1
|
Zigova T, Pencea V, Betarbet R, Wiegand SJ, Alexander C, Bakay RA, Luskin MB. Neuronal Progenitor Cells of the Neonatal Subventricular Zone Differentiate and Disperse following Transplantation into the Adult Rat Striatum. Cell Transplant 2017; 7:137-56. [PMID: 9588596 DOI: 10.1177/096368979800700209] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have investigated the suitability of a recently identified and characterized population of neuronal progenitor cells for their potential use in the replacement of degenerating or damaged neurons in the mammalian brain. The unique population of neuronal progenitor cells is situated in a well-delineated region of the anterior part of the neonatal subventricular zone (referred to as SVZa). This region can be separated from the remaining proliferative, gliogenic, subventricular zone encircling the lateral ventricles of the forebrain. Because the neurons arising from the highly enriched neurogenic progenitor cell population of the SVZa ordinarily migrate considerable distances and ultimately express the neurotransmitters GABA and dopamine, we have examined whether they could serve as an alternative source of tissue for neural transplantation. SVZa cells from postnatal day 0-2 rats, prelabeled by intraperitoneal injections of the cell proliferation marker BrdU, were implanted into the striatum of adult rats approximately 1 mo after unilateral denervation by 6-OHDA. To examine the spatio-temporal distribution and phenotype of the transplanted SVZa cells, the experimental recipients were perfused at short (less than 1 wk), intermediate (2-3 wk) and long (5 mo) postimplantation times. The host brains were sectioned and stained with an antibody to BrdU and one of several cell-type specific markers to determine the phenotypic characteristics of the transplanted SVZa cells. To identify neurons we used the neuron-specific antibody TuJ1, or antimembrane-associated protein 2 (MAP-2), and anti-GFAP was used to identify astrocytic glia. At all studied intervals the majority of the surviving SVZa cells exhibited a neuronal phenotype. Moreover, morphologically they could be distinguished from the cells of the host striatum because they resembled the intrinsic granule cells of the olfactory bulb, their usual fate. At longer times, a greater number of the transplanted SVZa cells had migrated from their site of implantation, often towards an outlying blood vessel, and the density of cells within the core of the transplant was reduced. Furthermore, there were rarely signs of transplant rejection or a glial scar surrounding the transplant. In the core of the transplant there were low numbers of GFAP-positive cells, indicating that the transplanted SVZa cells, predominantly TuJ1-positive/MAP2-positive, express a neuronal phenotype. Collectively, the propensity of the SVZa cells to express a neuronal phenotype and to survive and integrate in the striatal environment suggest that they may be useful in the reconstruction of the brain following CNS injury or disease.
Collapse
Affiliation(s)
- T Zigova
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Anatomical differences determine distribution of adenovirus after convection-enhanced delivery to the rat brain. PLoS One 2011; 6:e24396. [PMID: 22022354 PMCID: PMC3192704 DOI: 10.1371/journal.pone.0024396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022] Open
Abstract
Background Convection-enhanced delivery (CED) of adenoviruses offers the potential of widespread virus distribution in the brain. In CED, the volume of distribution (Vd) should be related to the volume of infusion (Vi) and not to dose, but when using adenoviruses contrasting results have been reported. As the characteristics of the infused tissue can affect convective delivery, this study was performed to determine the effects of the gray and white matter on CED of adenoviruses and similar sized super paramagnetic iron oxide nanoparticles (SPIO). Methodology/Principal Findings We convected AdGFP, an adenovirus vector expressing Green Fluorescent Protein, a virus sized SPIO or trypan blue in the gray and white matter of the striatum and external capsule of Wistar rats and towards orthotopic infiltrative brain tumors. The resulting Vds were compared to Vi and transgene expression to SPIO distribution. Results show that in the striatum Vd is not determined by the Vi but by the infused virus dose, suggesting diffusion, active transport or receptor saturation rather than convection. Distribution of virus and SPIO in the white matter is partly volume dependent, which is probably caused by preferential fluid pathways from the external capsule to the surrounding gray matter, as demonstrated by co-infusing trypan blue. Distant tumors were reached using the white matter tracts but tumor penetration was limited. Conclusions/Significance CED of adenoviruses in the rat brain and towards infiltrative tumors is feasible when regional anatomical differences are taken into account while SPIO infusion could be considered to validate proper catheter positioning and predict adenoviral distribution.
Collapse
|
3
|
Huang D, Desbois A, Hou ST. A novel adenoviral vector which mediates hypoxia-inducible gene expression selectively in neurons. Gene Ther 2005; 12:1369-76. [PMID: 15843806 DOI: 10.1038/sj.gt.3302538] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selective gene expression in neurons is still a challenge. We have developed several expression vectors using a combination of neuron restrictive silencer elements (NRSEs), hypoxia responsive elements (HREs) and CMV minimal promoter (CMVmp). These elements were packaged into replication defective adenovirus to target gene expression selectively in neurons in a hypoxia-regulated manner. Neuronal selectivity and responsiveness to hypoxia of these novel constructs were determined empirically in both neural cell lines and primary cerebellar granule neurons (CGNs). The construct p5HRE-3NRSE exhibited not only the highest level of reporter gene expression in neuronal cells but also in an oxygen concentration-dependent manner when compared with all other constructs. As expected, this construct did not elicit reporter gene expression in non-neuronal cells including human HEK293A and HT29 cells, rat NRK cells, mouse 3T6 cells and 3T3 L1 cells. This construct was packaged into a replication defective adenoviral vector (Ad/5HRE-3NRSE) to determine neuron-selective and hypoxia-inducible gene expression in cultured mouse postmitotic primary CGNs and differentiated human NT2 neurons (NT2/Ns). Remarkably, in response to hypoxia, Ad/5HRE-3NRSE showed strong hypoxia-inducible gene expression selectively in neurons (12-fold induction in CGNs and 22-fold in NT2/Ns), but not in glial cells. Taken together, this vector with restricted gene expression to neurons under the regulation of hypoxia will be a useful tool for investigations of mechanisms of neuronal damage caused by ischemic insult.
Collapse
Affiliation(s)
- D Huang
- Experimental Therapeutics Laboratory, NRC Institute for Biological Sciences, National Research Council of Canada, 1500 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | | | | |
Collapse
|
4
|
Ghorpade A, Bruch L, Persidsky Y, Chin B, Brown WHC, Borgmann K, Persidsky R, Wu L, Holter S, Cotter R, Faraci J, Heilman D, Meyer V, Potter JF, Swindells S, Gendelman HE. Development of a rapid autopsy program for studies of brain immunity. J Neuroimmunol 2005; 163:135-44. [PMID: 15885316 DOI: 10.1016/j.jneuroim.2005.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 01/12/2005] [Accepted: 01/25/2005] [Indexed: 11/19/2022]
Abstract
Human glia are essential cellular models used for studies of neurodegenerative diseases. Fetal neuroglia are commonly used, as they can be recovered in large quantities and sustained for long periods in culture. However, fetal neuroglia may have limitations in reflecting adult diseases and additionally can pose ethical issues in translating products of abortion for research use. To address these concerns, we developed a rapid autopsy program to procure age- and disease-specific neuroglia from adult brain tissues within hours of death. The challenges in developing this initiative, reflecting experiences from 69 autopsies over 4 years, are presented.
Collapse
Affiliation(s)
- Anuja Ghorpade
- Laboratory of Cellular Neuroimmunology, 985215 Nebraska Medical Center, Omaha, NE, 68198-5215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chiocca EA. Gene therapy: a primer for neurosurgeons. Neurosurgery 2003; 53:364-73; discussion 373. [PMID: 12925253 DOI: 10.1227/01.neu.0000073532.05714.2b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 04/11/2003] [Indexed: 11/19/2022] Open
Abstract
Gene therapy involves the transfer of genes into cells with therapeutic intent. Although several methods can accomplish this, vectors based on viruses still provide the most efficient approach. For neurosurgical purposes, preclinical and clinical applications in the areas of glioma therapy, spinal neurosurgery, and neuroprotection for treatment of Parkinson's disease and cerebral ischemia are reviewed. In general, therapies applied in the neurosurgical realm have proven relatively safe, despite occasional, well-publicized cases of morbidity and death in non-neurosurgical trials. However, continued clinical and preclinical research in this area is critical, to fully elucidate potential toxicities and to generate truly effective treatments that can be applied in neurological diseases.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Molecular Neuro-oncology Laboratory, Neurosurgery Service, Massachusetts General Hospital, Brain Tumor Center, Boston, Massachusetts 02114, USA.
| |
Collapse
|
6
|
Abstract
Significant progress has been made in the field of gene therapy for Parkinson's disease (PD). Successful vehicles for gene transfer into the central nervous system have been developed and clinical efficacy and safety have both been shown in various animal models of PD. Further optimisation of dosing, timing and location of gene therapy delivery as well as the ability to regulate and prolong gene expression will be important for the commencement of human trials. Current gene therapy models for PD have focused on two treatment strategies. One is the replacement of biosynthetic enzymes for dopamine synthesis and the second strategy is the addition of neurotrophic factors for protection and restoration of dopaminergic neurones. Concepts of neuroprotection and restoration of the nigrostriatal pathway will become important themes for future genetic treatment strategies for PD and may include, in addition to neurotrophic factors, genes to prevent apoptosis or detoxify free radical species. This review will highlight the recent literature on gene therapy for PD and summarise general approaches to gene therapy.
Collapse
Affiliation(s)
- Hoang N Le
- The University of Chicago Children's Hospital, Section of Neurosurgery, MC-4066, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA
| | | |
Collapse
|
7
|
Bingaman KD, Bakay RA. The primate model of Parkinson's disease: its usefulness, limitations, and importance in directing future studies. PROGRESS IN BRAIN RESEARCH 2001; 127:267-97. [PMID: 11142031 DOI: 10.1016/s0079-6123(00)27013-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- K D Bingaman
- Department of Neurological Surgery, 1365-B Clifton Road NE, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
8
|
Zou L, Zhou H, Pastore L, Yang K. Prolonged transgene expression mediated by a helper-dependent adenoviral vector (hdAd) in the central nervous system. Mol Ther 2000; 2:105-13. [PMID: 10947937 DOI: 10.1006/mthe.2000.0104] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conventional adenoviral vectors such as E1-deleted first-generation adenovirus (fgAd) elicit striking host immune response, resulting in limited expression of the transgene. A recently described helper-dependent, or gutless, adenoviral vector (hdAd) can promote stable transgene expression in peripheral organs, including the liver. We therefore investigated the safety and durability of hdAd-mediated gene transfer to the central nervous system (CNS) of rats compared with gene delivery by fgAd. Equal amounts of either fgAd or hdAd carrying the beta geo transgene were stereotactically injected into the right hippocampus of adult rats. Transgene expression was assessed by histochemical staining, transgene stability by PCR analysis, and immune infiltration of T lymphocytes and macrophages by immunocytochemical methods. Strong transgene expression from either vector was detected in brain tissue examined on day 6 postinoculation. Thereafter, fgAd-mediated gene expression rapidly decreased, becoming undetectable by day 66, while expression from the hdAd vector persisted throughout the test period. PCR confirmed the presence of hdAd-associated DNA at 66 days postinoculation. The hdAd injection elicited apparently lower numbers of brain-infiltrating macrophages and T cells than did administration of fgAd. These results indicate improved transgene expression and reduced immunogenicity with use of hdAd to deliver genes to the CNS.
Collapse
Affiliation(s)
- L Zou
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
9
|
Yano L, Shimura M, Taniguchi M, Hayashi Y, Suzuki T, Hatake K, Takaku F, Ishizaka Y. Improved gene transfer to neuroblastoma cells by a monoclonal antibody targeting RET, a receptor tyrosine kinase. Hum Gene Ther 2000; 11:995-1004. [PMID: 10811228 DOI: 10.1089/10430340050015301] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Receptor-mediated gene transfer is an effective strategy among nonviral vector systems. It is, however, crucial to develop various types of monoclonal antibodies satisfying both the binding specificity for cell targeting and the capacity of endocytosis required for gene transfer. In the present study, we generated a novel monoclonal antibody (NBL-1) to RET, a receptor tyrosine kinase expressed in both neuroblastoma cells and cells present in substantia nigra, a responsive locus of Parkinson's disease. NBL-1, when added to the culture medium of the neuroblastoma cells, was incorporated by endocytosis in a wortmannin-sensitive manner. Using a biotinylated NBL-1 complexed with plasmid DNAs based on electrostatic interaction through avidin-conjugated polylysines, exogenous luciferase genes were expressed in neuroblastoma cells at a more than 10-fold higher level. The expression level of the gene based on NBL-1 was comparable to that obtained by a geneporter system, an improved nonviral gene transduction method. Furthermore, the NBL-1-based gene transfer mediated the formation of more than 20-fold higher numbers of drug-resistant colonies. In contrast, RET-negative cells, which included HeLa, HT1080, Caco-2, and Colo205 cells, did not show any increased expression of an exogenous gene by NBL-1. These data suggest that the RET molecules enable selective gene transduction, and that NBL-1 may possibly be applied to gene therapy for neuroblastomas and Parkinson's disease.
Collapse
Affiliation(s)
- L Yano
- Department of Intractable Diseases, International Medical Center of Japan, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Barker RA, Kendall AL, Widner H. Neural tissue xenotransplantation: what is needed prior to clinical trials in Parkinson's disease? Neural Tissue Xenografting Project. Cell Transplant 2000; 9:235-46. [PMID: 10811396 DOI: 10.1177/096368970000900209] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Embryonic allografted human tissue in patients with Parkinson's disease has been shown to survive and ameliorate many of the symptoms of this disease. Despite this success, the practical problems of using this tissue coupled to the ethical restrictions of using aborted human fetal tissue have lead to an exploration for alternative sources of suitable material for grafting, including xenogeneic embryonic dopaminergic-rich neural tissue. Nevertheless, xenografted neural tissue itself generates a number of practical, ethical, safety, and immunological issues that have to be addressed prior to any clinical xenotransplant program. In this article we review these critical issues and set out the criteria that we consider need to be met in the development of our clinical xenotransplantation research programs. We advocate that these, or similar, criteria should be adopted and made explicit by other centers contemplating similar clinical trials.
Collapse
Affiliation(s)
- R A Barker
- Department of Experimental Psychology and Centre for Brain Repair, University of Cambridge, UK.
| | | | | |
Collapse
|
11
|
|
12
|
Connor B, Kozlowski DA, Schallert T, Tillerson JL, Davidson BL, Bohn MC. Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther 1999; 6:1936-51. [PMID: 10637445 DOI: 10.1038/sj.gt.3301033] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Injection of an adenoviral (Ad) vector encoding human glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic (DA) neurons in the substantia nigra (SN) of young rats. As Parkinson's disease occurs primarily in aged populations, we examined whether chronic biosynthesis of GDNF, achieved by adenovirus-mediated delivery of a GDNF gene (AdGDNF), can protect DA neurons and improve DA-dependent behavioral function in aged (20 months) rats with progressive 6-OHDA lesions of the nigrostriatal projection. Furthermore, the differential effects of injecting AdGDNF either near DA cell bodies in the SN or at DA terminals in the striatum were compared. AdGDNF or control vector was injected unilaterally into either the striatum or SN. One week later, rats received a unilateral intrastriatal injection of 6-OHDA on the same side as the vector injection. AdGDNF injection into either the striatum or SN significantly reduced the loss of FG labelled DA neurons 5 weeks after lesion (P </= 0.05). However, only striatal injections of AdGDNF protected against the development of behavioral deficits characteristic of unilateral DA depletion. Striatal AdGDNF injections also reduced tyrosine hydroxylase fiber loss and increased amphetamine-induced striatal Fos expression. These results demonstrate that increased levels of striatal, but not nigral, GDNF biosynthesis prevents DA neuronal loss and protects DA terminals from 6-OHDA-induced damage, thereby maintaining DA function in the aged rat.
Collapse
Affiliation(s)
- B Connor
- Department of Psychology, University of Texas, Austin, TX, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lawrence MS, Foellmer HG, Elsworth JD, Kim JH, Leranth C, Kozlowski DA, Bothwell AL, Davidson BL, Bohn MC, Redmond DE. Inflammatory responses and their impact on beta-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther 1999; 6:1368-79. [PMID: 10467361 DOI: 10.1038/sj.gt.3300958] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An E1, E3 deleted adenovirus vector, serotype 5, carrying the marker gene LacZ was bilaterally microinfused into the caudate nuclei of 10 St Kitts green monkeys. The location and number of cells expressing transgene and host immunologic response were evaluated at 1 week (n = 2) and 1 month (n = 8) following vector infusion. A large number of cells expressed beta-galactosidase in some monkeys, exceeding 600000 in one monkey, but no expression was seen in three of 10. All monkeys had positive adenoviral antibody titers before vector infusion, indicating the possibility of previous exposure to some adenovirus, but only one showed a significant increase in titer afterwards. Inflammatory cell markers revealed an inverse correlation between transgene expression and the extent of inflammatory response. Dexamethasone administered immediately before and for 8 days following vector delivery, however, had no effect on transgene expression. The demonstration of significant inflammatory responses in the brain of some individual primates, including demyelination, indicates the need for new generations of adenovirus vectors, or the successful suppression of inflammatory responses, before this vector is suitable for non-cytotoxic clinical applications in the CNS.
Collapse
Affiliation(s)
- M S Lawrence
- Yale University School of Medicine, Neural Transplantation and Repair Program, Department of Psychiatry, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mohajeri MH, Figlewicz DA, Bohn MC. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum Gene Ther 1999; 10:1853-66. [PMID: 10446925 DOI: 10.1089/10430349950017536] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effects of ex vivo GDNF gene delivery on the degeneration of motoneurons were studied in the G1H transgenic mouse model of familial ALS carrying a human superoxide dismutase (SOD1) with a Gly93Ala mutation (Gurney et al., 1994). Retroviral vectors were made to produce human GDNF or E. coli beta-galactosidase (beta-Gal) by transient transfection of the Phoenix cell line and used to infect primary mouse myoblasts. In 6-week-old G1H mice, 50,000 myoblasts per muscle were injected bilaterally into two hindlimb muscles. Untreated G1H and wild-type mice served as additional controls. At 17 weeks of age, 1 week before sacrifice, these muscles were injected with fluorogold (FG) to retrogradely label spinal motoneurons that maintained axonal projections to the muscles. There were significantly more large FG-labeled alpha motoneurons at 18 weeks in GDNF-treated G1H mice than in untreated and beta-Gal-treated G1H mice. A morphometric study of motoneuron size distribution showed that GDNF shifted the size distribution of motoneurons toward larger cells compared with control G1H mice, although the average size and number of large motoneurons in GDNF-treated mice were less than that in wild-type mice. GDNF also prolonged the onset of disease, delayed the deterioration of performance in tests of motor behavior, and slowed muscle atrophy. Quantitative, real-time RT-PCR and PCR showed persistence of transgene mRNA and DNA in muscle for up to 12 weeks postgrafting. These observations demonstrate that ex vivo GDNF gene therapy in a mouse model of FALS promotes the survival of functional motoneurons, suggesting that a similar approach might delay the progression of neurodegeneration in ALS.
Collapse
Affiliation(s)
- M H Mohajeri
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL 60614, USA
| | | | | |
Collapse
|
15
|
Bauer M, Ueffing M, Meitinger T, Gasser T. Somatic gene therapy in animal models of Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1999; 55:131-47. [PMID: 10335499 DOI: 10.1007/978-3-7091-6369-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Gene therapy in Parkinson's disease (PD) emerged about 10 years ago but until now, no clinical trials are under way, because most approaches have failed to show long-term therapeutic effects in PD animal models and because safety concerns precluded the use in humans so far. This review tries to give an overview on the development of different strategies in gene therapy in PD animal models and point out new and possibly more successful directions, including the transplantation of neural precursor cells and pig tissue.
Collapse
Affiliation(s)
- M Bauer
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Federal Republic of Germany
| | | | | | | |
Collapse
|
16
|
Ohmoto Y, Wood MJ, Charlton HM, Kajiwara K, Perry VH, Wood KJ. Variation in the immune response to adenoviral vectors in the brain: influence of mouse strain, environmental conditions and priming. Gene Ther 1999; 6:471-81. [PMID: 10476207 DOI: 10.1038/sj.gt.3300851] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
E1-deleted adenoviral vectors expressing the bacterial beta-galactosidase gene were inoculated into the brain of unprimed and primed C3H.He or C57BL/6J mice housed under either conventional or specific-pathogen-free (SPF) conditions. The kinetics of immune responses to both the vector and the transgene were investigated. In mice previously sensitized to adenovirus, the leukocyte infiltrate in the brain was dominated by CD8+ T cells, whereas in unprimed mice CD4+ T cells were present at higher levels. As expected, antibody titres to both adenovirus and beta-galactosidase were higher in primed mice than in unprimed mice after intracranial inoculation. C3H.He mice consistently made higher antibody responses than C57BL/6J mice. Although adenoviral vectors induced an inflammatory response under all conditions, mice housed in SPF facilities exhibited less inflammation than conventional mice and transgene expression persisted for longer. Irrespective of whether the mice had been deliberately primed to adenovirus, antibody titres were consistently lower in SPF mice compared with conventional mice. This study clearly demonstrates that environmental conditions, as well as previous priming to adenovirus, will affect both the quality and duration of the immune response triggered by gene delivery to the brain.
Collapse
Affiliation(s)
- Y Ohmoto
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | | | |
Collapse
|
17
|
Corti O, Sabaté O, Horellou P, Colin P, Dumas S, Buchet D, Buc-Caron MH, Mallet J. A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nat Biotechnol 1999; 17:349-54. [PMID: 10207882 DOI: 10.1038/7901] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ex vivo gene transfer is emerging as a promising therapeutic approach to human neurodegenerative diseases. By combining efficient methodologies for cell amplification and gene delivery, large numbers of cells can be generated with the capacity to synthesize therapeutic molecules. These cells can then be transplanted into the degenerating central nervous system (CNS). Applying this approach to human diseases will require the development of suitable cellular vehicles, as well as safe gene delivery systems capable of tightly controlled transgene expression. For such brain repair technologies, human neural progenitors may be extremely valuable, because of their human CNS origin and developmental potential. We have used these cells to develop a system for the regulated expression of a gene of therapeutic potential. We report the construction of a single adenovirus encoding human tyrosine hydroxylase 1 (hTH-1) under the negative control of the tetracycline-based gene regulatory system. Human neural progenitors infected with this vector produced large amounts of hTH-1. Most importantly, doxycycline allowed a reversible switch of transgene transcription both in vitro and in vivo. This system may be applied to the development of therapies for human neurodegenerative diseases.
Collapse
Affiliation(s)
- O Corti
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, C.N.R.S., Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Easton RM, Johnson EM, Creedon DJ. Analysis of events leading to neuronal death after infection with E1-deficient adenoviral vectors. Mol Cell Neurosci 1998; 11:334-47. [PMID: 9698398 DOI: 10.1006/mcne.1998.0690] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although recombinant adenoviral vectors are being widely used to target genes to the nervous system, the cellular and genetic effects of recombinant adenoviral infection on neuronal function have not been well characterized. Using sympathetic neuronal cultures, we analyzed the effect of adenoviral infection on viral and neuronal gene expression and on neuronal function and viability. While a delayed cytotoxicity occurred 5 days after infection, numerous biochemical and genetic perturbations occurred within the infected cell prior to this time. This study demonstrates that numerous cellular alterations were produced by recombinant adenoviral vectors and, therefore, emphasizes the need for an analysis of the effects of these viral vectors on neuronal function in the interpretation of data regarding transgene expression induced by these vectors in neurons. It also suggests that continued improvements made to the viral vectors themselves might decrease this direct cytotoxicity and lead to improved safety and function of recombinant adenovirus in vivo.
Collapse
Affiliation(s)
- R M Easton
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110-1031, USA
| | | | | |
Collapse
|
19
|
Yang GY, Liu XH, Kadoya C, Zhao YJ, Mao Y, Davidson BL, Betz AL. Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist. J Cereb Blood Flow Metab 1998; 18:840-7. [PMID: 9701345 DOI: 10.1097/00004647-199808000-00004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been demonstrated that administration of an interleukin-1 receptor antagonist protein (IL-1ra) reduces ischemic brain injury; however, the detrimental mechanism initiated by interleukin-1 (IL-1) in ischemic brain injury is unclear. In this study, we used mice that were transfected to overexpress human IL-1ra to elucidate the role of IL-1 in the activation of the inflammatory response after middle cerebral artery occlusion (MCAO). Myeloperoxidase (MPO) activity and immunohistostaining were used as a marker of polymorphonuclear leukocytes (PMNL) infiltration. Adenoviral vector (1 x 10(9) particles) was administered by injection into the right lateral ventricle in mice. Five days later, MCAO was performed on the mice using a suture technique. Permanent MCAO was achieved for 24 hours in the Ad.RSVIL-1ra-transfected. Ad.RSVlacZ-transfected, and saline (control) mice. Myeloperoxidase activity was quantified in each region and localization of MPO was determined by immunohistochemistry. After 2 hours of MCAO, the surface cerebral blood flow was reduced to 13.5% +/- 3.4%, 10.75% +/- 2.6%, and 10.9% +/- 2.6% of baseline in the ischemic hemisphere in Ad.RSVIL-1ra-transfected, Ad.RSVlacZ-transfected, and saline-treated mice, respectively. The MPO activity in the ischemic hemisphere in the Ad.RSVlacZ group was similar to that in the saline control group (cortex: 0.40 +/- 0.22 versus 0.33 +/- 0.11; basal ganglia: 0.46 +/- 0.23 versus 0.49 +/- 0.17; P > 0.05); however, it was significantly reduced in the Ad.RSVIL-1ra group (cortex: 0.18 +/- 0.07; basal ganglia: 0.26 +/- 0.15; P < 0.05). Myeloperoxidase immunohistochemistry showed that the massive accumulation of MPO-positive cells in the ischemic cortex, striatum, and corpus callosum regions was greatly attenuated in Ad.RSVIL-1ra-transfected mice. Our results indicate that Ad.RSVIL-1ra-transfected mice provide a useful tool to study the mechanism of action of IL-1. The MPO activity assay and immunostaining after 24 hours of focal ischemia were significantly reduced in IL-1ra gene-transfected mice, suggesting that IL-1 may play an important role in the activation of inflammatory cells during focal cerebral ischemia.
Collapse
Affiliation(s)
- G Y Yang
- Department of Surgery (Neurosurgery), University of Michigan, Ann Arbor 48109-0532, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 27:1-39. [PMID: 9639663 DOI: 10.1016/s0165-0173(98)00004-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence suggests that neurotrophic factors that promote the survival or differentiation of developing neurons may also protect mature neurons from neuronal atrophy in the degenerating human brain. Furthermore, it has been proposed that the pathogenesis of human neurodegenerative disorders may be due to an alteration in neurotrophic factor and/or trk receptor levels. The use of neurotrophic factors as therapeutic agents is a novel approach aimed at restoring and maintaining neuronal function in the central nervous system (CNS). Research is currently being undertaken to determine potential mechanisms to deliver neurotrophic factors to selectively vulnerable regions of the CNS. However, while there is widespread interest in the use of neurotrophic factors to prevent and/or reduce the neuronal cell loss and atrophy observed in neurodegenerative disorders, little research has been performed examining the expression and functional role of these factors in the normal and diseased human brain. This review will discuss recent studies and examine the role members of the nerve growth factor family (NGF, BDNF and NT-3) and trk receptors as well as additional growth factors (GDNF, TGF-alpha and IGF-I) may play in neurodegenerative disorders of the human brain.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | |
Collapse
|
21
|
Imaoka T, Date I, Ohmoto T, Nagatsu T. Significant behavioral recovery in Parkinson's disease model by direct intracerebral gene transfer using continuous injection of a plasmid DNA-liposome complex. Hum Gene Ther 1998; 9:1093-102. [PMID: 9607420 DOI: 10.1089/hum.1998.9.7-1093] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As an alternative to virus-mediated gene transfer, we previously demonstrated a simple, safe, and efficient transfer of foreign gene into the central nervous system using continuous injection of a plasmid DNA-cationic liposome complex. To explore whether this approach can be applied to the treatment of certain neurological disorders, we used an experimental model of Parkinson's disease (PD) in the present study. Following continuous injection for 7 days, tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) genes carried by a bovine papilloma virus-based plasmid vector were efficiently introduced into glial cells in the striatum of 6-hydroxydopamine-lesioned rats. Significant recovery in apomorphine-induced rotational behavior of PD models was obtained by transfection of TH gene and this effect continued for up to 5 weeks after injection. Moreover, cotransfection of TH with AADC genes was readily accomplished by this procedure and resulted in a greater and longer-lasting improvement of apomorphine-induced rotational behavior than was achieved by transfection of TH gene alone. We suggest that this approach is a controllable and manageable alternative to other methods of gene therapy for the treatment of PD.
Collapse
Affiliation(s)
- T Imaoka
- Department of Neurological Surgery, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|