1
|
Liu Y, Li Y, Sun B, Kang J, Hu X, Zou L, Cui SW, Guo Q. Glucans from Armillaria luteo-virens: Structural Characterization and In Vivo Immunomodulatory Investigation under Different Administration Routes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6006-6018. [PMID: 38456292 DOI: 10.1021/acs.jafc.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polysaccharides fromArmillaria luteo-virens (ALP) were investigated for structural characterization and immunomodulatory activities. Three fractions (ALP-1, ALP-2, and ALP-3) were obtained with the yield of 2.4, 3.7, and 3.0 wt %, respectively. ALP-1 was proposed as a β-(1 → 3)(1 → 6)-glucan with a triple-helix conformation; ALP-2 and ALP-3 were both identified as α-(1 → 4)(1 → 6)-glucan differing in their Mw and branching degree with a spherical conformation. The in vitro digestibility experiment and in vivo experiments using cyclophosphamide (CY)-treated mice demonstrated that intraperitoneal injection of α-glucan (1 mg·kg-1·day-1) and intragastric gavage of β-glucan (10 mg·kg-1·day-1) both effectively restored the decrease in body weight, immune organ indexes, immune cell activities, serum immune marker levels, colonic short-chain fatty acids (SCFA) levels, and Bacteroidetes/Firmicutes ratio in immunosuppression mice. This study provides novel insights into the immunomodulatory activity of α- and β-glucans under different administration routes, thereby promoting their application in both food and pharmaceutical areas.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, Hangzhou, 311300 Zhejiang Province, P. R. China
| | - Yanmei Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bo Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian 710119 Shaanxi, P. R. China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Nishimura J. Chemical Dephosphorylation of Phosphorylated Polysaccharide. Methods Mol Biol 2024; 2851:143-149. [PMID: 39210179 DOI: 10.1007/978-1-0716-4096-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In exocellular polysaccharides produced from lactic acid bacteria with bioactivity, phosphate groups in polysaccharide have been found to act as an active factor. This chapter introduces chemical dephosphorylation using HF by cleaving phosphate diester bonds in extracellular polysaccharides to clarify phosphorus group functions. After this operation, the purified dephospho-polysaccharide can be used for evaluation of bioactivity.
Collapse
Affiliation(s)
- Junko Nishimura
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
3
|
Li Q, Han W, Yang C, Si Y, Xin M, Guan H, Li C. Low molecular-weight polyguluronate phosphate: An immunostimulant by activating splenocyte/macrophage invitro and improving immune response invivo. Int J Biol Macromol 2022; 216:510-519. [PMID: 35803409 DOI: 10.1016/j.ijbiomac.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
The substituents and backbones are two main factors affecting immune activities of polysaccharides. In the present study, we firstly evaluated the immunostimulating effects of phosphorylated, sulfated, H-phosphonated and nitrated derivatives of low-molecular-weight polymannuronate (LPM) and polyguluronate (LPG) on splenocytes and peritoneal macrophages in vitro. The results showed that the phosphate group was the best substituent to enhance the immune activities, and LPG phosphate (LPGP) had much better activity than LPM phosphate (LPMP). Further studies showed that LPGP not only promoted the proliferation of mouse splenocytes in the presence of either LPS or Con A, but also acted as an excellent peritoneal macrophage activator to enhance the cell phagocytosis, energy metabolism, cytokines release and activities of intracellular enzymes. The studies in RAW264.7 cells revealed that LPGP activated the TBK1-IκBα-NF-κB and the TBK1-IRF3 pathway. Moreover, LPGP rescued the immune response in the Cyclophosphamide-treated mice in vivo. In conclusion, LPGP is a potential alginate-based biological response modifier (BRM).
Collapse
Affiliation(s)
- Quancai Li
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Wenwei Han
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Cheng Yang
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuxi Si
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Xin
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Huashi Guan
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Chunxia Li
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
4
|
Guan Y, Cui Y, Qu X, Jing K. Safety and robustness aspects analysis of Lactobacillus delbrueckii ssp. bulgaricus LDB-C1 based on the genome analysis and biological tests. Arch Microbiol 2021; 203:3955-3964. [PMID: 34021387 DOI: 10.1007/s00203-021-02383-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a microaerophylic anaerobe, which is widely used in the production of yogurt, cheese, and other fermented dairy products. L. bulgaricus and its partner Streptococcus thermophilus were used as starter cultures of yogurt in the world for thousands of years. In our previous study, L. bulgaricus LDB-C1 was obtained from traditional fermented milk, and possessed some characteristics like high exopolysaccharide yield and good fermentation performance. The analysis of its CRISPR-Cas system, antibiotic resistance, virulence factors, and mobile elements, was performed to reveal the stability of the strain LDB-C1. It was found that LDB-C1 contains a plenty of spacers in the CRISPR region, indicating it might have better performance against the infection of phages and plasmids. Furthermore, the acquired or transmittable antibiotic resistance/virulence factor genes were absent in the tested L. bulgaricus strain LDB-C1.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yanhua Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, People's Republic of China
| | - Kai Jing
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| |
Collapse
|
5
|
Nguyen PT, Nguyen TT, Bui DC, Hong PT, Hoang QK, Nguyen HT. Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiol 2020; 6:451-469. [PMID: 33364538 PMCID: PMC7755584 DOI: 10.3934/microbiol.2020027] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Exopolysaccharides (EPSs) are biological polymers secreted by microorganisms including Lactic acid bacteria (LAB) to cope with harsh environmental conditions. EPSs are one of the main components involved in the formation of extracellular biofilm matrix to protect microorganisms from adverse factors such as temperature, pH, antibiotics, host immune defenses, etc.. In this review, we discuss EPS biosynthesis; the role of EPSs in LAB stress tolerance; the impact of environmental stresses on EPS production and on the expression of genes involved in EPS synthesis. The evaluation results indicated that environmental stresses can alter EPS biosynthesis in LAB. For further studies, environmental stresses may be used to generate a new EPS type with high biological activity for industrial applications.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Biotechnology, An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tho-Thi Nguyen
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Duc-Cuong Bui
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Phuoc-Toan Hong
- LAVI's Institute for Agricultural Science and Plant Breeding, Ho Chi Minh City, Vietnam
| | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Padmanabhan A, Shah NP. Structural characterization of exopolysaccharide from Streptococcus thermophilus ASCC 1275. J Dairy Sci 2020; 103:6830-6842. [PMID: 32475665 DOI: 10.3168/jds.2019-17439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/16/2020] [Indexed: 11/19/2022]
Abstract
In this study, we purified and characterized exopolysaccharide (EPS) produced by a high-EPS-producing dairy starter bacterium, Streptococcus thermophilus ASCC 1275. Crude EPS was extracted from S. thermophilus ASCC 1275 and partially purified using dialysis. Further purification and fractionation of exopolysaccharide was conducted using HPLC on a Superose 6 column (Cytiva/Global Life Sciences Solutions, Marlborough, MA). Glycosyl composition analysis, linkage analysis along with 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopy were performed to deduce the structure of EPS. Three fractions (F) obtained from gel permeation chromatography were termed F1 (2.6%), F2 (45.8%), and F3 (51.6%) with average molecular weights of approximately 511, 40, and 5 kDa, respectively. Monosaccharide composition analysis revealed the dominance of glucose, galactose, and mannose in all 3 fractions. Major linkages observed in F3 were terminal galactopyranosyl (t-Gal), 3-linked glucopyranosyl (3-Glc), 3-linked galactofuranosyl (3-Galf), and 3,6-linked glucopyranosyl (3,6-Glc) and major linkages present in F2 were 4-Glc (48 mol%), followed by terminal mannopyranosyl (t-Man), 2- + 3-linked mannopyranosyl (2-Man+3-Man), and 2,6-linked mannopyranosyl (2,6-Man; total ∼28 mol%). The 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopy revealed that F2 comprised mannans linked by (1→2) linkages and F3 consisted of linear chains of α-d-glucopyranosyl (α-d-Glcp), β-d-glucopyranosyl (β-d-Glcp), and β-d-galactofuranosyl (β-d-Galf) connected by (1→3) linkages; branching was through (1→6) linkage in F3. A possible structure of EPS in F2 and F3 was proposed.
Collapse
Affiliation(s)
- Aparna Padmanabhan
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
7
|
Liao N, Pang B, Jin H, Xu X, Yan L, Li H, Shao D, Shi J. Potential of lactic acid bacteria derived polysaccharides for the delivery and controlled release of oral probiotics. J Control Release 2020; 323:110-124. [DOI: 10.1016/j.jconrel.2020.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
|
8
|
Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou Y, Lü X. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Ghosh T, Beniwal A, Semwal A, Navani NK. Mechanistic Insights Into Probiotic Properties of Lactic Acid Bacteria Associated With Ethnic Fermented Dairy Products. Front Microbiol 2019; 10:502. [PMID: 30972037 PMCID: PMC6444180 DOI: 10.3389/fmicb.2019.00502] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbes and their metabolites maintain the health and homeostasis of the host by communicating with the host via various biochemical and physical factors. Changing lifestyle, chronic intake of foods rich in refined carbohydrates and fats have caused intestinal dysbiosis and other lifestyle-based diseases. Thus, supplementation with probiotics has gained popularity as biotherapies for improving gut health and treating disorders. Research shows that probiotic organisms enhance gastrointestinal health, immunomodulation, generation of essential micronutrients, and prevention of cancer. Ethnically fermented milk and dairy products are hotspots for novel probiotic organisms and bioactive compounds. These ethnic fermented foods have been traditionally prepared by indigenous populations, and have preserved unique microflora for ages. To apply these unique microflora for amelioration of human health, it is important that probiotic properties of the bacterial species are well studied. Majority of the published research and reviews focus on the probiotic organisms and their properties, fermented food products, isolation techniques, and animal studies with their health pathologies. As a consequence, there is a dearth of information about the underlying molecular mechanism behind probiotics associated with ethnically prepared dairy foods. This review is targeted at stimulating research on understanding these mechanisms of bacterial species and beneficial attributes of ethnically fermented dairy products.
Collapse
Affiliation(s)
| | | | | | - Naveen Kumar Navani
- Chemical Biology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
10
|
Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydr Polym 2019; 207:317-332. [DOI: 10.1016/j.carbpol.2018.11.093] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
|
11
|
Fernandez MA, Marette A. Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr Rev 2018; 76:16-28. [PMID: 30452697 PMCID: PMC6280950 DOI: 10.1093/nutrit/nuy060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review will explore the observational and mechanistic evidence supporting the hypothesis that fermented milk consumption has beneficial effects on metabolism. Live cultures in fermented dairy are thought to contribute to gut microbial balance, which is likely an instrumental mechanism that protects the host against gut dysbiosis and systemic inflammation associated with cardiometabolic diseases. Lactic acid bacteria (LAB) release bioactive metabolites, such as exopolysaccharides and peptides, that have the potential to exert a wide range of metabolic and regulatory functions. In particular, peptides derived from fermented dairy products are likely to exert greater cardiometabolic and anti-inflammatory effects than nonfermented dairy. It is hypothesized that LAB-derived bioactive peptides have the potential to protect the host against cardiometabolic diseases through antimicrobial actions and to effect changes in gene expression of glucose regulatory and anti-inflammatory signaling pathways. The peptides released through fermentation may explain some of the health effects of fermented dairy products on cardiometabolic disease risk observed in epidemiological studies, particularly type 2 diabetes; however, mechanisms have yet to be explored in detail.
Collapse
Affiliation(s)
- Melissa Anne Fernandez
- Heart and Lung Institute of Quebec and the Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
- School of Nutrition, Faculty of Agricultural and Food Sciences, Laval University, Quebec, Canada
| | - André Marette
- Heart and Lung Institute of Quebec and the Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
- Department of Medicine Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
12
|
Lynch KM, Zannini E, Coffey A, Arendt EK. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu Rev Food Sci Technol 2018; 9:155-176. [DOI: 10.1146/annurev-food-030117-012537] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Llewellyn A, Foey A. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients 2017; 9:E1156. [PMID: 29065562 PMCID: PMC5691772 DOI: 10.3390/nu9101156] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.
Collapse
Affiliation(s)
- Amy Llewellyn
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
- Menzies School of Health Research, John Mathews Building (Building 58), Royal Darwin Hospital Campus, PO Box 41096, Casuarina NT0811, Australia.
| | - Andrew Foey
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine & Dentistry, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
14
|
Feng H, McDonough SP, Fan J, Yang S, Zhao X, Lu Y, Gan Y, Yi X, Chang YF. Phosphorylated Radix Cyathulae officinalis Polysaccharides Act as Adjuvant via Promoting Dendritic Cell Maturation. Molecules 2017; 22:E106. [PMID: 28075416 PMCID: PMC6155757 DOI: 10.3390/molecules22010106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate whether phosphorylated Radix Cyathulae officinalis Kuan polysaccharides (pRCPS) used as adjuvant with foot-and-mouth disease vaccine (FMDV) can stimulate specific humoral and cellular immune responses in ICR mice. The results demonstrated that pRCPS significantly up-regulated FMDV-specific IgG, IgG1, IgG2b and IgG2a antibody levels and splenocyte proliferation. pRCPS also promoted the killing activities of cytotoxic T lymphocytes (CTL) and natural killer cells (NK). In addition, pRCPS enhanced the expression levels of IL-2, IL-4, and IFN-γ in CD4⁺ T cells and the level of IFN-γ in CD8⁺ T cells. Importantly, pRCPS enhanced the expression of MHCII, CD40⁺, CD86⁺, and CD80⁺ in dendritic cells (DCs). This study indicated that phosphorylation modification could increase immune-enhancing activities of RCPS, and pRCPS could promote humoral and cellular immune responses through facilitating DC maturation.
Collapse
Affiliation(s)
- Haibo Feng
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Sean P McDonough
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Jing Fan
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610051, China.
| | - Shiping Yang
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Xuelian Zhao
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Yong Lu
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Yun Gan
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Xiao Yi
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China.
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
15
|
Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells. Microorganisms 2016; 4:microorganisms4030027. [PMID: 27681921 PMCID: PMC5039587 DOI: 10.3390/microorganisms4030027] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 01/02/2023] Open
Abstract
Researchers have demonstrated that lactic acid bacteria (LAB) with immunomodulatory capabilities (immunobiotics) exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS), that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells) as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR)-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105)/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.
Collapse
|
16
|
Ren W, Xia Y, Wang G, Zhang H, Zhu S, Ai L. Bioactive exopolysaccharides from a S. thermophilus strain: Screening, purification and characterization. Int J Biol Macromol 2016; 86:402-7. [DOI: 10.1016/j.ijbiomac.2016.01.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/29/2022]
|
17
|
Structure determination of the neutral exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. Carbohydr Res 2015; 413:115-22. [DOI: 10.1016/j.carres.2015.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/16/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022]
|
18
|
Characterization of haloglycan, an exopolysaccharide produced by Halomonas stenophila HK30. Int J Biol Macromol 2015; 72:117-24. [DOI: 10.1016/j.ijbiomac.2014.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/21/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
|
19
|
Wachi S, Kanmani P, Tomosada Y, Kobayashi H, Yuri T, Egusa S, Shimazu T, Suda Y, Aso H, Sugawara M, Saito T, Mishima T, Villena J, Kitazawa H. Lactobacillus delbrueckii TUA4408L and its extracellular polysaccharides attenuate enterotoxigenic Escherichia coli-induced inflammatory response in porcine intestinal epitheliocytes via Toll-like receptor-2 and 4. Mol Nutr Food Res 2014; 58:2080-93. [PMID: 24995380 DOI: 10.1002/mnfr.201400218] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/31/2014] [Accepted: 06/27/2014] [Indexed: 01/04/2023]
Abstract
SCOPE Immunobiotics are known to modulate intestinal immune responses by regulating Toll-like receptor (TLR) signaling pathways, which are responsible for the induction of cytokines and chemokines in response to microbial-associated molecular patterns. However, little is known about the immunomodulatory activity of compounds or molecules from immunobiotics. METHODS AND RESULTS We evaluated whether Lactobacillus delbrueckii subsp. delbrueckii TUA4408L (Ld) or its extracellular polysaccharide (EPS): acidic EPS (APS) and neutral EPS (NPS), modulated the response of porcine intestinal epitheliocyte (PIE) cells against Enterotoxigenic Escherichia coli (ETEC) 987P. The roles of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effects were also studied. ETEC-induced inflammatory cytokines were downregulated when PIE cells were prestimulated with both Ld or EPSs. Ld, APS, and NPS inhibited ETEC mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation by upregulating TLR negative regulators. The capability of Ld to suppress inflammatory cytokines was diminished when PIE cells were blocked with anti-TLR2 antibody, while APS failed to suppress inflammatory cytokines when cells were treated with anti-TLR4 antibody. Induction of Ca²⁺ fluxes in TLR knockdown cells confirmed that TLR2 plays a principal role in the immunomodulatory action of Ld, while the activity of APS is mediated by TLR4. In addition, NPS activity depends on both TLR4 and TLR2. CONCLUSION Ld and its EPS have the potential to be used for the development of anti-inflammatory functional foods to prevent intestinal diseases in both humans and animals.
Collapse
Affiliation(s)
- Satoshi Wachi
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shao L, Wu Z, Zhang H, Chen W, Ai L, Guo B. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr Polym 2014; 107:51-6. [DOI: 10.1016/j.carbpol.2014.02.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 11/28/2022]
|
21
|
London L, Price N, Ryan P, Wang L, Auty M, Fitzgerald G, Stanton C, Ross R. Characterization of a bovine isolate Lactobacillus mucosae
DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J Appl Microbiol 2014; 117:509-17. [DOI: 10.1111/jam.12542] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022]
Affiliation(s)
- L.E.E. London
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
| | - N.P.J. Price
- Bioproducts and Biocatalysis Research Unit; USDA-ARS-NCAUR; Peoria IL USA
| | - P. Ryan
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Department of Microbiology; University College Cork; Cork Ireland
| | - L. Wang
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
| | - M.A.E. Auty
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
| | - G.F. Fitzgerald
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
- Department of Microbiology; University College Cork; Cork Ireland
| | - C. Stanton
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
| | - R.P. Ross
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
| |
Collapse
|
22
|
Nishimura J. Exopolysaccharides Produced from <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i>. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.414112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Nishimura J, Kawai Y, Aritomo R, Ito Y, Makino S, Ikegami S, Isogai E, Saito T. Effect of Formic Acid on Exopolysaccharide Production in Skim Milk Fermentation by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2013; 32:23-32. [PMID: 24936359 PMCID: PMC4034293 DOI: 10.12938/bmfh.32.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/03/2012] [Indexed: 11/12/2022]
Abstract
In yogurt, the formation of formate by Streptococcus thermophilus
stimulates the activity of Lactobacillus delbrueckii subsp.
bulgaricus (L. bulgaricus). However, there have been
no reports how formic acid acts on the exopolysaccharide (EPS) production of L.
bulgaricus. Here, the effect of formate on the EPS production in skim milk by
L. bulgaricus OLL1073R-1 was investigated. After incubation for 24 hr
with 100 mg/l formate, cell proliferation and lactic acid production were accelerated. The
viable and total cell numbers were increased about ten- and four-fold, respectively. The
amount of EPS in culture with formate (~116 µg/ml) was also four-fold greater than that of
the control (~27 µg/ml). Although elongation of cells was observed at 6 hr of cultivation
in both cultures, cells cultivated with formate returned to a normal shape after
incubation for 24 hr. The sensitivity to cell wall hydrolase and composition of surface
layer proteins, as well as the cell membrane fatty acid composition of L.
bulgaricus OLL1073R-1, were not influenced by formate. However, differences
were observed in intracellular fatty acid compositions and sensitivity to antibiotics.
Cell length and surface damage returned to normal in cultures with formate. These
observations suggest that formic acid is necessary for normal cell growth of L.
bulgaricus OLL1073R-1 and higher EPS production.
Collapse
Affiliation(s)
- Junko Nishimura
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aobaku, Sendai 981-8555, Japan
| | - Yasushi Kawai
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aobaku, Sendai 981-8555, Japan
| | - Ryota Aritomo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aobaku, Sendai 981-8555, Japan
| | - Yoshiyuki Ito
- Food Science Institute, Meiji Co., Ltd., 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | - Seiya Makino
- Food Science Institute, Meiji Co., Ltd., 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | - Shuji Ikegami
- Food Science Institute, Meiji Co., Ltd., 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | - Emiko Isogai
- Laboratory of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aobaku, Sendai 981-8555, Japan
| | - Tadao Saito
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aobaku, Sendai 981-8555, Japan
| |
Collapse
|
24
|
Patel S, Majumder A, Goyal A. Potentials of exopolysaccharides from lactic Acid bacteria. Indian J Microbiol 2012; 52:3-12. [PMID: 23449986 PMCID: PMC3298600 DOI: 10.1007/s12088-011-0148-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 11/04/2009] [Indexed: 10/18/2022] Open
Abstract
Recent research in the area of importance of microbes has revealed the immense industrial potential of exopolysaccharides and their derivative oligosaccharides from lactic acid bacteria. However, due to lack of adequate technological knowledge, the exopolysaccharides have remained largely under exploited. In the present review, the enormous potentials of different types of exopolysaccharides from lactic acid bacteria are described. This also summarizes the recent advances in the applications of exopolysaccharides, certain problems associated with their commercial production and the remedies.
Collapse
Affiliation(s)
- Seema Patel
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781 039 Assam India
| | - Avishek Majumder
- Department of System Biology, Technical University of Denmark, Building 224, DK-2800 Kgs., Lyngby, Denmark
| | - Arun Goyal
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781 039 Assam India
| |
Collapse
|
25
|
Llamas I, Mata JA, Tallon R, Bressollier P, Urdaci MC, Quesada E, Béjar V. Characterization of the exopolysaccharide produced by Salipiger mucosus A3, a halophilic species belonging to the Alphaproteobacteria, isolated on the Spanish Mediterranean seaboard. Mar Drugs 2010; 8:2240-51. [PMID: 20948906 PMCID: PMC2953402 DOI: 10.3390/md8082240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/16/2010] [Accepted: 07/28/2010] [Indexed: 11/17/2022] Open
Abstract
We have studied the exopolysaccharide produced by the type strain of Salipiger mucosus, a species of halophilic, EPS-producing (exopolysaccharide-producing) bacterium belonging to the Alphaproteobacteria. The strain, isolated on the Mediterranean seaboard, produced a polysaccharide, mainly during its exponential growth phase but also to a lesser extent during the stationary phase. Culture parameters influenced bacterial growth and EPS production. Yield was always directly related to the quantity of biomass in the culture. The polymer is a heteropolysaccharide with a molecular mass of 250 kDa and its components are glucose (19.7%, w/w), mannose (34%, w/w), galactose (32.9%, w/w) and fucose (13.4%, w/w). Fucose and fucose-rich oligosaccharides have applications in the fields of medicine and cosmetics. The chemical or enzymatic hydrolysis of fucose-rich polysaccharides offers a new efficient way to process fucose. The exopolysaccharide in question produces a solution of very low viscosity that shows pseudoplastic behavior and emulsifying activity on several hydrophobic substrates. It also has a high capacity for binding cations and incorporating considerable quantities of sulfates, this latter feature being very unusual in bacterial polysaccharides.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain; E-Mails: (I.L.); (J.A.M.); (E.Q.)
| | - Juan Antonio Mata
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain; E-Mails: (I.L.); (J.A.M.); (E.Q.)
| | - Richard Tallon
- IUT, Département Génie Biologique, allée André Maurois, 87065 Limoges, France; E-Mails: (R.T.); (P.B.)
| | - Philippe Bressollier
- IUT, Département Génie Biologique, allée André Maurois, 87065 Limoges, France; E-Mails: (R.T.); (P.B.)
- Laboratorie de Microbiologie et Biochimie Appliquée, ENITA de Bordeaux, 1 Cours du Général de Gaulle, BP 201, 33175 Gradignan, France; E-Mail:
| | - María C. Urdaci
- Laboratorie de Microbiologie et Biochimie Appliquée, ENITA de Bordeaux, 1 Cours du Général de Gaulle, BP 201, 33175 Gradignan, France; E-Mail:
| | - Emilia Quesada
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain; E-Mails: (I.L.); (J.A.M.); (E.Q.)
| | - Victoria Béjar
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain; E-Mails: (I.L.); (J.A.M.); (E.Q.)
| |
Collapse
|
26
|
Iyer R, Tomar S, Uma Maheswari T, Singh R. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.10.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Michałkiewicz J, Krotkiewski M, Gackowska L, Wyszomirska-Gołda M, Helmin-Basa A, Dzierżanowska D, Madaliński K. Immunomodulatory effects of lactic acid bacteria on human peripheral blood mononuclear cells. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600310022729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. Michałkiewicz
- From the Department of Immunology, Ludwik Rydygier Medical University, Bydgoszcz, Poland
| | - M. Krotkiewski
- Sahlgrenska Academy at Göteborg University, Institute of Clinical Neuroscience, Göteborg, Sweden
| | - L. Gackowska
- From the Department of Immunology, Ludwik Rydygier Medical University, Bydgoszcz, Poland
| | - M. Wyszomirska-Gołda
- From the Department of Immunology, Ludwik Rydygier Medical University, Bydgoszcz, Poland
| | - A. Helmin-Basa
- From the Department of Immunology, Ludwik Rydygier Medical University, Bydgoszcz, Poland
| | - D. Dzierżanowska
- Department of Microbiology and Clinical Immunology, Children's Memorial Hospital, Warsaw, Poland
| | - K. Madaliński
- Department of Immunopathology, National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
28
|
Ai L, Zhang H, Guo B, Chen W, Wu Z, Wu Y. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2008.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Tohno M, Shimazu T, Ueda W, Anzawa D, Aso H, Nishimura J, Kawai Y, Saito Y, Saito T, Kitazawa H. Molecular cloning of porcine RP105/MD-1 involved in recognition of extracellular phosphopolysaccharides from Lactococcus lactis ssp. cremoris. Mol Immunol 2007; 44:2566-77. [PMID: 17254634 DOI: 10.1016/j.molimm.2006.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/15/2006] [Accepted: 12/15/2006] [Indexed: 12/31/2022]
Abstract
In this study, we cloned the cDNAs encoding porcine RP105 (poRP105) and porcine MD-1 (poMD-1) from Peyer's patches of adult swine. The complete open reading frames of poRP105 and poMD-1 contain 1986 and 480bp and encode 661 and 159 amino acid residues, respectively. These two proteins were more similar to the human (77.6% and 76.5% amino acid identity) than the mouse counterparts (70.0% and 71.1% amino acid identity). The results of several experiments in cells cotransfected with poRP105 and poMD-1 indicated both lipopolysaccharide and extracellular phosphopolysaccharide from Lactococcus lactis subsp. cremoris (Lc.cremoris) strongly activate nuclear factor-kappaB and induce the expression of various cytokines via RP105. These effects were mediated by phosphatidylinositol 3-kinase and Bruton's tyrosine kinase. Thus, we identified extracellular polysaccharide from Lc.cremoris as an active substance that can induce immune activation via RP105 and MD-1.
Collapse
Affiliation(s)
- Masanori Tohno
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vinderola G, Perdigón G, Duarte J, Farnworth E, Matar C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 2006; 36:254-60. [PMID: 17363262 DOI: 10.1016/j.cyto.2007.01.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 12/27/2006] [Accepted: 01/16/2007] [Indexed: 11/29/2022]
Abstract
The probiotic effects ascribed to lactic acid bacteria (LAB) and their fermented dairy products arise not only from whole microorganisms and cell wall components but also from peptides and extracellular polysaccharides (exopolysaccharides) produced during the fermentation of milk. There is a lack of knowledge concerning the immune mechanisms induced by exopolysaccharides produced by lactic acid bacteria, which would allow a better understanding of the functional effects described to them. The aim of this study was to investigate the in vivo immunomodulating capacity of the exopolysaccharide produced by Lactobacillus kefiranofaciens by analyzing the profile of cytokines and immunoglobulins induced at the intestinal mucosa level, in the intestinal fluid and blood serum. BALB/c mice received the exopolysaccharide produced by L. kefiranofaciens for 2, 5 or 7 consecutive days. At the end of each period of administration, control and treated mice were sacrificed and the numbers of IgA+ and IgG+ cells were determined on histological slices of the small and large intestine by immunofluorescence. Cytokines (IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha) were also determined in the gut lamina propria as well as in the intestinal fluid and blood serum. There was an increase of IgA+ cells in the small and large intestine lamina propria, without change in the number of IgG+ cells in the small intestine. This study reports the effects of the oral administration of the exopolysaccharide produced by L. kefiranofaciens in the number of IgA+ cells in the small and large intestine, comparing simultaneously the production of cytokines by cells of the lamina propria and in the intestinal fluid and blood serum. The increase in the number of IgA+ cells was not simultaneously accompanied by an enhance of the number of IL-4+ cells in the small intestine. This finding would be in accordance with the fact that, in general, polysaccharide antigens elicit a T-independent immune response. For IL-10+, IL-6+ and IL-12+ cells, the values found were slightly increased compared to control values, while IFNgamma+ and TNFalpha+ cells did not change compared to control values. The effects observed on immunoglobulins and in all the cytokines assayed in the large intestine after kefiran administration were of greater magnitude than the ones observed in the small intestine lamina propria, which may be due to the saccharolytic action of the colonic microflora. In the intestinal fluid, only IL-4 and IL-12 increased compared to control values. In blood serum, all the cytokines assayed followed a pattern of production quite similar to the one found for them in the small intestine lamina propria. We observed that the exopolysaccharide induced a gut mucosal response and it was able to up and down regulate it for protective immunity, maintaining intestinal homeostasis, enhancing the IgA production at both the small and large intestine level and influencing the systemic immunity through the cytokines released to the circulating blood.
Collapse
Affiliation(s)
- Gabriel Vinderola
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | | | | | | | | |
Collapse
|
31
|
Mata JA, Béjar V, Llamas I, Arias S, Bressollier P, Tallon R, Urdaci MC, Quesada E. Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol 2006; 157:827-35. [PMID: 17005380 DOI: 10.1016/j.resmic.2006.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/06/2006] [Accepted: 06/19/2006] [Indexed: 12/01/2022]
Abstract
We studied exopolysaccharides (EPSs) produced by Halomonas ventosae and Halomonas anticariensis, two novel species of halophilic bacteria. Under optimum environmental and nutritional conditions, H. ventosae strains Al12(T) and Al16 excreted 28.35 mg and 28.95 mg of EPS per 100 ml of culture medium (34.55 and 38.6 mg of EPS per gram of dry cell weight) respectively. The molecular masses of the polymers were about 50 kDa and their main components were glucose, mannose and galactose. They had high protein fractions and showed emulsifying activity on several hydrophobic substrates. Under optimum environmental and nutritional conditions, H. anticariensis strains FP35(T) and FP36 excreted about 29.65 and 49.95 mg of EPS per 100 ml of culture medium (43.6 and 50.95 mg of EPS per gram of dry cell weight) respectively. The molecular masses of the polymers were about 20 and 46 kDa respectively and were composed mainly of glucose, mannose and galacturonic acid. All EPSs produced solutions of low viscosity and pseudoplastic behaviour. They also had a high capacity for binding cations and incorporated considerable quantities of sulphates, which is highly unusual in bacterial polysaccharides. All strains assayed formed biofilms both in polystyrene wells and borosilicate test tubes.
Collapse
Affiliation(s)
- Juan Antonio Mata
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Amrouche T, Boutin Y, Prioult G, Fliss I. Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2005.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Li CP, Enomoto H, Ohki S, Ohtomo H, Aoki T. Improvement of Functional Properties of Whey Protein Isolate Through Glycation and Phosphorylation by Dry Heating. J Dairy Sci 2005; 88:4137-45. [PMID: 16291604 DOI: 10.3168/jds.s0022-0302(05)73099-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Whey protein isolate (WPI) was glycated with maltopentaose (MP) through the Maillard reaction, and the MP-conjugated WPI (MP-WPI) was then phosphorylated by dry heating in the presence of pyrophosphate. Glycation occurred efficiently, and the sugar content of WPI increased approximately 19.9% through the Maillard reaction. The phosphorylation of MP-WPI was enhanced with an increase in the dry-heating time from 1 to 5 d, and the phosphorus content of WPI increased approximately 1.05% by dry heating at pH 4.0 and 85 degrees C for 5 d in the presence of pyrophosphate. The electrophoretic mobility of WPI increased with an increase in the phosphorylation level. The stability of WPI against heat-induced insolubility at pH 7.0 was improved by conjugation with MP alone, and further improved by phosphorylation. Although the emulsifying activity of WPI was barely affected by glycation and phosphorylation, the emulsifying stability of phosphorylated MP-WPI (5 d), was 2.2 times higher than that of MP-WPI. Gelling properties such as hardness, resiliency, and water-holding capacity of heat-induced WPI gel were markedly improved, and the gel was rendered transparent by phosphorylation. The calcium phosphate-solubilizing ability of WPI was enhanced by phosphorylation. These results suggested that phosphorylation by dry heating in the presence of pyrophosphate after conjugation with MP is a useful method for improving the functional properties of WPI.
Collapse
Affiliation(s)
- C P Li
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
34
|
Immunopotentiating Activities of Cellular Components of Lactobacillus brevis FSB - 1. ACTA ACUST UNITED AC 2004. [DOI: 10.3746/jkfn.2004.33.9.1552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Li CP, Ibrahim HR, Sugimoto Y, Hatta H, Aoki T. Improvement of functional properties of egg white protein through phosphorylation by dry-heating in the presence of pyrophosphate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:5752-5758. [PMID: 15373420 DOI: 10.1021/jf0498259] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Egg white protein (EWP) was phosphorylated by dry-heating in the presence of pyrophosphate at pH 3.0-7.0 and 85 degrees C for 1 and 5 days, and the functional properties of the phosphorylated EWP (PP-EWP) were investigated. The phosphorylation was accelerated with a decrease of pH from 7.0 to 3.0 and for heating times from 1 to 5 days. The phosphorus content of EWP increased approximately 1.05% by dry-heating at pH 4.0 and 85 degrees C for 5 days in the presence of pyrophosphate, which was higher than that of casein. The electrophoretic mobility of EWP increased with an increase in the phosphorylation level. The surface hydrophobicity of EWP increased by phosphorylation. The heat stability, emulsifying properties, and digestibility of EWP were improved by phosphorylation. The calcium phosphate-solubilizing ability of EWP was enhanced by phosphorylation. A firmer and transparent heat-induced gel of PP-EWP was obtained, and the water-holding capacity of heat-induced PP-EWP gel was higher that that of the control. These results suggest that phosphorylation by dry-heating in the presence of pyrophosphate is a useful method for improving the functional properties of EWP.
Collapse
Affiliation(s)
- Can-Peng Li
- United Chair of Applied Resource Chemistry, Course of Bioresource Science for Processing, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
36
|
Sato T, Nishimura-Uemura J, Shimosato T, Kawai Y, Kitazawa H, Saito T. Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups. J Food Prot 2004; 67:1719-24. [PMID: 15330539 DOI: 10.4315/0362-028x-67.8.1719] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The immunological effects of phosphorylated dextran (in which phosphate groups were chemically introduced) on murine splenocytes were examined. When dextran produced by Leuconostoc mesenteroides was phosphorylated by a reaction with polyphosphoric acid in formamide solution for 48 h, the degree of phosphorylation of dextran was maximal. The highest phosphorus content (1.7%, wt/wt) was observed in 40 kDa of dextran. The mitogenic response of murine splenocytes was enhanced by the phosphorylated dextran, but its activity was not related to its molecular weight. A strong response was detected at a concentration of 10 to 500 microg/ml, and the highest activity was obtained 48 h after stimulation. Phosphorylated dextran was characterized as a B-cell-specific mitogen. The expressions of CD86 on CD8alpha- CD11c- and CD8alpha- CD11c+ cells were augmented by phosphorylated dextran. The levels of mRNA expression of gamma interferon and interleukin-10 on murine splenocytes were also increased by the stimulation. These results demonstrate that dextran exerts immunostimulation by the introduction of phosphate groups.
Collapse
Affiliation(s)
- Toshihiro Sato
- NOF Corporation, Yebisu Garden Place Tower, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6019, Japan
| | | | | | | | | | | |
Collapse
|
37
|
SAITO T. Selection of useful probiotic lactic acid bacteria from the Lactobacillus acidophilus group and their applications to functional foods. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00148.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Tallon R, Bressollier P, Urdaci MC. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol 2003; 154:705-12. [PMID: 14643409 DOI: 10.1016/j.resmic.2003.09.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Lactobacillus plantarum strain producing exopolysaccharides (EPSs) was isolated from corn silage. When this strain, named L. plantarum EP56, was grown on a chemically defined medium, two EPS fractions were isolated. The cell-bound EPS fraction (EPS-b) was composed of a single high-molecular-mass polymer of 8.5x10(5) Da containing glucose, galactose and N-acetylgalactosamine in a molar ratio of approximately 3:1:1 and traces of glycerol and phosphoglycerol. The released EPS fraction (EPS-r) was composed of the high-molecular-mass bound polysaccharide and a second polymer of 4x10(4) Da containing glucose, galactose and rhamnose in a molar ratio of 3:1:1 and traces of glycerol and phosphoglycerol. EPS-b and EPS-r contained phosphate which contributes to their negative net charge. Studies on polysaccharide production and location showed that both polymers were synthesized during the exponential growth phase and that the EPS-b polymer was progressively released into the culture medium during the stationary growth phase. Carbon source and temperature influenced EPS synthesis when L. plantarum EP56 was grown in a chemically defined medium. Lactose was the most efficient carbon source among the five tested (glucose, galactose, fructose, lactose and sucrose). EPS production was also increased when the incubation temperature is lowered.
Collapse
Affiliation(s)
- Richard Tallon
- Laboratoire de Microbiologie et Biochimie Appliquée, ENITA de Bordeaux, 1, cours du Général de Gaulle, BP 201, 33175, Gradignan, France
| | | | | |
Collapse
|
39
|
Kitazawa H, Watanabe H, Shimosato T, Kawai Y, Itoh T, Saito T. Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6. Int J Food Microbiol 2003; 85:11-21. [PMID: 12810267 DOI: 10.1016/s0168-1605(02)00477-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was conducted to find an immunostimulatory oligonucleotide derived from yogurt starter cultures. The chromosomal DNA was purified from nine strains of Lactobacillus delbrueckii ssp. bulgaricus and six strains of Streptococcus thermophilus. An immunostimulatory ability of the DNA was examined in a proliferation of peyer's patch and splenic B cells. Only the DNA from L. bulgaricus NIAI B6 induced a significant proliferation of both cells. When the DNA was cloned and amplified using PCR, the mitogenic activities to B cells were significantly increased by 13 of 135 DNA clones. Ten homologous nucleotide sequences were found as possible oligonucleotide sequences of mitogens, and were then chemically synthesized (sOL-LB1 to sOL-LB10). One CpG-like motif (sOL-LB7; 5'-CGGCACGCTCACGATTCTTG-3') was identified as an immunostimulatory oligonucleotide, but it did not contain palindromic CpG structure known as a B cell-specific mitogen. The sOL-LB7 substantially bound to B cells and increased the CD69 positive cells in peyer's patch cells. This study demonstrated that L. bulgaricus NIAI B6 was a good candidate of a starter culture for the production of new functional foods, "Bio-Defense Foods".
Collapse
Affiliation(s)
- Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori amamiyamachi, Aobaku, 981-8555, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Nishimura-Uemura J, Kitazawa H, Kawai Y, Itoh T, Oda M, Saito T. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiol 2003. [DOI: 10.1016/s0740-0020(02)00177-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Mota M, Empis J. Novel foods and food ingredients: what is the mission of scientists and technologists? Trends Food Sci Technol 2000. [DOI: 10.1016/s0924-2244(00)00059-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|