1
|
Kotze AC, Hunt PW, Skuce P, von Samson-Himmelstjerna G, Martin RJ, Sager H, Krücken J, Hodgkinson J, Lespine A, Jex AR, Gilleard JS, Beech RN, Wolstenholme AJ, Demeler J, Robertson AP, Charvet CL, Neveu C, Kaminsky R, Rufener L, Alberich M, Menez C, Prichard RK. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist 2014; 4:164-84. [PMID: 25516826 PMCID: PMC4266812 DOI: 10.1016/j.ijpddr.2014.07.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/30/2022]
Abstract
Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS) provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance.
Collapse
Affiliation(s)
- Andrew C. Kotze
- CSIRO Animal, Food and Health Sciences, Brisbane, QLD, Australia
| | - Peter W. Hunt
- CSIRO Animal, Food and Health Sciences, Armidale, NSW, Australia
| | - Philip Skuce
- Parasitology Division, Moredun Research Institute, Penicuik, Midlothian, UK
| | | | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Heinz Sager
- Novartis Centre de Recherche Sante Animale, St. Aubin, Switzerland
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitat Berlin, Berlin, Germany
| | - Jane Hodgkinson
- Veterinary Parasitology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Anne Lespine
- INRA, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - Aaron R. Jex
- Faculty of Veterinary Science, University of Melbourne, Parkville, VIC, Australia
| | - John S. Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin N. Beech
- Institute of Parasitology, McGill University, QC, Canada
| | - Adrian J. Wolstenholme
- Department of Infectious Diseases & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, USA
| | - Janina Demeler
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitat Berlin, Berlin, Germany
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Claude L. Charvet
- INRA, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, Infectiologie et Santé Publique, Tours, France
| | - Cedric Neveu
- INRA, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, Infectiologie et Santé Publique, Tours, France
| | - Ronald Kaminsky
- Novartis Centre de Recherche Sante Animale, St. Aubin, Switzerland
| | - Lucien Rufener
- Novartis Centre de Recherche Sante Animale, St. Aubin, Switzerland
| | - Melanie Alberich
- INRA, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - Cecile Menez
- INRA, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | | |
Collapse
|
2
|
Identification of putative markers of triclabendazole resistance by a genome-wide analysis of genetically recombinant Fasciola hepatica. Parasitology 2013; 140:1523-33. [PMID: 23721579 DOI: 10.1017/s0031182013000528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.
Collapse
|
3
|
Matthews JB, Johnson DR, Lazari O, Craig R, Matthews KR. Identification of a LIM domain-containing gene in the Cyathostominae. Vet Parasitol 2008; 154:82-93. [DOI: 10.1016/j.vetpar.2007.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
|
4
|
Collins CM, Olstad K, Sterud E, Jones CS, Noble LR, Mo TA, Cunningham CO. Isolation of a novel fish thymidylate kinase gene, upregulated in Atlantic salmon (Salmo salar L.) following infection with the monogenean parasite Gyrodactylus salaris. FISH & SHELLFISH IMMUNOLOGY 2007; 23:793-807. [PMID: 17467294 DOI: 10.1016/j.fsi.2007.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/03/2007] [Accepted: 03/05/2007] [Indexed: 05/15/2023]
Abstract
Analysis of differential gene expression in salmon (Salmo salar) blood following infection with the monogenean parasite Gyrodactylus salaris, resulted in the isolation of a thymidylate kinase gene not previously described from fish and which showed similarity to an LPS-inducible thymidylate kinase gene isolated from mouse macrophages. This salmon TYKi-like gene may play a role in an innate generalised response to pathogen infection as it was upregulated in salmon following infection with the parasite, and also in response to injection with the immunostimulants LPS and Poly I:C, used to emulate bacterial and viral infections, respectively. The possible role of this gene in the biosynthesis of mitochondrial DNA in activated macrophages, in response to G. salaris infection is discussed.
Collapse
Affiliation(s)
- Catherine M Collins
- FRS Marine Laboratory, Molecular Genetics, Victoria Road, Torry, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
5
|
Grams R, Adisakwattana P, Ritthisunthorn N, Eursitthichai V, Vichasri-Grams S, Viyanant V. The saposin-like proteins 1, 2, and 3 of Fasciola gigantica. Mol Biochem Parasitol 2006; 148:133-43. [PMID: 16626816 DOI: 10.1016/j.molbiopara.2006.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/14/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The SAP genes of Fasciola encode proteins belonging to the saposin-like protein family. The saposin signature, a compact domain of mainly alpha-helical character, contains six conserved cysteine residues and has been implicated in membrane-binding, pore formation, and subsequent cell lysis in several family members. Recombinant SAP-2 of F. hepatica has been shown to induce lysis of human erythrocytes and peripheral blood mononuclear cells. This suggests that the SAPs are involved in the nutrition of Fasciola as the released content of lysed host cells is available for further enzymatic processing and uptake by the parasite. In the present study a new SAP-3 cDNA was obtained in an immunoscreen of an adult stage F. gigantica cDNA library with an antiserum against the parasite's excretion/secretion antigens. SAP-1 and SAP-2 cDNAs were isolated from F. gigantica cDNA libraries using oligonucleotide primers specific to the SAP-1 and SAP-2 DNA sequences from F. hepatica. Transcripts of the three SAPs are present from the metacercarial to the adult stage and are located to the gut epithelium. In immatures SAP-1 RNA is the predominant product whereas in adults SAP-2 and -3 are the more abundant products. Polyclonal anti-SAP-1 and SAP-2 antisera confirmed the tissue-specificity and revealed the subcellular localization of SAPs in large granules concentrated in the apical part of the gut epithelial cells of the parasite. Interestingly, evolutionary conservation of the Fasciola SAP sequences among other trematodes is low at 20-30% sequence identity comparable to the Entamoeba amoebapore sequences.
Collapse
Affiliation(s)
- Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathumthani, Thailand.
| | | | | | | | | | | |
Collapse
|
6
|
Han KL, Lee J, Kim DS, Park SJ, Im KI, Yong TS. Identification of differentially expressed cDNAs in Acanthamoeba culbertsoni after mouse brain passage. THE KOREAN JOURNAL OF PARASITOLOGY 2006; 44:15-20. [PMID: 16514277 PMCID: PMC2532643 DOI: 10.3347/kjp.2006.44.1.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 01/20/2006] [Indexed: 11/23/2022]
Abstract
Free-living amoebae of the genus Acanthamoeba are causative agents of granulomatous amebic encephalitis and amebic keratitis. Because the virulence of Acanthamoeba culbertsoni cultured in the laboratory is restored by consecutive brain passages, we examined the genes induced in mouse brain-passaged A. culbertsoni by differential display reverse transcriptase polymerase chain reaction (DDRT-PCR). Enhanced A. culbertsoni virulence was observed during the second mouse brain passage, i.e., infected mouse mortality increased from 5% to 70%. Ten cDNAs induced during mouse brain passage were identified by DDRT-PCR and this was confirmed by northern blot analysis. BlastX searches of these cDNAs indicated the upregulations of genes encoding predictive NADH-dehydrogenase, proteasomal ATPase, and GDP-mannose pyrophosphorylase B, which have previously been reported to be associated with A. culbertsoni virulence factors.
Collapse
Affiliation(s)
- Kyu-Lee Han
- Department of Parasitology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Luo HL, Nie P, Chang MX, Song Y, Yao WJ. Characterization of development-related genes for the cestode Bothriocephalus acheilognathi. Parasitol Res 2004; 94:265-274. [PMID: 15365820 DOI: 10.1007/s00436-004-1205-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential gene expression of mature and immature Bothriocephalus acheilognathi cestodes was analyzed using the suppression subtractive hybridization technique. Five mature-associated cDNAs were isolated and characterized. Virtual Northern blot and RT-PCR analyses confirmed that four of the five genes were upregulated in mature parasites. The sequence analysis revealed that one gene encoded the structural protein chorion precursor, and the three encoded functional proteins homologous to yolk ferritin, sodium/hydrogen exchanger and muscin-like protein. Another gene appeared to be specific to B. acheilognathi, encoding a putative metal-bound protein. Although results obtained in the present study are preliminary, the information about the five genes may provide clues for further investigation on the decline in parasite numbers during the maturation of B. acheilognathi.
Collapse
Affiliation(s)
- H L Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Laboratory of Fish Diseases, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei 430072 Wuhan, China
| | | | | | | | | |
Collapse
|
8
|
Knox DP. Technological advances and genomics in metazoan parasites. Int J Parasitol 2004; 34:139-52. [PMID: 15037101 DOI: 10.1016/j.ijpara.2003.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 10/24/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Molecular biology has provided the means to identify parasite proteins, to define their function, patterns of expression and the means to produce them in quantity for subsequent functional analyses. Whole genome and expressed sequence tag programmes, and the parallel development of powerful bioinformatics tools, allow the execution of genome-wide between stage or species comparisons and meaningful gene-expression profiling. The latter can be undertaken with several new technologies such as DNA microarray and serial analysis of gene expression. Proteome analysis has come to the fore in recent years providing a crucial link between the gene and its protein product. RNA interference and ballistic gene transfer are exciting developments which can provide the means to precisely define the function of individual genes and, of importance in devising novel parasite control strategies, the effect that gene knockdown will have on parasite survival.
Collapse
Affiliation(s)
- D P Knox
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland EH26 0PZ, UK.
| |
Collapse
|
9
|
Zhang W, Li J, You H, Zhang Z, Turson G, Loukas A, McManus DP. A gene family from Echinococcus granulosus differentially expressed in mature adult worms. Mol Biochem Parasitol 2003; 126:25-33. [PMID: 12554081 DOI: 10.1016/s0166-6851(02)00241-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differences in mRNA expression between immature adult worms (IAW) and mature adult worms (MAW) of Echinococcus granulosus were determined using polymerase chain reaction-based differential display (DDRT-PCR). Twenty-eight putative differential cDNA fragments were isolated, cloned and sequenced. mRNAs from IAW and MAW were probed with the labelled fragments. Six cDNA fragments (coded as egM12, egM13, egM22, egM26, egM30 and egM34) were putatively determined to be specific to MAW by Northern hybridisation. The stage-specificity of egM12, egM13 and egM34 was confirmed by RT-PCR. RNAs of IAW, MAW, protoscoleces and oncospheres, probed with egM13 and egM30, showed that the mRNAs were expressed exclusively in MAW, which implied involvement in the regulation of egg development. Using the labelled fragments to screen a cDNA library of MAW, 99 clones were identified and analysed. An alignment of selected clones showed that the MAW-specific mRNAs belonged to a family. Examination of the deduced amino acid sequence of three of the corresponding cDNAs (egM4, egM9 and egM123) indicated they were cysteine-rich and contained a 24 amino acid repeat sequence, repeated four to six times. The repeat regions were predominantly alpha helical in nature with interspersed turns, forming alternating zones of positive and negative charge. The functional significance of each of the cDNAs identified is unclear as none had significant sequence similarity to genes of known function. However, polypeptides encoded by egM4 and egM123 were recognised by antibodies in a serum pool from dogs experimentally infected with E. granulosus, suggesting they could prove of value in serodiagnosis of definitive hosts.
Collapse
Affiliation(s)
- Wenbao Zhang
- Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, The University of Queensland, Brisbane, Qld 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Cui L, Rzomp KA, Fan Q, Martin SK, Williams J. Plasmodium falciparum: differential display analysis of gene expression during gametocytogenesis. Exp Parasitol 2001; 99:244-54. [PMID: 11888252 DOI: 10.1006/expr.2001.4669] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the Plasmodium falciparum genome sequencing near completion, functional analysis of individual parasite genes has become the major task of the postgenomic era. Understanding the expression patterns of individual genes is the initial step toward this goal. In this report, we have examined gene expression during gametocytogenesis of the malaria parasite, P. falciparum, using a modified differential display (DD) method. The modifications of this method include adjusting the dNTP mix, using upstream primers with higher AT contents, and reducing the extension temperature of the polymerase chain reaction (PCR). With a combination of 16 arbitrary upstream primers and 3 one-base-anchored oligo(dT) primers, we have successfully cloned 80 unique cDNA tags from stage IV-V gametocytes. Further analysis by dot blots and semiquantitative reverse transcriptase-PCR showed that at least 49 cDNAs had induced or elevated levels of expression in gametocytes. These results indicate that this modified DD procedure is suitable for large-scale identification of developmentally regulated genes in the AT-rich Plasmodium genome.
Collapse
Affiliation(s)
- L Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
11
|
Hartman D, Donald DR, Nikolaou S, Savin KW, Hasse D, Presidente PJ, Newton SE. Analysis of developmentally regulated genes of the parasite Haemonchus contortus. Int J Parasitol 2001; 31:1236-45. [PMID: 11513893 DOI: 10.1016/s0020-7519(01)00248-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Differential regulation of gene expression in the development of Haemonchus contortus was analysed using RNA arbitrarily-primed PCR. A study of third-stage larval and adult H. contortus revealed large differences between the two stages; 32 and 30% unique third-stage larval and adult RNA arbitrarily-primed PCR products, respectively. This finding is consistent with a high degree of differential gene expression between these developmental stages. A number of adult products were sequenced, revealing 11 molecules to be similar to deposits within sequence databases. Four other molecules that did not have significant similarity to sequences in the databases may represent developmentally regulated genes specific to H. contortus. Northern analysis of the putative adult-expressed molecules with homologues in the databases confirmed that four were expressed only in adults, while four were expressed in both stages, but had different sized transcripts. This may reflect differential splicing, or expression of closely related but different molecules at different life cycle stages. Two molecules were present in mRNA populations from both stages, suggesting these were false stage-associated molecules. No transcript was detected for one molecule by Northern analysis, probably due to low level of expression. In situ hybridisation analysis was used to localise expression of transcripts in the adult parasite, in particular, to gain some insight into the nature of those molecules with no known predicted function.
Collapse
Affiliation(s)
- D Hartman
- Victorian Institute of Animal Science, Agriculture Victoria, 475 Mickleham Road, Attwood, Victoria 3049, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 2000. [PMID: 10885984 DOI: 10.1128/cmr.13.3.408-427.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host-fungus interaction is characterized by changes in gene expression in both host and pathogen. Differential-display reverse transcription PCR (DDRT-PCR) is a PCR-based method that allows extensive analysis of gene expression among several cell populations. Several limitations and drawbacks to this procedure have now been addressed, including the large number of false-positive results and the difficulty in confirming differential expression. Modifications that simplify the reaction time, allow the use of minute quantities of RNA, or address unusual species- or gene-specific sequences have been reported. DDRT-PCR has been used to address biological questions in mammalian systems, including cell differentiation, cell activation, cell stress, and identification of drug targets. In microbial pathogenesis and plant pathogenesis, DDRT-PCR has allowed the identification of virulence factors, genes involved in cell death, and signaling genes. In Candida albicans, DDRT-PCR studies identified TIF-2, which may play a role in the upregulation of phospholipases, and the stress-related genes, CIP1 and CIP2. In Histoplasma capsulatum and C. albicans, genes involved in the host-pathogen interaction, including a member of the 100-kDa family in Histoplasma and an ALS and 14-3-3 gene in Candida, were potentially identified by DDRT-PCR. Although very few reports have been published in medical mycology, studies in mammalian, nonfungal microbial, and plant pathogen systems are easily applied to basic questions in fungal pathogenesis and antifungal therapeutics.
Collapse
|
13
|
Sturtevant J. Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 2000; 13:408-27. [PMID: 10885984 PMCID: PMC88940 DOI: 10.1128/cmr.13.3.408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host-fungus interaction is characterized by changes in gene expression in both host and pathogen. Differential-display reverse transcription PCR (DDRT-PCR) is a PCR-based method that allows extensive analysis of gene expression among several cell populations. Several limitations and drawbacks to this procedure have now been addressed, including the large number of false-positive results and the difficulty in confirming differential expression. Modifications that simplify the reaction time, allow the use of minute quantities of RNA, or address unusual species- or gene-specific sequences have been reported. DDRT-PCR has been used to address biological questions in mammalian systems, including cell differentiation, cell activation, cell stress, and identification of drug targets. In microbial pathogenesis and plant pathogenesis, DDRT-PCR has allowed the identification of virulence factors, genes involved in cell death, and signaling genes. In Candida albicans, DDRT-PCR studies identified TIF-2, which may play a role in the upregulation of phospholipases, and the stress-related genes, CIP1 and CIP2. In Histoplasma capsulatum and C. albicans, genes involved in the host-pathogen interaction, including a member of the 100-kDa family in Histoplasma and an ALS and 14-3-3 gene in Candida, were potentially identified by DDRT-PCR. Although very few reports have been published in medical mycology, studies in mammalian, nonfungal microbial, and plant pathogen systems are easily applied to basic questions in fungal pathogenesis and antifungal therapeutics.
Collapse
Affiliation(s)
- J Sturtevant
- Department of Microbiology, Georgetown University Medical School, Washington, DC 20007, USA.
| |
Collapse
|
14
|
Franco GR, Valadão AF, Azevedo V, Rabelo EM. The Schistosoma gene discovery program: state of the art. Int J Parasitol 2000; 30:453-63. [PMID: 10731568 DOI: 10.1016/s0020-7519(00)00020-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Schistosoma are dioecious digenetic trematodes carrying a large (270 Mb) genome. Gaining knowledge about the genome of these parasites is of importance for the understanding of their biology, mechanisms of drug resistance and antigenic variation that determine escape from the host's immune system. This review will provide an update on the Schistosoma Gene Discovery Program, which is part of the Schistosoma Genome Project created in 1992. One of the main objectives of this program is the discovery and characterisation of new genes of Schistosoma mansoni and Schistosoma japonicum in an attempt to search for new targets for drugs and vaccine development. The success of the Schistosoma Gene Discovery Program is demonstrated by the number of catalogued genes, that now reaches 15 to 20% of the full gene complement of its genome.
Collapse
Affiliation(s)
- G R Franco
- Departamento de Bioquímica e Imunologia, ICB, UFMG. Av. Antônio Carlos 6627, Pampulha., Belo Horizonte, Brazil.
| | | | | | | |
Collapse
|
15
|
Gasser RB, Newton SE. Genomic and genetic research on bursate nematodes: significance, implications and prospects. Int J Parasitol 2000; 30:509-34. [PMID: 10731573 DOI: 10.1016/s0020-7519(00)00021-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular genetic research on parasitic nematodes (order Strongylida) is of major significance for many fundamental and applied areas of medical and veterinary parasitology. The advent of gene technology has led to some progress for this group of nematodes, particularly in studying parasite systematics, drug resistance and population genetics, and in the development of diagnostic assays and the characterisation of potential vaccine and drug targets. This paper gives an account of the molecular biology and genetics of strongylid nematodes, mainly of veterinary socio-economic importance, indicates the implications of such research and gives a perspective on genome research for this important parasite group, in light of recent technological advances and knowledge of the genomes of other metazoan organisms.
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria, Australia.
| | | |
Collapse
|
16
|
Reed MB, Strugnell RA, Panaccio M, Spithill TW. A novel member of the NK-lysin protein family is developmentally regulated and secreted by Fasciola hepatica. Mol Biochem Parasitol 2000; 105:297-303. [PMID: 10693752 DOI: 10.1016/s0166-6851(99)00185-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M B Reed
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
17
|
Im KI, Park KM, Yong TS, Hong YP, Kim TE. Upregulated expression of the cDNA fragment possibly related to the virulence of Acanthamoeba culbertsoni. THE KOREAN JOURNAL OF PARASITOLOGY 1999; 37:257-63. [PMID: 10634042 PMCID: PMC2733203 DOI: 10.3347/kjp.1999.37.4.257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Identification of the genes responsible for the recovery of virulence in brain-passaged Acanthamoeba culbertsoni was attempted via mRNA differential display-polymerase chain reaction (mRNA DD-PCR) analysis. In order to identify the regulatory changes in transcription of the virulence related genes by the brain passages, mRNA DD-PCR was performed which enabled the display of differentially transcribed mRNAs after the brain passages. Through mRNA DD-PCR analysis. 96 brain-passaged amoeba specific amplicons were observed and were screened to identify the amplicons that failed to amplify in the non-brain-passaged amoeba mRNAs. Out of the 96 brain-passaged amoeba specific amplicons, 12 turned out to be amplified only from the brain-passaged amoeba mRNAs by DNA slot blot hybridization. The clone, A289C, amplified with an arbitrary primer of UBC #289 and the oligo dT11-C primer, revealed the highest homology (49.8%) to the amino acid sequences of UPD-galactose lipid transferase of Erwinia amylovora, which is known to act as an important virulence factor. The deduced amino acid sequences of an insert DNA in clone A289C were also revealed to be similar to cpsD, which is the essential gene for the expression of type III capsule in group B streptococcus. Upregulated expression of clone A289C was verified by RNA slot blot hybridization. Similar hydrophobicity values were also observed between A289C (at residues 47-66) and the AmsG gene of E. amylovora (at residues 286-305: transmembrane domains). This result suggested that the insert of clone A289C might play the same function as galactosyl transferase controlled by the AmsG gene in E. amylovora.
Collapse
Affiliation(s)
- K I Im
- Department of Parasitology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
18
|
Gasser RB, Zhu XQ. Sequence-based analysis of enzymatically amplified DNA fragments by mutation detection techniques. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:462-5. [PMID: 10511690 DOI: 10.1016/s0169-4758(99)01536-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The accurate analysis of molecular variation is important in a range of disciplines of parasitology. Although conventional DNA techniques have overcome some of the limitations of traditional approaches, some can be relatively expensive and/or cumbersome to use when large sample sizes require analysis, and some cannot accurately resolve or define nucleotide variation. Using selected examples of applications to parasites, Robin Gasser and Xingquan Zhu discuss some PCR-based mutation detection techniques and their advantages over conventional analytical methods.
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia.
| | | |
Collapse
|
19
|
Abstract
DNA technology is having a major impact in many areas of veterinary parasitology. In particular, the polymerase chain reaction (PCR) has found broad applicability because its sensitivity permits enzymatic amplification of gene fragments from minute quantities of nucleic acids derived from limited amounts of parasite material. This paper discusses some recent applications of PCR-based methods to parasites and highlights their usefulness or potential for those of veterinary importance. The focus is on PCR tools for the accurate identification of parasites and their genetic characterisation, the diagnosis of infections, the isolation and characterisation of expressed genes, the detection of anthelmintic resistance, and mutation scanning approaches for the high resolution analysis of PCR products.
Collapse
MESH Headings
- Animals
- DNA, Helminth/analysis
- DNA, Helminth/chemistry
- DNA, Protozoan/analysis
- DNA, Protozoan/chemistry
- Drug Resistance
- Eukaryota/classification
- Eukaryota/genetics
- Eukaryota/isolation & purification
- Expressed Sequence Tags
- Helminthiasis, Animal/diagnosis
- Helminths/classification
- Helminths/genetics
- Helminths/isolation & purification
- Microsatellite Repeats
- Parasitic Diseases, Animal/diagnosis
- Parasitic Diseases, Animal/therapy
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/veterinary
- Polymorphism, Restriction Fragment Length
- Polymorphism, Single-Stranded Conformational
- Protozoan Infections, Animal/diagnosis
- Random Amplified Polymorphic DNA Technique/veterinary
- Sequence Analysis, DNA/veterinary
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia.
| |
Collapse
|