1
|
García-Álvarez MA, Chaves-Pozo E, Cuesta A. Cytotoxic activity and gene expression during in vitro adaptive cell-mediated cytotoxicity of head-kidney cells from betanodavirus-infected European sea bass. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105124. [PMID: 38145864 DOI: 10.1016/j.dci.2023.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Cell-mediated cytotoxicity (CMC) is essential in eradicating virus-infected cells, involving CD8+ T lymphocytes (CTLs) and natural killer (NK) cells, through the activation of different pathways. This immune response is well-studied in mammals but scarcely in teleost fish. Our aim was to investigate the adaptive CMC using head-kidney (HK) cells from European sea bass infected at different times with nodavirus (NNV), as effector cells, and the European sea bass brain cell line (DLB-1) infected with different NNV genotypes, as target cells. Results showed low and unaltered innate cytotoxic activity through the infection time. However, adaptive CMC against RGNNV and SJNNV/RGNNV-infected target cells increased from 7 to 30 days post-infection, peaking at 15 days, demonstrating the specificity of the cytotoxic activity and suggesting the involvement of CTLs. At transcriptomic level, we observed up-regulation of genes related to T cell activation, perforin/granzyme and Fas/FasL effector pathways as well as apoptotic cell death. Further studies are necessary to understand the adaptive role of European sea bass CTLs in the elimination of NNV-infected cells.
Collapse
Affiliation(s)
- Miguel A García-Álvarez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Elena Chaves-Pozo
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Valsamidis MA, White DM, Kokkoris GD, Bakopoulos V. Immune response of European sea bass (Dicentrarchus labrax L.) against combination of antigens from three different pathogens. Vet Immunol Immunopathol 2023; 256:110535. [PMID: 36621058 DOI: 10.1016/j.vetimm.2022.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Three of the most important diseases of Mediterranean intensive European sea bass farming are, viral nervous necrosis (VNN) caused by the red grouper nervous necrosis virus (RGNNV) genotype of b-nodavirus, photobacteriosis caused by Photobacterium damselae subsp. piscicida (Phdp) and vibriosis caused mainly by the O1 serotype of Vibrio anguillarum (VaO1). Prevention against these diseases is performed through vaccination with a monovalent vaccine against the viral disease and, usually, with bivalent vaccines against the bacterial diseases. However, it is very difficult to program two vaccinations during the same season for the same fish stock and producers are forced to either vaccinate for the viral or the bacterial diseases or to perform double vaccination with both vaccines, without any prior knowledge on any interactions that may occur due to the plethora of antigens (Ag) injected. Ideally, therefore, a trivalent vaccine should be developed against all three diseases. The objective of this work was to analyse the immune response of sea bass against combinations of Ags from all three pathogens, namely viral particles, Phdp whole cells (WC), lipopolysaccharide (LPS), capsular polysaccharide (CPS) and extracellular products (ECPs) and VaO1 WC and ECPs in respect to the identification of any phenomena of immunodominance/immunosuppression between Ags with a view to select candidate Ags for inclusion in a trivalent vaccine formulation. Eight triplicate groups of fish were immunized with different combinations of the aforementioned Ags and another triplicate group served as negative control. Blood serum was isolated at various time-points post-immunization for the measurement of specific antibodies against each Ag and, in addition, leucocytes were isolated at day 29 post-immunization for analysis of various cellular activities. Results indicated that best levels of specific a-NNV virus antibodies (Abs) were produced when VaO1 ECPs were not included in the Ag combinations, in contrast to the leucocytes proliferation assay where best stimulation against NNV Ags was measured when VaO1 ECPs were present in Ag combinations. VaO1 ECPs apparently is a strong immunogen for both humoral and cellular responses but suppresses immunological reactions against the other Ags.VaO1 WC, Phdp LPS and ECPs raised good humoral immune responses in the groups with best responses against VNN Ags, but only VaO1 WC and Phdp ECPs provided good stimulation of leucocytes, with Phdp WC and CPS effecting either similar stimulation with untrained leucocytes (control groups) or down-stimulation. Results are discussed with a view to select Ags from all three pathogens for inclusion in trivalent vaccine against all three pathogens.
Collapse
Affiliation(s)
- Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece.
| | - Daniella-Mari White
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Giorgos D Kokkoris
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Vasileios Bakopoulos
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| |
Collapse
|
3
|
Mondal H, Thomas J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 30:1971-2000. [PMID: 35528247 PMCID: PMC9059915 DOI: 10.1007/s10499-022-00884-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
Globally, aquaculture has faced serious economic problems due to bacterial, viral, and various other infectious diseases of different origins. Even though such diseases are being detected and simultaneously treated with several therapeutic and prophylactic methods, the broad-spectrum activity of vaccines plays a vital role as a preventive measure in aquaculture. However, treatments like use of antibiotics and probiotics seem to be less effective when new mutant strains develop and disease causing pathogens become resistant to commonly used antibiotics. Therefore, vaccines developed by using recent advanced molecular techniques can be considered as an effective way of treating disease causing pathogens in aquatic organisms. The present review emphasizes on the current advances in technology and future outlook with reference to different types of vaccines used in the aquaculture industries. Beginning with traditional killed/inactivated and live attenuated vaccines, this work culminates in the review of modern new generation ones including recombinant, synthetic peptides, mucosal and DNA, subunit, nanoparticle-based and plant-based edible vaccines, reverse vaccinology, and monovalent and polyvalent vaccines.
Collapse
Affiliation(s)
- Haimanti Mondal
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| |
Collapse
|
4
|
Xu C, Qiao M, Huo X, Liao Z, Su J. An Oral Microencapsulated Vaccine Loaded by Sodium Alginate Effectively Enhances Protection Against GCRV Infection in Grass Carp (Ctenopharyngodon idella). Front Immunol 2022; 13:848958. [PMID: 35401526 PMCID: PMC8987307 DOI: 10.3389/fimmu.2022.848958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp reovirus (GCRV) is highly infectious and lethal to grass carp, causing huge economic losses to the aquaculture industry annually. Currently, vaccination is the most effective method against viral infections. Among the various vaccination methods, the oral vaccination is an ideal way in aquaculture. However, low protective efficiency is the major problem for oral vaccination owing to some reasons, such as antigen degradation and low immunogenicity. In our study, we screened the antigenic epitopes of GCRV-II and prepared an oral microencapsulated vaccine using sodium alginate (SA) as a carrier and flagellin B (FlaB) as an adjuvant, and evaluated its protective effects against GCRV-II infection in grass carp. The full length and three potential antigenic epitope regions of GCRV-II VP56 gene were expressed in Escherichia coli and purified by glutathione affinity column respectively. The optimal antigen (VP56-3) was screened by enzyme-linked immunosorbent assay (ELISA). Adjuvant FlaB was also expressed in E. coli and purified by Ni2+ affinity column. Subsequently, we prepared the oral vaccines using sodium alginate as a carrier. The vaccine (SA-VP56-3/FlaB) forms microsphere (1.24 ± 0.22 μm), examined by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering assay. SA-VP56-3/FlaB vaccine has excellent stability, slow-release, and low toxicity by dynamic light scattering assay, release dynamic assay, in vivo fluorescence imaging system, hemolytic activity and cytotoxicity. Then we vaccinated grass carp orally with SA-VP56-3/FlaB and measured immune-related parameters (serum neutralizing antibody titer, serum enzyme activity (TSOD, LZM, C3), immune-related genes ((IgM, IFN1, MHC-II, CD8 in head kidney and spleen), IgZ in hindgut)). The results showed that SA-VP56-3/FlaB significantly induced strong immune responses, compared to other groups. The highest survival rate achieved in SA-VP56-3/FlaB microencapsulated vaccine (56%) in 2 weeks post GCRV challenge, while 10% for the control group. Meanwhile, the tissue virus load in survival grass carp is lowest in SA-VP56-3/FlaB group. These results indicated that SA-VP56-3/FlaB could be a candidate oral vaccine against GCRV-II infection in aquaculture.
Collapse
Affiliation(s)
- Chuang Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Meihua Qiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- *Correspondence: Jianguo Su,
| |
Collapse
|
5
|
BEI Inactivated Vaccine Induces Innate and Adaptive Responses and Elicits Partial Protection upon Reassortant Betanodavirus Infection in Senegalese Sole. Vaccines (Basel) 2021; 9:vaccines9050458. [PMID: 34064461 PMCID: PMC8147993 DOI: 10.3390/vaccines9050458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nervous necrosis virus (NNV), the causative agent of viral encephalopathy and retinopathy (VER), is one of the most threatening viruses affecting marine and freshwater fish species worldwide. Senegalese sole is a promising fish species in Mediterranean aquaculture but also highly susceptible to NNV and VER outbreaks, that puts its farming at risk. The development of vaccines for aquaculture is one of best tools to prevent viral spread and sudden outbreaks, and virus inactivation is the simplest and most cost-effective method available. In this work, we have designed two inactivated vaccines based on the use of formalin or binary ethylenimine (BEI) to inactivate a reassortant NNV strain. After vaccination, the BEI-inactivated vaccine triggered the production of specific IgM-NNV antibodies and stimulated innate and adaptive immune responses at transcriptional level (rtp3, mx, mhcii and tcrb coding genes). Moreover, it partially improved survival after an NNV in vivo challenge, reducing the mid-term viral load and avoiding the down-regulation of immune response post-challenge. On the other hand, the formalin-inactivated vaccine improved the survival of fish upon infection without inducing the production of IgM-NNV antibodies and only stimulating the expression of herc4 and mhcii genes (in head-kidney and brain, respectively) during the vaccination period; this suggests that other immune-related pathways may be involved in the partial protection provoked. Although these vaccines against NNV showed encouraging results, further studies are needed to improve sole protection and to fully understand the underlying immune mechanism.
Collapse
|
6
|
Faggion S, Bertotto D, Babbucci M, Dalla Rovere G, Franch R, Bovolenta M, Laureau S, Pascoli F, Toffan A, Bargelloni L, Carnier P. Resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax L.): heritability and relationships with body weight, cortisol concentration, and antibody titer. Genet Sel Evol 2021; 53:32. [PMID: 33794770 PMCID: PMC8017662 DOI: 10.1186/s12711-021-00625-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Susceptibility of European sea bass (Dicentrarchus labrax L.) to viral nervous necrosis (VNN) is well-known. Interest towards selective breeding as a tool to enhance genetic resistance in this species has increased sharply due to the major threat represented by VNN for farmed sea bass and limitations concerning specific therapeutical measures. A sea bass experimental population (N = 650) was challenged with nervous necrosis virus (NNV) to investigate genetic variation in VNN mortality. In addition, relationships of this trait with serum cortisol concentration after stress exposure, antibody titer against NNV antigens, and body weight at a fixed age were studied to identify potential indicator traits of VNN resistance. Results The estimate of heritability for VNN mortality was moderate and ranged from 0.15 (HPD95%, 95% highest posterior density interval: 0.02, 0.31) to 0.23 (HPD95%: 0.06, 0.47). Heritability estimates for cortisol concentration, antibody titer, and body weight were 0.19 (HPD95%: 0.07, 0.34), 0.36 (HPD95%: 0.16, 0.59) and 0.57 (HPD95%: 0.33, 0.84), respectively. Phenotypic relationships between traits were trivial and not statistically significant, except for the estimated correlation between antibody titer and body weight (0.24). Genetic correlations of mortality with body weight or antibody titer (− 0.39) exhibited a 0.89 probability of being negative. A negligible genetic correlation between mortality and cortisol concentration was detected. Antibody titer was estimated to be positively correlated with body weight (0.49). Conclusions Antibody titer against NNV offers the opportunity to use indirect selection to enhance resistance, while the use of cortisol concentration as an indicator trait in breeding programs for VNN resistance is questionable. The estimate of heritability for VNN mortality indicates the feasibility of selective breeding to enhance resistance to NNV and raises attention to the development of genomic prediction tools to simplify testing procedures for selection candidates.
Collapse
Affiliation(s)
- Sara Faggion
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy.
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | | | | | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale Delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale Delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| |
Collapse
|
7
|
Miccoli A, Saraceni PR, Scapigliati G. Vaccines and immune protection of principal Mediterranean marine fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 94:800-809. [PMID: 31580938 DOI: 10.1016/j.fsi.2019.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review describes and summarizes the knowledge on established and experimental vaccines developed against viral and bacterial pathologies affecting the most important farmed marine finfish species present in the Mediterranean area, namely European seabass Dicentrarchus labrax, sea bream Sparus aurata, turbot Psetta maxima and meagre Argyrosomus regius. The diseases that have been recorded in seabass, sea bream and meagre are caused by bacteria Vibrio anguillarum, Photobacterium damselae, Tenacibaculum maritimum as well as by viruses such as Viral Encephalopathy and Retinopathy/Viral Nervous Necrosis and Lymphocystic disease. The main pathologies of turbot are instead bacteriosis provoked by Tenacibaculum maritimum, Aeromonas sp. and Vibrio anguillarum, and virosis by viral hemorrhagic septicaemia virus. Some vaccines have been optimized and are now regularly available for the majority of the above-mentioned pathogens. A measurable immune protection has been conferred principally against Vibrio anguillarum, Photobacterium damselae sub. piscicida and VER/VNN.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - P R Saraceni
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - G Scapigliati
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
8
|
Leal Y, Velazquez J, Hernandez L, Swain JK, Rodríguez AR, Martínez R, García C, Ramos Y, Estrada MP, Carpio Y. Promiscuous T cell epitopes boosts specific IgM immune response against a P0 peptide antigen from sea lice in different teleost species. FISH & SHELLFISH IMMUNOLOGY 2019; 92:322-330. [PMID: 31200071 DOI: 10.1016/j.fsi.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The development of vaccines employing conserved protein antigens, for instance ribosomal protein P0, has as disadvantage the high degree of identity between pathogen and host proteins due to possible induction of tolerance or auto antibodies in the host organism. To overcome this drawback, peptide-based vaccines have been designed with a proved high efficacy. The use of defined peptides as antigens has the problem that they are generally poor immunogenic unless coupled to a carrier protein. Several studies have established the potential for promiscuous T cell epitopes incorporated into chimeric peptides to enhance the immunogenicity in mammals. On the contrary, studies about the role of these epitopes on teleost immune system are scarce. Therefore, the main objective of our present study was to evaluate the potential of promiscuous T cell epitopes to boost specific IgM immune response in teleost fish against a peptide antigen. With this aim, we used a peptide of 35 amino acids from the ribosomal P0 protein of Lepeophtheirus salmonis, an important parasite in salmon aquaculture. We fused this peptide to the C-terminal of T cell epitopes from tetanus toxin and measles virus and produced the chimeric protein in Escherichia coli. Following vaccination, IgM antibody production was monitored in different immunization schemes in Tilapia, African catfish and Atlantic salmon. The results demonstrated for first time that the addition of T cell epitopes at the N-terminal of a target peptide increased IgM specific response in different teleost species, revealing the potential of this approach to develop peptide-based vaccines for aquaculture. The results are also of great importance in the context of vaccine development against sea lice using ribosomal protein P0 as antigen taking into account the key role of P0 in protein synthesis and other essential physiological processes.
Collapse
Affiliation(s)
- Yeny Leal
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Janet Velazquez
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernandez
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Jaya Kumari Swain
- NOFIMA, Tromso, Norway; Fish Immunology and Vaccinology Research Group, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromso, Norway
| | | | - Rebeca Martínez
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Claudia García
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yassel Ramos
- Physico-Chemistry Department, CIGB, Havana, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
9
|
Lama R, Pereiro P, Novoa B, Coll J. Sea Bass Immunization to Downsize the Betanodavirus Protein Displayed in the Surface of Inactivated Repair-Less Bacteria. Vaccines (Basel) 2019; 7:E94. [PMID: 31434322 PMCID: PMC6789578 DOI: 10.3390/vaccines7030094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023] Open
Abstract
: This work describes immunization of European sea bass (Dicentrarchus labrax) juveniles against viral nervous necrosis virus (VNNV), a betanodavirus causing worldwide mortalities in many fish species. Protection was obtained with the so-called spinycterin vehicles consisting of irreversibly DNA-damaged DNA-repair-less Escherichia coli displaying at their surface a downsized VNNV coat antigen. In this work we have i) maximized bacterial expression levels by downsizing the coat protein of VNNV to a fragment (frgC91-220) containing most of its previously determined antigenicity, ii) developed a scalable autoinduction culture media for E.coli based in soy-bean rather than in casein hydrolysates, iii) enriched surface expression by screening different anchors from several prokaryotic sources (anchor + frgC91-220 recombinant products), iv) preserved frgC91-220 antigenicity by inactivating bacteria by irreversible DNA-damage by means of Ciprofloxacin, and v) increased safety using a repair-less E.coli strain as chassis for the spinycterins. These spinycterins protected fish against VNNV challenge with partial (Nmistic + frgC91-220) or total (YBEL + frgC91-220) levels of protection, in contrast to fish immunized with frgC91-220 spinycterins. The proposed spinycterin platform has high levels of environmental safety and cost effectiveness and required no adjuvants, thus providing potential to further develop VNNV vaccines for sustainable aquaculture.
Collapse
Affiliation(s)
- Raquel Lama
- Institute of Marine Research (IIM). Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM). Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Julio Coll
- National Institute for Agricultural and Food Research and Technology (INIA), Biotechnology Department, La Coruña road, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Gonzalez-Silvera D, Guardiola FA, Espinosa C, Chaves-Pozo E, Esteban MÁ, Cuesta A. Recombinant nodavirus vaccine produced in bacteria and administered without purification elicits humoral immunity and protects European sea bass against infection. FISH & SHELLFISH IMMUNOLOGY 2019; 88:458-463. [PMID: 30877059 DOI: 10.1016/j.fsi.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 05/22/2023]
Abstract
Viral necrosis virus (NNV) or nodavirus causes fish viral encephalopathy and retinopathy worldwide. In some cases, mortalities in aquaculture industry can reach up to 100%, some species being especially sensitive as is the case of European sea bass (Dicentrarchus labrax), one of the main cultured species in the Mediterranean, with the consequent economical loses. Development of new vaccines against NNV is in the spotlight though few researches have focused in European sea bass. In this study we have generated a recombinant NNV (rNNV) vaccine produced in Escherichia coli expressing the capsid protein and administered it to European sea bass juveniles by two different routes (intraperitoneal and oral). The last being considered non-stressful and desired for fish farming of small fish, which in fact are the most affected by NNV. Oral vaccine was composed of feed pellets containing the recombinant whole bacteria, and injected vaccine was composed of recombinant bacteria previously lysed. Our results revealed production of specific anti-NNV IgM following the two vaccination procedures, levels that were further increased in orally-vaccinated group after challenge with NNV. Genes related to interferon (IFN), T-cell and immunoglobulin markers were scarcely regulated in head-kidney (HK), gut or brain. Vaccination by either route elicited a relative survival response of 100% after NNV challenge. To our knowledge, this is the first report of a recombinant vaccine followed by no purification steps which resulted in a complete protection in European sea bass when challenged with NNV.
Collapse
Affiliation(s)
- Daniel Gonzalez-Silvera
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Cristóbal Espinosa
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
11
|
Buonocore F, Nuñez-Ortiz N, Picchietti S, Randelli E, Stocchi V, Guerra L, Toffan A, Pascoli F, Fausto AM, Mazzini M, Scapigliati G. Vaccination and immune responses of European sea bass (Dicentrarchus labrax L.) against betanodavirus. FISH & SHELLFISH IMMUNOLOGY 2019; 85:78-84. [PMID: 29175472 DOI: 10.1016/j.fsi.2017.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 05/22/2023]
Abstract
This review summarizes the available knowledge on the immune defences of European sea bass against antigenic preparations derived from the viral encephalopathy and retinopathy virus (betanodavirus), which represents a major threat to the health of this fish species. The nodavirus is widely present and differentiates into several strains that infect invertebrates (in insects, alphanodavirus) and teleost fish, and thus may represent a great problem for farmed fish species. Many efforts have been directed to discovering new immunizations to induce protection in sea bass, especially at young stages, and these efforts have included employing diverse betanodavirus strains, antigen preparation, vaccination routes, and the addition of adjuvants and/or immunostimulants. The obtained results showed that inactivated preparations of betanodavirus that were administered intraperitoneally may induce both immune recognition and protection. Attempts at performing mucosal immunization by immersion and/or oral administration, which is a vaccination route that is highly preferred for sea bass, have shown intriguing results, and more studies are necessary for its improvement. Overall, the objective of identifying a reliable vaccine that also cross-protects against different genotypes or reassortant viruses for use in European sea bass against betanodavirus appears to be an attainable goal in the near future.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Noelia Nuñez-Ortiz
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Elisa Randelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Valentina Stocchi
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Laura Guerra
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Anna Toffan
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Francesco Pascoli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Massimo Mazzini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
12
|
Teleosts Genomics: Progress and Prospects in Disease Prevention and Control. Int J Mol Sci 2018; 19:ijms19041083. [PMID: 29617353 PMCID: PMC5979277 DOI: 10.3390/ijms19041083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.
Collapse
|
13
|
Lin CF, Jiang HK, Chen NC, Wang TY, Chen TY. Novel subunit vaccine with linear array epitope protect giant grouper against nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:551-558. [PMID: 29355759 DOI: 10.1016/j.fsi.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Viral nervous necrosis caused by nervous necrosis virus (NNV) is one of the most severe diseases resulting in high fish mortality rates and high economic losses in the giant grouper industry. Various NNV vaccines have been evaluated, such as inactivated viruses, virus-like particles (VLPs), recombinant coat proteins, synthetic peptides of coat proteins, and DNA vaccines. However, a cheaper manufacturing process and effective protection of NNV vaccines for commercial application are yet to be established. Hence, the present study developed a novel subunit vaccine composed of a carrier protein, receptor-binding domain of Pseudomonas exotoxin A, and tandem-repeated NNV coat protein epitopes by using the structural basis of epitope prediction and the linear array epitope (LAE) technique. On the basis of the crystal structure of the NNV coat protein, the epitope was predicted from the putative target cell receptor-binding region to elicit neutralizing immune responses. The safety of the LAE vaccine was evaluated, and all vaccinated fish survived without any physiological changes. The coat protein-specific antibody titers in the vaccinated fish increased after vaccine administration and exerted NNV-neutralizing effects. The efficacy tests revealed that the relative percent survival (RPS) of LAE antigen formulated with adjuvant was above 72% and LAE vaccine was effective for preventing NNV infection in giant grouper. This study is the first to develop an NNV vaccine by using epitope repeats, which provided effective protection to giant grouper against virus infection. The LAE construct can be used as a vaccine design platform against various pathogenic diseases.
Collapse
Affiliation(s)
- Chao-Fen Lin
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Kai Jiang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nai-Chi Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
14
|
Oral immunization with cell-free self-assembly virus-like particles against orange-spotted grouper nervous necrosis virus in grouper larvae, Epinephelus coioides. Vet Immunol Immunopathol 2018; 197:69-75. [PMID: 29475509 DOI: 10.1016/j.vetimm.2018.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 12/27/2017] [Accepted: 01/23/2018] [Indexed: 11/22/2022]
Abstract
Nervous necrosis virus (NNV) infection causes viral nervous necrosis, inflicting serious economic losses in marine fish cultivation. Vaccination is the most effective choice for controlling and preventing viral infection. Virus-like particles (VLPs) are considered a novel vaccine platform because they are not infectious and they induce neutralizing antibodies efficiently. In the present study, we investigated the effect of the recombinant orange-spotted grouper NNV (OSGNNV) capsid proteins produced in Escherichia coli and cell-free self-assembled into VLPs on protective immune responses in orange-spotted grouper following immersion, intramuscular injection and oral immunization. We found the OSGNNV VLPs elicited neutralizing antibody with high efficacy, and provided the fish with full protection against OSGNNV challenge. In addition, the cell-free self-assembled OSGNNV VLPs did not contain residual host cell components and was safer compared with the intracellular assembled VLPs. Thus, oral vaccination is a more convenient and preferred route for fish vaccination. Our results show that the fish fed four times with a diet supplemented with 50-200 μg/g OSGNNV VLPs at 7-day intervals have sufficient protection. These findings demonstrate that cell-free self-assembled OSGNNV VLPs have potential as oral vaccines in grouper.
Collapse
|
15
|
Yong CY, Yeap SK, Omar AR, Tan WS. Advances in the study of nodavirus. PeerJ 2017; 5:e3841. [PMID: 28970971 PMCID: PMC5622607 DOI: 10.7717/peerj.3841] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Nuñez-Ortiz N, Pascoli F, Picchietti S, Buonocore F, Bernini C, Toson M, Scapigliati G, Toffan A. A formalin-inactivated immunogen against viral encephalopathy and retinopathy (VER) disease in European sea bass (Dicentrarchus labrax): immunological and protection effects. Vet Res 2016; 47:89. [PMID: 27590537 PMCID: PMC5010674 DOI: 10.1186/s13567-016-0376-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022] Open
Abstract
The European sea bass (Dicentrarchus labrax) is an important farmed fish species in the Mediterranean area, very sensitive to the infection by encephalopathy and retinopathy virus (VERv), or Betanodavirus, which causes massive mortalities. Effective vaccines to fight the pathology are not yet available and in this work we describe a promising intraperitoneal immunization route against VERv of sea bass juveniles. We performed intraperitoneal and immersion immunization trials with a VERv (isolate 283.2009 RGNNV) inactivated by formalin, β-propiolactone and heat treatment. Interestingly, the intraperitoneal immunization with formalin-inactivated VERv induced a significant antigen-specific IgM production, differently from other inactivation protocols. However, the same formalin-inactivated antigen resulted in very low IgM antibodies when administered by immersion. Following the intraperitoneal injection with formalin-inactivated virus, the quantitative expression of the antiviral MxA gene showed a modulation of transcripts in the gut after 48 h and on head kidney after 24 h, whereas ISG12 gene was significantly up-regulated after 48 h on both tissues. In immersion immunization with formalin-inactivated VERv, a modulation of MxA and ISG12 genes after 24 h post-treatment was detected in the gills. An effective uptake of VERv particles in the gills was confirmed by immunohistochemistry using anti-VERv antibodies. Lastly, in challenge experiments using live VERv after intraperitoneal immunization with formalin-inactivated VERv, we observed a significant increase (81.9%) in relative survival percentage with respect to non-immunized fish, whereas immersion immunization resulted in no protection. Our results suggest that intraperitoneal immunization with formalin-inactivated VERv could be a safe and effective strategy to fight Betanodavirus infection in European sea bass.
Collapse
Affiliation(s)
- Noelia Nuñez-Ortiz
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Francesco Pascoli
- Centro di Referenza Nazionale (NRL) per le patologie dei pesci, molluschi e crostacei, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Chiara Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Marica Toson
- Epidemiologia applicata agli animali acquatici, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Anna Toffan
- Centro di Referenza Nazionale (NRL) per le patologie dei pesci, molluschi e crostacei, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| |
Collapse
|
17
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|
18
|
Xie J, Li K, Gao Y, Huang R, Lai Y, Shi Y, Yang S, Zhu G, Zhang Q, He J. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle. Vet Res 2016; 47:16. [PMID: 26754256 PMCID: PMC4710043 DOI: 10.1186/s13567-015-0294-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023] Open
Abstract
Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and freshwater fish worldwide and the virus-like particles (VLP) are effective vaccines against betanodavirus. But vaccine and viral vector designs of betanodavirus VLP based on their structures remain lacking. Here, the three-dimensional structure of orange-spotted grouper nervous necrosis virus (OGNNV) VLP (RBS) at 3.9 Å reveals the organization of capsid proteins (CP). Based on the structural results, seven putative important sites were selected to genetically insert a 6× histidine (His)-tag for VLP formation screen, resulting in four His-tagged VLP (HV) at positions N-terminus, Ala220, Pro292 and C-terminus. The His-tags of N-terminal HV (NHV) were concealed inside virions while those of 220HV and C-terminal HV (CHV) were displayed at the outer surface. NHV, 220HV and CHV maintained the same cell entry ability as RBS in the Asian sea bass (SB) cell line, indicating that their similar surface structures can be recognized by the cellular entry receptor(s). For application of vaccine design, chromatography-purified CHV could provoke NNV-specific antibody responses as strong as those of RBS in a sea bass immunization assay. Furthermore, in carrying capacity assays, N-terminus and Ala220 can only carry short peptides and C-terminus can even accommodate large protein such as GFP to generate fluorescent VLP (CGV). For application of a viral vector, CGV could be real-time visualized to enter SB cells in invasion study. All the results confirmed that the C-terminus of CP is a suitable site to accommodate foreign peptides for vaccine design and viral vector development.
Collapse
Affiliation(s)
- Junfeng Xie
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Kunpeng Li
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanzhu Gao
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Runqing Huang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuxiong Lai
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 518080, China.
| | - Yan Shi
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaowei Yang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Guohua Zhu
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jianguo He
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
19
|
Zhu B, Liu GL, Gong YX, Ling F, Song LS, Wang GX. Single-walled carbon nanotubes as candidate recombinant subunit vaccine carrier for immunization of grass carp against grass carp reovirus. FISH & SHELLFISH IMMUNOLOGY 2014; 41:279-293. [PMID: 25240976 DOI: 10.1016/j.fsi.2014.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/30/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
Grass carp reovirus (GCRV), the most pathogenic aquareovirus, can cause fatal hemorrhagic disease in fingerling and yearling grass carp. Vaccination by injection is by far the most effective method of combating disease. However it is labor intensive, costly and not feasible to vaccinate large numbers of the fish. Thus, an efficient and economic strategy for the prevention of GCRV infection becomes urgent. Here, functionalized single-walled carbon nanotubes (SWCNTs) as carrier were used to manufacture SWCNTs-VP7 subunit vaccine with chemical modification. Different developmental stages of grass carps were immunized by VP7/SWCNTs-VP7 subunit vaccine against GCRV by intramuscular injection and bath immunization. The results indicate that better immune responses of grass carp immunized with the SWCNTs-VP7 subunit vaccine were induced in comparison with VP7 subunit vaccine alone. Immunization doses/concentrations are significantly reduced (about 5-8 times) to prevent GCRV infection in different developmental stages of grass carp with injection or bath treatment when SWCNTs carrier was used. A good immune protective effect (relative percentage survival greater than 95%) is observed in smaller size fish (0.2 g) with SWCNTs-VP7 bath immunization. In addition, serum respiratory burst activity, complement activity, lysozyme activity, superoxide dismutase activity, alkaline phosphatase activity, immune-related genes and antibody levels were significantly enhanced in fish immunized with vaccine. This study suggested that functionalized SWCNTs was the promising carrier for recombinant subunit vaccine and might be used to vaccinate fish by bath approach.
Collapse
Affiliation(s)
- Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guang-Lu Liu
- College of Science, Northwest A&F University, Yangling 712100, China
| | - Yu-Xin Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lin-Sheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
20
|
Kai YH, Wu YC, Chi SC. Immune gene expressions in grouper larvae (Epinephelus coioides) induced by bath and oral vaccinations with inactivated betanodavirus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:563-9. [PMID: 25130145 DOI: 10.1016/j.fsi.2014.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 08/03/2014] [Indexed: 05/27/2023]
Abstract
Nervous necrosis virus (NNV) has caused mass mortality in many mariculture fish species. Bath vaccination of inactivated NNV and oral immunization of recombinant NNV coat protein are reported to protect grouper larvae against NNV infection. However, the information of immune gene expression in grouper larvae (Epinephelus coioides) after bath and oral immunizations is still limited. In this study, grouper larvae were respectively bath- and orally immunized with binary ethylenimine (BEI)-inactivated NNV, and the expression levels of immune genes were analyzed. Significant gene expressions of IL-1β, Mx, MHC-I, MHC-II, CD8α, IgM and IgT were observed in bath- and orally immunized fish 1-4 weeks post immunization (wpi). Particularly, the up-regulation of IL-1β and Mx gene expression lasted for 4 weeks. The IgT gene expression in gill was only induced by bath immunization, while that in gut was only stimulated by oral immunization. Both immunizations elicited MHC-I and CD8α gene expression relative to cellular immunity. Furthermore, NNV RNA genome, which was detected in inactivated NNV, could induce Mx gene expression in grouper brain (GB) cells, indicating that NNV RNA genome could be recognized by pathogen-recognition receptors (PRRs). In summary, bath and oral vaccinations with BEI-inactivated NNV triggered the gene expression of not only humoral immunity but also cellular immunity.
Collapse
Affiliation(s)
- Yu-Hsuan Kai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chi Wu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shau-Chi Chi
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
21
|
Chen YM, Wang TY, Chen TY. Immunity to betanodavirus infections of marine fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:174-83. [PMID: 23916690 DOI: 10.1016/j.dci.2013.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 05/07/2023]
Abstract
Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
22
|
Overgård AC, Patel S, Nøstbakken OJ, Nerland AH. Atlantic halibut (Hippoglossus hippoglossus L.) T-cell and cytokine response after vaccination and challenge with nodavirus. Vaccine 2013; 31:2395-402. [PMID: 23370152 DOI: 10.1016/j.vaccine.2013.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 12/21/2012] [Accepted: 01/15/2013] [Indexed: 11/26/2022]
Abstract
Viral encephalopathy and retinopathy (VER), caused by nodavirus, is one of the major infectious diseases affecting the marine fish farming industry, yet no effective vaccine is available. In this study, we examined the halibut immune response following administration of an experimental vaccine comprising a recombinant nodavirus capsid protein in combination with an oil adjuvant (OA). Four groups of halibut were injected with either: PBS alone, PBS plus OA, 10μg recCP plus OA, or 50μg recCP plus OA. 15 weeks later, half the fish in each group were challenged with nodavirus and the immune response investigated by analysis of: serum levels of recCP-specific halibut immunoglobulins (Igs), and mRNA transcript levels of several T-cell markers (CD3ɛ, Lck, CD4, CD4-2, CD8α and CD8β) and cytokines (IL-1β, IL-6, IL-12βc and IFNγ). Additionally, the presence of nodaviral RNA2 transcripts in the brains of infected halibut was analysed. After vaccination, the level of IL-6 was consistently elevated in the spleens of fish given injections containing the OA. The combination of recCP and OA increased the expression of IL-1β and IFNγ, as well as the level of recCP-specific Igs in blood plasma. Following challenge with nodavirus, IL-1β and IFNγ were elevated in halibut spleens after 24h in all groups that had received OA with or without recCP antigen. In brain, a general increase in the expression levels of all T-cell markers and IFNγ was observed following challenge with nodavirus. The viral load at 8 weeks post-challenge was lower in the fish that received 50μg recCP, with 5 out of 8 individuals being negative for nodavirus. Additionally, a better correlation between these markers (apart from the CD8 markers), and the viral RNA2 was also observed in this group, suggesting that the activation of CD4+T-cells might be important in reducing the viral load. In conclusion, this study identifies recCP as a promising candidate antigen for the future development of a vaccine against nodavirus.
Collapse
|
23
|
Bravo J, Real F, Padilla D, Olveira JG, Grasso V, Román L, Acosta F. Effect of lipopolysaccharides from Vibrio alginolyticus on the Mx gene expression and virus recovery from gilthead sea bream (Sparus aurata L.) experimentally infected with Nodavirus. FISH & SHELLFISH IMMUNOLOGY 2013; 34:383-386. [PMID: 23092730 DOI: 10.1016/j.fsi.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/26/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Infections with nodavirus affect a wild and farmed fish species throughout the world, mostly from the marine environment. The aim of this work was to determine the immune status of gilthead sea bream that comes as a result of a Nodavirus infection, induced by activation of the interferon response pathway by lipopolysaccharides from Vibrio alginolyticus and the expression of interferoninduced Mx protein in liver samples. The enhancement of Mx protein gene expression was detected in liver samples of experimentally nodavirus infected fish and, furthermore, the immunostimulant LPS of V. alginolyticus decreased almost three times the virus titration with respect to no-immunized or infected with nodavirus group of fish.
Collapse
Affiliation(s)
- J Bravo
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Gomez-Casado E, Estepa A, Coll J. A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine 2011; 29:2657-71. [DOI: 10.1016/j.vaccine.2011.01.097] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/09/2010] [Accepted: 01/30/2011] [Indexed: 11/29/2022]
|
25
|
Wang YD, Kung CW, Chen JY. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1-5 against nervous necrosis virus in medaka. Peptides 2010; 31:1026-33. [PMID: 20214942 DOI: 10.1016/j.peptides.2010.02.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The nervous necrosis virus (NNV)-medaka infection model was used in this study for analysis of NNV infection and treatment of NNV with the antimicrobial peptides (AMPs) of epinecidin-1 and hepcidin 1-5 at the organismal level. Our results showed that co-treatment of AMPs with the virus was effective in promoting a significant increase in medaka survival. Re-challenge with the virus also showed high survival suggesting that these two AMPs enhanced fish survival. However, pretreatment or post-treatment with AMPs showed that both of these AMPs increased medaka survival and suggested that AMPs can be used as drugs to rescue infected medaka. The data presented here indicate that epinecidin-1 and hepcidin 1-5 have in vivo antivirus activity against the NNV, and hepcidin 1-5 functions like a lytic peptide after an in vitro assay. Infection after pretreatment, co-treatment, and post-treatment with epinecidin-1 or hepcidin 1-5 was verified by RT-PCR which showed both peptides can downregulate NNV and interferon gene expressions. In addition, our results suggest that epinecidin-1 or hepcidin 1-5 may prove to be an effective chemotherapeutic agent for aquaculture in the future.
Collapse
Affiliation(s)
- Yi-Da Wang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | | | | |
Collapse
|
26
|
Scapigliati G, Buonocore F, Randelli E, Casani D, Meloni S, Zarletti G, Tiberi M, Pietretti D, Boschi I, Manchado M, Martin-Antonio B, Jimenez-Cantizano R, Bovo G, Borghesan F, Lorenzen N, Einer-Jensen K, Adams S, Thompson K, Alonso C, Bejar J, Cano I, Borrego JJ, Alvarez MC. Cellular and molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus. FISH & SHELLFISH IMMUNOLOGY 2010; 28:303-311. [PMID: 19925869 DOI: 10.1016/j.fsi.2009.11.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/03/2009] [Accepted: 11/07/2009] [Indexed: 05/28/2023]
Abstract
Naïve sea bass juveniles (38.4 + or - 4.5 g) were intramuscularly infected with a sublethal dose of betanodavirus isolate 378/I03, followed after 43 days by a similar boosting. This infection resulted in an overall mortality of 7.6%. At various intervals, sampling of fish tissues was performed to investigate: i) B and T lymphocyte content in organs and tissues; ii), proliferation of leucocytes re-stimulated in vitro with inactivated virus; iii) presence of serum antibody specific for betanodavirus; iv) expression of genes coding for the following immunoregulatory molecules involved in innate and acquired responses: type I IFN, Mx, IL-1, Cox-2; IL-10, TGF-beta, TCRbeta, CD4, CD8alpha, IgM, by using a quantitative PCR array system developed for sea bass. The obtained results showed a detectable increase of T cells and B cells in PBL during betanodavirus infection. Furthermore, leucocytes obtained from blood, head kidney, and gills showed a detectable "in vitro" increase in viability upon addition of inactivated viral particles, as determined by measuring intracellular ATP concentration. ELISA analysis of sera showed that exposure to nodavirus induced a low, but specific antibody titer measured 43 days after infection, despite the presence of measurable levels of natural antibody. Finally, a strong upregulation of genes coding for type I IFN, Mx, and IgM was identified after both infection and boosting. Interestingly, an upregulation of Cox-2 until boosting, and of TGF-beta and IL-10 after boosting was also observed, while the other tested genes did not show any significant variations with respect to mock-treated fish. Overall, our work represents a first comprehensive analysis of cellular and molecular immune parameters in a fish species exposed to a pathogenic virus.
Collapse
Affiliation(s)
- G Scapigliati
- Dipartimento di Scienze Ambientali, Largo dell'Università, Università degli Studi della Tuscia, Viterbo 01100, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yamashita H, Mori K, Kuroda A, Nakai T. Neutralizing antibody levels for protection against betanodavirus infection in sevenband grouper, Epinephelus septemfasciatus (Thunberg), immunized with an inactivated virus vaccine. JOURNAL OF FISH DISEASES 2009; 32:767-775. [PMID: 19490392 DOI: 10.1111/j.1365-2761.2009.01054.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Abstract An inactivated betanodavirus, red-spotted grouper nervous necrosis virus (RGNNV), is a vaccine candidate for viral nervous necrosis (VNN). The present study was conducted to examine inoculation doses of the vaccine and neutralizing antibody titre levels to protect fish against VNN. Young sevenband grouper, Epinephelus septemfasciatus, averaging 25.4 g, were immunized at 25 degrees C water temperature by a single intraperitoneal injection of formalin-inactivated RGNNV. Fish immunized at vaccine doses of 10(8.5), 10(8.0), 10(7.5), 10(7.0) and 10(6.5) TCID(50) per fish produced antibodies at mean titres of 1:907, 1:511, 1:259, 1:197 and 1:96, respectively, at 20 days post-immunization (p.i.). Neutralizing antibodies were not detected in any control fish (titre <1:80). When fish were challenged with RGNNV (10(5.0) and 10(4.0) TCID(50)/fish) at 20 days p.i., cumulative mortalities of the fish groups immunized with 10(8.5), 10(8.0), 10(7.5) and 10(7.0) TCID(50) per fish were significantly lower than those of the control group, and the relative percent survival values were higher than 60% in fish groups immunized with 10(7.5) TCID(50) per fish or higher doses. However, no significant differences were found in mortality between the group immunized with 10(6.5) TCID(50) per fish and the control group. From these results, it was deduced that the minimum effective inoculation dose of the vaccine is 10(7.0) TCID(50) per fish and the minimum mean neutralizing antibody titre giving significant protection is approximately 1:200. This antibody titre level is a possible measure of vaccine efficacy against VNN in sevenband grouper, instead of a virus challenge test.
Collapse
Affiliation(s)
- H Yamashita
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Uwajima, Ehime, Japan
| | | | | | | |
Collapse
|
28
|
Efficacies of inactivated vaccines against betanodavirus in grouper larvae (Epinephelus coioides) by bath immunization. Vaccine 2008; 26:1450-7. [DOI: 10.1016/j.vaccine.2007.12.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 12/12/2007] [Accepted: 12/21/2007] [Indexed: 11/23/2022]
|
29
|
Costa JZ, Adams A, Bron JE, Thompson KD, Starkey WG, Richards RH. Identification of B-cell epitopes on the betanodavirus capsid protein. JOURNAL OF FISH DISEASES 2007; 30:419-26. [PMID: 17584439 PMCID: PMC7197462 DOI: 10.1111/j.1365-2761.2007.00824.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The pepscan procedure was used to identify betanodavirus B-cell epitopes recognized by neutralizing mouse monoclonal antibodies (MAbs) and serum samples obtained from sea bass, Dicentrarchus labrax, naturally infected with betanodavirus. Pepscan was performed with a panel of thirty-four 12-mer synthetic peptides that mimicked the entire betanodavirus capsid protein. Sea bass serum samples reacted strongly with three regions of the capsid protein comprising amino acid residues 1-32, 91-162 and 181-212. The latter region was also recognized by neutralizing MAbs and coincided with a region of high antigenic propensity identified by an antigen prediction algorithm. These data suggest that a region of the betanodavirus capsid protein spanning amino acid residues 181-212 may represent a neutralization domain that could potentially be used to inform the development of nodavirus vaccines and immunodiagnostic reagents.
Collapse
Affiliation(s)
- J Z Costa
- Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Thiéry R, Cozien J, Cabon J, Lamour F, Baud M, Schneemann A. Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles. J Virol 2006; 80:10201-7. [PMID: 17005697 PMCID: PMC1617310 DOI: 10.1128/jvi.01098-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022] Open
Abstract
Betanodaviruses are causative agents of viral nervous necrosis (VNN), a devastating disease of cultured marine fish worldwide. Virus particles contain a single type of coat protein that spontaneously assembles into virus-like particles (VLPs) when expressed in a baculovirus expression system. In the present study, the immunogenicity of betanodavirus VLPs and the protection they confer against VNN in the European sea bass Dicentrarchus labrax were investigated. Enzyme-linked immunosorbent assay and seroneutralization tests performed on plasma from fish vaccinated intramuscularly with doses as low as 0.1 microg of VLPs indicated that the VLPs elicited the synthesis of specific antibetanodavirus antibodies with neutralizing activity. Moreover, fish vaccinated with VLPs were protected from challenge with live virus. Both the immune response and the protective effect against viral challenge were dose dependent. Reverse transcription-PCR data indicated that higher doses of vaccine also reduced the number of fish containing detectable quantities of betanodavirus RNA on day 30 after challenge. Taken together these data strongly support the hypothesis that VLPs obtained in the baculovirus expression system may represent an effective vaccine against VNN.
Collapse
Affiliation(s)
- R Thiéry
- French Food Safety Agency, BP111, F-06902 Sophia Antipolis, France.
| | | | | | | | | | | |
Collapse
|
31
|
Fenner BJ, Du Q, Goh W, Thiagarajan R, Chua HK, Kwang J. Detection of betanodavirus in juvenile barramundi, Lates calcarifer (Bloch), by antigen capture ELISA. JOURNAL OF FISH DISEASES 2006; 29:423-32. [PMID: 16866926 DOI: 10.1111/j.1365-2761.2006.00736.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Betanodavirus infection of fish has been responsible for mass mortalities in aquaculture hatcheries worldwide. Betanodaviruses possess a bipartite single-stranded RNA genome consisting of the 3.1 kb RNA1 encoding an RNA-dependent RNA polymerase and the B2 protein, while the 1.4 kb RNA2 encodes the viral nucleocapsid protein, alpha. A panel of six monoclonal antibodies against the alpha protein of greasy grouper nervous necrosis virus (GGNNV) was developed for use in diagnostics. All antibodies reacted with native and recombinant alpha in immunoblot and indirect immunofluorescence assays. Each of the monoclonal antibodies reacted against discrete regions of the alpha protein, though none reacted with the extreme C-terminal region of the protein. One of the monoclonal antibodies, specific for the K151-T246 region of alpha, was used for the development of an antigen capture ELISA. In this assay we could detect 10(3)-10(4) TCID(50) units of virus derived from infected tissue culture supernatants. Head tissue extracts prepared from experimentally infected barramundi, Lates calcarifer, juveniles were assayed for GGNNV using the antigen capture assay and a clear increase in alpha antigen was detected from 5 to 15 days post-challenge. The assay thus represents a useful method for field-based detection of betanodavirus in fish hatcheries.
Collapse
Affiliation(s)
- B J Fenner
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|