1
|
Guo Y, Zhu H, Wang Y, Sun T, Xu J, Wang T, Guan W, Wang C, Liu C, Ma C. Miniature-swine iPSC-derived GABA progenitor cells function in a rat Parkinson's disease model. Cell Tissue Res 2023; 391:425-440. [PMID: 36645476 DOI: 10.1007/s00441-022-03736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
Induced pluripotent stem cells (iPS cells) are considered a promising source of cell-based therapy for the treatment of Parkinson's disease (PD). Recent studies have shown forebrain GABA interneurons have crucial roles in many psychiatric disorders, and secondary changes in the GABA system play a directly effect on the pathogenesis of PD. Here, we first describe an efficient differentiation procedure of GABA progenitors (MiPSC-iGABAPs) from miniature-swine iPSCs through two major developmental stages. Then, the MiPSC-iGABAPs were stereotactically transplanted into the right medial forebrain bundle (MFB) of 6-hydroxydopamine (OHDA)-lesioned PD model rats to confirm their feasibility for the neural transplantation as a donor material. Furthermore, the grafted MiPSC-iGABAPs could survive and migrate from the graft site into the surrounding brain tissue including striatum (ST) and substantia nigra (SN) for at least 32 weeks, and significantly improved functional recovery of PD rats from their parkinsonian behavioral defects. Histological studies showed that the grafted cells could migrate and differentiate into various neurocytes, including GABAergic, dopaminergic neurons, and glial cells in vivo, and many induced dopaminergic neurons extended dense neurites into the host striatum. Moreover, over 50% of the grafted MiPSC-iGABAPs could express GABA, and these GABAergic neurons might be responsible for modifying the balance of excitatory and inhibitory signals in the striatum to promote behavioral recovery. Thus, the present study confirmed that the MiPSC-iGABAPs can be used as an attractive donor material for the neural grafting to remodel basal ganglia circuitry in neurodegenerative diseases, avoiding tumorigenicity of iPSCs and the nonproliferative and nondifferentiated potential of mature neurons.
Collapse
Affiliation(s)
- Yu Guo
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Huan Zhu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuanyuan Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Jiajia Xu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Tie Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Weijun Guan
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunjing Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Changqing Liu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China. .,Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Caiyun Ma
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
2
|
Xie J, Chen Z, He T, Zhu H, Chen T, Liu C, Fu X, Shen H, Li T. Deep brain stimulation in the globus pallidus alleviates motor activity defects and abnormal electrical activities of the parafascicular nucleus in parkinsonian rats. Front Aging Neurosci 2022; 14:1020321. [PMID: 36248005 PMCID: PMC9555567 DOI: 10.3389/fnagi.2022.1020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD). The most common sites targeted for DBS in PD are the globus pallidus internal (GPi) and subthalamic nucleus (STN). However, STN-DBS and GPi-DBS have limited improvement in some symptoms and even aggravate disease symptoms. Therefore, discovering new targets is more helpful for treating refractory symptoms of PD. Therefore, our study selected a new brain region, the lateral globus pallidus (GP), as the target of DBS, and the study found that GP-DBS can improve motor symptoms. It has been reported that the thalamic parafascicular (PF) nucleus is strongly related to PD pathology. Moreover, the PF nucleus and GP have very close direct and indirect fiber connections. However, whether GP-DBS can change the activity of the PF remains unclear. Therefore, in this study, we monitored the activity changes in the PF nucleus in PD rats during a quiet awake state after GP-DBS. We found that GP-DBS could reverse the electrical activity of the PF nucleus in PD model rats, including the discharge pattern of the neurons and the local field potential (0.7–12 and 12–70 Hz). Based on the results mentioned above, PF activity in PD model rats could be changed by GP-DBS. Thus, the normalization of PF neuronal activity may be a potential mechanism for GP-DBS in the treatment of PD; these findings lay the foundation for PD treatment strategies.
Collapse
Affiliation(s)
- Jinlu Xie
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zheng Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tingting He
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hengya Zhu
- Department of Neurology, Huzhou Central Hospital, Affiliated Center Hospital of Huzhou University, Huzhou, China
| | - Tingyu Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Chongbin Liu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Hong Shen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tao Li
- Department of Physical Education, Kyungnam University, Changwon, South Korea
- *Correspondence: Tao Li,
| |
Collapse
|
3
|
Better Outcomes with Intranigral versus Intrastriatal Cell Transplantation: Relevance for Parkinson’s Disease. Cells 2022; 11:cells11071191. [PMID: 35406755 PMCID: PMC8997951 DOI: 10.3390/cells11071191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Intrastriatal embryonic ventral mesencephalon grafts have been shown to integrate, survive, and reinnervate the host striatum in clinical settings and in animal models of Parkinson’s disease. However, this ectopic location does not restore the physiological loops of the nigrostriatal pathway and promotes only moderate behavioral benefits. Here, we performed a direct comparison of the potential benefits of intranigral versus intrastriatal grafts in animal models of Parkinson’s disease. We report that intranigral grafts promoted better survival of dopaminergic neurons and that only intranigral grafts induced recovery of fine motor skills and normalized cortico-striatal responses. The increase in the number of toxic activated glial cells in host tissue surrounding the intrastriatal graft, as well as within the graft, may be one of the causes of the increased cell death observed in the intrastriatal graft. Homotopic localization of the graft and the subsequent physiological cell rewiring of the basal ganglia may be a key factor in successful and beneficial cell transplantation procedures.
Collapse
|
4
|
Ermine CM, Nithianantharajah J, O'Brien K, Kauhausen JA, Frausin S, Oman A, Parsons MW, Brait VH, Brodtmann A, Thompson LH. Hemispheric cortical atrophy and chronic microglial activation following mild focal ischemic stroke in adult male rats. J Neurosci Res 2021; 99:3222-3237. [PMID: 34651338 DOI: 10.1002/jnr.24939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
Animal modeling has played an important role in our understanding of the pathobiology of stroke. The vast majority of this research has focused on the acute phase following severe forms of stroke that result in clear behavioral deficits. Human stroke, however, can vary widely in severity and clinical outcome. There is a rapidly building body of work suggesting that milder ischemic insults can precipitate functional impairment, including cognitive decline, that continues through the chronic phase after injury. Here we show that a small infarction localized to the frontal motor cortex of rats following injection of endothelin-1 results in an essentially asymptomatic state based on motor and cognitive testing, and yet produces significant histopathological change including remote atrophy and inflammation that persists up to 1 year. While there is understandably a major focus in stroke research on mitigating the acute consequences of primary infarction, these results point to progressive atrophy and chronic inflammation as additional targets for intervention in the chronic phase after injury. The present rodent model provides an important platform for further work in this area.
Collapse
Affiliation(s)
- Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Katrina O'Brien
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jessica A Kauhausen
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Frausin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander Oman
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Mark W Parsons
- Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, University of New Wales South Western Clinical School, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, Austin Health, Melbourne, VIC, Australia.,Eastern Cognitive Disorders Clinic, Eastern Health, Monash University, Clayton, VIC, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Björklund A, Parmar M. Dopamine Cell Therapy: From Cell Replacement to Circuitry Repair. JOURNAL OF PARKINSONS DISEASE 2021; 11:S159-S165. [PMID: 33814467 PMCID: PMC8543294 DOI: 10.3233/jpd-212609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell therapy for Parkinson's disease (PD) is aimed to replace the degenerated midbrain dopamine (mDA) neurons and restore DA neurotransmission in the denervated forebrain targets. A limitation of the intrastriatal grafting approach, which is currently used in clinical trials, is that the mDA neurons are implanted into the target area, in most cases the putamen, and not in the ventral midbrain where they normally reside. This ectopic location of the cells may limit their functionality due to the lack of appropriate afferent regulation from the host. Homotopic transplantation, into the substantia nigra, is now being pursued in rodent PD models as a way to achieve more complete circuitry repair. Intranigral grafts of mDA neurons, derived from human embryonic stem cells, have the capacity to re-establish the nigrostriatal and mesolimbic pathways in their entirety and restore dense functional innervations in striatal, limbic and cortical areas. Tracing of host afferent inputs using the rabies tracing technique shows that the afferent connectivity of grafts implanted in the nigra matches closely that of the intrinsic mDA system, suggesting a degree of circuitry reconstruction that exceeds what has been achieved before. This approach holds great promise, but to match the larger size of the human brain, and the 10 times greater distance between substantia nigra and its forebrain targets, it may be necessary to find ways to improve the growth capacity of the grafted mDA neurons, pointing to a combined approach where growth promoting factors are used to enhance the performance of mDA neuron grafts.
Collapse
Affiliation(s)
- Anders Björklund
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Björklund A, Parmar M. Neuronal Replacement as a Tool for Basal Ganglia Circuitry Repair: 40 Years in Perspective. Front Cell Neurosci 2020; 14:146. [PMID: 32547369 PMCID: PMC7272540 DOI: 10.3389/fncel.2020.00146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
The ability of new neurons to promote repair of brain circuitry depends on their capacity to re-establish afferent and efferent connections with the host. In this review article, we give an overview of past and current efforts to restore damaged connectivity in the adult mammalian brain using implants of fetal neuroblasts or stem cell-derived neuronal precursors, with a focus on strategies aimed to repair damaged basal ganglia circuitry induced by lesions that mimic the pathology seen in humans affected by Parkinson’s or Huntington’s disease. Early work performed in rodents showed that neuroblasts obtained from striatal primordia or fetal ventral mesencephalon can become anatomically and functionally integrated into lesioned striatal and nigral circuitry, establish afferent and efferent connections with the lesioned host, and reverse the lesion-induced behavioral impairments. Recent progress in the generation of striatal and nigral progenitors from pluripotent stem cells have provided compelling evidence that they can survive and mature in the lesioned brain and re-establish afferent and efferent axonal connectivity with a remarkable degree of specificity. The studies of cell-based circuitry repair are now entering a new phase. The introduction of genetic and virus-based techniques for brain connectomics has opened entirely new possibilities for studies of graft-host integration and connectivity, and the access to more refined experimental techniques, such as chemo- and optogenetics, has provided new powerful tools to study the capacity of grafted neurons to impact the function of the host brain. Progress in this field will help to guide the efforts to develop therapeutic strategies for cell-based repair in Huntington’s and Parkinson’s disease and other neurodegenerative conditions involving damage to basal ganglia circuitry.
Collapse
Affiliation(s)
- Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Ermine CM, Somaa F, Wang TY, Kagan BJ, Parish CL, Thompson LH. Long-Term Motor Deficit and Diffuse Cortical Atrophy Following Focal Cortical Ischemia in Athymic Rats. Front Cell Neurosci 2019; 13:552. [PMID: 31920553 PMCID: PMC6927997 DOI: 10.3389/fncel.2019.00552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Development of new stroke therapies requires animal models that recapitulate the pathophysiological and functional consequences of ischemic brain damage over time-frames relevant to the therapeutic intervention. This is particularly relevant for the rapidly developing area of stem cell therapies, where functional replacement of circuitry will require maturation of transplanted human cells over months. An additional challenge is the establishment of models of ischemia with stable behavioral phenotypes in chronically immune-suppressed animals to allow for long-term survival of human cell grafts. Here we report that microinjection of endothelin-1 into the sensorimotor cortex of athymic rats results in ischemic damage with a sustained deficit in function of the contralateral forepaw that persists for up to 9 months. The histological post-mortem analysis revealed chronic and diffuse atrophy of the ischemic cortical hemisphere that continued to progress over 9 months. Secondary atrophy remote to the primary site of injury and its relationship with long-term cognitive and functional decline is now recognized in human populations. Thus, focal cortical infarction in athymic rats mirrors important pathophysiological and functional features relevant to human stroke, and will be valuable for assessing efficacy of stem cell based therapies.
Collapse
Affiliation(s)
- Charlotte M Ermine
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Fahad Somaa
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ting-Yi Wang
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Brett J Kagan
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lachlan H Thompson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
8
|
van Nuland AJM, den Ouden HEM, Zach H, Dirkx MFM, van Asten JJA, Scheenen TWJ, Toni I, Cools R, Helmich RC. GABAergic changes in the thalamocortical circuit in Parkinson's disease. Hum Brain Mapp 2019; 41:1017-1029. [PMID: 31721369 PMCID: PMC7267977 DOI: 10.1002/hbm.24857] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/31/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease is characterized by bradykinesia, rigidity, and tremor. These symptoms have been related to an increased gamma‐aminobutyric acid (GABA)ergic inhibitory drive from globus pallidus onto the thalamus. However, in vivo empirical evidence for the role of GABA in Parkinson's disease is limited. Some discrepancies in the literature may be explained by the presence or absence of tremor. Specifically, recent functional magnetic resonance imaging (fMRI) findings suggest that Parkinson's tremor is associated with reduced, dopamine‐dependent thalamic inhibition. Here, we tested the hypothesis that GABA in the thalamocortical motor circuit is increased in Parkinson's disease, and we explored differences between clinical phenotypes. We included 60 Parkinson patients with dopamine‐resistant tremor (n = 17), dopamine‐responsive tremor (n = 23), or no tremor (n = 20), and healthy controls (n = 22). Using magnetic resonance spectroscopy, we measured GABA‐to‐total‐creatine ratio in motor cortex, thalamus, and a control region (visual cortex) on two separate days (ON and OFF dopaminergic medication). GABA levels were unaltered by Parkinson's disease, clinical phenotype, or medication. However, motor cortex GABA levels were inversely correlated with disease severity, particularly rigidity and tremor, both ON and OFF medication. We conclude that cortical GABA plays a beneficial rather than a detrimental role in Parkinson's disease, and that GABA depletion may contribute to increased motor symptom expression.
Collapse
Affiliation(s)
- Annelies J M van Nuland
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Hanneke E M den Ouden
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Heidemarie Zach
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands.,Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Michiel F M Dirkx
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Jack J A van Asten
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Ivan Toni
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Rick C Helmich
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Francardo V, Geva M, Bez F, Denis Q, Steiner L, Hayden MR, Cenci MA. Pridopidine Induces Functional Neurorestoration Via the Sigma-1 Receptor in a Mouse Model of Parkinson's Disease. Neurotherapeutics 2019; 16:465-479. [PMID: 30756361 PMCID: PMC6554374 DOI: 10.1007/s13311-018-00699-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pridopidine is a small molecule in clinical development for the treatment of Huntington's disease. It was recently found to have high binding affinity to the sigma-1 receptor, a chaperone protein involved in cellular defense mechanisms and neuroplasticity. Here, we have evaluated the neuroprotective and neurorestorative effects of pridopidine in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of parkinsonism in mice. By 5 weeks of daily administration, a low dose of pridopidine (0.3 mg/kg) had significantly improved deficits in forelimb use (cylinder test, stepping test) and abolished the ipsilateral rotational bias typical of hemiparkinsonian animals. A higher dose of pridopidine (1 mg/kg) significantly improved only the rotational bias, with a trend towards improvement in forelimb use. The behavioral recovery induced by pridopidine 0.3 mg/kg was accompanied by a significant protection of nigral dopamine cell bodies, an increased dopaminergic fiber density in the striatum, and striatal upregulation of GDNF, BDNF, and phosphorylated ERK1/2. The beneficial effects of pridopidine 0.3 mg/kg were absent in 6-OHDA-lesioned mice lacking the sigma-1 receptor. Pharmacokinetic data confirmed that the effective dose of pridopidine reached brain concentrations sufficient to bind S1R. Our results are the first to show that pridopidine promotes functional neurorestoration in the damaged nigrostriatal system acting via the sigma-1 receptor.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | | | - Francesco Bez
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | - Quentin Denis
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | - Lilach Steiner
- Teva Pharmaceutical Industries Global Research and Development, Netanya, Israel
| | | | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden.
| |
Collapse
|
10
|
Somaa FA, Wang TY, Niclis JC, Bruggeman KF, Kauhausen JA, Guo H, McDougall S, Williams RJ, Nisbet DR, Thompson LH, Parish CL. Peptide-Based Scaffolds Support Human Cortical Progenitor Graft Integration to Reduce Atrophy and Promote Functional Repair in a Model of Stroke. Cell Rep 2018; 20:1964-1977. [PMID: 28834757 DOI: 10.1016/j.celrep.2017.07.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/07/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
Stem cell transplants offer significant hope for brain repair following ischemic damage. Pre-clinical work suggests that therapeutic mechanisms may be multi-faceted, incorporating bone-fide circuit reconstruction by transplanted neurons, but also protection/regeneration of host circuitry. Here, we engineered hydrogel scaffolds to form "bio-bridges" within the necrotic lesion cavity, providing physical and trophic support to transplanted human embryonic stem cell-derived cortical progenitors, as well as residual host neurons. Scaffolds were fabricated by the self-assembly of peptides for a laminin-derived epitope (IKVAV), thereby mimicking the brain's major extracellular protein. Following focal ischemia in rats, scaffold-supported cell transplants induced progressive motor improvements over 9 months, compared to cell- or scaffold-only implants. These grafts were larger, exhibited greater neuronal differentiation, and showed enhanced electrophysiological properties reflective of mature, integrated neurons. Varying graft timing post-injury enabled us to attribute repair to both neuroprotection and circuit replacement. These findings highlight strategies to improve the efficiency of stem cell grafts for brain repair.
Collapse
Affiliation(s)
- Fahad A Somaa
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ting-Yi Wang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jonathan C Niclis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kiara F Bruggeman
- Laboratory of Advanced Materials, Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Jessica A Kauhausen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Haoyao Guo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Stuart McDougall
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | | | - David R Nisbet
- Laboratory of Advanced Materials, Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
11
|
Anodal Transcranial Direct Current Stimulation Enhances Survival and Integration of Dopaminergic Cell Transplants in a Rat Parkinson Model. eNeuro 2017; 4:eN-NWR-0063-17. [PMID: 28966974 PMCID: PMC5617080 DOI: 10.1523/eneuro.0063-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
Restorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of the trophic factor BDNF in the motor cortex. Transcranial DCS applied to the motor cortex transiently improves motor symptoms in Parkinson’s disease (PD) patients. In this proof-of-concept study, we combine cell based therapy and noninvasive neuromodulation to assess whether neurotrophic support via transcranial DCS would enhance the restitution of striatal neurotransmission by fetal dopaminergic transplants in a rat Parkinson model. Transcranial DCS was applied daily for 20 min on 14 consecutive days following striatal transplantation of fetal ventral mesencephalic (fVM) cells derived from transgenic rat embryos ubiquitously expressing GFP. Anodal but not cathodal transcranial DCS significantly enhanced graft survival and dopaminergic reinnervation of the surrounding striatal tissue relative to sham stimulation. Behavioral recovery was more pronounced following anodal transcranial DCS, and behavioral effects correlated with the degree of striatal innervation. Our results suggest anodal transcranial DCS may help advance cell-based restorative therapies in neurodegenerative diseases. In particular, such an assistive approach may be beneficial for the already established cell transplantation therapy in PD.
Collapse
|
12
|
Direct Reprogramming of Resident NG2 Glia into Neurons with Properties of Fast-Spiking Parvalbumin-Containing Interneurons. Stem Cell Reports 2017; 9:742-751. [PMID: 28844658 PMCID: PMC5599255 DOI: 10.1016/j.stemcr.2017.07.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022] Open
Abstract
Converting resident glia into functional and subtype-specific neurons in vivo by delivering reprogramming genes directly to the brain provides a step forward toward the possibility of treating brain injuries or diseases. To date, it has been possible to obtain GABAergic and glutamatergic neurons via in vivo conversion, but the precise phenotype of these cells has not yet been analyzed in detail. Here, we show that neurons reprogrammed using Ascl1, Lmx1a, and Nurr1 functionally mature and integrate into existing brain circuitry and that the majority of the reprogrammed neurons have properties of fast-spiking, parvalbumin-containing interneurons. When testing different combinations of genes for neural conversion with a focus on pro-neural genes and dopamine fate determinants, we found that functional neurons can be generated using different gene combinations and in different brain regions and that most of the reprogrammed neurons become interneurons, independently of the combination of reprogramming factors used. Reprogramed striatal NG2 glia yield neurons similar to fast-spiking interneurons Reprogrammed neurons reach functional maturation after 12 weeks Dopamine (DA) denervation leads to TH expression but no reprogramming into DA neurons Variation in pro-neural genes or fate specifiers does not affect neuronal phenotype
Collapse
|
13
|
Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission systems in Parkinson’s disease. Rev Neurosci 2017; 28:509-536. [DOI: 10.1515/revneuro-2016-0068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
AbstractParkinson’s disease (PD) is histologically characterized by the accumulation of α-synuclein particles, known as Lewy bodies. The second most common neurodegenerative disorder, PD is widely known because of the typical motor manifestations of active tremor, rigidity, and postural instability, while several prodromal non-motor symptoms including REM sleep behavior disorders, depression, autonomic disturbances, and cognitive decline are being more extensively recognized. Motor symptoms most commonly arise from synucleinopathy of nigrostriatal pathway. Glutamatergic, γ-aminobutyric acid (GABA)ergic, cholinergic, serotoninergic, and endocannabinoid neurotransmission systems are not spared from the global cerebral neurodegenerative assault. Wide intrabasal and extrabasal of the basal ganglia provide enough justification to evaluate network circuits disturbance of these neurotransmission systems in PD. In this comprehensive review, English literature in PubMed, Science direct, EMBASE, and Web of Science databases were perused. Characteristics of dopaminergic and non-dopaminergic systems, disturbance of these neurotransmitter systems in the pathophysiology of PD, and their treatment applications are discussed.
Collapse
Affiliation(s)
- Hossein Sanjari Moghaddam
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Student Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Zare-Shahabadi
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rahmani
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| |
Collapse
|
14
|
Baker KA, Purdy MB, Sadi D, Mukhida K, Mendez I. A Sequential Intrastriatal Dopaminergic Graft Strategy in the Rodent Model for Parkinson's Disease: Implications for Graft Survival and Targeting. Cell Transplant 2017. [DOI: 10.3727/096020198389951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Optimal placement of intrastriatal dopaminergic grafts is likely crucial to optimize clinical recovery in Parkinson's disease (PD). The target sites of dopaminergic grafts vary among clinical trials and may partially explain the variable results in clinical efficacy reported thus far. In this study we hypothesized that a subsequent dopaminergic graft may promote functional recovery following a suboptimal initial graft. To test this hypothesis, rats with unilateral 6-hydroxydopamine lesions of the right nigrostriatal pathway were randomly divided into three groups. The first group received 900,000 fetal nigral cells in the medial striatum only (n = 6). The second group received 900,000 cells in both the medial and lateral striatum simultaneously (1.8 million total; n = 8). The final group received a second graft of 900,000 cells in the lateral striatum 6 weeks following initial transplantation of a medial graft (n = 6). Amphetamine-induced circling behavior was significantly reduced in both simultaneous and sequential graft groups at 9 and 12 weeks following transplantation of the initial graft. However, no recovery was noted in the single medial graft group at those time points. Furthermore, increased survival of dopaminergic cells was observed in the lateral graft of sequentially grafted animals compared with the medial graft. We conclude that a well-positioned subsequent graft can restore function in animals with a suboptimal initial graft and that the initial graft may improve survival of the second graft. These results are further discussed in relation to their important clinical implication for neural transplantation in PD.
Collapse
Affiliation(s)
- K. A. Baker
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - M. B. Purdy
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - D. Sadi
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - K. Mukhida
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| | - I. Mendez
- Neural Transplantation Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
- Department of Surgery (Division of Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4H7
| |
Collapse
|
15
|
Transplantation of GABAergic interneurons for cell-based therapy. PROGRESS IN BRAIN RESEARCH 2017; 231:57-85. [PMID: 28554401 DOI: 10.1016/bs.pbr.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many neurological disorders stem from defects in or the loss of specific neurons. Neuron transplantation has tremendous clinical potential for central nervous system therapy as it may allow for the targeted replacement of those cells that are lost in diseases. Normally, most neurons are added during restricted periods of embryonic and fetal development. The permissive milieu of the developing brain promotes neuronal migration, neuronal differentiation, and synaptogenesis. Once this active period of neurogenesis ends, the chemical and physical environment of the brain changes dramatically. The brain parenchyma becomes highly packed with neuronal and glial processes, extracellular matrix, myelin, and synapses. The migration of grafted cells to allow them to home into target regions and become functionally integrated is a key challenge to neuronal transplantation. Interestingly, transplanted young telencephalic inhibitory interneurons are able to migrate, differentiate, and integrate widely throughout the postnatal brain. These grafted interneurons can also functionally modify local circuit activity. These features have facilitated the use of interneuron transplantation to study fundamental neurodevelopmental processes including cell migration, cell specification, and programmed neuronal cell death. Additionally, these cells provide a unique opportunity to develop interneuron-based strategies for the treatment of diseases linked to interneuron dysfunction and neurological disorders associated to circuit hyperexcitability.
Collapse
|
16
|
Błaszczyk JW. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis. Front Neurosci 2016; 10:269. [PMID: 27375426 PMCID: PMC4899466 DOI: 10.3389/fnins.2016.00269] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/27/2016] [Indexed: 12/04/2022] Open
Abstract
Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca2+ hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca2+/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca2+/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca2+/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca2+/GABA functional decline.
Collapse
Affiliation(s)
- Janusz W Błaszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsaw, Poland; Department of Biomechanics, Academy of Physical EducationKatowice, Poland
| |
Collapse
|
17
|
Rylander Ottosson D, Lane E. Striatal Plasticity in L-DOPA- and Graft-Induced Dyskinesia; The Common Link? Front Cell Neurosci 2016; 10:16. [PMID: 26903804 PMCID: PMC4744851 DOI: 10.3389/fncel.2016.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
One of the major symptoms of the neurodegenerative condition Parkinson's disease (PD) is a slowness or loss of voluntary movement, yet frustratingly therapeutic strategies designed to restore movement can result in the development of excessive abnormal movements known as dyskinesia. These dyskinesias commonly develop as a result of pharmacotherapy in the form of L-DOPA administration, but have also been identified following deep brain stimulation (DBS) and intrastriatal cell transplantation. In the case of L-DOPA these movements can be treatment limiting, and whilst they are not long lasting or troubling following DBS, recognition of their development had a near devastating effect on the field of cell transplantation for PD.Understanding the relationship between these therapeutic approaches and the development of dyskinesia may improve our ability to restore function without disabling side effects. Interestingly, despite the fact that dopaminergic cell transplantation repairs many of the changes induced by the disease process and through L-DOPA treatment, there appears to be a relationship between the two. In rodent models of the disease, the severity of dyskinesia induced by L-DOPA prior to the transplantation procedure correlated with post-transplantation, graft-induced dyskinesia. A review of clinical data also suggested that the worse preoperational dyskinesia causes worsened graft-induced dyskinesia (GID). Understanding how these aberrant behaviors come about has been of keen interest to open up these therapeutic options more widely and one major underlying theory is the effects of these approaches on the plasticity of synapses within the basal ganglia. This review uniquely brings together developments in understanding the role of striatal synaptic plasticity in both L-DOPA and GID to guide and stimulate further investigations on the important striatal plasticity.
Collapse
Affiliation(s)
- Daniella Rylander Ottosson
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund UniversityLund, Sweden
| | - Emma Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
18
|
Furlanetti LL, Cordeiro JG, Cordeiro KK, García JA, Winkler C, Lepski GA, Coenen VA, Nikkhah G, Döbrössy MD. Continuous High-Frequency Stimulation of the Subthalamic Nucleus Improves Cell Survival and Functional Recovery Following Dopaminergic Cell Transplantation in Rodents. Neurorehabil Neural Repair 2015; 29:1001-12. [PMID: 25857428 DOI: 10.1177/1545968315581419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Subthalamic nucleus (STN) high-frequency stimulation (HFS) is a routine treatment in Parkinson's disease (PD), with confirmed long-term benefits. An alternative, but still experimental, treatment is cell replacement and restorative therapy based on transplanted dopaminergic neurons. The current experiment evaluated the potential synergy between neuromodulation and grafting by studying the effect of continuous STN-HFS on the survival, integration, and functional efficacy of ventral mesencephalic dopaminergic precursors transplanted into a unilateral 6-hydroxydopamine medial forebrain bundle lesioned rodent PD model. One group received continuous HFS of the ipsilateral STN starting a week prior to intrastriatal dopaminergic neuron transplantation, whereas the sham-stimulated group did not receive STN-HFS but only dopaminergic grafts. A control group was neither lesioned nor transplanted. Over the following 7 weeks, the animals were probed on a series of behavioral tasks to evaluate possible graft and/or stimulation-induced functional effects. Behavioral and histological data suggest that STN-HFS significantly increased graft cell survival, graft-host integration, and functional recovery. These findings might open an unexplored road toward combining neuromodulative and neuroregenerative strategies to treat severe neurologic conditions.
Collapse
Affiliation(s)
| | | | | | - Joanna A García
- University Freiburg Medical Center, Freiburg im Breisgau, Germany Columbia University, New York, NY, USA
| | - Christian Winkler
- University Freiburg Medical Center, Freiburg im Breisgau, Germany Lindenbrunn Hospital, Coppenbrügge, Germany
| | - Guilherme A Lepski
- University of São Paulo, São Paulo, Brazil University of Tübingen, Tübingen, Germany
| | - Volker A Coenen
- University Freiburg Medical Center, Freiburg im Breisgau, Germany
| | | | - Máté D Döbrössy
- University Freiburg Medical Center, Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Abstract
Intrastriatal transplantation of dopamine (DA) neurons can restore DA levels in the striatum and improve parkinsonian deficits in experimental studies. However, the mechanisms underlying these effects are poorly understood. Corticostriatal synaptic plasticity represents an important cellular mechanism for information storage and behavioural learning in the brain. This mechanism is defective in Parkinson's disease (PD). Indeed, the lack of endogenous DA innervation to the striatum causes morphological and functional rearrangements that are associated with altered synaptic plasticity in the corticostriatal pathway. In turn, malfunctioning synaptic plasticity is associated with motor deficits that resemble features of PD. It is yet unknown whether or not transplanted dopaminergic neurons can restore these striatal deficits in PD. Could this be the mechanism underlying the therapeutic effects of transplants? Recent studies have begun to shed light on this matter using different approaches.
Collapse
|
20
|
Cordeiro KK, Cordeiro JG, Furlanetti LL, Garcia SJA, Tenório SB, Winkler C, Döbrössy MD, Nikkhah G. Subthalamic nucleus lesion improves cell survival and functional recovery following dopaminergic cell transplantation in parkinsonian rats. Eur J Neurosci 2014; 39:1474-84. [DOI: 10.1111/ejn.12541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Karina Kohn Cordeiro
- Department of Stereotactic and Functional Neurosurgery; Laboratory of Stereotaxy and Interventional Neurosciences; University Freiburg-Medical Center; Breisacher Str. 64 Freiburg 79106 Germany
- Federal University of Paraná; Hospital de Clínicas; Curitiba Brazil
| | - Joacir Graciolli Cordeiro
- Department of Stereotactic and Functional Neurosurgery; Laboratory of Stereotaxy and Interventional Neurosciences; University Freiburg-Medical Center; Breisacher Str. 64 Freiburg 79106 Germany
- Federal University of Paraná; Hospital de Clínicas; Curitiba Brazil
| | - Luciano Lopes Furlanetti
- Department of Stereotactic and Functional Neurosurgery; Laboratory of Stereotaxy and Interventional Neurosciences; University Freiburg-Medical Center; Breisacher Str. 64 Freiburg 79106 Germany
| | | | | | - Christian Winkler
- Department of Neurology; University Freiburg-Medical Center; Freiburg Germany
- Department of Neurology; Lindenbrunn Hospital; Coppenbrügge Germany
| | - Máté Daniel Döbrössy
- Department of Stereotactic and Functional Neurosurgery; Laboratory of Stereotaxy and Interventional Neurosciences; University Freiburg-Medical Center; Breisacher Str. 64 Freiburg 79106 Germany
| | - Guido Nikkhah
- Department of Neurosurgery; University Hospital of Erlangen; Erlangen Germany
| |
Collapse
|
21
|
Rylander D, Bagetta V, Pendolino V, Zianni E, Grealish S, Gardoni F, Di Luca M, Calabresi P, Cenci MA, Picconi B. Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proc Natl Acad Sci U S A 2013; 110:E4375-84. [PMID: 24170862 PMCID: PMC3831970 DOI: 10.1073/pnas.1311187110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.e., dorsolateral and ventrolateral striatum) and compared the effects of dopamine- and serotonin-enriched grafts using a rat model of Parkinson disease. Naïve rats showed comparable intrinsic membrane properties in the two subregions but distinct patterns of long-term synaptic plasticity. The ventrolateral striatum showed long-term potentiation using the same protocol that elicited long-term depression in the dorsolateral striatum. The long-term potentiation was linked to higher expression of postsynaptic AMPA and N2B NMDA subunits (GluN2B) and was dependent on the activation of GluN2A and GluN2B subunits and the D1 dopamine receptor. In both regions, the synaptic plasticity was abolished after a severe dopamine depletion and could not be restored by grafted serotonergic neurons. Solely, dopamine-enriched grafts could restore the long-term potentiation and partially restore motor deficits in the rats. The restoration could only be seen close to the graft, in the ventrolateral striatum where the graft-derived reinnervation was denser, compared with the distal dorsolateral region. These data provide proof of concept that dopamine-enriched transplants are able to functionally integrate into the host brain and restore deficits in striatal synaptic plasticity after experimental parkinsonism. The region-specific restoration might impose limitations in symptomatic improvement following neural transplantation.
Collapse
Affiliation(s)
- Daniella Rylander
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Vincenza Bagetta
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Valentina Pendolino
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Elisa Zianni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Shane Grealish
- Developmental and Regenerative Neurobiology, Lund University, BMC A11, 22184 Lund, Sweden; and
| | - Fabrizio Gardoni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Monica Di Luca
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
- Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - M. Angela Cenci
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
| | - Barbara Picconi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| |
Collapse
|
22
|
The anti-dyskinetic effect of dopamine receptor blockade is enhanced in parkinsonian rats following dopamine neuron transplantation. Neurobiol Dis 2013; 62:233-40. [PMID: 24135006 DOI: 10.1016/j.nbd.2013.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 11/22/2022] Open
Abstract
Graft-induced dyskinesia (GID) is a serious complication induced by dopamine (DA) cell transplantation in parkinsonian patients. We have recently shown that DA D2 receptor blockade produces striking blockade of dyskinesia induced by amphetamine in grafted 6-OHDA-lesioned rats, a model of GID. This study was designed to investigate whether blockade of DA D1 receptors could produce similar outcome, and to see whether the effect of these treatments in grafted rats was specific for dyskinesia induced by amphetamine, or could also influence L-DOPA-induced dyskinesia (LID). L-DOPA-primed rats received transplants of fetal DA neurons into the DA-denervated striatum. Beginning at 20weeks after transplantation rats were subjected to pharmacological treatments with either L-DOPA (6mg/kg) or amphetamine (1.5mg/kg) alone, or in combination with the D1 receptor antagonist SCH23390, the D2 receptor antagonist eticlopride, and the 5-HT1A agonist/D2 receptor antagonist buspirone. Grafted rats developed severe GID, while LID was reduced. Both eticlopride and SCH23390 produced near-complete suppression of GID already at very low doses (0.015 and 0.1mg/kg, respectively). Buspirone induced similar suppression at a dose as low as 0.3mg/kg, which is far lower than the dose known to affect LID in non-grafted dyskinetic rats. In agreement with our previous results, the effect of buspirone was independent from 5-HT1A receptor activation, as it was not counteracted by the selective 5-HT1A antagonist WAY100635, but likely due to D2 receptor blockade. Most interestingly, the same doses of eticlopride, SCH23390 and buspirone were found to suppress LID in grafted but not in control dyskinetic rats. Taken together, these data demonstrate that the DA cell grafts strikingly exacerbate the effect of DA D1 and D2 receptor blockade against both GID and LID, and suggest that the anti-GID effect of buspirone seen in patients may also be due to blockade of DA D2 receptors.
Collapse
|
23
|
Lynch S, Sivam SP. Dopamine and GABA Interaction in Basal Ganglia: GABA-A or GABA-B Receptor Stimulation Attenuates L-DOPA-Induced Striatal and Nigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbbs.2013.36050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
A novel strategy for intrastriatal dopaminergic cell transplantation: sequential "nest" grafting influences survival and behavioral recovery in a rat model of Parkinson's disease. Exp Cell Res 2012; 318:2531-42. [PMID: 23010385 DOI: 10.1016/j.yexcr.2012.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/01/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
Neural transplantation in experimental parkinsonism (PD) is limited by poor survival of grafted embryonic dopaminergic (DA) cells. In this proof-of-principle study we hypothesized that a first regular initial graft may create a "dopaminergic" environment similar to the perinatal substantia nigra and consequently stimulate a subsequent graft. Therefore, we grafted ventral mesencephalic neurons sequentially at different time intervals into the same target localization. Rats with a unilateral lesion of the dopamine neurons produced by injections of 6-hydroxydopamine (6-OHDA) received E14 ventral mesencephalon derived grafts into the DA-depleted striatum. In the control group we grafted all 6 deposits on the first day (d0). The other 4 groups received four graft deposits distributed over 2 implantation tracts followed by a second engraftment injected into the same site 3, 6, 14 and 21 days later. Quantitative assessment of the survival of tyrosine hydroxylase-immunoreactive neurons and graft volume revealed best results for those DA grafts implanted 6 days after the first one. In the present study, a model of short-interval sequential transplantation into the same target-site, so called "nest" grafts were established in the 6-OHDA rat model of PD which might become a useful tool to further elucidate the close neurotrophic and neurotopic interactions between the immediate graft vicinity and the cell suspension graft. In addition, we could show that the optimal milieu was established around the sixth day after the initial transplantation. This may also help to further optimize current transplantation strategies to restore the DA system in patients with PD.
Collapse
|
25
|
Rath A, Klein A, Papazoglou A, Pruszak J, Garcia J, Krause M, Maciaczyk J, Dunnett SB, Nikkhah G. Survival and functional restoration of human fetal ventral mesencephalon following transplantation in a rat model of Parkinson's disease. Cell Transplant 2012; 22:1281-93. [PMID: 22963760 DOI: 10.3727/096368912x654984] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell replacement therapy by intracerebral transplantation of fetal dopaminergic neurons has become a promising therapeutic option for patients suffering from Parkinson's disease during the last decades. However, limited availability of human fetal tissue as well as ethical issues, lack of alternative nonfetal donor cells, and the absence of standardized transplantation protocols have prevented neurorestorative therapies from becoming a routine procedure in patients suffering from neurodegenerative diseases. Improvement of graft survival, surgery techniques, and identification of the optimal target area are imperative for further optimization of this novel treatment. In the present study, human primary fetal ventral mesencephalon-derived tissue from 7- to 9-week-old human fetuses was transplanted into 6-hydroxydopamine-lesioned adult Sprague-Dawley rats. Graft survival, fiber outgrowth, and drug-induced rotational behavior up to 14 weeks posttransplantation were compared between different intrastriatal transplantation techniques (full single cell suspension vs. partial tissue pieces suspension injected by glass capillary or metal cannula) and the intranigral glass capillary injection of a full (single cell) suspension. The results demonstrate a higher survival rate of dopamine neurons, a greater reduction in amphetamine-induced rotations (overcompensation), and more extensive fiber outgrowth for the intrastriatally transplanted partial (tissue pieces) suspension compared to all other groups. Apomorphine-induced rotational bias was significantly reduced in all groups including the intranigral group. The data confirm that human ventral mesencephalon-derived cells serve as a viable cell source, survive in a xenografting paradigm, and functionally integrate into the host tissue. In contrast to rat donor cells, keeping the original (fetal) neuronal network by preparing only a partial suspension containing tissue pieces seems to be beneficial for human cells, although a metal cannula that causes greater tissue trauma to the host is required for injection. In addition, homotopic intranigral grafts may represent a complimentary grafting approach to the "classical" ectopic intrastriatal target site in PD.
Collapse
Affiliation(s)
- Anika Rath
- Department of Stereotactic and Functional Neurosurgery, Neurocentre, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shin E, Garcia J, Winkler C, Björklund A, Carta M. Serotonergic and dopaminergic mechanisms in graft-induced dyskinesia in a rat model of Parkinson's disease. Neurobiol Dis 2012; 47:393-406. [PMID: 22579773 DOI: 10.1016/j.nbd.2012.03.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/23/2012] [Accepted: 03/31/2012] [Indexed: 01/17/2023] Open
Abstract
Dyskinesia seen in the off-state, referred as graft-induced dyskinesia (GID), has emerged as a serious complication induced by dopamine (DA) cell transplantation in parkinsonian patients. Although the mechanism underlying the appearance of GID is unknown, in a recent clinical study the partial 5-HT(1A) agonist buspirone was found to markedly reduce GID in three grafted patients, who showed significant serotonin (5-HT) hyperinnervation in the grafted striatum in positron emission tomography scanning (Politis et al., 2010, 2011). Prompted by these findings, this study was performed to investigate the involvement of serotonin neurons in the appearance of GID in the rat 6-hydroxydopamine model. L-DOPA-primed rats received transplants of DA neurons only, DA plus 5-HT neurons or 5-HT neurons only into the lesioned striatum. In DA cell-grafted rats, with or without 5-HT neurons, but not in 5-HT grafts, GID was observed consistently after administration of amphetamine (1.5mg/kg, i.p.) indicating that grafted DA neurons are required to induce GID. Strikingly, a low dose of buspirone produced a complete suppression of GID. In addition, activation of 5-HT(1A) and 5-HT(1B) receptors by 8-OH-DPAT and CP 94253, known to inhibit the activity of 5-HT neurons, significantly reduced GID, whereas induction of neurotransmitter release by fenfluramine administration significantly increased GID, indicating an involvement of the 5-HT system in the modulation of GID. To investigate the involvement of the host 5-HT system in GID, the endogenous 5-HT terminals were removed by intracerebral injection of 5,7-dihydroxytryptamine, but this treatment did not affect GID expression. However, 5-HT terminal destruction suppressed the anti-GID effect of 5-HT(1A) and 5-HT(1B) agonists, demonstrating that the 5-HT(1) agonist combination exerted its anti-GID effect through the activation of pre-synaptic host-derived receptors. By contrast, removal of the host 5-HT innervation or pre-treatment with a 5-HT(1A) antagonist did not abolish the anti-GID effect of buspirone, showing that its effect is independent from activation of either pre- or post-synaptic 5-HT(1A) receptors. Since buspirone is known to also act as a DA D(2) receptor antagonist, the selective D(2) receptor antagonist eticlopride was administered to test whether blockade of D(2) receptors could account for the anti-dyskinetic effect of buspirone. In fact, eticlopride produced complete suppression of GID in grafted animals already at very low dose. Together, these results point to a critical role of both 5-HT(1) and D(2) receptors in the modulation of GID, and suggest that 5-HT neurons exert a modulatory role in the development of this side effect of neuronal transplantation.
Collapse
Affiliation(s)
- Eunju Shin
- Wallenberg Neuroscience Center, Division of Neurobiology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
27
|
Kaindlstorfer C, García J, Winkler C, Wenning GK, Nikkhah G, Döbrössy MD. Behavioral and histological analysis of a partial double-lesion model of parkinson-variant multiple system atrophy. J Neurosci Res 2012; 90:1284-95. [PMID: 22488729 DOI: 10.1002/jnr.23021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 01/23/2023]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with progressive autonomic failure, cerebellar ataxia (MSA-C), and parkinsonism (MSA-P) resulting from neuronal loss in multiple brain areas associated with oligodendroglial cytoplasmic α-synuclein inclusion bodies. No effective treatments exists, and MSA-P patients often fail to respond to L-DOPA because of the loss of striatal dopaminergic receptors. Rendering MSA-P patients sensitive to L-DOPA administration following striatal tissue transplantation has been proposed as a possible novel therapeutic strategy to improve the clinical condition. Here we describes simple, skilled, and sensorimotor behavior deficits in a unilateral partial double-lesion (DL) rat model of MSA-P. The sequential striatal double-lesion model mimicks early MSA-P pathology by combining partial 6-hydroxydopamine (6-OHDA) followed by striatal quinolinic acid (QA) lesion. Animals were tested on spontaneous, learned, or drug-induced behavioral tasks on multiple occasions pre- and postsurgery. The data show robust, lateralized deficits, and the partial 6-OHDA and the double-lesioned animals were most impaired. Importantly, this study identified a behavioral deficit profile unique to the double-lesion animals and distinctive from the single 6-OHDA- or the QA-lesioned animals. Histology confirmed an approximately 40% dopamine loss in the striatum in the 6-OHDA and double-lesion animals as well as a similar loss of striatal projection neurons in the QA and double-lesion animals. In summary, we have established the behavioral deficit profile of a partial double-lesion rat model mimicking the early stage of MSA-P.
Collapse
|
28
|
Wang Z, Andrade N, Torp M, Wattananit S, Arvidsson A, Kokaia Z, Jørgensen JR, Lindvall O. Meteorin is a chemokinetic factor in neuroblast migration and promotes stroke-induced striatal neurogenesis. J Cereb Blood Flow Metab 2012; 32:387-98. [PMID: 22044868 PMCID: PMC3272610 DOI: 10.1038/jcbfm.2011.156] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/24/2011] [Accepted: 09/22/2011] [Indexed: 12/19/2022]
Abstract
Ischemic stroke affecting the adult brain causes increased progenitor proliferation in the subventricular zone (SVZ) and generation of neuroblasts, which migrate into the damaged striatum and differentiate to mature neurons. Meteorin (METRN), a newly discovered neurotrophic factor, is highly expressed in neural progenitor cells and immature neurons during development, suggesting that it may be involved in neurogenesis. Here, we show that METRN promotes migration of neuroblasts from SVZ explants of postnatal rats and stroke-subjected adult rats via a chemokinetic mechanism, and reduces N-methyl-D-asparate-induced apoptotic cell death in SVZ cells in vitro. Stroke induced by middle cerebral artery occlusion upregulates the expression of endogenous METRN in cells with neuronal phenotype in striatum. Recombinant METRN infused into the stroke-damaged brain stimulates cell proliferation in SVZ, promotes neuroblast migration, and increases the number of immature and mature neurons in the ischemic striatum. Our findings identify METRN as a new factor promoting neurogenesis both in vitro and in vivo by multiple mechanisms. Further work will be needed to translate METRN's actions on endogenous neurogenesis into improved recovery after stroke.
Collapse
Affiliation(s)
- Zhaolu Wang
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | - Nuno Andrade
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | | | | | - Andreas Arvidsson
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology and Therapy, Lund, Sweden
- Lund Stem Cell Center, University Hospital, Lund, Sweden
| | | | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
- Lund Stem Cell Center, University Hospital, Lund, Sweden
| |
Collapse
|
29
|
Skilled motor control for the preclinical assessment of functional deficits and recovery following nigral and striatal cell transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
30
|
Survival, differentiation, and connectivity of ventral mesencephalic dopamine neurons following transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00004-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
García J, Carlsson T, Döbrössy M, Nikkhah G, Winkler C. Impact of dopamine to serotonin cell ratio in transplants on behavioral recovery and L-DOPA-induced dyskinesia. Neurobiol Dis 2011; 43:576-87. [DOI: 10.1016/j.nbd.2011.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/30/2011] [Accepted: 05/05/2011] [Indexed: 02/07/2023] Open
|
32
|
Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson's disease. ACTA ACUST UNITED AC 2011; 78:126-58. [PMID: 21259269 DOI: 10.1002/msj.20233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder affecting, in part, dopaminergic motor neurons of the ventral midbrain and their terminal projections that course to the striatum. Symptomatic strategies focused on dopamine replacement have proven effective at remediating some motor symptoms during the course of disease but ultimately fail to deliver long-term disease modification and lose effectiveness due to the emergence of side effects. Several strategies have been experimentally tested as alternatives for Parkinson's disease, including direct cell replacement and gene transfer through viral vectors. Cellular transplantation of dopamine-secreting cells was hypothesized as a substitute for pharmacotherapy to directly provide dopamine, whereas gene therapy has primarily focused on restoration of dopamine synthesis or neuroprotection and restoration of spared host dopaminergic circuitry through trophic factors as a means to enhance sustained controlled dopamine transmission. This seems now to have been verified in numerous studies in rodents and nonhuman primates, which have shown that grafts of fetal dopamine neurons or gene transfer through viral vector delivery can lead to improvements in biochemical and behavioral indices of dopamine deficiency. However, in clinical studies, the improvements in parkinsonism have been rather modest and variable and have been plagued by graft-induced dyskinesias. New developments in stem-cell transplantation and induced patient-derived cells have opened the doors for the advancement of cell-based therapeutics. In addition, viral-vector-derived therapies have been developed preclinically with excellent safety and efficacy profiles, showing promise in clinical trials thus far. Further progress and optimization of these therapies will be necessary to ensure safety and efficacy before widespread clinical use is deemed appropriate.
Collapse
|
33
|
Lepski G, Jannes CE, Strauss B, Marie SK, Nikkhah G. Survival and Neuronal Differentiation of Mesenchymal Stem Cells Transplanted into the Rodent Brain Are Dependent upon Microenvironment. Tissue Eng Part A 2010; 16:2769-82. [DOI: 10.1089/ten.tea.2009.0686] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Guilherme Lepski
- Department of Stereotactic and Functional Neurosurgery, Albert Ludwigs University, Frieburg, Germany
| | - Cinthia E. Jannes
- Laboratory of Molecular Biology LIM15, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bryan Strauss
- Laboratory of Molecular Biology, INCOR, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Suely K.N. Marie
- Laboratory of Molecular Biology LIM15, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Guido Nikkhah
- Department of Stereotactic and Functional Neurosurgery, Neurocentre, Albert-Ludwig University, Freiburg, Germany
| |
Collapse
|
34
|
Martínez-Cerdeño V, Noctor SC, Espinosa A, Ariza J, Parker P, Orasji S, Daadi MM, Bankiewicz K, Alvarez-Buylla A, Kriegstein AR. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. Cell Stem Cell 2010; 6:238-50. [PMID: 20207227 DOI: 10.1016/j.stem.2010.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 10/21/2009] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
We investigated a strategy to ameliorate the motor symptoms of rats that received 6-hydroxydopamine (6-OHDA) lesions, a rodent model of Parkinson's disease, through transplantation of embryonic medial ganglionic eminence (MGE) cells into the striatum. During brain development, embryonic MGE cells migrate into the striatum and neocortex where they mature into GABAergic interneurons and play a key role in establishing the balance between excitation and inhibition. Unlike most other embryonic neurons, MGE cells retain the capacity for migration and integration when transplanted into the postnatal and adult brain. We performed MGE cell transplantation into the basal ganglia of control and 6-OHDA-lesioned rats. Transplanted MGE cells survived, differentiated into GABA(+) neurons, integrated into host circuitry, and modified motor behavior in both lesioned and control rats. Our data suggest that MGE cell transplantation into the striatum is a promising approach to investigate the potential benefits of remodeling basal ganglia circuitry in neurodegenerative diseases.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Björklund T, Carlsson T, Cederfjäll EA, Carta M, Kirik D. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson's disease. ACTA ACUST UNITED AC 2010; 133:496-511. [PMID: 20129936 DOI: 10.1093/brain/awp314] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Viral vector-mediated gene transfer utilizing adeno-associated viral vectors has recently entered clinical testing as a novel tool for delivery of therapeutic agents to the brain. Clinical trials in Parkinson's disease using adeno-associated viral vector-based gene therapy have shown the safety of the approach. Further efforts in this area will show if gene-based approaches can rival the therapeutic efficacy achieved with the best pharmacological therapy or other, already established, surgical interventions. One of the strategies under development for clinical application is continuous 3,4-dihydroxyphenylalanine delivery. This approach has been shown to be efficient in restoring motor function and reducing established dyskinesias in rats with a partial lesion of the nigrostriatal dopamine projection. Here we utilized high purity recombinant adeno-associated viral vectors serotype 5 coding for tyrosine hydroxylase and its co-factor synthesizing enzyme guanosine-5'-triphosphate cyclohydrolase-1, delivered at an optimal ratio of 5 : 1, to show that the enhanced 3,4-dihydroxyphenylalanine production obtained with this optimized delivery system results in robust recovery of function in spontaneous motor tests after complete dopamine denervation. We found that the therapeutic efficacy was substantial and could be maintained for at least 6 months. The tyrosine hydroxylase plus guanosine-5'-triphosphate cyclohydrolase-1 treated animals were resistant to developing dyskinesias upon peripheral l-3,4-dihydroxyphenylalanine drug challenge, which is consistent with the interpretation that continuous dopamine stimulation resulted in a normalization of the post-synaptic response. Interestingly, recovery of forelimb use in the stepping test observed here was maintained even after a second lesion depleting the serotonin input to the forebrain, suggesting that the therapeutic efficacy was not solely dependent on dopamine synthesis and release from striatal serotonergic terminals. Taken together these results show that vector-mediated continuous 3,4-dihydroxyphenylalanine delivery has the potential to provide significant symptomatic relief even in advanced stages of Parkinson's disease.
Collapse
Affiliation(s)
- Tomas Björklund
- Brain Repair and Imaging in Neural Systems, 22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Grealish S, Jönsson ME, Li M, Kirik D, Björklund A, Thompson LH. The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson's disease. ACTA ACUST UNITED AC 2010; 133:482-95. [PMID: 20123725 PMCID: PMC2822634 DOI: 10.1093/brain/awp328] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Grafts of foetal ventral mesencephalon, used in cell replacement therapy for Parkinson’s disease, are known to contain a mix of dopamine neuronal subtypes including the A9 neurons of the substantia nigra and the A10 neurons of the ventral tegmental area. However, the relative importance of these subtypes for functional repair of the brain affected by Parkinson’s disease has not been studied thoroughly. Here, we report results from a series of grafting experiments where the anatomical and functional properties of grafts either selectively lacking in A9 neurons, or with a typical A9/A10 composition were compared. The results show that the A9 component of intrastriatal grafts is of critical importance for recovery in tests on motor performance, in a rodent model of Parkinson’s disease. Analysis at the histological level indicates that this is likely to be due to the unique ability of A9 neurons to innervate and functionally activate their target structure, the dorsolateral region of the host striatum. The findings highlight dopamine neuronal subtype composition as a potentially important parameter to monitor in order to understand the variable nature of functional outcome better in transplantation studies. Furthermore, the results have interesting implications for current efforts in this field to generate well-characterized and standardized preparations of transplantable dopamine neuronal progenitors from stem cells.
Collapse
Affiliation(s)
- Shane Grealish
- Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Hahn M, Timmer M, Nikkhah G. Survival and early functional integration of dopaminergic progenitor cells following transplantation in a rat model of Parkinson's disease. J Neurosci Res 2009; 87:2006-19. [PMID: 19235889 DOI: 10.1002/jnr.22031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dopaminergic (DA) grafts in rat models of Parkinson's disease (PD) have previously been derived from embryonic day (E) 14 grafts. Because there is an increasing interest in the restorative capacity of DA stem and progenitor cells, in the present study we examined the survival and early and late functional behavioral effects of DA progenitor cells derived from E12, E13, E14, and E15 grafts transplanted into rats with unilateral 6-hydroxydopamin lesions. DA transplant-induced functional recovery was already observed in postural balancing reactions after 10 days and in stepping behavior after 13 days, that is, in spontaneous complex behaviors, and later, after 16 days, in the amphetamine-induced rotation test. Three distinct patterns of functional recovery could be observed at 6-9 weeks posttransplantation. First, behavioral improvements in drug-induced rotational asymmetry, stepping, and skilled forelimb behavior were directly related to DA neuron survival and TH-positive fiber reinnervation. Second, recovery in postural balancing reactions was closely related to a specific developmental time window of donor age, for example, only seen in E13 and E14 grafts. Finally, no functional graft effects were seen in the table lift test. Interestingly, DA neuron graft survival, TH-positive fiber outgrowth, and graft volume were significantly influenced by the developmental time window in which the DA progenitor cells were dissected from the ventral mesencephalon, that is, from E12, E13, E14, or E15 rat embryos. These data highlight the complexity of graft-host interactions and provide novel insights into the dynamics of DA progenitor graft-mediated functional recovery in animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Michaela Hahn
- Department of Stereotactic and Functional Neurosurgery, Albert-Ludwigs-University, Freiburg, Germany
| | | | | |
Collapse
|
38
|
Gaillard A, Decressac M, Frappé I, Fernagut PO, Prestoz L, Besnard S, Jaber M. Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants. Neurobiol Dis 2009; 35:477-88. [PMID: 19616502 DOI: 10.1016/j.nbd.2009.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 12/31/2022] Open
Abstract
The main transplantation strategy in Parkinson's disease has been to place dopaminergic grafts not in their ontogenic site, the substantia nigra, but in their target area, the striatum with contrasting results. Here we have used green fluorescent protein transgenic mouse embryos as donors of ventral mesencephalic cells for transplantation into the pre-lesioned substantia nigra of an adult wild-type host. This allows distinguishing the transplanted cells and their projections from those of the host. Grafted cells integrated within the host mesencephalon and expressed the dopaminergic markers tyrosine hydroxylase, vesicular monoamine transporter 2 and dopamine transporter. Most of the dopaminergic cells within the transplant expressed the substantia nigra marker Girk2 while a lesser proportion expressed the ventral tegmental area marker calbindin. Mesencephalic transplants developed projections through the medial forebrain bundle to the striatum, increased striatal dopamine levels and restored normal behavior. Interestingly, only mesencephalic transplants were able to restore the nigrostriatal projections as dopamine neurons originating from embryonic olfactory bulb transplants send projections only in the close vicinity of the transplantation site that did not reach the striatum. Our results show for the first time the ability of intranigral foetal dopaminergic neurons grafts to restore the damaged nigrostriatal pathway in adult mice. Together with our previous findings of efficient embryonic transplantation within the pre-lesioned adult motor cortex, these results demonstrate that the adult brain is permissive to specific and long distance axonal growth. They further open new avenues in cell transplantation therapies applied for the treatment of neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Afsaneh Gaillard
- Institut de Physiologie et de Biologie Cellulaires, University of Poitiers, CNRS, 40 avenue recteur Pineau, 86022 Poitiers Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Falkenstein G, Rosenthal C, Reum T, Morgenstern R, Döbrössy M, Nikkhah G. Pattern of long-term sensorimotor recovery following intrastriatal and -accumbens DA micrografts in a rat model of Parkinson's disease. J Comp Neurol 2009; 515:41-55. [DOI: 10.1002/cne.22035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Thompson LH, Björklund A. Transgenic reporter mice as tools for studies of transplantability and connectivity of dopamine neuron precursors in fetal tissue grafts. PROGRESS IN BRAIN RESEARCH 2009; 175:53-79. [PMID: 19660649 DOI: 10.1016/s0079-6123(09)17505-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell therapy for Parkinson's disease (PD) is based on the idea that new midbrain dopamine (mDA) neurons, implanted directly into the brain of the patient, can structurally and functionally replace those lost to the disease. Clinical trials have provided proof-of-principle that the grafted mDA neurons can survive and function after implantation in order to provide sustained improvement in motor function for some patients. Nonetheless, there are a number of issues limiting the application of this approach as mainstream therapy, including: the use of human fetal tissue as the only safe and reliable source of transplantable mDA neurons, and variability in the therapeutic outcome. Here we review recent progress in this area from investigations using rodent models of PD, paying particular attention to the use of transgenic reporter mice as tools for neural transplantation studies. Cell type-specific expression of reporter genes, such as green fluorescent protein, affords valuable technical advantages in transplantation experiments, such as the ability to selectively isolate specific cell fractions from mixed populations prior to grafting, and the unambiguous visualization of graft-derived dopamine neuron fiber patterns after transplantation. The results from these investigations have given new insights into the transplantability of mDA precursors as well as their connectivity after grafting and have interesting implications for the development of stem cell based approaches for the treatment of PD.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
41
|
Lane E, Dunnett S. Animal models of Parkinson's disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl) 2008; 199:303-12. [PMID: 17899020 DOI: 10.1007/s00213-007-0931-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/27/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND Several different animal models are currently used to research the neurodegenerative movement disorder Parkinson's disease (PD). RESULTS Models based on the genetic deficits associated with a small percentage of sufferers demonstrate the pathological accumulation of alpha-synuclein characteristic of the disease but have few motor deficits and little neurodegeneration. Conversely, toxin-based models recreate the selective nigrostriatal cell death and show extensive motor dysfunction. However, these toxin models do not reproduce the extra-nigral degeneration that also occurs as part of the disease and lack the pathological hallmark of Lewy body inclusions. DISCUSSION Recently, several therapies that appeared promising in the MPTP-treated non-human primate and 6-OHDA-lesioned rat models have entered clinical trials, with disappointing results. We review the animal models in question and highlight the features that are discordant with PD, discussing if our search for pharmacological treatments beyond the dopamine system has surpassed the capacity of these models to adequately represent the disease.
Collapse
Affiliation(s)
- Emma Lane
- School of Bioscience, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
42
|
Mukhida K, Hong M, Miles G, Phillips T, Baghbaderani B, McLeod M, Kobayashi N, Sen A, Behie L, Brownstone R, Mendez I. A multitarget basal ganglia dopaminergic and GABAergic transplantation strategy enhances behavioural recovery in parkinsonian rats. Brain 2008; 131:2106-26. [DOI: 10.1093/brain/awn149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
43
|
Haas SJP, Petrov S, Kronenberg G, Schmitt O, Wree A. Orthotopic transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the substantia nigra of hemiparkinsonian rats induces neuronal differentiation and motoric improvement. J Anat 2007; 212:19-30. [PMID: 18036147 DOI: 10.1111/j.1469-7580.2007.00834.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural progenitor cell grafting is a promising therapeutic option in the treatment of Parkinson's disease. In previous experiments we grafted temperature-sensitive immortalized CSM14.1 cells, derived from the ventral mesencephalon of E14-rats, bilaterally in the caudate putamen of adult hemiparkinsonian rats. In these studies we were not able to demonstrate either a therapeutic improvement or neuronal differentiation of transplanted cells. Here we examined whether CSM14.1 cells grafted bilaterally orthotopically in the substantia nigra of hemiparkinsonian rats have the potential to differentiate into dopaminergic neurons. Adult male rats received 6-hydroxydopamine into the right medial forebrain bundle, and successful lesions were evaluated with apomorphine-induced rotations 12 days after surgery. Two weeks after a successful lesion the animals received bilateral intranigral grafts consisting of either about 50 000 PKH26-labelled undifferentiated CSM14.1 cells (n = 16) or a sham-graft (n = 9). Rotations were evaluated 3, 6, 9 and 12 weeks post-grafting. Animals were finally perfused with 4% paraformaldehyde. Cryoprotected brain slices were prepared for immunohistochemistry using the freeze-thaw technique to preserve PKH26-labelling. Slices were immunostained against neuronal epitopes (NeuN, tyrosine hydroxylase) or glial fibrillary acidic protein. The CSM14.1-cell grafts significantly reduced the apomorphine-induced rotations 12 weeks post-grafting compared to the sham-grafts (P < 0.05). There was an extensive mediolateral migration (400-700 microm) of the PKH26-labelled cells within the host substantia nigra. Colocalization with NeuN or glial fibrillary acidic protein in transplanted cells was confirmed with confocal microscopy. No tyrosine hydroxylase-immunoreactive grafted cells were detectable. The therapeutic effect of the CSM14.1 cells could be explained either by their glial cell-derived neurotrophic factor-expression or their neural differentiation with positive effects on the basal ganglia neuronal networks.
Collapse
|
44
|
Laguna Goya R, Kuan WL, Barker RA. The future of cell therapies in the treatment of Parkinson's disease. Expert Opin Biol Ther 2007; 7:1487-98. [DOI: 10.1517/14712598.7.10.1487] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Galvan A, Wichmann T. GABAergic circuits in the basal ganglia and movement disorders. PROGRESS IN BRAIN RESEARCH 2007; 160:287-312. [PMID: 17499121 DOI: 10.1016/s0079-6123(06)60017-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GABA is the major inhibitory neurotransmitter in the basal ganglia, and GABAergic pathways dominate information processing in most areas of these structures. It is therefore not surprising that abnormalities of GABAergic transmission are key elements in pathophysiologic models of movement disorders involving the basal ganglia. These include hypokinetic diseases such as Parkinson's disease, and hyperkinetic diseases, such as Huntington's disease or hemiballism. In this chapter, we will briefly review the major anatomic features of the GABAergic pathways in the basal ganglia, and then describe in greater detail the changes of GABAergic transmission, which are known to occur in movement disorders.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
46
|
Carlsson T, Carta M, Winkler C, Björklund A, Kirik D. Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson's disease. J Neurosci 2007; 27:8011-22. [PMID: 17652591 PMCID: PMC6672736 DOI: 10.1523/jneurosci.2079-07.2007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/09/2007] [Accepted: 06/13/2007] [Indexed: 11/21/2022] Open
Abstract
Clinical trials in patients with Parkinson's disease have shown that transplants of fetal mesencephalic dopamine neurons can form a new functional innervation of the host striatum, but the clinical benefits have been highly variable: some patients have shown substantial recovery in motor function, whereas others have shown no improvement and even a worsening in the 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinetic side effects. Differences in the composition of the grafted cell preparation may contribute to these discrepancies. In particular, the number of serotonin neurons contained in the graft can vary greatly depending on the dissection of the fetal tissue. Importantly, serotonin neurons have the ability to store and release dopamine, formed from exogenously administered L-DOPA. Here, we have evaluated the effect of transplants containing serotonin neurons, or a mixture of dopamine and serotonin neurons, on L-DOPA-induced dyskinesias in 6-hydroxydopamine-lesioned animals. As expected, dopamine neuron-rich grafts induced functional recovery, accompanied by a 60% reduction in L-DOPA-induced dyskinesia that developed gradually over the first 10 weeks. Rats with serotonin-rich grafts with few dopamine neurons, in contrast, showed a progressive worsening of their L-DOPA-induced dyskinesias over time, and no functional improvement. The antidyskinetic effect of dopamine-rich grafts was independent of the number of serotonin neurons present. We conclude that serotonin neurons in the grafts are likely to have a detrimental effect on L-DOPA-induced dyskinesias in cases in which the grafts contain no or few dopamine neurons.
Collapse
Affiliation(s)
| | - Manolo Carta
- CNS Disease Modeling Unit and
- Neurobiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden, and
| | - Christian Winkler
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Anders Björklund
- Neurobiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden, and
| | | |
Collapse
|
47
|
Klein A, Metz GA, Papazoglou A, Nikkhah G. Differential effects on forelimb grasping behavior induced by fetal dopaminergic grafts in hemiparkinsonian rats. Neurobiol Dis 2007; 27:24-35. [PMID: 17512748 DOI: 10.1016/j.nbd.2007.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/10/2007] [Accepted: 03/29/2007] [Indexed: 11/16/2022] Open
Abstract
Skilled forelimb movements depend on an intact dopaminergic (DA) neurotransmission and are substantially impaired in the unilateral rat model of Parkinson's disease. It has remained unclear, however, to what extent reaching and grasping movements can be influenced by intrastriatal transplantation of fetal DA neurons. Here an extensive behavioral assessment of skilled forelimb movement patterns in hemiparkinsonian and DA-grafted rats was carried out. Good DA graft survival was accompanied by a compensation of drug-induced rotational asymmetries. Interestingly, skilled forelimb use was significantly improved in transplanted animals as compared to lesion-only animals in the staircase test. Qualitative analysis of single forelimb reaching movement components revealed dissociable patterns of graft effects: while some movement components in grafted animals improved, others remained unchanged or even deteriorated. These findings provide novel insights into the complex interactions of graft-derived restoration of DA neurotransmission and skilled forelimb behavior.
Collapse
Affiliation(s)
- Alexander Klein
- Laboratory of Molecular Neurosurgery, Department of Stereotactic Neurosurgery, University Hospital Freiburg Neurocentre, Breisacher Str 64, Freiburg, Germany.
| | | | | | | |
Collapse
|
48
|
Breysse N, Carlsson T, Winkler C, Björklund A, Kirik D. The functional impact of the intrastriatal dopamine neuron grafts in parkinsonian rats is reduced with advancing disease. J Neurosci 2007; 27:5849-56. [PMID: 17537955 PMCID: PMC6672262 DOI: 10.1523/jneurosci.0626-07.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/21/2022] Open
Abstract
Clinical trials involving intrastriatal transplants of human embryonic mesencephalic tissue have provided proof-of-principle that nigral dopamine (DA) neurons can survive and functionally integrate into the host neural circuitry. However, the degree of graft-induced symptomatic relief differs significantly between the patients. This variability has led to investigations aimed at identifying factors that could affect the clinical outcome. The extent and pattern of dopaminergic denervation in the brain may be one of the major determinants of the functional outcome after intrastriatal DA cell grafts. Here, we report that in animals subjected to an intrastriatal 6-hydroxydopamine lesion of the striatal dopaminergic afferent, the integrity of the host dopaminergic innervation outside the areas innervated by the graft is critical for optimal function of DA neurons placed in the striatum. Established graft-induced functional recovery, as assessed in the stepping and cylinder tests, was compromised in animals in which the dopaminergic lesion was extended to include also the medial and ventral striatum as well as the cortical and limbic DA projections. Poor clinical outcome after transplantation may, thus, at least in part, be caused by dopaminergic denervation in areas outside the graft-innervated territories, and similarly beneficial effects initially observed in patients may regress if the degeneration of the host extrastriatal DA projection systems proceeds with advancing disease. This would have two implications: first, patients with advanced disease involving the ventral striatum and/or nonstriatal DA projections would be unlikely to respond well to intrastriatal DA grafts and, second, to retain the full benefit of the grafts, progression of the disease should be avoided by, for example, combining cell therapy with a neuroprotective approach.
Collapse
Affiliation(s)
- Nathalie Breysse
- Central Nervous System Disease Modeling Unit and
- Neurobiology Unit, Section for Neuroscience, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden, and
| | | | - Christian Winkler
- Central Nervous System Disease Modeling Unit and
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Anders Björklund
- Neurobiology Unit, Section for Neuroscience, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden, and
| | - Deniz Kirik
- Central Nervous System Disease Modeling Unit and
| |
Collapse
|
49
|
Christophersen NS, Meijer X, Jørgensen JR, Englund U, Grønborg M, Seiger A, Brundin P, Wahlberg LU. Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain. Brain Res Bull 2006; 70:457-66. [PMID: 17027782 DOI: 10.1016/j.brainresbull.2006.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/26/2006] [Accepted: 07/03/2006] [Indexed: 01/22/2023]
Abstract
Multipotent stem/progenitor cells derived from human first trimester forebrain can be expanded as free-floating aggregates, so called neurospheres. These cells can differentiate into neurons, astrocytes and oligodendrocytes. In vitro differentiation protocols normally yield gamma-aminobutyric acid-immunoreactive neurons, whereas only few tyrosine hydroxylase (TH) expressing neurons are found. The present report describes conditions under which 4-10% of the cells in the culture become TH immunoreactive (ir) neurons within 24h. Factors including acidic fibroblast growth factor (aFGF) in combination with agents that increase intracellular cyclic AMP and activate protein kinase C, in addition to a substrate that promotes neuronal differentiation appear critical for efficient TH induction. The cells remain THir after trypsinization and replating, even when their subsequent culturing takes place in the absence of inducing factors. Consistent with a dopaminergic phenotype, mRNAs encoding aromatic acid decarboxylase, but not dopamine-beta-hydroxylase were detected by quantitative real time RT-PCR. Ten weeks after the cells had been grafted into the striatum of adult rats with unilateral nigrostriatal lesions, only very few of the surviving human neurons expressed TH. Our data suggest that a significant proportion of expandable human neural progenitors can differentiate into TH-expressing cells in vitro and that they could be useful for drug and gene discovery. Additional experiments, however, are required to improve the survival and phenotypic stability of these cells before they can be considered useful for cell replacement therapy in Parkinson's disease.
Collapse
|
50
|
Kloth V, Klein A, Loettrich D, Nikkhah G. Colour-coded pellets increase the sensitivity of the staircase test to differentiate skilled forelimb performances of control and 6-hydroxydopamine lesioned rats. Brain Res Bull 2006; 70:68-80. [PMID: 16750485 DOI: 10.1016/j.brainresbull.2006.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 11/15/2022]
Abstract
The Montoya staircase test has previously been used to study the skilled forelimb performance of mice and rats following lesions and cell implants in different parts of the central nervous system. Here we describe a modification of the original test design which introduces differently coloured food pellets for each step, and present the results of the new and modified method. In this study unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats and healthy control rats were used. The new evaluation of reaching and grasping movements takes into consideration the various levels of reaching difficulty. The coloured food pellets code for different steps of the staircase. The comparison between the original versus the modified test methods revealed significant differences most prominently on the lower steps. It is important to notice that the pattern of grasping movements in the hemiparkinsonian rats changes from precise reaching (prior to lesion) to shuffling and unsuccessfully trying to reach pellets. The observation of this change in behaviour would not have been obtained through the evaluation of the original staircase test. In summary, the modified staircase test introduces a colour-coded pellet system which obviously increases the test sensitivity and discloses new insights into the skilled forelimb use in a rat model of Parkinson's disease. It may therefore become a valuable tool in future studies related to plasticity-induced changes in skilled forelimb reaching and grasping movements.
Collapse
Affiliation(s)
- Verena Kloth
- Laboratory of Molecular Neurosurgery, Department of Stereotactic Neurosurgery, University Hospital Freiburg-Neurocentre, Breisacher Str. 64, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|