1
|
Knezic A, Budusan E, Saez NJ, Broughton BRS, Rash LD, King GF, Widdop RE, McCarthy CA. Hi1a Improves Sensorimotor Deficit following Endothelin-1-Induced Stroke in Rats but Does Not Improve Functional Outcomes following Filament-Induced Stroke in Mice. ACS Pharmacol Transl Sci 2024; 7:1043-1054. [PMID: 38638162 PMCID: PMC11022283 DOI: 10.1021/acsptsci.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Activation of acid-sensing ion channel 1a (ASIC1a) plays a major role in mediating acidosis-induced neuronal injury following a stroke. Therefore, the inhibition of ASIC1a is a potential therapeutic avenue for the treatment of stroke. Venom-peptide Hi1a, a selective and highly potent ASIC1a inhibitor, reduces the infarct size and functional deficits when injected into the brain after stroke in rodents. However, its efficacy when administered using a clinically relevant route of administration remains to be established. Therefore, the current investigation aims to examine the efficacy of systemically administered Hi1a, using two different models of stroke in different species. Mice were subjected to the filament model of middle cerebral artery occlusion (MCAO) and treated with Hi1a systemically using either a single- or multiple-dosing regimen. 24 h poststroke, mice underwent functional testing, and the brain infarct size was assessed. Rats were subjected to endothelin-1 (ET-1)-induced MCAO and treated with Hi1a intravenously 2 h poststroke. Rats underwent functional tests prior to and for 3 days poststroke, when infarct volume was assessed. Mice receiving Hi1a did not show any improvements in functional outcomes, despite a trend toward reduced infarct size. This trend for reduced infarct size in mice was consistent regardless of the dosing regimen. There was also a trend toward lower infarct size in rats treated with Hi1a. More specifically, Hi1a reduced the amount of damage occurring within the somatosensory cortex, which was associated with an improved sensorimotor function in Hi1a-treated rats. Thus, this study suggests that Hi1a or more brain-permeable ASIC1a inhibitors are a potential stroke treatment.
Collapse
Affiliation(s)
- Adriana Knezic
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Elena Budusan
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Brad R. S. Broughton
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Lachlan D. Rash
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Robert E. Widdop
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Claudia A. McCarthy
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Zhang L, Li J, Yang B, Li W, Wang X, Zou M, Song H, Shi L, Duan Y. The risk and outcome of malignant brain edema in post-mechanical thrombectomy: acute ischemic stroke by anterior circulation occlusion. Eur J Med Res 2023; 28:435. [PMID: 37833809 PMCID: PMC10571427 DOI: 10.1186/s40001-023-01414-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Malignant brain edema (MBE) occurring after mechanical thrombectomy (MT) in acute ischemic stroke (AIS) could lead to severe disability and mortality. We aimed to investigate the incidence, predictors, and clinical outcomes of MBE in patients with AIS after MT. METHODS The clinical and imaging data of 155 patients with AIS of anterior circulation after MT were studied. Standard non-contrast CT was used to evaluate baseline imaging characteristics at admission. Clinical outcomes were measured using the 90-day modified Rankin Scale (mRS) score. Based on the follow-up CT scans performed within 72 h after MT, the patients were classified into MBE and non-MBE group. MBE was defined as a midline shift of ≥ 5 mm with signs of local brain swelling. Univariate and multivariate regression analyses were used to analyze the relationship between MBE and clinical outcomes and identify the predictors that correlate with MBE. RESULTS MBE was observed in 19.4% of the patients who underwent MT and was associated with a lower rate of favorable 90-day clinical outcomes. Significant differences were observed in both MBE and non-MBE groups: baseline Alberta Stroke Program Early CT (ASPECT) score, hyperdense middle cerebral artery sign (HMCAS), baseline signs of early infarct, angiographic favorable collaterals, number of retrieval attempts, and revascularization rate. Multivariate analysis indicated that low baseline ASPECT score, absent HMCAS, angiographic poor collaterals, more retrieval attempt count, and poor revascularization independently influenced the occurrence of MBE in AIS patients with anterior circulation after MT. CONCLUSION MBE was associated with a lower rate of favorable 90-day clinical outcomes. Low baseline ASPECT score, absent HMCAS, angiographic poor collaterals, more retrieval attempt count and poor revascularization were independently associated with MBE after MT.
Collapse
Affiliation(s)
- Luojin Zhang
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, China
- Department of Radiology, Shanxi Fenyang Hospital, Shanxi, China
| | - Jinze Li
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, China
- Northern Theater Command Postgraduate Training Base of Jinzhou Medical University General Hospital, Shenyang, China
| | - Benqiang Yang
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Li
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinrui Wang
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, China
| | - Mingyu Zou
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, China
| | - Hongyan Song
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, China
| | - Lin Shi
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, China
| | - Yang Duan
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, China.
| |
Collapse
|
3
|
Suroto NS, Fauzi AA, Christi AY, Simanjuntak KAT, Budiono PS. Case of malignant brain edema despite successful recanalization after mechanical thrombectomy for anterior circulation stroke. Surg Neurol Int 2023; 14:111. [PMID: 37151444 PMCID: PMC10159319 DOI: 10.25259/sni_28_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
Background:
Therapeutic reperfusion with endovascular treatment (EVT) for acute ischemic stroke is typically associated with better long-term functional outcome compared to standard medical care. However, post-procedural brain edema remained present in around half of EVT patients. Malignant brain edema (MBE) is a serious condition that can lead to increased intracranial pressure, rapid neurologic deterioration, and cerebral herniation, neutralizing the favorable efficacy of EVT on functional outcomes.
Case Description:
A 51-year-old man with a history of atrial fibrillation presented with acute onset of hemiplegia and severe bradyarrhythmia. A head computed tomography-scan demonstrated hyperdense middle cerebral artery (MCA) sign. Intravenous thrombolysis was administered before temporary pacemaker insertion. The digital subtraction angiography confirmed occlusion of the M1 branch of the right MCA with no collaterals in the territory of the occluded vessel. Mechanical thrombectomy (MT) was performed 6 h after onset and successfully achieved modified thrombolysis in cerebral infarction 3 revascularization in 6 h 20 min. The patient later experienced massive brain edema that required emergent decompressive craniectomy. The modified Rankin scale score was 4 in 1- and 3-month’s follow-up.
Conclusion:
MBE after MT results in unsatisfactory functional outcomes, even if it has successful revascularization. No collateral in the territory of the occluded vessel in the initial angiogram is one of the predictors of MBE after MT.
Collapse
|
4
|
Guo W, Li N, Xu J, Ma J, Li S, Ren C, Chen J, Duan J, Ma Q, Song H, Zhao W, Ji X. Malignant Middle Cerebral Artery Infarction during Early versus Late Endovascular Treatment in Acute Ischemic Stroke. Curr Neurovasc Res 2023; 20:254-260. [PMID: 37431897 DOI: 10.2174/1567202620666230710114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Endovascular treatment (EVT) performed in the early time window has been shown to decrease the incidence of malignant middle cerebral artery infarction (MMI). However, the incidence of MMI in patients undergoing EVT during the late time window is unclear. This study aimed to investigate the prevalence of MMI in patients undergoing late EVT and compare it with that in patients undergoing early EVT. METHODS We retrospectively analyzed consecutive patients with anterior large vessel occlusion stroke who underwent EVT at Xuanwu Hospital between January 2013 and June 2021. Eligible patients were divided into early EVT (within 6 h) and late EVT (6-24 h) groups according to the time from their stroke onset to puncture and compared. The occurrence of MMI post-EVT was the primary outcome. RESULTS A total of 605 patients were recruited, of whom 300 (50.4%) underwent EVT within 6 h and 305 (49.6%) underwent EVT within 6-24 h. A total of 119 patients (19.7%) developed MMI. 68 patients (22.7%) in the early EVT group and 51 patients (16.7 %) in the late EVT group developed MMI (p = 0.066). After adjusting for covariate variables, late EVT was independently associated with a lower incidence of MMI (odds ratio, 0.404; 95% confidence interval, 0.242-0.675; p = 0.001). CONCLUSION MMI is not an uncommon phenomenon in the modern thrombectomy era. Compared with the early time window, patients selected by stricter radiological criteria to undergo EVT in the late time window are independently associated with a lower incidence of MMI.
Collapse
Affiliation(s)
- Wenting Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Ng FC, Yassi N, Sharma G, Brown SB, Goyal M, Majoie CBLM, Jovin TG, Hill MD, Muir KW, Saver JL, Guillemin F, Demchuk AM, Menon BK, San Roman L, White P, van der Lugt A, Ribo M, Bracard S, Mitchell PJ, Davis SM, Sheth KN, Kimberly WT, Campbell BCV. Correlation Between Computed Tomography-Based Tissue Net Water Uptake and Volumetric Measures of Cerebral Edema After Reperfusion Therapy. Stroke 2022; 53:2628-2636. [PMID: 35450438 DOI: 10.1161/strokeaha.121.037073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cerebral edema after large hemispheric infarction is associated with poor functional outcome and mortality. Net water uptake (NWU) quantifies the degree of hypoattenuation on unenhanced-computed tomography (CT) and is increasingly used to measure cerebral edema in stroke research. Hemorrhagic transformation and parenchymal contrast staining after thrombectomy may confound NWU measurements. We investigated the correlation of NWU measured postthrombectomy with volumetric markers of cerebral edema and association with functional outcomes. METHODS In a pooled individual patient level analysis of patients presenting with anterior circulation large hemispheric infarction (core 80-300 mL or Alberta Stroke Program Early CT Score ≤5) in the HERMES (Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke trials) data set, cerebral edema was defined as the volumetric expansion of the ischemic hemisphere expressed as a ratio to the contralateral hemisphere(rHV). NWU and midline-shift were compared with rHV as the reference standard on 24-hour follow-up CT, adjusted for hemorrhagic transformation and the use of thrombectomy. Association between edema markers and day 90 functional outcomes (modified Rankin Scale) was assessed using ordinal logistic regression. RESULTS Overall (n=144), there was no correlation between NWU and rHV (rs=0.055, P=0.51). In sub-group analyses, a weak correlation between NWU with rHV was observed after excluding patients with any degree of hemorrhagic transformation (rs=0.211, P=0.015), which further improved after excluding thrombectomy patients (rs=0.453, P=0.001). Midline-shift correlated strongly with rHV in all sub-group analyses (rs>0.753, P=0.001). Functional outcome at 90 days was negatively associated with rHV (adjusted common odds ratio, 0.46 [95% CI, 0.32-0.65]; P<0.001) and midline-shift (adjusted common odds ratio, 0.85 [95% CI, 0.78-0.92]; P<0.001) but not NWU (adjusted common odds ratio, 1.00 [95% CI, 0.97-1.03]; P=0.84), adjusted for age, baseline National Institutes of Health Stroke Scale, and thrombectomy. Prognostic performance of NWU improved after excluding patients with hemorrhagic transformation and thrombectomy (adjusted odds ratio, 0.90 [95% CI, 0.80-1.02]; P=0.10). CONCLUSIONS NWU correlated poorly with conventional markers of cerebral edema and was not associated with clinical outcome in the presence of hemorrhagic transformation and thrombectomy. Measuring NWU postthrombectomy requires validation before implementation into clinical research. At present, the use of NWU should be limited to baseline CT, or follow-up CT only in patients without hemorrhagic transformation or treatment with thrombectomy.
Collapse
Affiliation(s)
- Felix C Ng
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.).,Austin Health, Heidelberg, Australia (F.C.N.)
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia (N.Y.)
| | - Gagan Sharma
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.)
| | | | - Mayank Goyal
- Department of Radiology, University of Calgary, Foothills Hospital, AB, Canada (M.G.)
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, the Netherlands (C.B.L.M.M.)
| | - Tudor G Jovin
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ (T.G.J.)
| | - Michael D Hill
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Foothills Hospital, AB, Canada (M.D.H., A.M.D., B.K.M.)
| | - Keith W Muir
- Institute of Neuroscience & Psychology, University of Glasgow, Queen Elizabeth University Hospital, United Kingdom (K.W.M.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at the University of California, Los Angeles, California Stanford Stroke Center, Stanford University (J.L.S.)
| | - Francis Guillemin
- Clinical Investigation Centre-Clinical Epidemiology INSERM 1433, University of Lorraine and University Hospital of Nancy, France (F.G.)
| | - Andrew M Demchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Foothills Hospital, AB, Canada (M.D.H., A.M.D., B.K.M.)
| | - Bijoy K Menon
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Foothills Hospital, AB, Canada (M.D.H., A.M.D., B.K.M.)
| | - Luis San Roman
- Department of Radiology, Hospital Clínic, Barcelona, Spain (L.S.R.)
| | - Philip White
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom (P.W.)
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands (A.v.d.L.)
| | - Marc Ribo
- Department of Neurology, Hospital Vall d'Hebron, Barcelona, Spain (M.R.)
| | - Serge Bracard
- Department of Diagnostic and Interventional Neuroradiology, Université de Lorraine, Inserm, IADI, CHRU Nancy, France (S.B.)
| | - Peter J Mitchell
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (P.J.M.)
| | - Stephen M Davis
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.)
| | - Kevin N Sheth
- Department of Neurology, Yale New Haven Hospital, CT (K.N.S.)
| | - W Taylor Kimberly
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston (W.T.K.)
| | - Bruce C V Campbell
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia (F.C.N., N.Y., G.S., S.M.D., B.C.V.C.)
| | | |
Collapse
|
6
|
Klug NR, Chechneva OV, Hung BY, O'Donnell ME. High glucose-induced effects on Na +-K +-2Cl - cotransport and Na +/H + exchange of blood-brain barrier endothelial cells: involvement of SGK1, PKCβII, and SPAK/OSR1. Am J Physiol Cell Physiol 2021; 320:C619-C634. [PMID: 33406028 DOI: 10.1152/ajpcell.00177.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hyperglycemia exacerbates edema formation and worsens neurological outcome in ischemic stroke. Edema formation in the early hours of stroke involves transport of ions and water across an intact blood-brain barrier (BBB), and swelling of astrocytes. We showed previously that high glucose (HG) exposures of 24 hours to 7 days increase abundance and activity of BBB Na+-K+-2Cl- cotransport (NKCC) and Na+/H+ exchange 1 (NHE1). Further, bumetanide and HOE-642 inhibition of these transporters significantly reduces edema and infarct following middle cerebral artery occlusion in hyperglycemic rats, suggesting that NKCC and NHE1 are effective therapeutic targets for reducing edema in hyperglycemic stroke. The mechanisms underlying hyperglycemia effects on BBB NKCC and NHE1 are not known. In the present study we investigated whether serum-glucocorticoid regulated kinase 1 (SGK1) and protein kinase C beta II (PKCβII) are involved in HG effects on BBB NKCC and NHE1. We found transient increases in phosphorylated SGK1 and PKCβII within the first hour of HG exposure, after 5-60 min for SGK1 and 5 min for PKCβII. However, no changes were observed in cerebral microvascular endothelial cell SGK1 or PKCβII abundance or phosphorylation (activity) after 24 or 48 h HG exposures. Further, we found that HG-induced increases in NKCC and NHE1 abundance were abolished by inhibition of SGK1 but not PKCβII, whereas the increases in NKCC and NHE activity were abolished by inhibition of either kinase. Finally, we found evidence that STE20/SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 (SPAK/OSR1) participate in the HG-induced effects on BBB NKCC.
Collapse
Affiliation(s)
- Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Olga V Chechneva
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Benjamin Y Hung
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
7
|
Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J. Animal models of cerebral ischemia: A review. Biomed Pharmacother 2020; 131:110686. [PMID: 32937247 DOI: 10.1016/j.biopha.2020.110686] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke seriously threatens human health because of its characteristics of high morbidity, disability, recurrence, and mortality, thus representing a heavy financial and mental burden to affected families and society. Many preclinical effective drugs end in clinical-translation failure. Animal models are an important approach for studying diseases and drug effects, and play a central role in biomedical research. Some details about animal models of cerebral ischemia have not been published, such as left-/right-sided lesions or permanent cerebral ischemia/cerebral ischemia-reperfusion. In this review, ischemia in the left- and right-hemisphere in patients with clinical stroke and preclinical studies were compared for the first time, as were the mechanisms of permanent cerebral ischemia and cerebral ischemia-reperfusion in different phases of the disease. The results showed that stroke in the left hemisphere was more common in clinical patients, and that most patients with stroke failed to achieve successful recanalization. Significant differences were detected between permanent cerebral ischemia and cerebral ischemia-reperfusion models in the early, subacute, and recovery phases. Therefore, it is recommended that, with the exception of the determined experimental purpose or drug mechanism, left-sided permanent cerebral ischemia animal models should be prioritized, as they would be more in line with the clinical scenario and would promote clinical translation. In addition, other details regarding the preoperative management, surgical procedures, and postoperative care of these animals are provided, to help establish a precise, effective, and reproducible model of cerebral ischemia model and establish a reference for researchers in this field.
Collapse
Affiliation(s)
- Rong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhuoping Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mihong Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hai Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinxiu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Hsu CC, Kuo TW, Liu WP, Chang CP, Lin HJ. Calycosin Preserves BDNF/TrkB Signaling and Reduces Post-Stroke Neurological Injury after Cerebral Ischemia by Reducing Accumulation of Hypertrophic and TNF-α-Containing Microglia in Rats. J Neuroimmune Pharmacol 2020; 15:326-339. [PMID: 31927682 DOI: 10.1007/s11481-019-09903-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/15/2019] [Indexed: 01/01/2023]
Abstract
Both brain-derived neurotrophic factor (BDNF) and microglia activation are involved in the pathogenesis of ischemic stroke. Herein, we attempt to ascertain whether Calycosin, an isoflavonoid, protects against ischemic stroke by modulating the endogenous production of BDNF and/or the microglia activation. This study was a prospective, randomized, blinded and placebo-controlled preclinical experiment. Sprague-Dawley adult rats, subjected to transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO), were treated randomly with 0 (corn oil and/or saline as placebo), 30 mg/kg of Calycosin and/or 1 mg/kg of a tropomyosin-related kinase B (TrkB) receptor antagonist (ANA12) at 1 h after reperfusion and once daily for a total of 7 consecutive days. BDNF and its functional receptor, full-length TrkB (TrkB-FL) levels, the percentage of hypertrophic microglia, tumor necrosis factor-α (TNF-α)-containing microglia, and degenerative and apoptotic neurons in ischemic brain regions were determined 7 days after cerebral ischemia. A battery of functional sensorimotor test was performed over 7 days. Post-stroke Calycosin therapy increased the cerebral expression of BDNF/TrkB, ameliorated the neurological injury and switched the microglia from the activated amoeboid state to the resting ramified state in ischemic stroke rats. However, the beneficial effects of BDNF/ TrkB-mediated Calycosin could be reversed by ANA12. Our data indicate that BDNF/TrkB-mediated Calycosin ameliorates rat ischemic stroke injury by switching the microglia from the activated amoeboid state to the resting ramified state. Graphical abstract.
Collapse
Affiliation(s)
- Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan.,Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Ting-Wei Kuo
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Wen-Pin Liu
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan.
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City, 710, Taiwan. .,School of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
9
|
Thorén M, Dixit A, Escudero-Martínez I, Gdovinová Z, Klecka L, Rand VM, Toni D, Vilionskis A, Wahlgren N, Ahmed N. Effect of Recanalization on Cerebral Edema in Ischemic Stroke Treated With Thrombolysis and/or Endovascular Therapy. Stroke 2019; 51:216-223. [PMID: 31818228 DOI: 10.1161/strokeaha.119.026692] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background and Purpose- A large infarct and expanding cerebral edema (CED) due to a middle cerebral artery occlusion confers a 70% mortality unless treated surgically. Reperfusion may cause blood-brain barrier disruption and a risk for cerebral edema and secondary parenchymal hemorrhage (PH). We aimed to investigate the effect of recanalization on development of early CED and PH after recanalization therapy. Methods- From the SITS-International Stroke Treatment Registry, we selected patients with signs of artery occlusion at baseline (either Hyperdense Artery Sign or computed tomography/magnetic resonance imaging angiographic occlusion). We defined recanalization as the disappearance of radiological signs of occlusion at 22 to 36 hours. Primary outcome was moderate to severe CED and secondary outcome was PH on 22- to 36-hour imaging scans. We used logistic regression with adjustment for baseline variables and PH. Results- Twenty two thousand one hundred eighty-four patients fulfilled the inclusion criteria (n=18 318 received intravenous thrombolysis, n=3071 received intravenous thrombolysis+thrombectomy, n=795 received thrombectomy). Recanalization occurred in 64.1%. Median age was 71 versus 71 years and National Institutes of Health Stroke Scale score 15 versus 16 in the recanalized versus nonrecanalized patients respectively. Recanalized patients had a lower risk for CED (13.0% versus 23.6%), adjusted odds ratio (aOR), 0.52 (95% CI, 0.46-0.59), and a higher risk for PH (8.9% versus 6.5%), adjusted odds ratio, 1.37 (95% CI, 1.22-1.55), than nonrecanalized patients. Conclusions- In patients with acute ischemic stroke, recanalization was associated with a lower risk for early CED even after adjustment for higher rate for PH in recanalized patients.
Collapse
Affiliation(s)
- Magnus Thorén
- From the Department of Neurology, Karolinska University Hospital and Department of Clinical Neuroscience, Karolinska Institutet, Sweden (M.T., N.A.)
| | - Anand Dixit
- Newcastle upon Tyne NHS Foundation Trust, University of Newcastle upon Tyne, United Kingdom (A.D.)
| | - Irene Escudero-Martínez
- Department of Neurology, University Hospital Virgen del Rocío, Sevilla and Biomedicine Institute of Sevilla, Spain (I.E.-M.)
| | - Zuzana Gdovinová
- Department of Neurology, Faculty of Medicine, P.J. Safarik University Košice, Slovak republic (Z.G.)
| | - Lukas Klecka
- Departement of Neurology, Municipal hospital of Ostrava, Czech Republic (L.K.)
| | - Viiu-Marika Rand
- Department of Neurology, North Estonia Medical Centre, Tallinn (V.-M.R.)
| | - Danilo Toni
- Unità di Trattamento Neurovascolare, University La Sapienza Rome, Italy (D.T.)
| | - Aleksandras Vilionskis
- Department of Neurology, Institute of Clinical Medicine, Vilnius University, Republican Vilnius University hospital, Lithuania (A.V.)
| | - Nils Wahlgren
- Department of Clinical Neuroscience, Karolinska Institutet, Sweden (N.W.)
| | - Niaz Ahmed
- From the Department of Neurology, Karolinska University Hospital and Department of Clinical Neuroscience, Karolinska Institutet, Sweden (M.T., N.A.)
| |
Collapse
|
10
|
R. Peterson D, J. Sukowski E. Prevention of Oxidative Injury Associated with Thrombolysis for Ischemic Stroke. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.84774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
11
|
Campbell BCV. SELECTing Patients With Large Ischemic Core Who May Benefit From Endovascular Reperfusion. JAMA Neurol 2019; 76:1140-1142. [PMID: 31355867 DOI: 10.1001/jamaneurol.2019.1789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Kimberly WT, Dutra BG, Boers AMM, Alves HCBR, Berkhemer OA, van den Berg L, Sheth KN, Roos YBWEM, van der Lugt A, Beenen LFM, Dippel DWJ, van Zwam WH, van Oostenbrugge RJ, Lingsma HF, Marquering H, Majoie CBLM. Association of Reperfusion With Brain Edema in Patients With Acute Ischemic Stroke: A Secondary Analysis of the MR CLEAN Trial. JAMA Neurol 2019; 75:453-461. [PMID: 29365017 DOI: 10.1001/jamaneurol.2017.5162] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Importance It is uncertain whether therapeutic reperfusion with endovascular treatment yields more or less brain edema. Objective To elucidate the association between reperfusion and brain edema. The secondary objectives were to evaluate whether brain edema could partially be responsible for worse outcomes in patients with later reperfusion or lower Alberta Stroke Program Early Computed Tomography Score. Design, Setting, and Participants This was a post hoc analysis of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN), which was a prospective, randomized, multicenter clinical trial of endovascular treatment compared with conventional care of patients with acute anterior circulation ischemic stroke. Of 502 patients enrolled from December 2010 to June 2014, 2 patients declined to participate. Additionally, exclusion criteria were absence of follow-up imaging or presence of parenchymal hematoma, resulting in 462 patients included in this study. Brain edema was assessed retrospectively, from December 10, 2016, to July 24, 2017, by measuring midline shift (MLS) in all available follow-up scans. Observers were blinded to clinical data. Main Outcomes and Measures Midline shift was assessed as present or absent and as a continuous variable. Reperfusion status was assessed by the modified thrombolysis in cerebral infarction score in the endovascular treatment arm. The modified arterial occlusive lesion score was used to evaluate the recanalization status in both arms. The modified Rankin scale score at 90 days was used for functional outcome. Results Of 462 patients, the mean (SD) age was 65 (11) years, and 41.8% (n = 193) were women. Successful reperfusion and recanalization were associated with a reduced likelihood of having MLS (adjusted common odds ratio, 0.25; 95% CI, 0.12-0.53; P < .001 and adjusted common odds ratio, 0.34; 95% CI, 0.21-0.55; P < .001, respectively). Midline shift was partially responsible for worse modified Rankin scale scores in patients without reperfusion or recanalization (MLS changed the logistic regression coefficients by 30.3% and 12.6%, respectively). In patients with delayed reperfusion or lower Alberta Stroke Program Early Computed Tomography Score, MLS mediated part of the worse modified Rankin scale scores, corresponding to a change in the regression coefficient of 33.3% and 64.2%, respectively. Conclusions and Relevance Successful reperfusion was associated with reduced MLS. This study identifies an additional benefit of reperfusion in relation to edema, as well as rescuing ischemic brain tissue at risk for infarction. Trial Registration Netherlands Trial Registry number: NTR1804 and Current Controlled Trials number: ISRCTN10888758.
Collapse
Affiliation(s)
- W Taylor Kimberly
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston
| | - Bruna Garbugio Dutra
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Anna M M Boers
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Heitor C B R Alves
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Olvert A Berkhemer
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Lucie van den Berg
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | - Kevin N Sheth
- Department of Neurology, Yale New Haven Hospital, New Haven, Connecticut
| | - Yvo B W E M Roos
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ludo F M Beenen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Diederik W J Dippel
- Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wim H van Zwam
- Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Hester F Lingsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Henk Marquering
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands.,Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
13
|
Wang YL, Lin CH, Chen CC, Chang CP, Lin KC, Su FC, Chou W. Exercise Preconditioning Attenuates Neurological Injury by Preserving Old and Newly Formed HSP72-Containing Neurons in Focal Brain Ischemia Rats. Int J Med Sci 2019; 16:675-685. [PMID: 31217735 PMCID: PMC6566739 DOI: 10.7150/ijms.32962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Exercise preconditioning (EP+) is a useful and important procedure for the prevention of stroke. We aimed to ascertain whether EP+ protects against ischemic brain injury by preserving heat shock protein (HSP) 72-containing neurons in ischemic brain tissues. Methods: Adult male Sprague-Dawley rats (n=240) were used to assess the contribution of HSP72-containing neurons to the neuroprotective effects of EP+ on ischemic brain injury caused by transient middle cerebral artery occlusion. Results: Significant (P<0.05) increases in the percentages of both old HSP72-containing neurons (NeuN+HSP72 double positive cells) (18~20% vs. 40~50%) and newly formed HSP72-containing neurons (BrdU+NeuN+HSP72 triple positive cells); (2~3% vs. 16~20%) after 3 weeks of exercise coincided with significant (P<0.05) reductions in brain ischemia volume (250 mm3 vs. 100 mm3), brain edema (78% vs. 74% brain water content), blood-brain barrier disruption (1.5 μg/g vs. 0.7 μg/g tissue Evans Blue dye extravasation) and neurological motor deficits (neurological severity scores of 12 vs. 6 and maximal angles of 60° vs. 20°) in brain ischemia rats. Reductions in the percentages of both old (from 40~50% to 10~12%) and newly formed (from 18~20% to 5~7%) HSP72-containing neurons by gene silencing with an intracerebral injection of pSUPER small interfering RNA showed a significant (P<0.05) reversal in the neuroprotective outcomes. Our data provide an inverse correlation between the EP+-mediated increases in both old and newly formed HSP72-containing neurons and the extent of cerebral ischemic injury. Conclusions: The percentages of both old and newly formed HSP72-containing neurons are inversely correlated with the outcomes of ischemic brain injury. Additionally, preischemic treadmill exercise improves the outcomes of ischemic brain injury by preserving both the old and newly formed HSP72-containing neurons in rats.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Center of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Kao-Chang Lin
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
14
|
Irvine HJ, Ostwaldt AC, Bevers MB, Dixon S, Battey TW, Campbell BC, Davis SM, Donnan GA, Sheth KN, Jahan R, Saver JL, Kidwell CS, Kimberly WT. Reperfusion after ischemic stroke is associated with reduced brain edema. J Cereb Blood Flow Metab 2018; 38:1807-1817. [PMID: 28731381 PMCID: PMC6168909 DOI: 10.1177/0271678x17720559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid revascularization is highly effective for acute stroke, but animal studies suggest that reperfusion edema may attenuate its beneficial effects. We investigated the relationship between reperfusion and edema in patients from the Echoplanar Imaging Thrombolysis Evaluation Trial (EPITHET) and Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE) cohorts. Reperfusion percentage was measured as the difference in perfusion-weighted imaging lesion volume between baseline and follow-up (day 3-5 for EPITHET; day 6-8 for MR RESCUE). Midline shift (MLS) and swelling volume were quantified on follow-up MRI. We found that reperfusion was associated with less MLS (EPITHET: Spearman ρ = -0.46; P < 0.001, and MR RESCUE: Spearman ρ = -0.49; P < 0.001) and lower swelling volume (EPITHET: Spearman ρ = -0.56; P < 0.001, and MR RESCUE: Spearman ρ = -0.27; P = 0.026). Multivariable analyses performed in EPITHET and MR RESCUE demonstrated that reperfusion independently predicted both less MLS (ß coefficient = -0.056; P = 0.025, and ß coefficient = -0.38; P = 0.028, respectively) and lower swelling volumes (ß coefficient = -4.7; P = 0.007, and ß coefficient = -10.7; P = 0.009, respectively), after adjusting for age, sex, NIHSS, admission glucose and follow-up lesion size. Taken together, our data suggest that even modest improvement in perfusion is associated with less brain edema in EPITHET and MR RESCUE.
Collapse
Affiliation(s)
- Hannah J Irvine
- 1 Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,2 Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ann-Christin Ostwaldt
- 1 Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,2 Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew B Bevers
- 3 Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham & Women's Hospital, Boston, MA, USA
| | - Simone Dixon
- 4 Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Thomas Wk Battey
- 1 Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,2 Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce Cv Campbell
- 5 Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,6 Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen M Davis
- 5 Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey A Donnan
- 6 Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kevin N Sheth
- 7 Division of Neurocritical Care and Emergency Neurology, Yale New Haven Hospital, New Haven, USA
| | - Reza Jahan
- 8 Department of Radiology, Ronald Reagan - UCLA Medical Center, Los Angeles, CA, USA
| | - Jeffrey L Saver
- 9 Comprehensive Stroke Center and Department of Neurology, Ronald Reagan - UCLA Medical Center, Los Angeles, CA, USA
| | - Chelsea S Kidwell
- 4 Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - W Taylor Kimberly
- 1 Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,2 Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Rousselet E, Létondor A, Menn B, Courbebaisse Y, Quillé ML, Timsit S. Sustained (S)-roscovitine delivery promotes neuroprotection associated with functional recovery and decrease in brain edema in a randomized blind focal cerebral ischemia study. J Cereb Blood Flow Metab 2018; 38:1070-1084. [PMID: 28569655 PMCID: PMC5998998 DOI: 10.1177/0271678x17712163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023]
Abstract
Stroke is a devastating disorder that significantly contributes to death, disability and healthcare costs. In ischemic stroke, the only current acute therapy is recanalization, but the narrow therapeutic window less than 6 h limits its application. The current challenge is to prevent late cell death, with concomitant therapy targeting the ischemic cascade to widen the therapeutic window. Among potential neuroprotective drugs, cyclin-dependent kinase inhibitors such as (S)-roscovitine are of particular relevance. We previously showed that (S)-roscovitine crossed the blood-brain barrier and was neuroprotective in a dose-dependent manner in two models of middle cerebral artery occlusion (MCAo). According to the Stroke Therapy Academic Industry Roundtable guidelines, the pharmacokinetics of (S)-roscovitine and the optimal mode of delivery and therapeutic dose in rats were investigated. Combination of intravenous (IV) and continuous sub-cutaneous (SC) infusion led to early and sustained delivery of (S)-roscovitine. Furthermore, in a randomized blind study on a transient MCAo rat model, we showed that this mode of delivery reduced both infarct and edema volume and was beneficial to neurological outcome. Within the framework of preclinical studies for stroke therapy development, we here provide data to improve translation of pre-clinical studies into successful clinical human trials.
Collapse
Affiliation(s)
- Estelle Rousselet
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Neurokin S.A., Institut de Neurobiologie
de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | - Anne Létondor
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Bénédicte Menn
- Neurokin S.A., Institut de Neurobiologie
de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | | | - Marie-Lise Quillé
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Serge Timsit
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- CHRU Brest, Department of Neurology and
Stroke Unit, Hôpital de la Cavale Blanche, Brest, France
| |
Collapse
|
16
|
Bevers MB, Battey TWK, Ostwaldt AC, Jahan R, Saver JL, Kimberly WT, Kidwell CS. Apparent Diffusion Coefficient Signal Intensity Ratio Predicts the Effect of Revascularization on Ischemic Cerebral Edema. Cerebrovasc Dis 2018. [PMID: 29533946 DOI: 10.1159/000487406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Apparent diffusion coefficient (ADC) imaging is a biomarker of cytotoxic injury that predicts edema formation and outcome after ischemic stroke. It therefore has the potential to serve as a "tissue clock" to describe the extent of ischemic injury and potentially predict response to therapy. The goal of this study was to determine the relationship between baseline ADC signal intensity, revascularization, and edema formation. METHODS We examined the ADC signal intensity ratio (ADCr) of the stroke lesion (defined as the baseline DWI hyperintense region) compared to the contralateral normal hemisphere in 65 subjects from the Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy trial. The associations between ADCr, neurologic outcome, and cerebral edema were examined. Finally, we explored the interaction between baseline ADCr and vessel recanalization at day 7 on post-stroke edema. RESULTS We found that lower initial ADCr was associated with a worse outcome on the modified Rankin Scale (mRS) at 90 days (52.2% of those with ADCr <64% were mRS 5-6 vs. 19.1% with ADCr ≥64%, p = 0.006). Those subjects with reconstitution of flow distal to the initial vessel occlusion showed greater normalization of ADCr on follow-up scan (increase in ADCr of 16.4 ± 2.07 vs. 1.99 ± 4.33%, p = 0.0039). In those patients with low baseline ADCr, successful revascularization was associated with reduced edema (median swelling volume 164 mL [interquartile range (IQR) 53.3-190 mL] vs. 20.7 mL [IQR 3.20-55.1 mL], p = 0.024). CONCLUSIONS This study reaffirms the association of ADCr with outcome after stroke, supports the idea that reperfusion may attenuate rather than enhance post-stroke edema, and indicates that the degree of edema with and without revascularization may be predicted by ADCr.
Collapse
Affiliation(s)
- Matthew B Bevers
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Thomas W K Battey
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ann-Christin Ostwaldt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Reza Jahan
- Department of Radiology, Ronald Reagan - UCLA Medical Center, Los Angeles, California, USA
| | - Jeffrey L Saver
- Comprehensive Stroke Center and Department of Neurology, Ronald Reagan - UCLA Medical Center, Los Angeles, California, USA
| | - W Taylor Kimberly
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chelsea S Kidwell
- Department of Neurology, University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
17
|
Amtul Z, Yang J, Nikolova S, Lee TY, Bartha R, Cechetto DF. The Dynamics of Impaired Blood-Brain Barrier Restoration in a Rat Model of Co-morbid Injury. Mol Neurobiol 2018; 55:8071-8083. [PMID: 29508280 DOI: 10.1007/s12035-018-0904-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Defect in brain microperfusion is increasingly recognized as an antecedent event to Alzheimer's disease (AD) and ischemia. Nevertheless, studies on the role of impaired microperfusion as a pathological trigger to neuroinflammation, Aβ deposition as well as blood-brain barrier (BBB) disruption, and the etiological link between AD and ischemia are lacking. In this study, we employ in vivo sequential magnetic resonance imaging (MRI) and computed tomography (CT) imaging in a co-morbid rat model of β-amyloid toxicity (Aβ) and ischemia (ET1) with subsequent histopathology of striatal lesion core and penumbra at 1, 7, and 28 days post injury. Within 24 h, cerebral injury resulted in increased BBB permeability due to the dissolution of β-dystroglycan (β-DG) and basement membrane laminin by active matrix metalloproteinase9 (MMP9). As a result, net flow of circulating IgG down a hydrostatic gradient into the parenchyma led to vasogenic edema and impaired perfusion, thus increasing the apparent hyperintensity in true fast imaging with steady-state free precession (true FISP) imaging and acute hypoperfusion in CT. This was followed by a slow recruitment of reactive astroglia to the affected brain and depolarization of aquaporin4 (AQP4) expression resulting in cytotoxic edema-in an attempt to resolve vasogenic edema. On d28, functional BBB was restored in ET1 rats as observed by astrocytic MMP9 release, β-DG stabilization, and new vessel formation. This was confirmed by reduced hyperintensity on true FISP imaging and normalized cerebral blood flow in CT. While, Aβ toxicity alone was not detrimental enough, Aβ+ET1 rats showed delayed differential expression of MMP9, late recruitment of astroglial cells, protracted loss of AQP4 depolarization, and thus delayed BBB restoration and cerebral perfusion.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Jun Yang
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Simona Nikolova
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Ting-Yim Lee
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K7, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
18
|
Reddy DS, Bhimani A, Kuruba R, Park MJ, Sohrabji F. Prospects of modeling poststroke epileptogenesis. J Neurosci Res 2017; 95:1000-1016. [PMID: 27452210 PMCID: PMC5266751 DOI: 10.1002/jnr.23836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Abstract
This Review describes the current status of poststroke epilepsy (PSE) with an emphasis on poststroke epileptogenesis modeling for testing new therapeutic agents. Stroke is a leading cause of epilepsy in an aging population. Late-onset "epileptic" seizures have been reported in up to 30% cases after stroke. Nevertheless, the overall prevalence of PSE is 2-4%. Rodent models of stroke have contributed to our understanding of the relationship between seizures and the underlying ischemic damage to neurons. To understand whether acutely generated stroke events lead to a chronic phenotype more closely resembling PSE with recurrent seizures, a limited variety of approaches emerged in early 2000s. These limited methods of causing an occlusion in mice and rats show different infarct size and neurological deficits. The most often employed procedure for inducing focal ischemia is the middle cerebral artery occlusion. This mimics the pathophysiology seen in humans in terms of extent of damage to cortex and striatum. Photothrombosis and endothelin-1 models can similarly evoke episodes of ischemic stroke. These models are well suited to studying mechanisms and biomarkers of epileptogenesis or optimizing novel drug discoveries. However, modeling of PSE is tedious, is highly variable, and lacks validity; therefore, it is not widely implemented in epilepsy research. Moreover, the relevance of ischemic models to specific forms of human stroke remains unclear. Stroke modeling in young male rodents lacks clinical relevance to elderly populations and especially to women, likely as a result of sex differences. Nevertheless, because of the neuronal damage and epileptogenic insult that these models trigger, they are helpful tools in studying acquired epilepsy and prophylactic drug therapy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Aamir Bhimani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Min Jung Park
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
19
|
Jhelum P, Wahul AB, Kamle A, Kumawat S, Kumar A, Bhutani KK, Tripathi SM, Chakravarty S. Sameerpannag Ras Mixture (SRM) improved neurobehavioral deficits following acute ischemic stroke by attenuating neuroinflammatory response. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:147-156. [PMID: 27457696 DOI: 10.1016/j.jep.2016.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemic stroke is one of the leading causes of death and long-term disability worldwide. Unfortunately, due to the failure of most of drugs in clinical trials recently, attentions have moved towards the traditional system of medicines including Ayurveda. In Ayurveda, Sameerpannag Ras (SR) is a mineral and metallic origin based formulation which has been used for the treatment of arthritis and chronic systematic inflammatory disorder. The current study was designed to investigate the neuroprotective effects of Sameerpannag Ras Mixture (SRM), on the neurobehavioral dysfunction and associated neuroinflammation, induced by transient Internal Carotid Artery Occlusion (ICAO) in mice model. MATERIALS AND METHODS In the present study, mice were treated with Sameerpannag Ras Mixture (SRM) at the dose of 40mg/kg body weight by oral gavages for 3 and 7days respectively, twice a day, after the induction of ICAO for 90min followed by reperfusion. The efficacy of SRM was examined by scoring neurological behavioral deficit using the standard neurological deficit score (NDS), grip strength and rotarod performance tests at different time intervals of post-ICAO. RESULTS Post-ischemic treatment with Sameerpannag Ras Mixture (SRM) at 40mg/kg significantly reduced Neurological Deficit Score and improved the motor coordination at different time intervals post-ICAO. The analysis of RT-qPCR data showed that transient cerebral ischemia could induce the inflammatory response genes in the affected striatal region of ICAO group, as compared to sham group, on day3 and day7 post-ICAO. Interestingly, SRM treatment showed marked improvement in the ischemia-induced neurobehavioral deficits by attenuating ischemia-induced neuroinflammatory response at both gene and protein level. CONCLUSION The present study suggests that Sameerpannag Ras Mixture (SRM) treatment ameliorates behavioral outcomes after mild ischemia through the suppression of a number of inflammatory response genes involved in neuronal damage. This is the first report of the molecular mechanism underlying the significant neuroprotective action of the Ayurvedic drug, Sameerpannag Ras Mixture (SRM), using a mild stroke in mice model.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR - Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Abhipradnya B Wahul
- Chemical Biology, CSIR - Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Avijeet Kamle
- CSIR - Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sudhir Kumawat
- CSIR - Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR - Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Kamlesh Kumar Bhutani
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Chandigarh 500037, India
| | - Shailendra Mani Tripathi
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Chandigarh 500037, India.
| | - Sumana Chakravarty
- Chemical Biology, CSIR - Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
20
|
Abstract
Ischemic brain edema, the accumulation of fluid within the brain parenchyma following stroke, is a predictable consequence of both ischemic and hemorrhagic strokes. Its development is the result of injury to both brain parenchyma and the blood vessels supplying the parenchyma. Ischemic stroke produces both cytotoxic (intracellular) edema, which develops when cells are damaged, and vasogenic (extracellular) edema, which arises from injury to structures essential to blood-brain barrier integrity. An understanding of the distinction between cytotoxic and vasogenic edema is essential in preventing secondary brain injury, since the treatments for the two entities differ. The development of new brain imaging technologies has advanced our understanding of brain edema. Both computed tomography (CT) and magnetic resonance imaging (MRI) can detect edema. Specific MRI sequences such as diffusion-weighted imaging can distinguish cytotoxic and vasogenic subtypes, and thereby detect ischemic cell injury within minutes of the onset of symptoms. Brain edema causes neurologic deterioration predominantly through its mass effect, which leads to distortion of the intracranial contents and impairment of both regional and global cerebral blood flow (CBF). Edema may also cause local tissue dysfunction. Management of the intracranial hypertension and tissue shifts caused by ischemic brain swelling is based on the fundamental relationship between pressure, flow, and resistance. Interventions are directed at preserving CBF and preventing secondary brain injury. Strategies include reducing intracranial blood volume with hypocapnia, reducing brain volume with osmotic agents, reducing cerebral metabolism with hypothermia and barbiturates, reducing resistance with rheologic agents, increasing blood pressure with vasoconstrictors, and expanding the cranial vault with decompressive surgery. All individual therapies must be used as part of a structured approach that involves frequent serial neurologic assessments, quantitative measures of pressure, flow, and resistance, and prespecified protocols for intervention.
Collapse
Affiliation(s)
- Jonathan Rosand
- Stroke Service, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lee H. Schwamm
- Stroke Service, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
21
|
Chen CC, Yang CL, Chang CP. An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance. J Vis Exp 2016. [PMID: 27684092 DOI: 10.3791/54354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology;
| | - Chin-Lung Yang
- Department of Electrical Engineering, National Cheng Kung University
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology; Department of Medical Research, Chi Mei Medical Center
| |
Collapse
|
22
|
In Vitro Studies on Degradation of Gamma-L-Glutamyl-L-Cysteine and Gamma-L-Glutamyl-D-Cysteine in Blood: Implications for Treatment of Stroke. Am J Ther 2016; 22:e97-e106. [PMID: 25844481 DOI: 10.1097/mjt.0000000000000246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Treatment for ischemic stroke involves a thrombolytic agent to re-establish blood flow in the brain. However, delayed reperfusion may cause injury to brain capillaries. Previous studies indicate that the antioxidant gamma-L-glutamyl-L-cysteine (γ-Glu-Cys) contributes to reducing reperfusion injury to the cerebral vasculature in rats, when administered intravascularly. To determine the stability of γ-Glu-Cys in blood, the peptide was incubated in rat serum in vitro, and its degradation was quantified by high-pressure liquid chromatography. The half-time (t1/2) for degradation of γ-Glu-Cys was 11 ± 1 minute (mean ± SD, n = 3). A similar pattern of degradation was observed when γ-Glu-Cys was incubated in the presence of human plasma (t1/2 = 17 ± 8 minutes, n = 3). In a second series of experiments, degradation of an analog (γ-Glu-D-Cys) was tested in rat serum and found to be more stable than the native molecule. The initial velocity for degradation of γ-Glu-D-Cys (0.12 ± 0.02 mM/min; mean ± SD, n = 3) was significantly (P = 0.006) less than that of γ-Glu-Cys (0.22 ± 0.03 mM/min; mean ± SD, n = 3). Furthermore, an in vitro assay indicated that the analog has as an oxidative capacity that equals that of the original peptide in the presence of rat serum and human plasma. Finally, both peptides were found to be similarly effective in preventing lysis of intact cells using in vitro assays. These studies show that γ-Glu-Cys remains intact in blood for several minutes, and the analog γ-Glu-D-Cys may be a more stable, but similarly effective antioxidant.
Collapse
|
23
|
Niehl A, Appaix F, Boscá S, van der Sanden B, Nicoud JF, Bolze F, Heinlein M. Fluorescent Tobacco mosaic virus-Derived Bio-Nanoparticles for Intravital Two-Photon Imaging. FRONTIERS IN PLANT SCIENCE 2016; 6:1244. [PMID: 26793221 PMCID: PMC4710741 DOI: 10.3389/fpls.2015.01244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-photon intravital imaging has become a powerful tool to investigate the healthy and diseased brain vasculature in living animals. Although agents for multi-photon fluorescence microscopy of the microvasculature are available, issues related to stability, bioavailability, toxicity, cost or chemical adaptability remain to be solved. In particular, there is a need for highly fluorescent dyes linked to particles that do not cross the blood brain barrier (BBB) in brain diseases like tumor or stroke to estimate the functional blood supply. Plant virus particles possess a number of distinct advantages over other particles, the most important being the multi-valency of chemically addressable sites on the particle surface. This multi-valency, together with biological compatibility and inert nature, makes plant viruses ideal carriers for in vivo imaging agents. Here, we show that the well-known Tobacco mosaic virus is a suitable nanocarrier for two-photon dyes and for intravital imaging of the mouse brain vasculature.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Florence Appaix
- Two-Photon Microscopy Platform, Grenoble Institut des Neurosciences, Institut National de la Santé et de la Recherche Médicale U836, Université Grenoble AlpesGrenoble, France
| | - Sonia Boscá
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| | | | - Jean-François Nicoud
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 Centre National de la Recherche Scientifique-Université de StrasbourgIllkirch, France
| | - Frédéric Bolze
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 Centre National de la Recherche Scientifique-Université de StrasbourgIllkirch, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP-UPR2357), Centre National de la Recherche ScientifiqueStrasbourg, France
| |
Collapse
|
24
|
Changes in Brain Swelling and Infarction Volume over Four Days After Hypoxia Ischemia in Neonatal Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:111-4. [PMID: 26463932 DOI: 10.1007/978-3-319-18497-5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The leading cause of morbidity and mortality in infants is hypoxia-ischemia (HI). The current therapies for HI have limited success, in part due to a lack of understanding of HI pathophysiology and underlying mechanisms. Herein, a neonatal rat model of HI was used to examine the changes in brain swelling and infarct volume over 4 days after HI. Forty-four P10 rat pups were sacrificed at 2, 3, or 4 days post-HI. After sacrifice, the brains were removed, sliced, and stained with TTC (2,3,5-triphenyl-2H-tetrazolium chloride). Images of TTC-stained brains were used for measurement of the ipsilateral hemisphere brain volumes and infarct volumes, calculated using standard equations. The hemispheric brain volumes of HI animals in all groups was lower than that of sham animals and decreased as the post-HI sacrifice time increased. The infarct volume of HI animals was larger than that of sham animals. Infarct volumes tended to decrease over the days post-HI. The change in infarct volume is likely the result of a combination of brain growth and repair mechanisms. However, changes in the hemispheric brain volume may include tissue growth and repair mechanism, so also may be a limitation of the current algorithm used for calculating ipsilateral hemisphere brain volume.
Collapse
|
25
|
McBride DW, Tang J, Zhang JH. Development of an Infarct Volume Algorithm to Correct for Brain Swelling After Ischemic Stroke in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:103-9. [PMID: 26463931 DOI: 10.1007/978-3-319-18497-5_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The primary measure for experimental stroke studies, infarct volume, can be affected by brain swelling. The algorithm by Lin et al. was developed to correct for brain swelling, however, the correction is not adequate. This chapter presents a new infarct volume algorithm that more appropriately corrects for brain hemisphere volume changes (swelling and stunted growth). Fifty-one adult rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO). Forty-four P10 rat pups were sacrificed 48 h after hypoxia-ischemia (HI). Infarct volumes for 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) stained brains were calculated using our algorithm and that of Lin and colleagues. For MCAO animals, the algorithm of Lin et al. computed smaller infarct volumes than those of our algorithm. For HI animals, Lin et al.'s algorithm's infarct volumes were greater than those of our algorithm. For sham animals, Lin et al.'s algorithm's computed infarct volumes were significantly different from those of our algorithm. Our algorithm produces a more robust estimation of infarct volume than Lin et al.'s algorithm because the effects of ipsilesional hemisphere volume changes are minimized. Herein, our algorithm yields an infarct volume that better corrects for brain swelling and stunted brain growth compared with the algorithm of Lin et al.
Collapse
Affiliation(s)
- Devin W McBride
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
26
|
Acute Hyperglycemia Does Not Affect Brain Swelling or Infarction Volume After Middle Cerebral Artery Occlusion in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:251-5. [PMID: 26463957 DOI: 10.1007/978-3-319-18497-5_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stroke disproportionally affects diabetic and hyperglycemic patients with increased incidence and is associated with higher morbidity and mortality due to brain swelling. In this study, the intraluminal suture middle cerebral artery occlusion (MCAO) model was used to examine the effects of blood glucose on brain swelling and infarct volume in acutely hyperglycemic rats and normo-glycemic controls. Fifty-four rats were distributed into normo-glycemic sham surgery, hyperglycemic sham surgery, normo-glycemic MCAO, and hyperglycemic MCAO. To induce hyperglycemia, 15 min before MCAO surgery, animals were injected with 50 % dextrose. Animals were subjected to 90 min of MCAO and sacrificed 24 h after reperfusion for hemispheric brain swelling and infarct volume calculations using standard equations. While normo-glycemic and hyperglycemic animals after MCAO presented with significantly higher brain swelling and larger infarcts than their respective controls, no statistical difference was observed for either brain swelling or infarct volume between normo-glycemic shams and hyperglycemic shams or normo-glycemic MCAO animals and hyperglycemic MCAO animals. The findings of this study suggest that blood glucose does not have any significant effect on hemispheric brain swelling or infarct volume after MCAO in rats.
Collapse
|
27
|
Lin CM, Chang CK, Chang CP, Hsu YC, Lin MT, Lin JW. Protecting against ischaemic stroke in rats by heat shock protein 20-mediated exercise. Eur J Clin Invest 2015; 45:1297-305. [PMID: 26479875 DOI: 10.1111/eci.12551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exercise preconditioning (EP(+) ) has been widely accepted as a being of safe and effective preventive measure for stroke. The purpose of this study was to investigate whether EP(+) improves outcomes of ischaemic stroke by promoting neuronal and glial expression of heat shock protein (HSP) 20. MATERIALS AND METHODS Adult male Sprague-Dawley rats (288 in number) were used to investigate the contribution of HSP20-containing neurons and HSP20-containing glial cells in the exercise-mediated neuroprotection in the stroke condition using middle cerebral artery occlusion. RESULTS Exercise preconditioning, in addition to increasing the numbers of both the HSP20-containg neurons (88 ± 8 vs. 43 ± 4; n = 8 each group; P < 0·05) and the HSP20-containg astrocytes (102 ± 10 vs. 56 ± 5; n = 8; P < 0·05) significantly attenuated stroke-induced brain infarct (140 ± 9 vs. 341 ± 20 mm(3) ; n = 8 per group; P < 0·01), neuronal apoptosis (20 ± 5 vs. 87 ± 7; n = 8 per group; n = 8; P < 0·01), glial apoptosis (29 ± 5 vs. 101 ± 4; n = 8; P < 0·01), and neurological deficits (6·6 ± 0·3 vs. 11·7 ± 0·8; n = 8 per group; P < 0·01). Reducing the numbers of both HSP20-containing neurons and HSP20-contaiing glia by intracerebral injection of pSUPER small interfering RNAί expressing HSP20 significantly reversed the beneficial effects of EP(+) in attenuating stroke-induced cerebral infarct, neuronal and glial apoptosis, and neurological deficits. CONCLUSIONS The numbers of both the HSP20-containing neurons and the HSP20-containing glia inversely correlated with the outcomes of ischaemic stroke. In addition, preischaemic treadmill exercise improves outcomes of ischaemic stroke by increasing the numbers of both the HSP20-containing neurons and the HSP20-containing glia.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Chih Hsu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Wu MH, Huang CC, Chio CC, Tsai KJ, Chang CP, Lin NK, Lin MT. Inhibition of Peripheral TNF-α and Downregulation of Microglial Activation by Alpha-Lipoic Acid and Etanercept Protect Rat Brain Against Ischemic Stroke. Mol Neurobiol 2015; 53:4961-71. [PMID: 26374550 DOI: 10.1007/s12035-015-9418-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Ischemic stroke, caused by obstruction of blood flow to the brain, would initiate microglia activation which contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation could be a therapeutic strategy for ischemic stroke. This study was aimed to elucidate the anti-inflammatory effects of alpha-lipoic acid and etanercept given either singly or in combination in rats subjected to middle cerebral artery occlusion. Both α-lipoic acid and etanercept markedly reduced cerebral infarct, blood-brain barrier disruption, and neurological motor deficits with the former drug being more effective with the dosage used. Furthermore, when used in combination, the reduction was more substantial. Remarkably, a greater diminution in the serum levels of tumor necrosis factor-alpha as well as the brain levels of microglial activation (e.g., microgliosis, amoeboid microglia, and microglial overexpression of tumor necrosis factor-α) was observed with the combined drug treatment as compared to the drugs given separately. We conclude that inhibition of peripheral tumor necrosis factor-alpha as well as downregulation of brain microglial activation by alpha-lipoic acid or etanercept protect rat brain against ischemic stroke. Moreover, when both drugs were used in combination, the stroke recovery was promoted more extensively.
Collapse
Affiliation(s)
- Ming-Hsiu Wu
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Division of Neurology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, 736, Taiwan
| | - Chao-Ching Huang
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University College of Medicine and Hospital, Tainan, 701, Taiwan
| | - Chung-Ching Chio
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Kuen-Jer Tsai
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Nan-Kai Lin
- Li-Sheng Biotechnology Co., Ltd., Taipei, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan.
| |
Collapse
|
29
|
Wu MH, Chio CC, Tsai KJ, Chang CP, Lin NK, Huang CC, Lin MT. Obesity Exacerbates Rat Cerebral Ischemic Injury through Enhancing Ischemic Adiponectin-Containing Neuronal Apoptosis. Mol Neurobiol 2015; 53:3702-3713. [DOI: 10.1007/s12035-015-9305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
|
30
|
McBride DW, Klebe D, Tang J, Zhang JH. Correcting for Brain Swelling's Effects on Infarct Volume Calculation After Middle Cerebral Artery Occlusion in Rats. Transl Stroke Res 2015; 6:323-38. [PMID: 25933988 DOI: 10.1007/s12975-015-0400-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/12/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
Evaluating infarct volume is the primary outcome for experimental ischemic stroke studies and is a major factor in determining translation of a drug into clinical trials. Numerous algorithms are available for evaluating this critical value, but a major limitation of current algorithms is that brain swelling is not appropriately considered. The model by Lin et al. is widely used, but overestimates swelling within the infarction, yielding infarct volumes which do not reflect the true infarct size. Herein, a new infarct volume algorithm is developed to minimize the effects of both peri-infarct and infarct core swelling on infarct volume measurement. 2,3,5-Triphenyl-2H-tetrazolium chloride-stained brain tissue of adult rats subjected to middle cerebral artery occlusion was used for infarct volume analysis. When both peri-infarct swelling and infarction core swelling are removed from infarct volume calculations, such as accomplished by our algorithm, larger infarct volumes are estimated than those of Lin et al.'s algorithm. Furthermore, the infarct volume difference between the two algorithms is the greatest for small infarcts (<10% of brain volume) when peri-infarct swelling is the greatest. Finally, using data from four published studies, our algorithm is compared to Lin et al.'s algorithm. Our algorithm offers a more reliable estimation of the infarct volume after ischemic brain injury, and thus may provide the foundation for comparing infarct volumes between experimental studies and standardizing infarct volume quantification to aid in the selection of the best candidates for clinical trials.
Collapse
Affiliation(s)
- Devin W McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | | | | |
Collapse
|
31
|
Chen CC, Chang MW, Chang CP, Chang WY, Chang SC, Lin MT, Yang CL. Improved infrared-sensing running wheel systems with an effective exercise activity indicator. PLoS One 2015; 10:e0122394. [PMID: 25875841 PMCID: PMC4395283 DOI: 10.1371/journal.pone.0122394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/23/2015] [Indexed: 12/15/2022] Open
Abstract
This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ming-Wen Chang
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Wen-Ying Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chieh Chang
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, ChiMei Medical Center, Tainan, Taiwan
| | - Chin-Lung Yang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater 2014; 3:1703-20. [PMID: 24692428 DOI: 10.1002/adhm.201400009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Over the years, nanotechnology has greatly developed, moving from careful design strategies and synthesis of novel nanostructures to producing them for specific medical and biological applications. The use of nanotechnology in diagnostics, drug delivery, and tissue engineering holds great promise for the treatment of stroke in the future. Nanoparticles are employed to monitor grafted cells upon implantation, or to enhance the imagery of the tissue, which is coupled with a noninvasive imaging modality such as magnetic resonance imaging, computed axial tomography or positron emission tomography scan. Contrast imaging agents used can range from iron oxide, perfluorocarbon, cerium oxide or platinum nanoparticles to quantum dots. The use of nanomaterial scaffolds for neuroregeneration is another area of nanomedicine, which involves the creation of an extracellular matrix mimic that not only serves as a structural support but promotes neuronal growth, inhibits glial differentiation, and controls hemostasis. Promisingly, carbon nanotubes can act as scaffolds for stem cell therapy and functionalizing these scaffolds may enhance their therapeutic potential for treatment of stroke. This Progress Report highlights the recent developments in nanotechnology for the detection and therapy of stroke. Recent advances in the use of nanomaterials as tissue engineering scaffolds for neuroregeneration will also be discussed.
Collapse
Affiliation(s)
- Stuart Kyle
- School of Medicine; University of Leeds; Leeds LS2 9JT UK
| | - Sikha Saha
- Division of Cardiovascular and Diabetes Research; Leeds Institute of Genetics; Health and Therapeutics; University of Leeds; Leeds LS2 9JT UK
| |
Collapse
|
33
|
Blood-brain barrier Na transporters in ischemic stroke. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:113-46. [PMID: 25307215 DOI: 10.1016/bs.apha.2014.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood-brain barrier (BBB) endothelial cells form a barrier that is highly restrictive to passage of solutes between blood and brain. Many BBB transport mechanisms have been described that mediate transcellular movement of solutes across the barrier either into or out of the brain. One class of BBB transporters that is all too often overlooked is that of the ion transporters. The BBB has a rich array of ion transporters and channels that carry Na, K, Cl, HCO3, Ca, and other ions. Many of these are asymmetrically distributed between the luminal and abluminal membranes, giving BBB endothelial cells the ability to perform vectorial transport of ions across the barrier between blood and brain. In this manner, the BBB performs the important function of regulating the volume and composition of brain interstitial fluid. Through functional coupling of luminal and abluminal transporters and channels, the BBB carries Na, Cl, and other ions from blood into brain, producing up to 30% of brain interstitial fluid in healthy brain. During ischemic stroke cerebral edema forms by processes involving increased activity of BBB luminal Na transporters, resulting in "hypersecretion" of Na, Cl, and water into the brain interstitium. This review discusses the roles of luminal BBB Na transporters in edema formation in stroke, with an emphasis on Na-K-Cl cotransport and Na/H exchange. Evidence that these transporters provide effective therapeutic targets for reduction of edema in stroke is also discussed, as are recent findings regarding signaling pathways responsible for ischemia stimulation of the BBB Na transporters.
Collapse
|
34
|
Chen CC, Chang MW, Chang CP, Chan SC, Chang WY, Yang CL, Lin MT. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. ACTA ACUST UNITED AC 2014; 47:858-68. [PMID: 25140816 PMCID: PMC4181221 DOI: 10.1590/1414-431x20143754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/12/2014] [Indexed: 12/19/2022]
Abstract
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Collapse
Affiliation(s)
- C C Chen
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - M W Chang
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - C P Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - S C Chan
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - W Y Chang
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - C L Yang
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - M T Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
35
|
Schäfer R, Mueller L, Buecheler R, Proksch B, Schwab M, Gleiter CH, Danielyan L. Interplay between endothelin and erythropoietin in astroglia: the role in protection against hypoxia. Int J Mol Sci 2014; 15:2858-75. [PMID: 24557580 PMCID: PMC3958886 DOI: 10.3390/ijms15022858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 12/21/2022] Open
Abstract
We show that, under in vitro conditions, the vulnerability of astroglia to hypoxia is reflected by alterations in endothelin (ET)-1 release and capacity of erythropoietin (EPO) to regulate ET-1 levels. Exposure of cells to 24 h hypoxia did not induce changes in ET-1 release, while 48–72 h hypoxia resulted in increase of ET-1 release from astrocytes that could be abolished by EPO. The endothelin receptor type A (ETA) antagonist BQ123 increased extracellular levels of ET-1 in human fetal astroglial cell line (SV-FHAS). The survival and proliferation of rat primary astrocytes, neural precursors, and neurons upon hypoxic conditions were increased upon administration of BQ123. Hypoxic injury and aging affected the interaction between the EPO and ET systems. Under hypoxia EPO decreased ET-1 release from astrocytes, while ETA receptor blockade enhanced the expression of EPO mRNA and EPO receptor in culture-aged rat astroglia. The blockade of ETA receptor can increase the availability of ET-1 to the ETB receptor and can potentiate the neuroprotective effects of EPO. Thus, the new therapeutic use of combined administration of EPO and ETA receptor antagonists during hypoxia-associated neurodegenerative disorders of the central nervous system (CNS) can be suggested.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hesse gGmbH, Johann-Wolfgang-Goethe-University Hospital, Sandhofstrasse 1, Frankfurt/Main D-60528, Germany.
| | - Lars Mueller
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Reinhild Buecheler
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Barbara Proksch
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Christoph H Gleiter
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| |
Collapse
|
36
|
Li PF, Zhan HQ, Li SY, Liu RL, Yan FL, Cui TZ, Yang YP, Li P, Wang XY. Lactuside B decreases aquaporin-4 and caspase-3 mRNA expression in the hippocampus and striatum following cerebral ischaemia-reperfusion injury in rats. Exp Ther Med 2013; 7:675-680. [PMID: 24520266 PMCID: PMC3919888 DOI: 10.3892/etm.2013.1460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the effects of lactuside B (LB) on aquaporin-4 (AQP4) and caspase-3 mRNA expression in the hippocampus and the striatum following cerebral ischaemia-reperfusion (I/R) injury in rats. Cerebral I/R injury was established in Sprague-Dawley rats by occluding the middle cerebral artery for 2 h and then inducing reperfusion. Rats in the I/R + LB groups were treated with various doses of LB following reperfusion. Neurological deficit scores and brain water content were obtained to determine the pharmacodynamics of LB. Reverse transcription polymerase chain reaction was performed to determine the expression levels of AQP4 and caspase-3 mRNA in the hippocampus and the striatum. The results of the present study indicate that LB decreased the neurological deficit scores and the brain water content. In the hippocampus, AQP4 and caspase-3 mRNA expression levels were significantly downregulated in the I/R + LB groups at 24 and 72 h following drug administration, compared with those in the I/R group (P<0.05). In the striatum, LB was also shown to significantly reduce AQP4 and caspase-3 mRNA expression levels at 24 and 72 h following drug administration, compared with those in the I/R group (P<0.05). The effects became stronger as the LB dose was increased. The most significant reductions in AQP4 and caspase-3 mRNA expression were noted in the I/R + LB 25 mg/kg and I/R + LB 50 mg/kg groups at 72 h following drug administration. The results of the present study show that LB is capable of significantly downregulating AQP4 and caspase-3 mRNA expression in the hippocampus and striatum following cerebral I/R injury in rats. The mechanism by which LB improved ischaemic brain injury may be associated with changes in AQP4 and caspase-3 mRNA expression in the hippocampus and the striatum.
Collapse
Affiliation(s)
- Ping-Fa Li
- Department of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - He-Qin Zhan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Sheng-Ying Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Rui-Li Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Fu-Lin Yan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tai-Zhen Cui
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yu-Ping Yang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xin-Yao Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China ; Student Union, The Affiliated Middle School of Henan Normal University, Xinxiang, Henan 453002, P.R. China
| |
Collapse
|
37
|
Jaffer H, Adjei IM, Labhasetwar V. Optical imaging to map blood-brain barrier leakage. Sci Rep 2013; 3:3117. [PMID: 24178124 PMCID: PMC3814906 DOI: 10.1038/srep03117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022] Open
Abstract
Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | |
Collapse
|
38
|
|
39
|
Blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013; 2013:578480. [PMID: 23819099 PMCID: PMC3681302 DOI: 10.1155/2013/578480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis.
Collapse
|
40
|
The role of substance p in ischaemic brain injury. Brain Sci 2013; 3:123-42. [PMID: 24961310 PMCID: PMC4061838 DOI: 10.3390/brainsci3010123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Stroke is a leading cause of death, disability and dementia worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients, meaning that death, severe disability and the requirement for long-term rehabilitation are common outcomes. Cell loss and tissue injury following stroke occurs through a number of diverse secondary injury pathways, whose delayed nature provides an opportunity for pharmacological intervention. Amongst these secondary injury factors, increased blood-brain barrier permeability and cerebral oedema are well-documented complications of cerebral ischaemia, whose severity has been shown to be associated with final outcome. Whilst the mechanisms of increased blood-brain barrier permeability and cerebral oedema are largely unknown, recent evidence suggests that the neuropeptide substance P (SP) plays a central role. The aim of this review is to examine the role of SP in ischaemic stroke and report on the potential utility of NK1 tachykinin receptor antagonists as therapeutic agents.
Collapse
|
41
|
Baskerville TA, McCabe C, Weir CJ, Macrae IM, Holmes WM. Noninvasive MRI measurement of CBF: evaluating an arterial spin labelling sequence with 99mTc-HMPAO CBF autoradiography in a rat stroke model. J Cereb Blood Flow Metab 2012; 32:973-7. [PMID: 22472604 PMCID: PMC3367221 DOI: 10.1038/jcbfm.2012.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arterial spin labelling (ASL) is increasingly available for noninvasive cerebral blood flow (CBF) measurement in stroke research. Here, a pseudo-continuous ASL technique (pCASL) was evaluated against (99m)Tc-D, L-hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) autoradiography in a rat stroke model. The (99m)Tc-HMPAO was injected (intravenously, 225 MBq) during pCASL acquisition. The pCASL and (99m)Tc-HMPAO autoradiography CBF measures, relative to the contralateral hemisphere, were in good agreement across the spectrum of flow values in normal and ischemic tissues. The pCASL-derived quantitative regional CBF values (contralateral: 157 to 177 mL/100 g per minute; ipsilateral: 9 to 104 mL/100 g per minute) were consistent with the literature values. The data show the potential utility of pCASL for CBF assessment in a rat stroke model.
Collapse
Affiliation(s)
- Tracey A Baskerville
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland
| | | | | | | | | |
Collapse
|
42
|
Muthaian R, Minhas G, Anand A. Pathophysiology of stroke and stroke-induced retinal ischemia: emerging role of stem cells. J Cell Physiol 2012; 227:1269-79. [PMID: 21989824 DOI: 10.1002/jcp.23048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current review focuses on pathophysiology, animal models and molecular analysis of stroke and retinal ischemia, and the role of stem cells in recovery of these disease conditions. Research findings associated with ischemic stroke and retinal ischemia have been discussed, and efforts towards prevention and limiting the recurrence of ischemic diseases, as well as emerging treatment possibilities with endothelial progenitor cells (EPCs) in ischemic diseases, are presented. Although most neurological diseases are still not completely understood and reliable treatment is lacking, animal models provide a major step in validating novel therapies. Stem cell approaches constitute an emerging form of cell-based therapy to treat ischemic diseases since it is an attractive source for regenerative therapy in the ischemic diseases. In this review, we highlight the advantages and limitations of this approach with a focus on key observations from preclinical animal studies and clinical trials. Further research, especially on treatment with EPCs is warranted.
Collapse
Affiliation(s)
- Rupadevi Muthaian
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
43
|
Selective over-expression of endothelin-1 in endothelial cells exacerbates inner retinal edema and neuronal death in ischemic retina. PLoS One 2011; 6:e26184. [PMID: 22053184 PMCID: PMC3203861 DOI: 10.1371/journal.pone.0026184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
The level of endothelin-1 (ET-1), a potent vasoconstrictor, was associated with retinopathy under ischemia. The effects of endothelial endothelin-1 (ET-1) over-expression in a transgenic mouse model using Tie-1 promoter (TET-1 mice) on pathophysiological changes of retinal ischemia were investigated by intraluminal insertion of a microfilament up to middle cerebral artery (MCA) to transiently block the ophthalmic artery. Two-hour occlusion and twenty-two-hour reperfusion were performed in homozygous (Hm) TET-1 mice and their non-transgenic (NTg) littermates. Presence of pyknotic nuclei in ganglion cell layer (GCL) was investigated in paraffin sections of ipsilateral (ischemic) and contralateral (non-ischemic) retinae, followed by measurement of the thickness of inner retinal layer. Moreover, immunocytochemistry of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS) and aquaporin-4 (AQP4) peptides on retinal sections were performed to study glial cell reactivity, glutamate metabolism and water accumulation, respectively after retinal ischemia. Similar morphology was observed in the contralateral retinae of NTg and Hm TET-1 mice, whereas ipsilateral retina of NTg mice showed slight structural and cellular changes compared with the corresponding contralateral retina. Ipsilateral retinae of Hm TET-1 mice showed more significant changes when compared with ipsilateral retina of NTg mice, including more prominent cell death in GCL characterized by the presence of pyknotic nuclei, elevated GS immunoreactivity in Müller cell bodies and processes, increased AQP-4 immunoreactivity in Müller cell processes, and increased inner retinal thickness. Thus, over-expression of endothelial ET-1 in TET-1 mice may contribute to increased glutamate-induced neurotoxicity on neuronal cells and water accumulation in inner retina leading to edema.
Collapse
|
44
|
Rutkowsky JM, Wallace BK, Wise PM, O'Donnell ME. Effects of estradiol on ischemic factor-induced astrocyte swelling and AQP4 protein abundance. Am J Physiol Cell Physiol 2011; 301:C204-12. [PMID: 21471464 PMCID: PMC3129821 DOI: 10.1152/ajpcell.00399.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 03/30/2011] [Indexed: 11/22/2022]
Abstract
In the early hours of ischemic stroke, cerebral edema forms as Na, Cl, and water are secreted across the blood-brain barrier (BBB) and astrocytes swell. We have shown previously that ischemic factors, including hypoxia, aglycemia, and arginine vasopressin (AVP), stimulate BBB Na-K-Cl cotransporter (NKCC) and Na/H exchanger (NHE) activities and that inhibiting NKCC and/or NHE by intravenous bumetanide and/or HOE-642 reduces edema and infarct in a rat model of ischemic stroke. Estradiol also reduces edema and infarct in this model and abolishes ischemic factor stimulation of BBB NKCC and NHE. There is evidence that NKCC and NHE also participate in ischemia-induced swelling of astrocytes. However, little is known about estradiol effects on astrocyte cell volume. In this study, we evaluated the effects of AVP (100 nM), hypoxia (7.5% O(2)), aglycemia, hypoxia (2%)/aglycemia [oxygen glucose deprivation (OGD)], and estradiol (1-100 nM) on astrocyte cell volume using 3-O-methyl-d-[(3)H]glucose equilibration methods. We found that AVP, hypoxia, aglycemia, and OGD (30 min to 5 h) each significantly increased astrocyte cell volume, and that estradiol (30-180 min) abolished swelling induced by AVP or hypoxia, but not by aglycemia or OGD. Bumetanide and/or HOE-642 also abolished swelling induced by AVP but not aglycemia. Abundance of aquaporin-4, known to participate in ischemia-induced astrocyte swelling, was significantly reduced following 7-day but not 2- or 3-h estradiol exposures. Our findings suggest that hypoxia, aglycemia, and AVP each contribute to ischemia-induced astrocyte swelling, and that the edema-attenuating effects of estradiol include reduction of hypoxia- and AVP-induced astrocyte swelling and also reduction of aquaporin-4 abundance.
Collapse
Affiliation(s)
- Jennifer M Rutkowsky
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
45
|
Nho JS, Choi SE, Yi JW, Kang JM. Intraoperative acute brain swelling when performing indirect anastomosis in a patient with moyamoya disease -A case report-. Korean J Anesthesiol 2010; 59 Suppl:S191-3. [PMID: 21286438 PMCID: PMC3030034 DOI: 10.4097/kjae.2010.59.s.s191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/23/2010] [Accepted: 05/03/2010] [Indexed: 11/10/2022] Open
Abstract
A 6-year-old male patient who was suffering from a cold and a transient ischemic attack was scheduled to undergo encephalo-duro-arterio-synangiosis for treating his moyamoya disease. Acute brain edema occurred just after opening the dura mater. Head elevation, reduction of the head rotation and hyperventilation were done. The inhalational agents were discontinued and total intravenous anesthesia was started. The swelling was reduced after intravenously infusing mannitol. An abrupt return from hypocapnia to normocapnea during the induction of general anesthesia was thought to be the cause of the acute brain swelling. In conclusion, correction of hypocapnea needs to be performed gradually during the induction of anesthesia and when performing an operation for treating a patient with moyamoya disease.
Collapse
Affiliation(s)
- Ji-Sung Nho
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital, Seoul, Korea
| | | | | | | |
Collapse
|
46
|
Lei H, Berthet C, Hirt L, Gruetter R. Evolution of the neurochemical profile after transient focal cerebral ischemia in the mouse brain. J Cereb Blood Flow Metab 2009; 29:811-9. [PMID: 19223915 DOI: 10.1038/jcbfm.2009.8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution of the neurochemical profile consisting of 19 metabolites after 30 mins of middle cerebral artery occlusion was longitudinally assessed at 3, 8 and 24 h in 6 to 8 microL volumes in the striatum using localized 1H-magnetic resonance spectroscopy at 14.1 T. Profound changes were detected as early as 3 h after ischemia, which include elevated lactate levels in the presence of significant glucose concentrations, decreases in glutamate and a transient twofold glutamine increase, likely to be linked to the excitotoxic release of glutamate and conversion into glial glutamine. Interestingly, decreases in N-acetyl-aspartate (NAA), as well as in taurine, exceeded those in neuronal glutamate, suggesting that the putative neuronal marker NAA is rather a sensitive marker of neuronal viability. With further ischemia evolution, additional, more profound concentration decreases were detected, reflecting a disruption of cellular functions. We conclude that early changes in markers of energy metabolism, glutamate excitotoxicity and neuronal viability can be detected with high precision non-invasively in mice after stroke. Such investigations should lead to a better understanding and insight into the sequential early changes in the brain parenchyma after ischemia, which could be used for identifying new targets for neuroprotection.
Collapse
Affiliation(s)
- Hongxia Lei
- Laboratory of Functional and Metabolic Imaging, Institute of the Physics of Biological System, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
47
|
Schambach SJ, Bag S, Steil V, Isaza C, Schilling L, Groden C, Brockmann MA. Ultrafast High-Resolution In Vivo Volume-CTA of Mice Cerebral Vessels. Stroke 2009; 40:1444-50. [DOI: 10.1161/strokeaha.108.521740] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sebastian J. Schambach
- From the Departments of Neuroradiology (S.S., S.B., C.I., C.G., M.A.B.), Radiation Oncology (V.S.), and Neurosurgical Research (L.S.), University Hospital Mannheim, Germany
| | - Simona Bag
- From the Departments of Neuroradiology (S.S., S.B., C.I., C.G., M.A.B.), Radiation Oncology (V.S.), and Neurosurgical Research (L.S.), University Hospital Mannheim, Germany
| | - Volker Steil
- From the Departments of Neuroradiology (S.S., S.B., C.I., C.G., M.A.B.), Radiation Oncology (V.S.), and Neurosurgical Research (L.S.), University Hospital Mannheim, Germany
| | - Cristina Isaza
- From the Departments of Neuroradiology (S.S., S.B., C.I., C.G., M.A.B.), Radiation Oncology (V.S.), and Neurosurgical Research (L.S.), University Hospital Mannheim, Germany
| | - Lothar Schilling
- From the Departments of Neuroradiology (S.S., S.B., C.I., C.G., M.A.B.), Radiation Oncology (V.S.), and Neurosurgical Research (L.S.), University Hospital Mannheim, Germany
| | - Christoph Groden
- From the Departments of Neuroradiology (S.S., S.B., C.I., C.G., M.A.B.), Radiation Oncology (V.S.), and Neurosurgical Research (L.S.), University Hospital Mannheim, Germany
| | - Marc A. Brockmann
- From the Departments of Neuroradiology (S.S., S.B., C.I., C.G., M.A.B.), Radiation Oncology (V.S.), and Neurosurgical Research (L.S.), University Hospital Mannheim, Germany
| |
Collapse
|
48
|
Hirt L, Ternon B, Price M, Mastour N, Brunet JF, Badaut J. Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab 2009; 29:423-33. [PMID: 18985050 DOI: 10.1038/jcbfm.2008.133] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aquaporin 4 (AQP4) is a water channel involved in water movements across the cell membrane and is spatially organized on the cell surface in orthogonal array particles (OAPs). Its role in edema formation or resolution after stroke onset has been studied mainly at late time points. We have shown recently that its expression is rapidly induced after ischemia coinciding in time with an early swelling of the ischemic hemisphere. There are two isoforms of AQP4: AQP4-M1 and AQP4-M23. The ratio of these isoforms influences the size of the OAPs but the functional impact is not known. The role of the early induction of AQP4 is not yet known. Thrombin preconditioning in mice provides a useful model to study endogenous protective mechanisms. Using this model, we provide evidence for the first time that the early induction of AQP4 may contribute to limit the formation of edema and that the AQP4-M1 isoform is predominantly induced in the ischemic tissue at this time point. Although it prevents edema formation, the early induction of the AQP4 expression does not prevent the blood-brain barrier disruption, suggesting an effect limited to the prevention of edema formation possibly by removing of water from the tissue.
Collapse
Affiliation(s)
- Lorenz Hirt
- Neurology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Pluta R, Amek MU. Brain ischemia and ischemic blood-brain barrier as etiological factors in sporadic Alzheimer's disease. Neuropsychiatr Dis Treat 2008; 4:855-64. [PMID: 19183778 PMCID: PMC2626921 DOI: 10.2147/ndt.s3739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of neuronal death and amyloid plaques is a characteristic feature of ischemic- and Alzheimer-type dementia. An important aspect of neuronal loss and amyloid plaques are their topography and neuropathogenesis. This review was performed to present the hypothesis that different fragments of blood-borne amyloid precursor protein are able to enter the ischemic blood-brain barrier. Chronic disruption of the blood-brain barrier after ischemic injury was shown. As an effect of chronic ischemic blood-brain barrier injury, a visible connection of amyloid plaques with neurovasculature was observed. This neuropathology appears to have similar distribution and mechanisms to Alzheimer's disease. The usefulness of rival ischemic theory in elucidating the neuropathogenesis of amyloid plaques formation and neuronal death in Alzheimer's disorder is discussed.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Department of Neurodegenerative Disorders, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
50
|
Grillon E, Provent P, Montigon O, Segebarth C, Rémy C, Barbier EL. Blood-brain barrier permeability to manganese and to Gd-DOTA in a rat model of transient cerebral ischaemia. NMR IN BIOMEDICINE 2008; 21:427-436. [PMID: 17948222 DOI: 10.1002/nbm.1206] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Loss of integrity of the blood-brain barrier (BBB) and brain swelling is a potentially lethal complication of reperfusion in human stroke. To assess the time course of BBB modifications, we performed angiography, diffusion-weighted imaging, T1-weighted (T1 W) imaging and T1 mapping, and monitored acute changes after middle cerebral artery occlusion and recanalization in rats (n = 27). The animals were grouped according to the duration of occlusion: 30 min (group A, n = 8), 1 h 30 min (group B, n = 9), and 2 h 30 min (group C, n = 10). For 17 animals (four in group A, six in group B, and seven in group C), MnCl2 and dimeglumine gadoterate (Gd-DOTA) were injected at 13 min and 34 min after recanalization, respectively. The 10 remaining animals (control groups) underwent the same acquisition protocols, but no contrast agents were injected. Cell damage was determined 1 h after recanalization on haematoxylin and eosin-stained sections. Our results indicate that in the middle cerebral artery occlusion model in the rat, changes in BBB permeability assessed by contrast agent extravasation occur within the first hour of reperfusion, even after an occlusion period not exceeding 30 min. No differences between BBB permeability to Gd-DOTA and Mn2+ were detected in our experimental conditions. The reduction in apparent diffusion coefficient during occlusion appears to be a good predictor of BBB modifications after reperfusion in this model.
Collapse
|