1
|
Joshi DC, Chavan MB, Gurow K, Gupta M, Dhaliwal JS, Ming LC. The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting. Biomed Pharmacother 2025; 183:117827. [PMID: 39854819 DOI: 10.1016/j.biopha.2025.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease. HD is caused by a CAG repeat expansion in the huntingtin gene, which leads to the production of a toxic mutant huntingtin (mHTT) protein. This disruption in mitochondrial function compromises energy metabolism and increases oxidative stress, resulting in mitochondrial DNA abnormalities, impaired calcium homeostasis, and altered mitochondrial dynamics. These effects ultimately may contribute to neuronal dysfunction and cell death, underscoring the importance of targeting mitochondrial function in developing therapeutic strategies for HD. This review discusses the mechanistic role of mitochondrial dysfunction in Huntington's disease. Mitochondrial dysfunction is a crucial factor in HD, making mitochondrial-targeted therapies a promising approach for treatment. We explore therapies that address bioenergy deficits, antioxidants that reduce reactive oxygen species, calcium modulators that restore calcium homeostasis, and treatments that enhance mitochondrial dynamics to rejuvenate mitochondrial function. We also highlight innovative treatment approaches such as gene editing and stem cell therapy, which offer hope for more personalized strategies. In conclusion, understanding mitochondrial dysfunction in Huntington's disease may guide potential treatment strategies. Targeting this dysfunction may help to slow disease progression and enhance the quality of life for individuals affected by Huntington's disease.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Mayuri Bapu Chavan
- TMV's Lokmanya Tilak Institute of Pharmaceutical Sciences, Pune, Maharashtra, India.
| | - Kajal Gurow
- Department of Pharmacology, Gurukul Pharmacy college, Ranpur, Kota, Rajasthan, India
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India.
| | | | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India.
| |
Collapse
|
2
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
3
|
Medina-Ceja L, García-Barba C. The glutamate receptor antagonists CNQX and MPEP decrease fast ripple events in rats treated with kainic acid. Neurosci Lett 2017; 655:137-142. [PMID: 28673833 DOI: 10.1016/j.neulet.2017.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022]
Abstract
Fast ripples (FR) are high frequency oscillations (250-600Hz) that have been associated with epilepsy. FR are assumed to be generated in small areas of the hippocampus (1mm3) that contain pathologically interconnected glutamate pyramidal cell clusters. Additionally, a relation between glutamate neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainite (AMPA/KA) and metabotropic mGluR5 receptors is well established. Therefore, we hypothesized that antagonism of these glutamate receptors would decrease FR activity. For this propose, we induced status epilepticus with a kainic acid injection in the posterior right hippocampus and performed intracranial EEG recordings to detect and evaluate the presence of FR 15days after the injection. The glutamate AMPA/KA receptor antagonist CNQX (10mg/kg) and the mGluR5 antagonist MPEP (20mg/kg) were administered intraperitoneally, and the effects of the drugs were evaluated for a period of three hours after their administration. The results show a decrease in the number of FR in the first hour after drug administration in both cases (CNQX, p=0.0125; MPEP, p=0.0132) and a return to basal values in the third hour of the experiment, but not significant differences in the number of oscillations per event of FR, and the frequency and duration of each event of FR. We therefore conclude that blockade of AMPA/KA and mGluR5 receptors transiently decreases the generation of FR; however, the mechanisms by which this effect is achieved are to be further analyzed in future experiments.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - Carla García-Barba
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Targeting TRPM2 in ROS-Coupled Diseases. Pharmaceuticals (Basel) 2016; 9:ph9030057. [PMID: 27618067 PMCID: PMC5039510 DOI: 10.3390/ph9030057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/05/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca(2+)-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca(2+) signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca(2+) through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca(2+) signaling in ROS-coupled diseases.
Collapse
|
5
|
Lee JC, Choe SY. Region-specific changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of Alzheimer’s disease model mice. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0389-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Pollach G, Jung K, Namboya F. A new hypothesis on preventable neuropsychiatric illness in Africa. Med Hypotheses 2014; 83:16-20. [DOI: 10.1016/j.mehy.2014.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 12/27/2022]
|
7
|
Feng Y, Wang B, Du F, Li H, Wang S, Hu C, Zhu C, Yu X. The involvement of PI3K-mediated and L-VGCC-gated transient Ca2+ influx in 17β-estradiol-mediated protection of retinal cells from H2O2-induced apoptosis with Ca2+ overload. PLoS One 2013; 8:e77218. [PMID: 24223708 PMCID: PMC3818527 DOI: 10.1371/journal.pone.0077218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) plays an important role in regulating most cellular processes, including apoptosis and survival, but its alterations are different and complicated under diverse conditions. In this study, we focused on the [Ca2+]i and its control mechanisms in process of hydrogen peroxide (H2O2)-induced apoptosis of primary cultured Sprague-Dawley (SD) rat retinal cells and 17β-estradiol (βE2) anti-apoptosis. Fluo-3AM was used as a Ca2+ indicator to detect [Ca2+]i through fluorescence-activated cell sorting (FACS), cell viability was assayed using MTT assay, and apoptosis was marked by Hoechst 33342 and annexin V/Propidium Iodide staining. Besides, PI3K activity was detected by Western blotting. Results showed: a) 100 μM H2O2-induced retinal cell apoptosis occurred at 4 h after H2O2 stress and increased in a time-dependent manner, but [Ca2+]i increased earlier at 2 h, sustained to 12 h, and then recovered at 24 h after H2O2 stress; b) 10 μM βE2 treatment for 0.5-24 hrs increased cell viability by transiently increasing [Ca2+]i, which appeared only at 0.5 h after βE2 application; c) increased [Ca2+]i under 100 µM H2O2 treatment for 2 hrs or 10 µM βE2 treatment for 0.5 hrs was, at least partly, due to extracellular Ca2+ stores; d) importantly, the transiently increased [Ca2+]i induced by 10 µM βE2 treatment for 0.5 hrs was mediated by the phosphatidylinositol-3-kinase (PI3K) and gated by the L-type voltage-gated Ca2+ channels (L-VGCC), but the increased [Ca2+]i induced by 100 µM H2O2 treatment for 2 hrs was not affected; and e) pretreatment with 10 µM βE2 for 0.5 hrs effectively protected retinal cells from apoptosis induced by 100 µM H2O2, which was also associated with its transient [Ca2+]i increase through L-VGCC and PI3K pathway. These findings will lead to better understanding of the mechanisms of βE2-mediated retinal protection and to exploration of the novel therapeutic strategies for retina degeneration.
Collapse
Affiliation(s)
- Yan Feng
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Baoying Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Fangying Du
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hongbo Li
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shaolan Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chenghu Hu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chunhui Zhu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaorui Yu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment-and-Gene Related Diseases of the Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| |
Collapse
|
8
|
Serum carnitine levels and levocarnitine supplementation in institutionalized Huntington's disease patients. Neurol Sci 2013; 34:93-8. [PMID: 22294053 DOI: 10.1007/s10072-012-0952-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 01/13/2012] [Indexed: 12/17/2022]
Abstract
Along with antioxidant properties, carnitine is an important regulator of lipid metabolism in humans. While beneficial effects of carnitine have been demonstrated in animal models of Huntington's disease (HD), metabolism of carnitine has not been studied in humans with this illness. In this retrospective database review from 23 patients admitted to a HD-specialized nursing home unit, we found a relatively high prevalence of hypocarnitinemia (6 cases, 26%). Our review suggests that catabolism and chronic valproate use predisposed our patients to develop hypocarnitinemia. The patients with low serum carnitine levels who received levocarnitine supplementation, during a mean period of 7.3 months, showed improvement in motor, cognitive and behavioral measures. We hypothesize that observed improvement related to the resolution of reversible metabolic encephalopathy and myopathy associated with secondary carnitine deficiency. In conclusion, notwithstanding its limitations, this is the first study to report measurements of carnitine levels in HD patients, revealing relatively high prevalence of hypocarnitinemia in our population. Our findings suggest that HD patients with hypocarnitinemia may benefit from low-dose levocarnitine supplementation. Further studies of carnitine metabolism and supplementation in HD patients are warranted.
Collapse
|
9
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Selvaraj S, Sun Y, Singh BB. TRPC channels and their implication in neurological diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:94-104. [PMID: 20201820 DOI: 10.2174/187152710790966650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/07/2009] [Indexed: 11/22/2022]
Abstract
Calcium is an essential intracellular messenger and serves critical cellular functions in both excitable and non-excitable cells. Most of the physiological functions in these cells are uniquely regulated by changes in cytosolic Ca2+ levels ([Ca2+](i)), which are achieved via various mechanisms. One of these mechanism(s) is activated by the release of Ca2+ from the endoplasmic reticulum (ER), followed by Ca2+ influx across the plasma membrane (PM). Activation of PM Ca2+ channel is essential for not only refilling of the ER Ca2+ stores, but is also critical for maintaining [Ca2+](i) that regulates biological functions, such as neurosecretion, sensation, long term potentiation, synaptic plasticity, gene regulation, as well as cellular growth and differentiation. Alterations in Ca2+ homeostasis have been suggested in the onset/progression of neurological diseases, such as Parkinson's, Alzheimer's, bipolar disorder, and Huntington's. Available data on transient receptor potential conical (TRPC) protein indicate that these proteins initiate Ca2+ entry pathways and are essential in maintaining cytosolic, ER, and mitochondrial Ca2+ levels. A number of biological functions have been assigned to these TRPC proteins. Silencing of TRPC1 and TRPC3 has been shown to inhibit neuronal proliferation and loss of TRPC1 is implicated in neurodegeneration. Thus, TRPC channels not only contribute towards normal physiological processes, but are also implicated in several human pathological conditions. Overall, it is suggested that these channels could be used as potential therapeutic targets for many of these neurological diseases. Thus, in this review we have focused on the functional implication of TRPC channels in neuronal cells along with the elucidation of their role in neurodegeneration.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | | | | |
Collapse
|
11
|
Immunohistochemical localization of AMPA-type glutamate receptor subunits in the striatum of rhesus monkey. Brain Res 2010; 1344:104-23. [PMID: 20460117 DOI: 10.1016/j.brainres.2010.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/10/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022]
Abstract
Corticostriatal and thalamostriatal projections utilize glutamate as their neurotransmitter. Their influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. While the cellular localization of AMPA-type subunits in the basal ganglia has been well characterized in rodents, the cellular localization of AMPA subunits in primate basal ganglia is not. We thus carried out immunohistochemical studies of GluR1-4 distribution in rhesus monkey basal ganglia in conjunction with characterization of each major neuron type. In striatum, about 65% of striatal neurons immunolabeled for GluR1, 75%-79% immunolabeled for GluR2 or GluR2/3, and only 2.5% possessed GluR4. All neurons the large size of cholinergic interneurons (mean diameter 26.1 microm) were moderately labeled for GluR1, while all neurons in the size range of parvalbuminergic interneurons (mean diameter 13.8 microm) were intensely rich in GluR1. Additionally, somewhat more than half of the neurons in the size range of projection neurons (mean diameter 11.6 microm) immunolabeled for GluR1, and about one third of these were very rich in GluR1. About half of the neurons the size of cholinergic interneurons were immunolabeled for GluR2, and the remainder of the neurons that were immunolabeled for GluR2 coincided with projection neurons in size and shape (GluR2 diameter=10.7 microm), indicating that the vast majority of striatal projection neurons possess immunodectible GluR2. Similar results were observed with GluR2/3 immunolabeling. Half of the neurons the size of cholinergic interneurons immunolabeled for GluR4 and seemingly all neurons in the size range of parvalbuminergic interneurons possessed GluR4. These results indicate that AMPA receptor subunit combinations for striatal projection neurons in rhesus monkey are similar to those for the corresponding neuron types in rodents, and thus their AMPA responses to glutamate are likely to be similar to those demonstrated in rodents.
Collapse
|
12
|
Neuroprotective effects of L-carnitine in a transgenic animal model of Huntington's disease. Biomed Pharmacother 2010; 64:282-6. [DOI: 10.1016/j.biopha.2009.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/07/2009] [Indexed: 11/23/2022] Open
|
13
|
Müller N, Myint AM, Schwarz MJ. The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders--relation to drug treatment. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877499 PMCID: PMC3181925 DOI: 10.31887/dcns.2009.11.3/nmueller] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An inflammatory pathogenesis has been postulated for schizophrenia and major depression (MD). In schizophrenia and depression, opposing patterns oftype-1 vs type-2 immune response seem to be associated with differences in the activation of the enzyme indoleamine 2,3-dioxygenase and in the tryptophan-kynurenine metabolism, resulting in increased production of kynurenic acid in schizophrenia and decreased production of kynurenic acid in depression. These differences are associated with an imbalance in the glutamatergic neurotransmission, which may contribute to an excessive agonist action of N-methyl-D-aspartate (NMDA) in depression and of NMDA antagonism in schizophrenia. Regarding the neuroprotective function of kynurenic acid and the neurotoxic effects of quinolinic acid (QUIN), different patterns of immune activation may also lead to an imbalance between the neuroprotective and the neurotoxic effects of the tryptophanlkynurenine metabolism. The differential activation of microglia cells and astrocytes may be an additional mechanism contributing to this imbalance. The immunological imbalance results in an inflammatory state combined with increased prostaglandin E2 production and increased cyclo-oxygenase-2 (COX-2) expression. The immunological effects of many existing antipsychotics and antidepressants, however, partly correct the immune imbalance and the excess production of the neurotoxic QUIN, COX-2 inhibitors have been tested in animal models of depression and in preliminary clinical trials, pointing to favorable effects in schizophrenia and in MD.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Germany.
| | | | | |
Collapse
|
14
|
Müller N, Schwarz MJ. A psychoneuroimmunological perspective to Emil Kraepelins dichotomy: schizophrenia and major depression as inflammatory CNS disorders. Eur Arch Psychiatry Clin Neurosci 2008; 258 Suppl 2:97-106. [PMID: 18516521 DOI: 10.1007/s00406-008-2012-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Kraepelinian classification of psychiatric disorders, in particular the dichotomy of dementia praecox and manic-depressive psychosis is under discussion since a long time. In recent years, not only new research in the fields of psychopathology and clinical outcome, but also findings of biological markers in the areas of neurophysiology, neuroendocrinology, psychoneuroimmunology, genetics, or psychopharmacology show a big overlap between both groups of disorders. This overlap of symptoms and markers of both disorders intensified the discussion and the proposals for new criteria for the classification of psychiatric disorders. By means of findings from the field of psychoneuroimmunology and inflammation it will be shown that different pathological mechanisms in depression and schizophrenia may lead to the same final common pathway of inflammation. These mechanisms include the immunological balance between type-1 and type-2 immune activation which influences the tryptophan-degradating enzyme indoleamine 2,3-dioxygenase (IDO) in the CNS in opposite ways, leading to an altered availability of tryptophan and serotonin, and a disturbance of the kynurenine metabolism with an imbalance in favor of the production of the NMDA-receptor agonist quinolinic acid in depression and of the NMDA-receptor antagonist kynurenic acid in schizophrenia. In both disorders, however, an increased production of prostaglandin E2 and increased expression of cyclo-oxygenase-2 reflect a slight inflammatory process taking place probably in different regions of the CNS. Albeit this common inflammatory pathway--inflammation is a general pathway of the body as answer to a lot of different noxae and pathogens--the Kraepelinian dichotomy is important with respect to pathological mechanisms and therapeutic approaches, not only for further research in understanding the exact pathological mechanisms but also for the development of preventive strategies in high risk individuals and in patients. Opposite pathways regarding the immune activation, the neurotoxic versus neuroprotective kynurenine metabolites and the agonistic versus antagonistic effects on the NMDA receptor and the glutamatergic neurotransmission show despite a possible therapeutic advantage of anti-inflammatory therapy in both disorders that the Kraepelinian dichotomy still has a significant value from a biologic-psychiatric point of view.
Collapse
Affiliation(s)
- Norbert Müller
- Hospital for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität, Nubbaumstr. 7, 80336, Munich, Germany.
| | | |
Collapse
|
15
|
Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plast 2008; 2007:80904. [PMID: 18301716 PMCID: PMC2246076 DOI: 10.1155/2007/80904] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 12/12/2007] [Indexed: 12/17/2022] Open
Abstract
Tinnitus, the perception of sound in the absence of external acoustic stimulation, is a common and devastating pathology. It is often a consequence of acoustic trauma or drug toxicity. The neuronal mechanisms of tinnitus are neither yet fully understood nor are effective treatments available. Using a novel behavioral paradigm for measuring tinnitus in the rat based on tone-guided navigation, we show here that the development of long-term noise-induced tinnitus, the most prevalent and clinically important form of human tinnitus, can be abated by local administration of the NMDA antagonist “ifenprodil” into the cochlea in the first 4 days following the noise insult but not afterwards. This suggests that long-term tinnitus undergoes a consolidation-like process, resembling the ontogeny of items in long-term memory. Furthermore, this finding paves the way to potential therapeutic strategies for the prevention of chronic tinnitus once the noise insult had taken place.
Collapse
|
16
|
Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12:988-1000. [PMID: 17457312 DOI: 10.1038/sj.mp.4002006] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beside the well-known deficiency in serotonergic neurotransmission as pathophysiological correlate of major depression (MD), recent evidence points to a pivotal role of increased glutamate receptor activation as well. However, cause and interaction of these neurotransmitter alterations are not understood. In this review, we present a hypothesis integrating current concepts of neurotransmission and hypothalamus-pituitary-adrenal (HPA) axis dysregulation with findings on immunological alterations and alterations in brain morphology in MD. An immune activation including increased production of proinflammatory cytokines has repeatedly been described in MD. Proinflammatory cytokines such as interleukin-2, interferon-gamma, or tumor necrosis factor-alpha activate the tryptophan- and serotonin-degrading enzyme indoleamine 2,3-dioxygenase (IDO). Depressive states during inflammatory somatic disorders are also associated with increased proinflammatory cytokines and increased consumption of tryptophan via activation of IDO. An enhanced consumption of serotonin and its precursor tryptophan through IDO activation could well explain the reduced availability of serotonergic neurotransmission in MD. An increased activation of IDO and its subsequent enzyme kynurenine monooxygenase by proinflammatory cytokines, moreover, leads to an enhanced production of quinolinic acid, a strong agonist of the glutamatergic N-methyl-D-aspartate receptor. In inflammatory states of the central nervous system, IDO is mainly activated in microglial cells, which preferentially metabolize tryptophan to the NMDA receptor agonist quinolinic acid, whereas astrocytes - counteracting this metabolism due to the lack of an enzyme of this metabolism - have been observed to be reduced in MD. Therefore the type 1/type 2 immune response imbalance, associated with an astrocyte/microglia imbalance, leads to serotonergic deficiency and glutamatergic overproduction. Astrocytes are further strongly involved in re-uptake and metabolic conversion of glutamate. The reduced number of astrocytes could contribute to both, a diminished counterregulation of IDO activity in microglia and an altered glutamatergic neurotransmission. Further search for antidepressant agents should take into account anti-inflammatory drugs, for example, cyclooxygenase-2 inhibitors, might exert antidepressant effects by acting on serotonergic deficiency, glutamatergic hyperfunction and antagonizing neurotoxic effects of quinolinic acid.
Collapse
Affiliation(s)
- N Müller
- Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany.
| | | |
Collapse
|
17
|
Müller N, Schwarz M. Immunologische Aspekte bei depressiven Störungen. DER NERVENARZT 2007; 78:1261-73. [DOI: 10.1007/s00115-007-2311-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Yamamoto S, Wajima T, Hara Y, Nishida M, Mori Y. Transient receptor potential channels in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:958-67. [PMID: 17490865 DOI: 10.1016/j.bbadis.2007.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 01/20/2023]
Abstract
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and neuronal death in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta can render neurons vulnerable to excitotoxicity and apoptosis by disruption of cellular Ca(2+) homeostasis and neurotoxic factors including reactive oxygen species (ROS), nitric oxide (NO), and cytokines. Many lines of evidence have suggested that transient receptor potential (TRP) channels consisting of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) are involved in Ca(2+) homeostasis disruption. Thus, emerging evidence of the pathophysiological role of TRP channels has yielded promising candidates for molecular entities mediating Ca(2+) homeostasis disruption in AD. In this review, we focus on the TRP channels in AD and highlight some TRP "suspects" for which a role in AD can be anticipated. An understanding of the involvement of TRP channels in AD may lead to the development of new target therapies.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
19
|
Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A. Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats. J Chem Neuroanat 2007; 33:167-92. [PMID: 17446041 PMCID: PMC1993922 DOI: 10.1016/j.jchemneu.2007.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 01/05/2023]
Abstract
Differences among the various striatal projection neuron and interneuron types in cortical input, function, and vulnerability to degenerative insults may be related to differences among them in AMPA-type glutamate receptor abundance and subunit configuration. We therefore used immunolabeling to assess the frequency and abundance of GluR1 and GluR2, the most common AMPA subunits in striatum, in the main striatal neuron types. All neurons projecting to the external pallidum (GPe), internal pallidum (GPi) or substantia nigra, as identified by retrograde labeling, possessed perikaryal GluR2, while GluR1 was more common in striato-GPe than striato-GPi perikarya. The frequency and intensity of immunostaining indicated the rank order of their perikaryal GluR1:GluR2 ratio to be striato-GPe>striatonigral>striato-GPi. Ultrastructural studies suggested a differential localization of GluR1 and GluR2 to striatal projection neuron dendritic spines as well, with GluR1 seemingly more common in striato-GPe spines and GluR2 more common in striato-GPi and/or striatonigral spines. Comparisons among projection neurons and interneurons revealed GluR1 to be most common and abundant in parvalbuminergic interneurons, and GluR2 most common and abundant in projection neurons, with the rank order for the GluR1:GluR2 ratio being parvalbuminergic interneurons>calretinergic interneurons>cholinergic interneurons>projection neurons>somatostatinergic interneurons. Striosomal projection neurons had a higher GluR1:GluR2 ratio than did matrix projection neurons. The abundance of both GluR1 and GluR2 in striatal parvalbuminergic interneurons and projection neurons is consistent with their prominent cortical input and susceptibility to excitotoxic insult, while differences in GluR1:GluR2 ratio among projection neurons are likely to yield differences in Ca(2+) permeability, desensitization, and single channel current, which may contribute to differences among them in plasticity, synaptic integration, and excitotoxic vulnerability. The apparent association of the GluR1 subunit with synaptic plasticity, in particular, suggests striato-GPe neuron spines as a particular site of corticostriatal synaptic plasticity, presumably associated with motor learning.
Collapse
Affiliation(s)
- Y P Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
20
|
Deng YP, Lei WL, Reiner A. Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 2006; 32:101-16. [PMID: 16914290 DOI: 10.1016/j.jchemneu.2006.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 12/17/2022]
Abstract
The localization of D1 and D2 dopamine receptors to striatal projection neuron types has been controversial, with some data favoring segregation of D1 to direct pathway neurons (substance P-containing) and D2 to indirect pathway neurons (enkephalinergic), and others reporting significant colocalization of D1 and D2 on individual projection neuron types. In the present study, we used subtype-specific antibodies against D1 and D2 and confocal laser scanning microscopy to determine their perikaryal localization in striatum in general, and in direct and indirect pathway neuron perikarya defined by retrograde labeling in particular. We found that D1 in rat was detectable on 49.5% of NeuN-immunolabeled striatal perikarya, and D2 on 61.6% of NeuN-immunolabeled perikarya, implying that at least 15-20% of D1+ neurons must possess D2 and vice versa. Secondly, we retrogradely labeled neuronal perikarya from the external globus pallidus (GPe), internal globus pallidus (GPi) or substantia nigra with rhodamine dextran amine 3 kDa (RDA3k). We found that 92% of perikarya labeled from nigra and 96% of perikarya labeled from GPi immunolabeled for D1, but only 23% of perikarya labeled from GPe immunolabeled for D1. Since direct pathway neurons (striato-nigral and striato-GPi) have a collateral projection to GPe, it is possible that many of the D1+ striatal perikarya retrogradely labeled from GPe were direct pathway neurons. About 96% of perikarya retrogradely labeled from GPe were immunolabeled for D2, while about 40% of those retrogradely labeled from GPi and 44% of those retrogradely labeled from nigra immunolabeled for D2. These findings suggest that: (1) while many striato-GPi/SN neurons possess D1 and D2, the majority mainly or exclusively possess D1 and (2) the vast majority of striato-GPe neurons mainly or exclusively possess D2.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
21
|
Müller N, Schwarz MJ. Neuroimmune-endocrine crosstalk in schizophrenia and mood disorders. Expert Rev Neurother 2006; 6:1017-38. [PMID: 16831116 DOI: 10.1586/14737175.6.7.1017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review focuses on possible causes and the impact of different immune states in schizophrenia and major depression. It discusses the fact that, in schizophrenia, an over-activation of the type 2 immune response may dominate, while the type 1 and the pro-inflammatory immune responses are over-activated in major depression. The consequence of these diverse immune states is the activation and, respectively, inhibition of different enzymes in tryptophan/kynurenine metabolism, which may lead to an overemphasis of N-methyl-D-aspartate (NMDA) receptor antagonism in schizophrenia and of NMDA-receptor agonism in depression, resulting in glutamatergic hypofunction in schizophrenia and glutamatergic hyperfunction in major depression. In addition, the activation of the type 1 and the pro-inflammatory immune responses in major depression result in increased serotonin degradation and a serotonergic deficit. While antipsychotics and antidepressants today mainly act on the dopaminergic-glutamatergic and the noradrenergic-serotonergic neurotransmission, anti-inflammatory and immune-modulating therapies might act more basically at the pathophysiological mechanism. The limitations of this concept, however, are critically discussed.
Collapse
Affiliation(s)
- Norbert Müller
- Ludwig-Maximilians-Universität München, Hospital for Psychiatry and Psychotherapy, 80336 München, Germany.
| | | |
Collapse
|
22
|
Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M. TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 2005; 280:2132-40. [PMID: 15542611 PMCID: PMC3619406 DOI: 10.1074/jbc.m407384200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian homologues of the Drosophila canonical transient receptor potential (TRP) proteins have been implicated to function as plasma membrane Ca(2+) channels. This study examined the role of TRPC1 in human neuroblastoma (SH-SY5Y) cells. SH-SY5Y cells treated with an exogenous neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)) significantly decreased TRPC1 protein levels. Confocal microscopy on SH-SY5Y cells treatment with MPP(+) showed decreased plasma membrane staining of TRPC1. Importantly, overexpression of TRPC1 reduced neurotoxicity induced by MPP(+). MPP(+)-induced alpha-synuclein expression was also suppressed by TRPC1 overexpression. Protection of SH-SY5Y cells against MPP(+) was significantly decreased upon the overexpression of antisense TRPC1 cDNA construct or the addition of a nonspecific transient receptor potential channel blocker lanthanum. Activation of TRPC1 by thapsigargin or carbachol decreased MPP(+) neurotoxicity, which was partially dependent on external Ca(2+). Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protects SH-SY5Y neuronal cells against apoptosis. Further, TRPC1 overexpression inhibited cytochrome c release and decreased Bax and Apaf-1 protein levels. Interpretation of the above data suggests that reduction in the cell surface expression of TRPC1 following MPP(+) treatment may be involved in dopaminergic neurodegeneration. Furthermore, TRPC1 may inhibit degenerative apoptotic signaling to provide neuroprotection against Parkinson's disease-inducing agents.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Brij B. Singh
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Shaik Shavali
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Sushil K. Sharma
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Manuchair Ebadi
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| |
Collapse
|
23
|
Popoli P, Pintor A, Tebano MT, Frank C, Pepponi R, Nazzicone V, Grieco R, Pèzzola A, Reggio R, Minghetti L, De Berardinis MA, Martire A, Potenza RL, Domenici MR, Massotti M. Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acid-induced striatal toxicity: involvement of pre- and post-synaptic mechanisms and lack of direct NMDA blocking activity. J Neurochem 2004; 89:1479-89. [PMID: 15189351 DOI: 10.1111/j.1471-4159.2004.02448.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to investigate the potential neuroprotective effects of the metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) towards quinolinic acid (QA)-induced striatal excitoxicity. Intrastriatal MPEP (5 nmol/0.5 micro L) significantly attenuated the body weight loss, the electroencephalographic alterations, the impairment in spatial memory and the striatal damage induced by bilateral striatal injection of QA (210 nmol/0.7 micro L). In a second set of experiments, we aimed to elucidate the mechanisms underlying the neuroprotective effects of MPEP. In microdialysis studies in naive rats MPEP (80-250 micro m through the dialysis probe) significantly reduced the increase in glutamate levels induced by 5 mm QA. In primary cultures of striatal neurons MPEP (50 micro m) reduced the toxicity induced by direct application of glutamate [measured as release of lactate dehydrogenase [LDH]). Finally, we found that 50 micro m MPEP was unable to directly block NMDA-induced effects (namely field potential reduction in corticostriatal slices, as well as LDH release and intracellular calcium increase in striatal neurons). We conclude that: (i) MPEP has neuroprotective effects towards QA-induced striatal excitotoxicity; (ii) both pre- and post-synaptic mechanisms are involved; (iii) the neuroprotective effects of MPEP do not appear to involve a direct blockade of NMDA receptors.
Collapse
Affiliation(s)
- Patrizia Popoli
- Department of Pharmacology, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Diguet E, Fernagut PO, Normand E, Centelles L, Mulle C, Tison F. Experimental basis for the putative role of GluR6/kainate glutamate receptor subunit in Huntington's disease natural history. Neurobiol Dis 2004; 15:667-75. [PMID: 15056475 DOI: 10.1016/j.nbd.2003.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 10/15/2003] [Accepted: 12/16/2003] [Indexed: 11/28/2022] Open
Abstract
Age of onset of Huntington's disease (HD) statistically correlates with the length of expanded CAG repeats in the IT15 gene. However, other factors such as polymorphism in the 3' untranslated region of the GluR6 kainate receptor gene subunit may contribute to variability in the age at onset. To investigate this issue, we studied the motor disorder and related striatal damage induced by 3-nitropropionic acid (3-NP) subacute administration in GluR6 knockout mice (GluR6(-/-)) as compared to wild-type mice. In two different age groups (6 months and 1 year), we observed that GluR6(-/-) mice did not display more motor impairment nor more striatal histopathological damage than GluR6(+/+) mice, although 1-year-old GluR6(-/-) mice displayed reduced activity parameters either at baseline or after 3-NP administration compared to GluR6(+/+). In both age groups, GluR6(-/-) mice died earlier and displayed earlier motor symptoms during 3-NP-induced metabolic compromise, suggesting that GluR6-containing kainate receptors may be implicated during neurodegeneration, such as in HD, rather than in the final outcome.
Collapse
Affiliation(s)
- Elsa Diguet
- Physiologie et Physiopathologie de la Signalisation Cellulaire, UMR-CNRS 5543, Université Victor Segalen-Bordeaux2, 33076 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
25
|
Lui PW, Suen KC, Chan YS, Yung WH, Yung KKL. Striatal neurons but not nigral dopaminergic neurons in neonatal primary cell culture express endogenous functional N-methyl-d-aspartate receptors. ACTA ACUST UNITED AC 2003; 120:9-21. [PMID: 14667572 DOI: 10.1016/j.molbrainres.2003.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits were determined and compared in striatal and nigral neurons in neonatal primary cell cultures. In striatal neurons, NR1, NR2A and NR2B mRNAs and immunoreactivity, and NR2D mRNA were found and the maximal levels of NR1 mRNA and immunoreactivity expression were found at 6 day-in-vitro (DIV). NMDA receptors found at this stage in striatal neurons are likely to contain NR1 plus NR2A, NR2B and NR2D subunits. In nigral neurons, NR1 and NR2B mRNAs and immunoreactivity, and NR2D mRNA were found and the maximal level of NR1 immunoreactivity expression was found at 10 DIV. Unlike striatal neurons, NMDA receptors found in nigral neurons are likely to contain NR1 plus NR2B and NR2D subunits only. NMDA-induced toxicity assays showed that striatal neurons were most susceptible to cell death at around 10 DIV but nigral neurons were not susceptible to NMDA-induced cell death at all stages. In addition, patch clamp analysis revealed that functional NMDA receptors could only be found in striatal neurons but not in nigral dopaminergic neurons in vitro. The present results indicate that striatal and nigral neurons are programmed to express distinct NMDA receptor subunits during their endogenous development in cell cultures. Despite dopaminergic neurons in culture display NMDA receptor subunits, functional NMDA receptors are not assembled. The present findings have demonstrated that dopaminergic neurons in vitro may behave very differently to their counterparts in vivo in terms of NMDA receptor-mediated responses. Our results also have implications in transplantations using dopaminergic neurons in vitro in treatments of Parkinson's disease.
Collapse
Affiliation(s)
- P W Lui
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
26
|
Beas-Zárate C, Flores-Soto ME, Armendariz-Borunda J. NMDAR-2C and 2D subunits gene expression is induced in brain by neonatal exposure of monosodium L-glutamate to adult rats. Neurosci Lett 2002; 321:9-12. [PMID: 11872244 DOI: 10.1016/s0304-3940(01)02388-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Monosodium glutamate (MSG) was administered subcutaneously to male neonate rats, and the effects on N-methyl-D-asparatate (NMDA) subunit receptor types NR2C and NR2D from different brain regions were studied. A semi-quantitative reverse transcription-polymerase chain reaction was used to measure NR2C and NR2D expression levels in the cerebral cortex, hippocampus and striatum. MSG treatment (4 mg/g body weight, on postnatal days 1, 3, 5, and 7) produced an important increase of NR2C and NR2D subunit gene expression levels in the hippocampus and striatum of adults rats. No change was observed in the cerebral cortex. We propose that an early excessive activation of glutamate receptors could modify NMDA subunit expression and its structural composition on postnatal development. This, as part of a compensatory response by an altered neuronal circuitry, mainly in the hippocampus and striatum, suggests that the NMDA receptor could be a determinant factor to modulate the dendritic arrangement and the synaptogenesis.
Collapse
Affiliation(s)
- C Beas-Zárate
- Lab. de Neurobiol. Cel. y Molec., Div. Neurociencias, C.I.B.O., IMSS, Apdo. Postal 4-160, 44421 Guadalajara, Jalisco, Mexico.
| | | | | |
Collapse
|
27
|
Kristensen BW, Noraberg J, Zimmer J. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 2001; 917:21-44. [PMID: 11602227 DOI: 10.1016/s0006-8993(01)02900-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for induced, concentration-dependent neuronal damage in hippocampal slice cultures. ATPA is in low concentrations a new selective agonist of the glutamate receptor subunit GluR5 confined to KA receptors and also in high concentrations an AMPA receptor agonist. The following rank order of estimated EC(50) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity was mediated primarily via AMPA receptors. Similar results were found for a high concentration of ATPA (30 microM). In low GluR5 selective concentrations (0.3-3 microM), ATPA did not induce an increase in PI uptake or a reduction in glutamic acid decarboxylase (GAD) activity of hippocampal interneurons. For KA, the excitotoxicity appeared to be mediated via both KA and AMPA receptors. NMDA receptors were not involved in AMPA-, ATPA- and KA-induced excitotoxicity, nor did NMDA-induced excitotoxicity require activation of AMPA and KA receptors. We conclude that hippocampal slice cultures constitute a feasible test system for evaluation of excitotoxic effects and mechanisms of new (ATPA) and classic (AMPA, KA and NMDA) glutamate receptor agonists. Comparison of concentration-response curves with calculation of EC(50) values for glutamate receptor agonists are possible, as well as comparison of inhibition data for glutamate receptor antagonists. The observation that the slice cultures respond with more in vivo-like patterns of excitotoxicity than primary neuronal cultures, suggests that slice cultures are the best model of choice for a number of glutamate agonist and antagonist studies.
Collapse
Affiliation(s)
- B W Kristensen
- Anatomy and Neurobiology, Inst. of Medical Biology, SDU-Odense University, Winsløwparken 21, DK-5000 Odense C, Denmark.
| | | | | |
Collapse
|
28
|
Douhou A, Troadec JD, Ruberg M, Raisman-Vozari R, Michel PP. Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. J Neurochem 2001; 78:163-74. [PMID: 11432983 DOI: 10.1046/j.1471-4159.2001.00401.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The death of dopaminergic neurons that occurs spontaneously in mesencephalic cultures was prevented by depolarizing concentrations of K+ (20-50 mM). However, unlike that observed previously in other neuronal populations of the PNS or CNS, promotion of survival required concurrent blockade of either NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors by the specific antagonists, MK-801 and GYKI-52466, respectively. Rescued neurons appeared to be healthy and functional because the same treatment also dramatically enhanced their capacity to accumulate dopamine. The effects on survival and uptake were rather specific to dopaminergic neurons, rapidly reversible and still observed when treatment was delayed after plating. Glutamate release increased substantially in the presence of elevated concentrations of K+, and chronic treatment with glutamate induced a loss of dopaminergic neurons that was prevented by MK-801 or GYKI-52466 suggesting that an excitotoxic process interfered with survival when only the depolarizing treatment was applied. The effects of the depolarizing stimulus in the presence of MK-801 were mimicked by BAY K-8644 and abolished by nifedipine, suggesting that neuroprotection resulted from Ca(2+) influx through L-type calcium channels. Measurement of intracellular calcium revealed that MK-801 or GYKI-52466 were required to maintain Ca(2+) levels within a trophic range, thus preventing K+-induced excitotoxic stress and Ca(2+) overload. Altogether, our results suggest that dopaminergic neurons may require a finely tuned interplay between glutamatergic receptors and calcium channels for their development and maturation.
Collapse
Affiliation(s)
- A Douhou
- INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtríere, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
29
|
Blaabjerg M, Kristensen BW, Bonde C, Zimmer J. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures. Brain Res 2001; 898:91-104. [PMID: 11292452 DOI: 10.1016/s0006-8993(01)02148-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular uptake of propidium iodide (PI) to quantify neuronal degeneration. Cultures exposed to ACPD, showed a concentration (2-5 mM) and time (1-4 days) dependent increase in PI uptake in CA1, CA3 and dentate subfields after 24 h and 48 h of exposure, with CA1 pyramidal cells being most sensitive. The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 microM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 microM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect. Co-exposing cultures to a subtoxic dose of 300 microM ACPD together with 10 microM NMDA, which at this dose is known to induce a fairly selective degeneration of CA1 pyramidal cells, significantly increased the PI uptake in both CA1 and CA3, compared to cultures exposed to 10 microM NMDA only. Adding the 300 microM ACPD as pretreatment for 30 min followed by a 30 min wash in normal medium before the ACPD/NMDA co-exposure, eliminated the potentiation of NMDA toxicity. The potentiation was also blocked by addition of 10 or 100 microM 2-methyl-6-(phenylethynyl)pyridine (MPEP) (mGluR5 antagonist) during the co-exposure, while a corresponding addition of 10 or 100 microM 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (mGluR1 antagonist) had no effect. We conclude that, stimulation of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time dependent way.
Collapse
Affiliation(s)
- M Blaabjerg
- Anatomy and Neurobiology, Institute of Medical Biology, SDU-Odense University, Winsløwparken 21, DK-5000 C, Odense, Denmark. mblaabjerg@health..sdu.dk
| | | | | | | |
Collapse
|