sorbitol pathway, as well as the "unifying concept."
Collapse
Affiliation(s)
- Irina G Obrosova
- Divison of Nutrition and Chronic Disease, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
9
|
Kannan R, Gukasyan HJ, Zhang W, Trousdale MD, Kim KJ, Lee VHL. Impairment of conjunctival glutathione secretion and ion transport by oxidative stress in an adenovirus type 5 ocular infection model of pigmented rabbits. Free Radic Biol Med 2004; 37:229-38. [PMID: 15203194 DOI: 10.1016/j.freeradbiomed.2004.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/02/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Conjunctival epithelial cells of pigmented rabbits secrete reduced glutathione (GSH) into the apical (mucosal) fluid. The aim of the current study was to determine the effect of oxidative stress resulting from viral infection and that of GSH supplementation on redox status, GSH, and ion transport in freshly excised conjunctival tissues and epithelial cell layers in primary culture (RCEC) of adenovirus type 5 (Ad5)-infected rabbits. Lipid peroxidation (LPO) products, nitric oxide (NO), and expression of nitric oxide synthase (NOS2) were quantitated as a function of time after viral inoculation. Unidirectional fluxes of [3H]GSH and changes in short-circuit current (Isc) from mucosal supplementation of Ad5-inoculated conjunctival tissues with GSH and glutathione monoethyl ester (GSH-MEE) were also measured. Ad5 inoculation significantly decreased conjunctival GSH level by 19, 45, 48, and 50% at 8, 24, 48, and 72 h postinfection, respectively. LPO product and NO levels increased significantly (2- and 100-fold, respectively) above that of uninfected controls on Day 3 post-Ad5 inoculation, and co-treatment with GSH-MEE and tocopherol succinate abolished this effect. NO levels showed a progressive increase post-Ad5 inoculation, reaching 0.22 +/- 0.06, 8.12 +/- 0.91, and 2.05 +/- 0.65 microM on Days 1, 3, and 5, respectively, and the highest level was observed on the day of maximal viral replication (Day 3). A very significant induction of the expression of NOS2 on Days 1, 3, and 5 post-Ad5 inoculation was observed. Uninfected control conjunctival tissues displayed a net serosal-to-mucosal GSH flux (Jsm), where the mucosal-to-serosal flux (Jms) was approximately 14 pmol h(-1) cm(-2) and the Jsm was approximately 22 pmol h(-1) cm(-2). In Ad5-inoculated rabbits similar GSH flux was observed in both the sm and ms directions, and the net GSH flux was negligible. Isc and potential difference (PD) across conjunctival tissues of Ad5-inoculated rabbits decreased by > or = 50% compared with control, while the transepithelial electrical resistance (TEER) remained unchanged. Mucosal, but not serosal, superfusion of GSH or GSH-MEE in Ad5-inoculated conjunctival tissues increased the Isc by up to 40% in approximately 100 min. Our results show that net secretion of GSH across rabbit conjunctiva is totally blocked after Ad5 inoculation and active ion transport rate decreased by approximately 50%. Decreased net GSH secretion into mucosal fluid after Ad5 infection may have resulted from a decreased intracellular GSH pool due to oxyradical-induced changes in redox status and lower active ion transport. Mucosal treatment of Ad5-infected conjunctival tissues with pharmacological levels of GSH appears to transstimulate mucosal GSH secretion and restore active ion transport activity, suggesting a potentially useful therapeutic regimen for ocular infections.
Collapse
Affiliation(s)
- Ram Kannan
- Doheny Eye Institute, Schools of Pharmacy, Medicine, and Engineering, University of Southern California, Los Angeles 90089, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2003. [PMID: 12759255 DOI: 10.1016/s0002-9440[10]64332-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The purpose of these experiments was to determine the specific role of reactive oxygen species (ROS) in the blood-retinal barrier (BRB) breakdown that characterizes the early stages of vascular dysfunction in diabetes. Based on our data showing that high glucose increases nitric oxide, superoxide, and nitrotyrosine formation in retinal endothelial cells, we hypothesized that excess formation of ROS causes BRB breakdown in diabetes. Because ROS are known to induce increases in expression of the well-known endothelial mitogen and permeability factor vascular endothelial growth factor (VEGF) we also examined their influence on the expression of VEGF and its downstream target urokinase plasminogen activator receptor (uPAR). After 2 weeks of streptozotocin-induced diabetes, analysis of albumin leakage confirmed a prominent breakdown of the BRB. This permeability defect was correlated with significant increases in the formation of nitric oxide, lipid peroxides, and the peroxynitrite biomarker nitrotyrosine as well as with increases in the expression of VEGF and uPAR. Treatment with a nitric oxide synthase inhibitor (N-omega-nitro-L-arginine methyl ester, 50 mg/kg/day) or peroxynitrite scavenger (uric acid, 160 mg/kg/day) blocked the breakdown in the BRB and prevented the increases in formation of lipid peroxides and tyrosine nitration as well as the increases in expression of VEGF and uPAR. Taken together, these data indicate that early diabetes causes breakdown of the BRB by a mechanism involving the action of reactive nitrogen species in promoting expression of VEGF and uPAR.
Collapse
|
11
|
El-Remessy AB, Behzadian MA, Abou-Mohamed G, Franklin T, Caldwell RW, Caldwell RB. Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1995-2004. [PMID: 12759255 PMCID: PMC1868147 DOI: 10.1016/s0002-9440(10)64332-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2003] [Indexed: 10/18/2022]
Abstract
The purpose of these experiments was to determine the specific role of reactive oxygen species (ROS) in the blood-retinal barrier (BRB) breakdown that characterizes the early stages of vascular dysfunction in diabetes. Based on our data showing that high glucose increases nitric oxide, superoxide, and nitrotyrosine formation in retinal endothelial cells, we hypothesized that excess formation of ROS causes BRB breakdown in diabetes. Because ROS are known to induce increases in expression of the well-known endothelial mitogen and permeability factor vascular endothelial growth factor (VEGF) we also examined their influence on the expression of VEGF and its downstream target urokinase plasminogen activator receptor (uPAR). After 2 weeks of streptozotocin-induced diabetes, analysis of albumin leakage confirmed a prominent breakdown of the BRB. This permeability defect was correlated with significant increases in the formation of nitric oxide, lipid peroxides, and the peroxynitrite biomarker nitrotyrosine as well as with increases in the expression of VEGF and uPAR. Treatment with a nitric oxide synthase inhibitor (N-omega-nitro-L-arginine methyl ester, 50 mg/kg/day) or peroxynitrite scavenger (uric acid, 160 mg/kg/day) blocked the breakdown in the BRB and prevented the increases in formation of lipid peroxides and tyrosine nitration as well as the increases in expression of VEGF and uPAR. Taken together, these data indicate that early diabetes causes breakdown of the BRB by a mechanism involving the action of reactive nitrogen species in promoting expression of VEGF and uPAR.
Collapse
Affiliation(s)
- Azza B El-Remessy
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30909, USA
| | | | | | | | | | | |
Collapse
|