1
|
Tripathi A, Dosso C, Champion JA. Antifungal Activity of Electrochemically Etched Nanotextured Stainless Steel against Candida albicans and Fusarium oxysporum Fungal Cells. ACS OMEGA 2025; 10:19326-19334. [PMID: 40415840 PMCID: PMC12096193 DOI: 10.1021/acsomega.4c09511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/31/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025]
Abstract
Fungal adhesion to stainless steel, an alloy commonly used in the food and beverage sectors, public and healthcare settings, and numerous medical devices, can give rise to serious infections, ultimately leading to morbidity, mortality, and significant healthcare expenses. In this study, we demonstrate that nanotextured stainless steel (nSS) fabricated using an electrochemical technique is an antibiotic-free biocidal surface against Candida albicans and Fusarium oxysporum fungal cells with 98% and 97% reduction, respectively. The nanoprotrusion features on nSS can have both physical contact with cell membranes and a chemical impact on cells through the production of reactive species; this material should not contribute to drug-resistant fungus as antibiotics can. As nSS is also antibacterial and compatible with mammalian cells, the demonstration of antifungal activity gives nSS the potential to be used to create effective, scalable, and sustainable solutions to broadly and responsibly prevent fungal and other microbial infections caused by surface contamination.
Collapse
Affiliation(s)
- Anuja Tripathi
- School of Chemical and Biomolecular
engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia30332, United States
| | - Cheick Dosso
- School of Chemical and Biomolecular
engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia30332, United States
| | - Julie A. Champion
- School of Chemical and Biomolecular
engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia30332, United States
| |
Collapse
|
2
|
Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle. Microorganisms 2023; 11:microorganisms11020345. [PMID: 36838309 PMCID: PMC9960803 DOI: 10.3390/microorganisms11020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Morels, which belong to the Ascomycete genus Morchella, are highly valued edible fungi treasured by gourmet chefs worldwide. Some species are saprotrophic and others are able to form facultative mycorrhizal-like associations with plant roots without establishing true ectomycorrhizal symbioses. In general, it is considered that the formation of asexual spores, or mitospores, is an important step in the life cycle of morels. However, ultrastructure characterization and physiological attributes of morel mitospores have received little attention. In this contribution, the mitospores of M. sextelata were successfully induced under laboratory conditions and their ultrastructure, occurrence, germination, physiological characteristics and mating type gene structure were studied. Mitospore production was closely related to aeration, nutrition and humidity conditions. The average germination rate of mitospores on different media and under various induction stimuli was very low, with an average of 1/100,000. Based on the ultrastructure characterization, low germination rate, growth rate decline, rapid aging and mating genotyping, it was concluded that the mitospores of M. sextelata had lost their conventional function as conidia and might act more as mate sperm-like (gamete) structures. Thus, this study contributed to a deeper understanding of the life cycle of the economically and ecologically important morel fungal group.
Collapse
|
3
|
Lassagne A, Brun S, Malagnac F, Adreit H, Milazzo J, Fournier E, Tharreau D. Male fertility in Pyricularia oryzae: Microconidia are spermatia. Environ Microbiol 2022; 24:6365-6375. [PMID: 36165613 PMCID: PMC10092719 DOI: 10.1111/1462-2920.16226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/25/2022] [Indexed: 01/12/2023]
Abstract
Sexual reproduction in Ascomycetes is well described in several model organisms such as Neurospora crassa or Podospora anserina. Deciphering the biological process of sexual reproduction (from the recognition between compatible partners to the formation of zygote) can be a major advantage to better control sexually reproducing pathogenic fungi. In Pyricularia oryzae, the fungal pathogen causing blast diseases on several Poaceae species, the biology of sexual reproduction remains poorly documented. Besides the well-documented production of asexual macroconidia, the production of microconidia was seldom reported in P. oryzae, and their role as male gamete (i.e., spermatia) and in male fertility has never been explored. Here, we characterised the morphological features of microconidia and demonstrated that they are bona fide spermatia. Contrary to macroconidia, microconidia are not able to germinate and seem to be the only male gametes in P. oryzae. We show that fruiting body (perithecium) formation requires microconidia to get in contact with mycelium of strains of opposite mating type, to presumably fertilise the female gametes.
Collapse
Affiliation(s)
- Alexandre Lassagne
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France.,Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sylvain Brun
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Henri Adreit
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Joëlle Milazzo
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Elisabeth Fournier
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Didier Tharreau
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| |
Collapse
|
4
|
Cea-Sánchez S, Corrochano-Luque M, Gutiérrez G, Glass NL, Cánovas D, Corrochano LM. Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa. mBio 2022; 13:e0150522. [PMID: 35913159 PMCID: PMC9426599 DOI: 10.1128/mbio.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Asexual reproduction in fungi facilitates the dispersal and colonization of new substrates and, in pathogenic fungi, allows infection of plants and animals. The velvet complex is a fungus-specific protein complex that participates in the regulation of gene expression in response to environmental signals like light, as well as developmental processes, pathogenesis, and secondary metabolism. The velvet complex in the fungus Neurospora crassa is composed of three proteins, VE-1, VE-2, and LAE-1. Mutations in ve-1 or ve-2, but not in lae-1, led to shorter heights of aerial tissue, a mixture of aerial hyphae and developing macroconidia, and increased microconidiation when they were combined with mutations in the transcription factor gene fl. VE-2 and LAE-1 were detected during vegetative growth and conidiation, unlike VE-1, which was mostly observed in samples obtained from submerged vegetative hyphae. We propose that VE-1 is the limiting component of the velvet complex during conidiation and has a major role in the transcriptional regulation of conidiation. Characterization of the role of VE-1 during mycelial growth and asexual development (conidiation) by transcriptome sequencing (RNA-seq) experiments allowed the identification of a set of genes regulated by VE-1 that participate in the regulation of conidiation, most notably the transcription factor genes vib-1 and fl. We propose that VE-1 and VE-2 regulate the development of aerial tissue and the balance between macro- and microconidiation in coordination with FL and VIB-1. IMPORTANCE Most fungi disperse in nature and infect new hosts by producing vegetative spores or conidia during asexual development. This is a process that is regulated by environmental signals like light and the availability of nutrients. A protein complex, the velvet complex, participates in the integration of environmental signals to regulate conidiation. We have found that a key component of this complex in the fungus Neurospora crassa, VE-1, has a major role in the regulation of transcription during conidiation. VE-1 regulates a large number of genes, including the genes for the transcription factors FL and VIB-1. Our results will help to understand how environmental signals are integrated in the fungal cell to regulate development.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - N. Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, Berkeley, California, USA
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
The Resonance and Adaptation of Neurospora crassa Circadian and Conidiation Rhyth ms to Short Light-Dark Cycles. J Fungi (Basel) 2021; 8:jof8010027. [PMID: 35049967 PMCID: PMC8780863 DOI: 10.3390/jof8010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Circadian clocks control the physiological and behavioral rhythms to adapt to the environment with a period of ~24 h. However, the influences and mechanisms of the extreme light/dark cycles on the circadian clock remain unclear. We showed that, in Neurospora crassa, both the growth and the microconidia production contribute to adaptation in LD12:12 (12 h light/12 h dark, periodically). Mathematical modeling and experiments demonstrate that in short LD cycles, the expression of the core clock protein FREQUENCY was entrained to the LD cycles when LD > 3:3 while it free ran when T ≤ LD3:3. The conidial rhythmicity can resonate with a series of different LD conditions. Moreover, we demonstrate that the existence of unknown blue light photoreceptor(s) and the circadian clock might promote the conidiation rhythms that resonate with the environment. The ubiquitin E3 ligase FWD-1 and the previously described CRY-dependent oscillator system were implicated in regulating conidiation under short LD conditions. These findings shed new light on the resonance of Neurospora circadian clock and conidiation rhythms to short LD cycles, which may benefit the understandings of both the basic regulatory aspects of circadian clock and the adaptation of physiological rhythms to the extreme conditions.
Collapse
|
6
|
Abstract
True morels (Morchella spp., Morchellaceae, Ascomycota) are widely regarded as a highly prized delicacy and are of great economic and scientific value. Recently, the rapid development of cultivation technology and expansion of areas for artificial morel cultivation have propelled morel research into a hot topic. Many studies have been conducted in various aspects of morel biology, but despite this, cultivation sites still frequently report failure to fruit or only low production of fruiting bodies. Key problems include the gap between cultivation practices and basic knowledge of morel biology. In this review, in an effort to highlight the mating systems, evolution, and life cycle of morels, we summarize the current state of knowledge of morel sexual reproduction, the structure and evolution of mating-type genes, the sexual process itself, and the influence of mating-type genes on the asexual stages and conidium production. Understanding of these processes is critical for improving technology for the cultivation of morels and for scaling up their commercial production. Morel species may well be good candidates as model species for improving sexual development research in ascomycetes in the future.
Collapse
|
7
|
Microconidia: Understanding Its Role in the Fungus Magnaporthe oryzae Inciting Rice Blast Disease. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Yuan BH, Li H, Liu L, Du XH. Successful induction and recognition of conidiation, conidial germination and chlamydospore formation in pure culture of Morchella. Fungal Biol 2020; 125:285-293. [PMID: 33766307 DOI: 10.1016/j.funbio.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Morels, fungi from the genus Morchella, are popular edible mushrooms. However, little knowledge of their asexual reproduction and inaccessible pure mitospores hamper illumination of their life cycle. Herein, we successfully induced conidiation, conidial germination and chlamydospore formation in pure culture of Morchella sextelata. Conidiation proceeded via four morphologically distinct stages: development of the conidiophore stalk, stalk branching, phialide differentiation, and conidium production. Terminal and intercalary chlamydospores were formed on conidial hyphae. The development of conidiophores occurred earlier, with more conidia produced, in cross-mating cultures than in single-spore cultures. Mature conidia were spherical and 2.5-8 μm in diameter, with a vast majority (nearly 99%) 2.5-5 μm in diameter. Each conidium contained one to three nuclei (80.2% conidia contained one nucleus, 19.1% contained two nuclei, and 0.7% contained three nuclei). The conidial nucleus diameter was 1-2 μm. The nuclear mitosis in detached conidia that was observed may benefit their colony initiation. Additionally, morel conidia formed conidial anastomosis tubes. Conidia (mitospores) likely not only function as spermatia, but also as reproductive propagules in Morchella. Further research is imperative to elucidate the relationship between the conidia and chlamydospores, and their unique function in the morel life cycle.
Collapse
Affiliation(s)
- Bin-Hong Yuan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Huan Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Lu Liu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
9
|
Wild Isolates of Neurospora crassa Reveal Three Conidiophore Architectural Phenotypes. Microorganisms 2020; 8:microorganisms8111760. [PMID: 33182369 PMCID: PMC7695285 DOI: 10.3390/microorganisms8111760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The vegetative life cycle in the model filamentous fungus, Neurospora crassa, relies on the development of conidiophores to produce new spores. Environmental, temporal, and genetic components of conidiophore development have been well characterized; however, little is known about their morphological variation. We explored conidiophore architectural variation in a natural population using a wild population collection of 21 strains from Louisiana, United States of America (USA). Our work reveals three novel architectural phenotypes, Wild Type, Bulky, and Wrap, and shows their maintenance throughout the duration of conidiophore development. Furthermore, we present a novel image-classifier using a convolutional neural network specifically developed to assign conidiophore architectural phenotypes in a high-throughput manner. To estimate an inheritance model for this discrete complex trait, crosses between strains of each phenotype were conducted, and conidiophores of subsequent progeny were characterized using the trained classifier. Our model suggests that conidiophore architecture is controlled by at least two genes and has a heritability of 0.23. Additionally, we quantified the number of conidia produced by each conidiophore type and their dispersion distance, suggesting that conidiophore architectural phenotype may impact N. crassa colonization capacity.
Collapse
|
10
|
Nordzieke DE, Sanken A, Antelo L, Raschke A, Deising HB, Pöggeler S. Specialized infection strategies of falcate and oval conidia of Colletotrichum graminicola. Fungal Genet Biol 2019; 133:103276. [PMID: 31550526 DOI: 10.1016/j.fgb.2019.103276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/12/2023]
Abstract
For many filamentous fungi with pathogenic lifestyles, the presence of distinct asexual conidia has been described. However, the role of these spore types remains mostly obscure. Colletotrichum graminicola is a hemibiotrophic filamentous fungus, causing anthracnose on maize plants with a high potential of epidemic disease spreading. C. graminicola generates two types of conidia. Falcate shaped conidia formed in necrotic lesions on maize tissues are able to generate appressoria with high efficiency and are considered key disease spreading propagules. The second conidia type, the smaller oval conidia, is formed in the vascular system of the infected plant, probably causing the distribution of the disease in planta. Barely any knowledge exists about how these conidia are able to exhibit their specific functions in the life cycle and pathogenicity of C. graminicola. Here, we show that germlings derived from both falcate and oval conidia differ in the secretion of a germination inhibitor and signals for germling fusion. Germination experiments combined with HPLC and mass spectrometry analyses revealed that germination of falcate conidia is regulated by the self-inhibitor mycosporine-glutamine, whereas this compound is absent from oval conidia cultures. Additionally, germlings derived from oval conidia undergo germling fusions at high frequencies and are able to induce such a fusion when co-incubated with falcate conidia. Falcate conidia germlings alone, however, were never observed to fuse. Plant infection experiments showed a positive correlation between germling fusions and efficient leaf infection by oval conidia. However, this correlation was not observed for infection by falcate conidia. Together, our findings reveal significant differences of two types of conidia derived from the same pathogenic fungus with distinct roles in pathogenesis.
Collapse
Affiliation(s)
- Daniela E Nordzieke
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstrasse 8, DE-37081 Göttingen, Germany.
| | - Alina Sanken
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstrasse 8, DE-37081 Göttingen, Germany
| | - Luis Antelo
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger-Strasse 56, DE-67663 Kaiserslautern, Germany
| | - Anja Raschke
- Institute for Agricultural and Nutritional Sciences, Faculty for Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 3, DE-06120 Halle (Saale), Germany
| | - Holger B Deising
- Institute for Agricultural and Nutritional Sciences, Faculty for Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 3, DE-06120 Halle (Saale), Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstrasse 8, DE-37081 Göttingen, Germany
| |
Collapse
|
11
|
Conidiation in Neurospora crassa: vegetative reproduction by a model fungus. Int Microbiol 2019; 23:97-105. [DOI: 10.1007/s10123-019-00085-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
12
|
Johannesson H, Gustafsson M, Stenlid J. Local population structure of the wood decay ascomyceteDaldinia loculata. Mycologia 2019. [DOI: 10.1080/00275514.2001.12063176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hanna Johannesson
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Pathology, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Mårten Gustafsson
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Pathology, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Jan Stenlid
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Pathology, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| |
Collapse
|
13
|
He P, Wang K, Cai Y, Liu W. Live cell confocal laser imaging studies on the nuclear behavior during meiosis and ascosporogenesis in Morchella importuna under artificial cultivation. Micron 2017; 101:108-113. [DOI: 10.1016/j.micron.2017.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/24/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
|
14
|
De la Varga H, Le Tacon F, Lagoguet M, Todesco F, Varga T, Miquel I, Barry-Etienne D, Robin C, Halkett F, Martin F, Murat C. Five years investigation of female and male genotypes in périgord black truffle (Tuber melanosporum
Vittad.) revealed contrasted reproduction strategies. Environ Microbiol 2017; 19:2604-2615. [DOI: 10.1111/1462-2920.13735] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Herminia De la Varga
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | - François Le Tacon
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | - Mélanie Lagoguet
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | - Flora Todesco
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | - Torda Varga
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | - Igor Miquel
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | | | - Christophe Robin
- UMR 1121 Laboratoire Agronomie-Environnement, Nancy-Colmar; INRA, Université de Lorraine; Vandoeuvre-les-Nancy 54518 France
| | - Fabien Halkett
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | - Francis Martin
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| | - Claude Murat
- UMR1136 Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE; INRA, Université de Lorraine; Champenoux F-54280 France
| |
Collapse
|
15
|
Onuţ-Brännström I, Tibell L, Johannesson H. A worldwide phylogeography of the whiteworm lichens Thamnolia reveals three lineages with distinct habitats and evolutionary histories. Ecol Evol 2017; 7:3602-3615. [PMID: 28515896 PMCID: PMC5433967 DOI: 10.1002/ece3.2917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
Thamnolia is a lichenized fungus with an extremely wide distribution, being encountered in arctic and alpine environments in most continents. In this study, we used molecular markers to investigate the population structure of the fungal symbiont and the associated photosynthetic partner of Thamnolia. By analyzing molecular, morphological, and chemical variation among 253 specimens covering the species distribution range, we revealed the existence of three mycobiont lineages. One lineage (Lineage A) is confined to the tundra region of Siberia and the Aleutian Islands, a second (Lineage B) is found in the high alpine region of the Alps and the Carpathians Mountains, and a third (Lineage C) has a worldwide distribution and covers both the aforementioned ecosystems. Molecular dating analysis indicated that the split of the three lineages is older than the last glacial maximum, but the distribution ranges and the population genetic analyses suggest an influence of last glacial period on the present‐day population structure of each lineage. We found a very low diversity of Lineage B, but a higher and similar one in Lineages A and C. Demographic analyses suggested that Lineage C has its origin in the Northern Hemisphere, possibly Scandinavia, and that it has passed through a bottleneck followed by a recent population expansion. While all three lineages reproduce clonally, recombination tests suggest rare or past recombination in both Lineages A and C. Moreover, our data showed that Lineage C has a comparatively low photobiont specificity, being found associated with four widespread Trebouxia lineages (three of them also shared with other lichens), while Lineages A and B exclusively harbor T. simplex s. lat. Finally, we did not find support for the recognition of taxa in Thamnolia based on either morphological or chemical characters.
Collapse
Affiliation(s)
- Ioana Onuţ-Brännström
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Leif Tibell
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Hanna Johannesson
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
16
|
Wang Z, Jin K, Xia Y. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients. BMC Genomics 2016; 17:586. [PMID: 27506833 PMCID: PMC4979188 DOI: 10.1186/s12864-016-2971-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. Results In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. Conclusions The results indicate that M. acridum shifts conidiation pattern from microcycle conidiation to normal conidiation when there is increased sucrose, nitrate, or phosphate in the medium during microcycle conidiation. The regulation of conidiation patterning is a complex process involving the cell cycle and metabolism of M. acridum. This study provides essential information about the molecular mechanism of the induction of the conidiation pattern shift by single nutrients. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2971-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenglong Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
17
|
A serine/threonine kinase gene BcATG1 is involved in conidiation and sclerotial development in Botrytis cinerea. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Case ME, Griffith J, Dong W, Tigner IL, Gaines K, Jiang JC, Jazwinski SM, Arnold J. The aging biological clock in Neurospora crassa. Ecol Evol 2014; 4:3494-507. [PMID: 25535564 PMCID: PMC4228622 DOI: 10.1002/ece3.1202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/25/2014] [Indexed: 12/22/2022] Open
Abstract
The biological clock affects aging through ras-1 (bd) and lag-1, and these two longevity genes together affect a clock phenotype and the clock oscillator in Neurospora crassa. Using an automated cell-counting technique for measuring conidial longevity, we show that the clock-associated genes lag-1 and ras-1 (bd) are true chronological longevity genes. For example, wild type (WT) has an estimated median life span of 24 days, while the double mutant lag-1, ras-1 (bd) has an estimated median life span of 120 days for macroconidia. We establish the biochemical function of lag-1 by complementing LAG1 and LAC1 in Saccharomyces cerevisiae with lag-1 in N. crassa. Longevity genes can affect the clock as well in that, the double mutant lag-1, ras-1 (bd) can stop the circadian rhythm in asexual reproduction (i.e., banding in race tubes) and lengthen the period of the frequency oscillator to 41 h. In contrast to the ras-1 (bd), lag-1 effects on chronological longevity, we find that this double mutant undergoes replicative senescence (i.e., the loss of replication function with time), unlike WT or the single mutants, lag-1 and ras-1 (bd). These results support the hypothesis that sphingolipid metabolism links aging and the biological clock through a common stress response
Collapse
Affiliation(s)
- Mary E Case
- Department of Genetics, University of Georgia Athens, Georgia, 30602
| | - James Griffith
- Department of Genetics, University of Georgia Athens, Georgia, 30602 ; College of Agricultural and Environmental Sciences, University of Georgia Athens, Georgia, 30602
| | - Wubei Dong
- Department of Genetics, University of Georgia Athens, Georgia, 30602
| | - Ira L Tigner
- Department of Genetics, University of Georgia Athens, Georgia, 30602
| | - Kimberly Gaines
- Department of Genetics, University of Georgia Athens, Georgia, 30602
| | - James C Jiang
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, Louisiana, 70112
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, Louisiana, 70112
| | - Jonathan Arnold
- Department of Genetics, University of Georgia Athens, Georgia, 30602
| | | |
Collapse
|
19
|
Germination and infectivity of microconidia in the rice blast fungus Magnaporthe oryzae. Nat Commun 2014; 5:4518. [PMID: 25082370 PMCID: PMC4143928 DOI: 10.1038/ncomms5518] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae is a model for studying fungal-plant interactions. Although it produces two types of spores (microconidia and macroconidia), previous infection studies have exclusively dealt with macroconidia. Germination of microconidia has not been reported, and their role in plant infection is not defined. Here we show that approximately 10% of microconidia germinate on plant surfaces, and that colonies derived from germinated microconidia are normal in growth and pathogenesis. In infection assays with rice and barley seedlings, microconidia fail to infect intact plants, but they can colonize and develop necrotic lesions on wounded leaves and stems. Microconidia also cause disease symptoms on inoculated spikelets in infection assays with barley and Brachypodium heads. Furthermore, microconidia are detected inside rice plants that developed blast lesions under laboratory or field conditions. Therefore, microconidia can germinate and are infectious, and may be an important factor in the rice blast cycle.
Collapse
|
20
|
Nieuwenhuis BPS, Aanen DK. Sexual selection in fungi. J Evol Biol 2013; 25:2397-411. [PMID: 23163326 DOI: 10.1111/jeb.12017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 12/14/2022]
Abstract
The significance of sexual selection, the component of natural selection associated with variation in mating success, is well established for the evolution of animals and plants, but not for the evolution of fungi. Even though fungi do not have separate sexes, most filamentous fungi mate in a hermaphroditic fashion, with distinct sex roles, that is, investment in large gametes (female role) and fertilization by other small gametes (male role). Fungi compete to fertilize, analogous to 'male-male' competition, whereas they can be selective when being fertilized, analogous to female choice. Mating types, which determine genetic compatibility among fungal gametes, are important for sexual selection in two respects. First, genes at the mating-type loci regulate different aspects of mating and thus can be subject to sexual selection. Second, for sexual selection, not only the two sexes (or sex roles) but also the mating types can form the classes, the members of which compete for access to members of the other class. This is significant if mating-type gene products are costly, thus signalling genetic quality according to Zahavi's handicap principle. We propose that sexual selection explains various fungal characteristics such as the observed high redundancy of pheromones at the B mating-type locus of Agaricomycotina, the occurrence of multiple types of spores in Ascomycotina or the strong pheromone signalling in yeasts. Furthermore, we argue that fungi are good model systems to experimentally study fundamental aspects of sexual selection, due to their fast generation times and high diversity of life cycles and mating systems.
Collapse
Affiliation(s)
- B P S Nieuwenhuis
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|
21
|
Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations? Appl Microbiol Biotechnol 2013; 97:1457-73. [DOI: 10.1007/s00253-012-4655-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
|
22
|
Corcoran P, Jacobson DJ, Bidartondo MI, Hickey PC, Kerekes JF, Taylor JW, Johannesson H. Quantifying functional heterothallism in the pseudohomothallic ascomycete Neurospora tetrasperma. Fungal Biol 2012; 116:962-75. [PMID: 22954339 DOI: 10.1016/j.funbio.2012.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Neurospora tetrasperma is a pseudohomothallic filamentous ascomycete that has evolved from heterothallic ancestors. Throughout its life cycle, it is predominantly heterokaryotic for mating type, and thereby self-fertile. However, studies of N. tetrasperma have revealed the occasional production of self-sterile asexual and sexual spores of a single-mating type, indicating that it can be functionally heterothallic. Here, we report the extensive sampling and isolation of natural, heterokaryotic, strains of N. tetrasperma from the United Kingdom (UK): 99 strains were collected from Surrey, England, and four from Edinburgh, Scotland. We verified by phylogenetic analyses that these strains belong to N. tetrasperma. We isolated cultures from single germinated asexual spores (conidia) from 17 of these newly sampled UK strains from Surrey, and 16 previously sampled strains of N. tetrasperma from New Zealand (NZ). Our results show that the N. tetrasperma strains from the UK population produced a significantly greater proportion of self-sterile, homokaryotic conidia than the NZ population: the proportion of homokaryotic conidia was 42.6 % (133/312 spores) and 15.3 % (59/386) from the UK and the NZ populations, respectively. Although homokaryons recovered from several strains show a bias for one of the mating types, the total ratio of mat A to mat a mating type in homokaryons (UK: 72/61, NZ 28/31) did not deviate significantly from the expected 1:1 ratio for either of these populations. These results indicate that different populations exhibit differences in their life cycle characteristics, and that a higher degree of outcrossing might be expected from the UK population. This study points to the importance of studying multiple strains and populations when investigating life history traits of an organism with a complex life cycle, as previously undetected differences between populations may be revealed.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Neurospora crassa Light Signal Transduction Is Affected by ROS. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:791963. [PMID: 22046507 PMCID: PMC3199206 DOI: 10.1155/2012/791963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/23/2011] [Indexed: 11/17/2022]
Abstract
In the ascomycete fungus Neurospora crassa blue-violet light controls the expression of genes responsible for differentiation of reproductive structures, synthesis of secondary metabolites, and the circadian oscillator activity. A major photoreceptor in Neurospora cells is WCC, a heterodimeric complex formed by the PAS-domain-containing polypeptides WC-1 and WC-2, the products of genes white collar-1 and white collar-2. The photosignal transduction is started by photochemical activity of an excited FAD molecule noncovalently bound by the LOV domain (a specialized variant of the PAS domain). The presence of zinc fingers (the GATA-recognizing sequences) in both WC-1 and WC-2 proteins suggests that they might function as transcription factors. However, a critical analysis of the phototransduction mechanism considers the existence of residual light responses upon absence of WCC or its homologs in fungi. The data presented
point at endogenous ROS generated by a photon stimulus as an alternative input to pass on light signals to downstream targets.
Collapse
|
25
|
Abstract
Sexual reproduction enables genetic exchange in eukaryotic organisms as diverse as fungi, animals, plants, and ciliates. Given its ubiquity, sex is thought to have evolved once, possibly concomitant with or shortly after the origin of eukaryotic organisms themselves. The basic principles of sex are conserved, including ploidy changes, the formation of gametes via meiosis, mate recognition, and cell-cell fusion leading to the production of a zygote. Although the basic tenants are shared, sex determination and sexual reproduction occur in myriad forms throughout nature, including outbreeding systems with more than two mating types or sexes, unisexual selfing, and even examples in which organisms switch mating type. As robust and diverse genetic models, fungi provide insights into the molecular nature of sex, sexual specification, and evolution to advance our understanding of sexual reproduction and its impact throughout the eukaryotic tree of life.
Collapse
Affiliation(s)
- Min Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
26
|
Li S, Motavaze K, Kafes E, Suntharalingam S, Lakin-Thomas P. A new mutation affecting FRQ-less rhythms in the circadian system of Neurospora crassa. PLoS Genet 2011; 7:e1002151. [PMID: 21731506 PMCID: PMC3121751 DOI: 10.1371/journal.pgen.1002151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 05/09/2011] [Indexed: 11/23/2022] Open
Abstract
We are using the fungus Neurospora crassa as a model organism to study the circadian system of eukaryotes. Although the FRQ/WCC feedback loop is said to be central to the circadian system in Neurospora, rhythms can still be seen under many conditions in FRQ-less (frq knockout) strains. To try to identify components of the FRQ-less oscillator (FLO), we carried out a mutagenesis screen in a FRQ-less strain and selected colonies with altered conidiation (spore-formation) rhythms. A mutation we named UV90 affects rhythmicity in both FRQ-less and FRQ-sufficient strains. The UV90 mutation affects FRQ-less rhythms in two conditions: the free-running long-period rhythm in choline-depleted chol-1 strains becomes arrhythmic, and the heat-entrained rhythm in the frq10 knockout is severely altered. In a FRQ-sufficient background, the UV90 mutation causes damping of the free-running conidiation rhythm, reduction of the amplitude of the FRQ protein rhythm, and increased phase-resetting responses to both light and heat pulses, consistent with a decreased amplitude of the circadian oscillator. The UV90 mutation also has small but significant effects on the period of the conidiation rhythm and on growth rate. The wild-type UV90 gene product appears to be required for a functional FLO and for sustained, high-amplitude rhythms in FRQ-sufficient conditions. The UV90 gene product may therefore be a good candidate for a component of the FRQ-less oscillator. These results support a model of the Neurospora circadian system in which the FRQ/WCC feedback loop mutually interacts with a single FLO in an integrated circadian system. All eukaryotes (including humans), and some bacteria, have evolved internal biological clocks that control activity and physiology in a daily (circadian) cycle. The molecular oscillators that drive these circadian rhythms are said to depend on rhythmic expression and feedback regulation of a small set of “clock genes.” However, there is increasing evidence that there is more to the story than these well-studied feedback loops. In the fungus Neurospora crassa, rhythms can still be seen in mutants that are missing one of the clock genes, frq. There is currently a controversy as to whether there are many different frq-less oscillators and whether they interact with the frq clock. To identify the molecular mechanism that drives these frq-less rhythms, we started with a frq-less strain and mutagenized it to look for genes that affect the frq-less rhythms. We found a new mutation that not only disrupted two frq-less rhythms but also affected the rhythm when the frq gene is present. Our results suggest there is only one frq-less oscillator, and it interacts with the frq clock. Our new mutation may identify a gene that is critical to both oscillators. We suggest that a similar clock architecture may be common to all organisms.
Collapse
Affiliation(s)
- Sanshu Li
- Department of Biology, York University, Toronto, Canada
| | - Kamyar Motavaze
- Department of Biology, York University, Toronto, Canada
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
28
|
Pintye A, Legler SE, Kiss L. New records of microcyclic conidiogenesis in some powdery mildew fungi. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0093-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Chung DW, Greenwald C, Upadhyay S, Ding S, Wilkinson HH, Ebbole DJ, Shaw BD. acon-3, the Neurospora crassa ortholog of the developmental modifier, medA, complements the conidiation defect of the Aspergillus nidulans mutant. Fungal Genet Biol 2011; 48:370-6. [DOI: 10.1016/j.fgb.2010.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
30
|
Pérez G, Slippers B, Wingfield BD, Hunter GC, Wingfield MJ. Micro- and macrospatial scale analyses illustrates mixed mating strategies and extensive geneflow in populations of an invasive haploid pathogen. Mol Ecol 2010; 19:1801-13. [PMID: 20529069 DOI: 10.1111/j.1365-294x.2010.04584.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sexual reproduction in fungi involves either a single individual (selfing) or two individuals (outcrossing). To investigate the roles that these two strategies play in the establishment of an invasive alien pathogen, the Eucalyptus leaf-infecting fungus, Teratosphaeria (Mycosphaerella) nubilosa was studied. Specifically, the genetic diversity of the pathogen was investigated at micro and macrospatial scales. Interestingly, while data obtained at microspatial scales show clearly that selfing is the main reproductive strategy, at macrospatial scales the population genetic structure was consistent with a genetically outcrossing organism. Additional analyses were performed to explore these apparently discordant results at different spatial scales and to quantify the contribution of selfing vs. outcrossing to the genotypic diversity. The results clearly show that the fungus has a mixed mating strategy. While selfing is the predominant form of mating, outcrosses must have occurred in the pathogen that increased the genotypic diversity of the fungus over time. This mating strategy, coupled with the high levels of geneflow between distant populations of the pathogen, has created an even distribution of maximum diversity from the smallest (leaf) to largest scales (>500 km), which will make breeding for resistance difficult. These data illustrate the evolutionary potential and danger of the introduction of multiple genotypes of a potentially outcrossing pathogen, especially when it has a high dispersal potential.
Collapse
Affiliation(s)
- Guillermo Pérez
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| | | | | | | | | |
Collapse
|
31
|
The NDR kinase DBF-2 is involved in regulation of mitosis, conidial development, and glycogen metabolism in Neurospora crassa. EUKARYOTIC CELL 2009; 9:502-13. [PMID: 19966031 DOI: 10.1128/ec.00230-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurospora crassa dbf-2 encodes an NDR (nuclear Dbf2-related) protein kinase, homologous to LATS1, a core component of the Hippo pathway. This pathway plays important roles in restraining cell proliferation and promoting apoptosis in differentiating cells. Here, we demonstrate that DBF-2 is involved in three fundamental processes in a filamentous fungus: cell cycle regulation, glycogen biosynthesis, and conidiation. DBF-2 is predominantly localized to the nucleus, and most (approximately 60%) dbf-2 null mutant nuclei are delayed in mitosis, indicating that DBF-2 activity is required for properly completing the cell cycle. The dbf-2 mutant exhibits reduced basal hyphal extension rates accompanied by a carbon/nitrogen ratio-dependent bursting of hyphal tips, vast glycogen leakage, defects in aerial hypha formation, and impairment of all three asexual conidiation pathways in N. crassa. Our findings also indicate that DBF-2 is essential for sexual reproduction in a filamentous fungus. Defects in other Hippo and glycogen metabolism pathway components (mob-1, ccr-4, mst-1, and gsk-3) share similar phenotypes such as mitotic delay and decreased CDC-2 (cell division cycle 2) protein levels, massive hyphal swellings, hyphal tip bursting, glycogen leakage, and impaired conidiation. We propose that DBF-2 functions as a link between Hippo and glycogen metabolism pathways.
Collapse
|
32
|
Abstract
Telomeres and subtelomere regions have vital roles in cellular homeostasis and can facilitate niche adaptation. However, information on telomere/subtelomere structure is still limited to a small number of organisms. Prior to initiation of this project, the Neurospora crassa genome assembly contained only 3 of the 14 telomeres. The missing telomeres were identified through bioinformatic mining of raw sequence data from the genome project and from clones in new cosmid and plasmid libraries. Their chromosomal locations were assigned on the basis of paired-end read information and/or by RFLP mapping. One telomere is attached to the ribosomal repeat array. The remaining chromosome ends have atypical structures in that they lack distinct subtelomere domains or other sequence features that are associated with telomeres in other organisms. Many of the chromosome ends terminate in highly AT-rich sequences that appear to be products of repeat-induced point mutation, although most are not currently repeated sequences. Several chromosome termini in the standard Oak Ridge wild-type strain were compared to their counterparts in an exotic wild type, Mauriceville. This revealed that the sequences immediately adjacent to the telomeres are usually genome specific. Finally, despite the absence of many features typically found in the telomere regions of other organisms, the Neurospora chromosome termini still retain the dynamic nature that is characteristic of chromosome ends.
Collapse
|
33
|
Maheshwari R. Circadian rhythm in the pink-orange bread mould Neurospora crassa: for what? J Biosci 2007; 32:1053-8. [PMID: 17954967 DOI: 10.1007/s12038-007-0107-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Verma M, Brar SK, Tyagi R, Surampalli R, Valéro J. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.05.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Bayram O, Krappmann S, Seiler S, Vogt N, Braus GH. Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 2007; 45:127-38. [PMID: 17631397 DOI: 10.1016/j.fgb.2007.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/25/2007] [Accepted: 06/04/2007] [Indexed: 12/20/2022]
Abstract
The velvet factor of the homothallic fungus Aspergillus nidulans promotes sexual fruiting body formation. The encoding veA gene is conserved among fungi, including the ascomycete Neurospora crassa. There, the orthologous ve-1 gene encodes a deduced protein with high similarity to A. nidulans VeA. Cross-complementation experiments suggest that both the promoter and the coding sequence of N. crassa ve-1 are functional to complement the phenotype of an A. nidulans deletion mutant. Moreover, ve-1 expression in the heterologous host A. nidulans results in development of reproductive structures in a light-dependent manner, promoting sexual development in the darkness while stimulating asexual sporulation under illumination. Deletion of the N. crassa ve-1 locus by homologous gene replacement causes formation of shortened aerial hyphae accompanied by a significant increase in asexual conidiation, which is not light-dependent. Our data suggest that the conserved velvet proteins of A. nidulans and N. crassa exhibit both similar and different functions to influence development of these two ascomycetes.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institute of Microbiology & Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
36
|
Tremmel D, Duarte M, Videira A, Tropschug M. FKBP22 is part of chaperone/folding catalyst complexes in the endoplasmic reticulum ofNeurospora crassa. FEBS Lett 2007; 581:2036-40. [PMID: 17470367 DOI: 10.1016/j.febslet.2007.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/17/2007] [Indexed: 11/17/2022]
Abstract
FKBP22 is a dimeric protein in the lumen of the endoplasmic reticulum, which exhibits a chaperone as well as a PPIase activity. It binds via its FK506 binding protein (FKBP) domain directly to the Hsp70 chaperone BiP that stimulates the chaperone activity of FKBP22. Here we demonstrate additionally the association of FKBP22 with the molecular chaperones and folding catalysts Grp170, alpha-subunit of glucosidase II, PDI, ERp38, and CyP23. These proteins are associated with FKBP22 in at least two protein complexes. Furthermore, we report an essential role for FKBP22 in the development of microconidiophores in Neurospora crassa.
Collapse
Affiliation(s)
- Dirk Tremmel
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
37
|
Lee MH, Bostock RM. Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr Genet 2006; 49:309-22. [PMID: 16468040 DOI: 10.1007/s00294-006-0059-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
A transformation system utilizing Agrobacterium tumefaciens was developed for targeted gene disruption in Monilinia fructicola, a fungal pathogen that causes brown rot disease of stone fruits. Transformation with a vector containing the neomycin phosphotransferase II (nptII) cassette flanked with 4 kb cutinase gene (Mfcut1) flanking sequences resulted in an average of 13 transformants per 10(5) spores. When assayed by PCR and DNA blot analyses, more than 50% of the transformants recovered had integrated in the targeted Mfcut1 locus. Both target-gene-specific and non-specific integrations carried direct (head-to-tail) repeat T-DNA integrations. Sequence analysis of these T-DNA integrations revealed that 26 bp of the T-DNA right border were missing at the junctions between direct repeats in all cases. The recombination event during non-specific T-DNA integration in this fungus was unlike that reported in Agrobacterium-mediated transformation in plants.
Collapse
Affiliation(s)
- Miin-Huey Lee
- Department of Plant Pathology, University of California, One Shields Ave, Davis, CA 95616, USA
| | | |
Collapse
|
38
|
Verma M, Brar SK, Tyagi RD, Valéro JR, Surampalli RY. Wastewater sludge as a potential raw material for antagonistic fungus (Trichoderma sp.): role of pre-treatment and solids concentration. WATER RESEARCH 2005; 39:3587-96. [PMID: 16095662 DOI: 10.1016/j.watres.2005.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 05/03/2023]
Abstract
Feasibility of production of antagonistic Trichoderma sp. conidial spores using wastewater sludge as a raw material employing different suspended solids concentration (10-50 g/l) was investigated in shake flasks. Maximum conidial spore count obtained for raw sludge was 1.98 x 10(4) CFU/ml, which was enhanced by sludge pre-treatments (alkaline and thermal alkaline). Conidial spore count ranging from 1.3 x 10(6) to 2.8 x 10(7) CFU/ml was observed for alkaline and thermal alkaline treated sludges. Optimal suspended solids concentration was 30 g/l (10(7) CFU/ml) whereas, lower (<20 g/l) and higher (>30 g/l) solids concentration were less efficient. Thermal alkaline pre-treated sludge showed diauxic growth due to multiplicity of sludge biodegradability. A simple, modified CFU filtration technique was also developed for fungal spore assessment in sludge. Bioassay of fermented sludge against spruce budworm larvae showed entomotoxicity (15036 SBU/microl), on par with Bacillus thuringiensis biopesticides. This study successfully demonstrated potential of wastewater sludge as a raw material for production of value added product, aiding in sludge management and proliferation of eco-friendly and economical biocontrol agents.
Collapse
Affiliation(s)
- Mausam Verma
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada G1K 9A9
| | | | | | | | | |
Collapse
|
39
|
Fleissner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. EUKARYOTIC CELL 2005; 4:920-30. [PMID: 15879526 PMCID: PMC1140088 DOI: 10.1128/ec.4.5.920-930.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The process of cell fusion is a basic developmental feature found in most eukaryotic organisms. In filamentous fungi, cell fusion events play an important role during both vegetative growth and sexual reproduction. We employ the model organism Neurospora crassa to dissect the mechanisms of cell fusion and cell-cell communication involved in fusion processes. In this study, we characterized a mutant with a mutation in the gene so, which exhibits defects in cell fusion. The so mutant has a pleiotropic phenotype, including shortened aerial hyphae, an altered conidiation pattern, and female sterility. Using light microscopy and heterokaryon tests, the so mutant was shown to possess defects in germling and hyphal fusion. Although so produces conidial anastomosis tubes, so germlings did not home toward wild-type germlings nor were wild-type germlings attracted to so germlings. We employed a trichogyne attraction and fusion assay to determine whether the female sterility of the so mutant is caused by impaired communication or fusion failure between mating partners. so showed no defects in attraction or fusion between mating partners, indicating that so is specific for vegetative hyphal fusion and/or associated communication events. The so gene encodes a protein of unknown function, but which contains a WW domain; WW domains are predicted to be involved in protein-protein interactions. Database searches showed that so was conserved in the genomes of filamentous ascomycete fungi but was absent in ascomycete yeast and basidiomycete species.
Collapse
Affiliation(s)
- André Fleissner
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720-3102, USA
| | | | | | | | | | | |
Collapse
|
40
|
Maheshwari R. Nuclear behavior in fungal hyphae. FEMS Microbiol Lett 2005; 249:7-14. [PMID: 16002240 DOI: 10.1016/j.femsle.2005.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/07/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022] Open
Abstract
A characteristic feature of fungal hypha is the presence of large number of nuclei in a common cytoplasmic environment. Where it has been examined, the coenocytic mycelium is commonly heterokaryotic. The nuclei cooperate, compete or combat. It is proposed that in addition to their classical role in heredity, supernumerary nuclei in filamentous fungi serve as store house for nitrogen and phosphorus in the form of DNA which is degraded by regulated autophagy. The breakdown products recycled, giving hyphal tips the capability of persistent extension and foraging in new areas.
Collapse
Affiliation(s)
- Ramesh Maheshwari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
41
|
Kim H, Borkovich KA. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 2005; 52:1781-98. [PMID: 15186425 DOI: 10.1111/j.1365-2958.2004.04096.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurospora crassa is a heterothallic filamentous fungus with two mating types, mat a and mat A. Its mating involves differentiation of female reproductive structures (protoperithecia) and chemotropic growth of female-specific hyphae (trichogynes) towards a cell of the opposite mating type in a pheromone-mediated process. In this study, we characterize the pre-1 gene, encoding a predicted G-protein-coupled receptor with sequence similarity to fungal pheromone receptors. pre-1 is most highly expressed in mat A strains under mating conditions, but low levels can also be detected in mat a strains. Analysis of pre-1 deletion mutants showed that loss of pre-1 does not greatly affect vegetative growth, heterokaryon formation or male fertility in either mating type. Protoperithecia from Deltapre-1 mat A mutants do not undergo fertilization; this defect largely stems from an inability of their trichogynes to recognize and fuse with mat a cells. Previous work has demonstrated that the Galpha subunit, GNA-1, and the Gbeta protein, GNB-1, are essential for female fertility in N. crassa. Trichogynes of Deltagna-1 and Deltagnb-1 mutants displayed severe defects in growth towards and fusion with male cells, similar to that of Deltapre-1 mat A strains. However, the female sterility defect of the Deltapre-1 mat A mutant could not be complemented by constitutive activation of gna-1, suggesting additional layers of regulation. We propose that PRE-1 is a pheromone receptor coupled to GNA-1 that is essential for the mating of mat A strains as females, consistent with a role in launching the pheromone response pathway in N. crassa.
Collapse
Affiliation(s)
- Hyojeong Kim
- Department of Plant Pathology, University of California, 2338 Webber Hall, 900 University Avenue, Riverside, CA 92521, USA
| | | |
Collapse
|
42
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 442] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pitchaimani K, Maheshwari R. Extreme nuclear disproportion and constancy of enzyme activity in a heterokaryon of Neurospora crassa. J Genet 2004; 82:1-6. [PMID: 14631094 DOI: 10.1007/bf02715873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterokaryons of Neurospora crassa were generated by transformation of multinucleate conidia of a histidine-3 auxotroph with his-3(+) plasmid. In one of the transformants, propagated on a medium with histidine supplementation, a gradual but drastic reduction occurred in the proportion of prototrophic nuclei that contained an ectopically integrated his-3(+) allele. This response was specific to histidine. The reduction in prototrophic nuclei was confirmed by several criteria: inoculum size test, hyphal tip analysis, genomic Southern analysis, and by visual change in colour of the transformant incorporating genetic colour markers. Construction and analyses of three-component heterokaryons revealed that the change in nuclear ratio resulted from interaction of auxotrophic nucleus with prototrophic nucleus that contained an ectopically integrated his-3(+) gene, but not with prototrophic nucleus that contained his-3(+) gene at the normal chromosomal location. The growth rate of heterokaryons and the activity of histidinol dehydrogenase - the protein encoded by the his-3(+) gene - remained unchanged despite prototrophic nuclei becoming very scarce. The results suggest that not all nuclei in the coenocytic fungal mycelium may be active simultaneously, the rare active nuclei being sufficient to confer the wild-type phenotype.
Collapse
|
44
|
Catlett NL, Yoder OC, Turgeon BG. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. EUKARYOTIC CELL 2003; 2:1151-61. [PMID: 14665450 PMCID: PMC326637 DOI: 10.1128/ec.2.6.1151-1161.2003] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Accepted: 07/16/2003] [Indexed: 11/20/2022]
Abstract
Two-component phosphorelay systems are minimally comprised of a histidine kinase (HK) component, which autophosphorylates in response to an environmental stimulus, and a response regulator (RR) component, which transmits the signal, resulting in an output such as activation of transcription, or of a mitogen-activated protein kinase cascade. The genomes of the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans encode one, three, and three HKs, respectively. In contrast, the genome sequences of the filamentous ascomycetes Neurospora crassa, Cochliobolus heterostrophus (Bipolaris maydis), Gibberella moniliformis (Fusarium verticillioides), and Botryotinia fuckeliana (Botrytis cinerea) encode an extensive family of two-component signaling proteins. The putative HKs fall into 11 classes. Most of these classes are represented in each filamentous ascomycete species examined. A few of these classes are significantly more prevalent in the fungal pathogens than in the saprobe N. crassa, suggesting that these groups contain paralogs required for virulence. Despite the larger numbers of HKs in filamentous ascomycetes than in yeasts, all of the ascomycetes contain virtually the same downstream histidine phosphotransfer proteins and RR proteins, suggesting extensive cross talk or redundancy among HKs.
Collapse
Affiliation(s)
- Natalie L Catlett
- Torrey Mesa Research Institute/Syngenta Research and Technology, San Diego, California 92121, USA
| | | | | |
Collapse
|
45
|
Graïa F, Berteaux-Lecellier V, Zickler D, Picard M. ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration events throughout the life cycle of Podospora anserina. Genetics 2000; 155:633-46. [PMID: 10835387 PMCID: PMC1461094 DOI: 10.1093/genetics/155.2.633] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Podospora anserina ami1-1 mutant was identified as a male-sterile strain. Microconidia (which act as male gametes) form, but are anucleate. Paraphysae from the perithecium beaks are also anucleate when ami1-1 is used as the female partner in a cross. Furthermore, in crosses heterozygous for ami1-1, some crozier cells are uninucleate rather than binucleate. In addition to these nuclear migration defects, which occur at the transition between syncytial and cellular states, ami1-1 causes abnormal distribution of the nuclei in both mycelial filaments and asci. Finally, an ami1-1 strain bearing information for both mating types is unable to self-fertilize. The ami1 gene is an orthologue of the Aspergillus nidulans apsA gene, which controls nuclear positioning in filaments and during conidiogenesis (at the syncytial/cellular transition). The ApsA and AMI1 proteins display 42% identity and share structural features. The apsA gene complements some ami1-1 defects: it increases the percentage of nucleate microconidia and restores self-fertility in an ami1-1 mat+ (mat-) strain. The latter effect is puzzling, since in apsA null mutants sexual reproduction is quite normal. The functional differences between the two genes are discussed with respect to their possible history in these two fungi, which are very distant in terms of evolution.
Collapse
Affiliation(s)
- F Graïa
- Institut de Génétique et Microbiologie de l'Université Paris-Sud (Orsay), 91405 France
| | | | | | | |
Collapse
|
46
|
Navaraj A, Pandit A, Maheshwari R. Senescent: a new Neurospora crassa nuclear gene mutant derived from nature exhibits mitochondrial abnormalities and a "death" phenotype. Fungal Genet Biol 2000; 29:165-73. [PMID: 10882533 DOI: 10.1006/fgbi.2000.1193] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fungi are capable of potentially unlimited growth. We resolved nuclear types from multinuclear mycelium of a phenotypically normal wild isolate of the fungus Neurospora intermedia by plating its uninucleate microconidia and obtained a strain which, unlike the "parent" strain, exhibited clonal senescence in subcultures. The mutant gene, senescent, was introgressed into N. crassa and mapped four map units to the right of the his-1 locus on linkage group VR. senescent is the first nuclear gene mutant of Neurospora derived from nature that shows the death phenotype. Death of the sen mutant occurred faster at 34 degrees C than at 22 or 26 degrees C. Measurements of oxygen uptake of conidia using respiratory inhibitors and the spectrophotometric analyses of mitochondrial cytochromes showed that in sen cultures grown at 34 degrees C, cytochromes b and aa(3) were present but cytochrome c was absent. By contrast at 26 degrees C, cytochromes b and c were present but cytochrome aa(3) was diminished in the late subcultures. This suggested that the sen mutation does not affect the potential to produce functional cytochromes. The deficiency of the respiratory chain cytochromes may not be the cause of death of the sen mutant because the cytochrome c and aa(3) mutants of N. crassa are capable of sustained growth whereas sen is not. Possible explanations for the observations are discussed.
Collapse
Affiliation(s)
- A Navaraj
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|