1
|
Effect of photoperiod and temperature on indicators of immunity and wellbeing of endangered golden mahseer (Tor putitora) broodstock. J Therm Biol 2020; 93:102694. [DOI: 10.1016/j.jtherbio.2020.102694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022]
|
2
|
Singh A, Zutshi B. Photoperiodic effects on somatic growth and gonadal maturation in Mickey Mouse platy, Xiphophorus maculatus (Gunther, 1866). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1483-1495. [PMID: 32372327 DOI: 10.1007/s10695-020-00806-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Photoperiod is important in initiation or suppression of reproductive timing and gonadal maturation which varies with species. The aim of the present study was to investigate the effect of two photoperiodic manipulating regimes, i.e., long (18L:6D) and short (10L:14D) photoperiods for a period of 60 days on somatic growth and gonadal maturation of a live-bearer ornamental fish, Mickey Mouse platy (Xiphophorus maculatus). The control fish were further kept under the laboratory environmental condition. The results showed a significant increase in weight gain, specific growth rate, and gonadosomatic index in fish under long photoperiod than those exposed to short photoperiod and control condition (P < 0.05). A condition factor showed significant variations between long photoperiod and control groups. Furthermore, a long photoperiod also induced a significant increase in the number of fish with mature embryo and middle-eyed embryo in the ovary. Similarly, histological analysis of testes of males showed an increase in the number of mature spermatid and spermatozoa under long photoperiod when compared to those of control and short photoperiod ones. Thus, it can be concluded that long-day photoperiodic manipulation may be applied for healthy growth and early gonadal maturation of live-bearer ornamental fishes.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Zoology, Aquaculture Laboratory, Bangalore University, Bengaluru, India
| | - Bela Zutshi
- Department of Zoology, Aquaculture Laboratory, Bangalore University, Bengaluru, India.
| |
Collapse
|
3
|
Fatima S, Adams M, Wilkinson R. Effects of advanced and continuous photoperiod regimes on maturation control and profiles of sex steroids in brook trout (Salvelinus fontinalis). AUST J ZOOL 2020. [DOI: 10.1071/zo20058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Maturation of salmonid species reduces growth, flesh quality and immunocompetency and has inhibited, in part, the commercial production of brook trout in Tasmania. Photoperiod manipulation is routinely used to inhibit or reduce the incidence of maturation in salmonids, so an experimental adaptation of this approach was trialled experimentally for brook trout. Mixed-sex fish (age = 14 months) were subjected to simulated natural photoperiod (NP), advanced photoperiod (AP) and continuous photoperiod (CP) to investigate the response of endogenous circannual rhythm upon sexual maturity in this species. Light treatments commenced on the first day of the last month of the southern hemisphere’s winter and concluded towards the end of autumn when fish were ovulating. Maturation was observed in 100% of females and 96% of males held under NP. Fish exposed to AP corrected their maturation cycle by advanced phase shift of their endogenous rhythm for eight weeks and achieved final maturation during March–April. Plasma profiles of testosterone and oestradiol-17β were also adjusted according to advancement of photoperiod. Exposure to AP inhibited maturation by 6% and 8% in males and females, respectively. CP treatment for 10 consecutive months failed to inhibit gonadal development; however, this regime did delay or inhibit spermiation and ovulation.
Collapse
|
4
|
MISHRA ABHA, RAWAT ANURAG. Annual ovarian cycle of fresh water catfish Ompok bimaculatus (Bloch, 1794) from Gomati river, India. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i3.78387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study examined the gonadosomatic index (GSI), oocyte diameter (OD), ovarian morphology and histology of freshwater butter catfish Ompok bimaculatus from Gomati river, India. For the annual cycle study, monthly samples were collected from the Gomati river. The GSI increased with the progressively maturation of gonad. It increased significantly in July (4.98±0.047) and it reached its peak point in the month of August (5.37±0.037) and lowest value was observed in October month (0.64±0.019). The OD varied from 0.052±0.005 to 0.84±0.024; the maximum OD was observed in August month and lowest was observed in September month. It showed a significant relationship with GSI. Histological studies of ovary of O. bimaculatus revealed eight stages in oocyte development (oogonia, chromatin nucleolus, early perinucleolus, late perinucleolus, yolk vesicle, vitellogenesis, vitellogenic and post ovulatory follicles). The month wise studies of different parameters helped in confirming annual cycle as; resting phase (November-February), preparatory phase (March-April), pre-spawning phase (May- June), spawning phase (July-August) and post-spawning phase (September-October). These observations are important for a better understanding of reproductive biology of this fish in northern region to adopt breeding practices of female Ompok bimaculatus.
Collapse
|
5
|
Acharjee A, Chaube R, Joy KP. Effects of altered photoperiod and temperature on expression levels of gonadotrophin subunit mRNAs in the female stinging catfish Heteropneustes fossilis. JOURNAL OF FISH BIOLOGY 2017; 90:2289-2311. [PMID: 28393358 DOI: 10.1111/jfb.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Differential effects of photoperiod and temperature on the temporal modulation of gonadotrophin subunit genes (glycoprotein α, gpα), follicle-stimulating hormone β (fshβ) and luteinizing hormone β (lhβ) expression were investigated in the stinging catfish Heteropneustes fossilis. Female H. fossilis were exposed to varying photoperiod and temperature conditions for 14 and 28 days in the early preparatory phase of the annual reproductive cycle. Gonadotrophin subunit gene expression, gonado-somatic index (IG ), ovarian histology and plasma steroid hormone levels were evaluated. The exposure of H. fossilis to long photoperiod (LP) of 16 h light or high temperature (HT) at 28 ± 2° C (mean ± s.e.), alone or in combination, resulted in significant increases in gpα, fshβ and lhβ messenger (m)RNA levels, IG , plasma oestradiol-17β (E2 ), testosterone (T) and progesterone (P4 ) levels. The ovaries were filled with advanced yolky oocytes. On the other hand, the short photoperiod (SP) of 8 h light exposure decreased the transcript levels with higher inhibition in the normal temperature (NT) group at 18 ± 2° C (mean ± s.e.) than the HT group at 28 ± 2° C. Furthermore, the inhibition reached the highest level in total darkness (TD) of 24 h light deprivation under NT conditions at 18 ± 2° C. Consequently, the SP and TD treatments inhibited the IG , plasma E2 and T levels and ovarian development. The exposure to high temperature at 28 ± 2° C also modified the short photoperiod effect by elevating plasma E2 level. The plasma T level changed only mildly while the plasma P4 level showed the greatest fluctuations; the level reached the nadir in the SP + HT group but increased in the SP + NT group on day 28. A two-way ANOVA of the data showed differential effects of photoperiod and temperature; photoperiod produced a highly significant effect on fshβ expression while temperature had a highly significant effect both on lhβ and gpα levels. Thus, the differential expression of the gpα by the environmental variables ensures temporal synchronization of ovarian development and spawning.
Collapse
Affiliation(s)
- A Acharjee
- Department of Zoology, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India
| | - R Chaube
- Department of Zoology, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India
| | - K P Joy
- Department of Zoology, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India
| |
Collapse
|
6
|
Dey R, Bhattacharya S, Maitra SK. Importance of Photoperiods in the Regulation of Ovarian Activities in Indian Major Carp Catla catla in an Annual Cycle. J Biol Rhythms 2016; 20:145-58. [PMID: 15834111 DOI: 10.1177/0748730404272925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study attempted for the first time to explore the importance of photoperiod in the regulation of seasonal ovarian functions in any subtropical major carp. Adult Indian major carp Catla catla were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 30 days on 4 dates corresponding to the beginnings of 4 reproductive phases in an annual cycle, and responsiveness of the ovary was evaluated by comparison with the gonadal weight (IG), relative number of developing oocytes, serum levels of vitellogenin, and the activity of 2 important steroidogenic enzymes, that is, Δ53β-hydroxysteroid dehydrogenase and 17.β-hydroxysteroid dehydrogenase, in the ovary of fish in a natural photoperiod. Exposure of fish to LP during the preparatory phase (February-March) resulted in a significant ( p < 0.001) increase in the values of vitellogenin and in the activity of both the steroidogenic enzymes but not in the ovarian weight and in the relative number of different stages of oocytes. A more stimulatory influence of LP was noted during the prespawning phase (April-May), when precocious maturation of ovary was evident from a significant ( p < 0.001) rise in the values of each studied features of ovarian functions. However, no ovarian response was found when the fish were transferred to LP during the spawning (July-August) and the postspawning (September-October) phases. On the other hand, the SP was found to have an inhibitory influence on ovarian growth and maturation during the prespawning and the spawning phases or to have no influences on ovarian functions during the preparatory and the postspawning phases of an annual cycle. The results of our study provide the first evidence that photoperiod per se plays an important role in the seasonal maturation of ovary in a subtropical freshwater major carp.
Collapse
Affiliation(s)
- Ruma Dey
- Department of Zoology, Visva-Bharati University, Santiniketan, India
| | | | | |
Collapse
|
7
|
Gillies K, Krone SM, Nagler JJ, Schultz IR. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis. PLoS Comput Biol 2016; 12:e1004874. [PMID: 27096735 PMCID: PMC4838294 DOI: 10.1371/journal.pcbi.1004874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. Improving the ability to estimate reproductive performance in fish is important, due to the growth of the aquaculture industry and the need to maintain adequate broodstock and concerns over the effects of anthropogenic stressors on feral fish populations. We present here a quantitative, mathematical model of the female rainbow trout reproductive cycle. We show how the model is able to accurately describe experimentally measured data associated with pituitary, ovarian and liver reproductive performance. We also use the model to describe similar data sets collected in rainbow trout by other researchers. An important value of quantitative biological models is the ability to simulate various physiological conditions, real or hypothetical. We demonstrate this by predicting the effects of exposure to an endocrine disruptor on oocyte growth. The need to limit cost and animal usage will encourage future experimental studies to use in vitro methods. The model presented here can assist with the extrapolation of in vitro effects to the whole fish.
Collapse
Affiliation(s)
- Kendall Gillies
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
| | - Stephen M. Krone
- University of Idaho, Department of Mathematics, Moscow, Idaho, United States of America
| | - James J. Nagler
- University of Idaho, Department of Biological Sciences and Center for Reproductive Biology, Moscow, Idaho, United States of America
| | - Irvin R. Schultz
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang Z, Zhu B, Ge W. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 2016; 29:76-98. [PMID: 25396299 DOI: 10.1210/me.2014-1256] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vertebrate reproduction is controlled by two gonadotropins (FSH and LH) from the pituitary. Despite numerous studies on FSH and LH in fish species, their functions in reproduction still remain poorly defined. This is partly due to the lack of powerful genetic approaches for functional studies in adult fish. This situation is now changing with the emergence of genome-editing technologies, especially Transcription Activator-Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). In this study, we deleted the hormone-specific β-genes of both FSH and LH in the zebrafish using TALEN. This was followed by a phenotype analysis for key reproductive events, including gonadal differentiation, puberty onset, gametogenesis, final maturation, and fertility. FSH-deficient zebrafish (fshb(-/-)) were surprisingly fertile in both sexes; however, the development of both the ovary and testis was significantly delayed. In contrast, LH-deficient zebrafish (lhb(-/-)) showed normal gonadal growth, but the females failed to spawn and were therefore infertile. Using previtellogenic follicles as the marker, we observed a significant delay of puberty onset in the fshb mutant but not the lhb mutant females. Interestingly, FSH seemed to play a role in maintaining the female status because we repeatedly observed sexual reversal in the fshb mutant. Neither the fshb nor lhb mutation alone seemed to affect gonadal differentiation; however, the double mutation of the two genes led to all males, although the development of the testis was significantly delayed. In summary, our data confirmed some well-known functions of FSH and LH in fish while also providing evidence for novel functions, which would be difficult to reveal using traditional biochemical and physiological approaches.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Life Sciences (Z.Z., B.Z., W.G.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and Faculty of Health Sciences (Z.Z., W.G.), University of Macau, Taipa, Macau, China
| | | | | |
Collapse
|
9
|
Pavitt AT, Pemberton JM, Kruuk LEB, Walling CA. Testosterone and cortisol concentrations vary with reproductive status in wild female red deer. Ecol Evol 2016; 6:1163-72. [PMID: 26941946 PMCID: PMC4761757 DOI: 10.1002/ece3.1945] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Although hormones are key regulators of many fitness and life history traits, the causes of individual level variation in hormones, particularly in wild systems, remain understudied. Whilst we know that androgen and glucocorticoid levels vary within and among individuals in mammalian populations, how this relates to key reproductive processes such as gestation and lactation, and their effects on a female's measurable hormone levels are poorly understood in wild systems. Using fecal samples collected from females in a wild red deer population between 2001 and 2013, we explore how fecal androgen (FAM) and cortisol (FCM) metabolite concentrations change with age and season, and how individual differences relate to variation in reproductive state. Both FAM and FCM levels increase toward parturition, although this only affects FCM levels in older females. FCM levels are also higher when females suckle a male rather than a female calf, possibly due to the higher energetic costs of raising a son. This illustrates the importance of accounting for a female's life history and current reproductive status, as well as temporal variation, when examining individual differences in hormone levels. We discuss these findings in relation to other studies of mammalian systems and in particular to the relatively scarce information on variation in natural levels of hormones in wild populations.
Collapse
Affiliation(s)
- Alyson T. Pavitt
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Josephine M. Pemberton
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Loeske E. B. Kruuk
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
- Division of Evolution, Ecology & GeneticsResearch School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Craig A. Walling
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| |
Collapse
|
10
|
Chaube R, Singh RK, Joy KP. Changes in vasotocin levels in relation to ovarian development in the catfish Heteropneustes fossilis exposed to altered photoperiod and temperature. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1173-1186. [PMID: 26026296 DOI: 10.1007/s10695-015-0078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Photoperiod and temperature are the major proximate factors that activate the brain-pituitary-gonadal-endocrine axis stimulating gonadal recrudescence. Vasotocin (VT), the basic nonapeptide hormone, is secreted by the nucleus preopticus in the hypothalamus and released from the pituitary into circulation as a neurohormone for physiological actions. Additionally, VT is secreted de novo in the ovary of the catfish and has been implicated in ovarian functions. In the present study, we evaluated the changes in VT secretion during altered photoperiod and temperature exposure. The ovarian changes were monitored over gonadosomatic index (GSI) and plasma steroid hormone levels. Exposure of the catfish to long photoperiod (LP, 16L:08D) daily, alone or in combination with high temperature (HT, 28 ± 2 °C), for 14 or 28 days resulted in a decrease in brain-pituitary VT level with a concomitant increase in plasma and ovarian VT levels. The changes were greater in the LP + HT group on day 28. Concurrently, the treatments stimulated the GSI and plasma estradiol-17β (E2), testosterone (T) and progesterone (P4) levels with higher more responses in the LP + HT group. Exposure of the catfish to short photoperiod (SP, 08L:16D) daily or total darkness (TD, 24L:00D) daily, with or without changing the ambient temperature, for 14 or 28 days produced a depressing effect on VT, GSI and steroid hormone levels, the range of the response varied with the temperature. The brain VT level was low except in the TD + NT group. Plasma and ovarian VT levels decreased more in the SP and TD groups under ambient temperature than in the groups at the raised temperature. The GSI and plasma steroid hormones (E2, T and P4) responded in a similar manner. Plasma cortisol level registered a significant increase in all the groups compared to the initial control groups, and the increase was significantly higher on day 28. The simultaneous activation of VT secretion and ovarian recrudescence by photoperiod and temperature suggests the peptide's involvement in the hormonal control of gametogenesis.
Collapse
Affiliation(s)
- Radha Chaube
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221 005, India.
- Zoology Department, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India.
| | - Rahul Kumar Singh
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221 005, India
| | - Keerikattil P Joy
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
11
|
Guzmán JM, Luckenbach JA, Yamamoto Y, Swanson P. Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon. PLoS One 2014; 9:e114176. [PMID: 25485989 PMCID: PMC4259363 DOI: 10.1371/journal.pone.0114176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/05/2014] [Indexed: 01/17/2023] Open
Abstract
The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors.
Collapse
Affiliation(s)
- José M. Guzmán
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- * E-mail:
| | - J. Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, 99164, United States of America
| | - Yoji Yamamoto
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, 98195, United States of America
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, 98112, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, 99164, United States of America
| |
Collapse
|
12
|
Plasma nesfatin-1 is not affected by long-term food restriction and does not predict rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss). PLoS One 2014; 9:e85700. [PMID: 24416444 PMCID: PMC3887096 DOI: 10.1371/journal.pone.0085700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
The metabolic peptide hormone nesfatin-1 has been linked to the reproductive axis in fishes. The purpose of this study was to determine how energy availability after spawning affects plasma levels of nesfatin-1, the metabolic peptide hormone ghrelin, and sex steroid hormones in rematuring female rainbow trout (Oncorhynchus mykiss). To limit reproductive maturation, a group of female trout was food-restricted after spawning and compared with a control group that was fed a standard broodstock ration. The experiment was conducted twice, once using two-year-old trout (second-time spawners) and once using three-year-old trout (third-time spawners). During monthly sampling, blood was collected from all fish, and a subset of fish from each treatment was sacrificed for pituitaries. Pituitary follicle-stimulating hormone-beta (fsh-β) mRNA expression was analyzed with q-RT-PCR; plasma hormone levels were quantified by radioimmunoassay (17β-estradiol and ghrelin) and enzyme-linked immunosorbent assay (11-keto-testosterone and nesfatin-1). Although plasma nesfatin-1 levels increased significantly in the months immediately after spawning within both feeding treatments, plasma nesfatin-1 did not differ significantly between the two treatments at any point. Similarly, plasma ghrelin levels did not differ significantly between the two treatments at any point. Food restriction arrested ovarian development by 15–20 weeks after spawning, shown by significantly lower plasma E2 levels among restricted-ration fish. Pituitary fsh-β mRNA levels were higher among control-ration fish than restricted-ration fish starting at 20 weeks, but did not differ significantly between treatment groups until 30 weeks after spawning. Within both treatment groups, plasma 11-KT was elevated immediately after spawning and rapidly decreased to and persisted at low levels; starting between 20 and 25 weeks after spawning, plasma 11-KT was higher among control-ration fish than restricted-ration fish. The results from these experiments do not provide support for plasma nesfatin-1 as a signal for the initiation of reproductive development in rematuring female rainbow trout.
Collapse
|
13
|
Sarameh SP, Falahatkar B, Takami GA, Efatpanah I. Physiological changes in male and female pikeperch Sander lucioperca (Linnaeus, 1758) subjected to different photoperiods and handling stress during the reproductive season. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1253-1266. [PMID: 23504101 DOI: 10.1007/s10695-013-9780-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
Pikeperch broodstocks were exposed to different photoperiods: constant light (24L:0D), constant darkness (0L:24D), and 12 h light, 12 h darkness (12L:12D), for 40 days. Half of the broodstocks of each photoperiod were exposed to handling stress at a specific time of the day. Results showed that cortisol and lactate did not reveal any significant difference. However, glucose levels in females increased in the stress-free darkness period in comparison with stressful darkness photoperiods (0L:24D-s). Red blood cells in males and white blood cells in females showed a significant difference under different photoperiod regimes. Both sexes showed no significant difference in the differential count of leukocytes under different photoperiods and handling stress. Constant photoperiods and handling stress affected the hematological parameters, particularly, the number of lymphocytes and neutrophils in females. Our findings revealed that due to a long-term exposure to stressors, pikeperch brooders become adapted to stressful conditions.
Collapse
Affiliation(s)
- Sara Pourhosein Sarameh
- Department of Fisheries, Faculty of Natural Resources, Islamic Azad University, Lahijan Branch, Lahijan, Guilan, Iran
| | | | | | | |
Collapse
|
14
|
Kim BH, Lee CH, Hur SW, Hur SP, Kim DH, Suh HL, Kim SY, Lee YD. Long Photoperiod Affects Gonadal Development in Olive Flounder Paralichthys olivaceus. Dev Reprod 2013; 17:241-6. [PMID: 25949139 PMCID: PMC4282300 DOI: 10.12717/dr.2013.17.3.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
Abstract
To effects of sex maturation in olive flounder by regulating long photoperiod, gonadal development and GTH mRNA expression in the pituitary were investigated. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from September 2011 to March 2012. The results showed that natural photoperiodic group showed a higher gonadosomatic index (GSI) than long photoperiodic group during the spawning season (March 2012). The histological analysis of ovarian tissue showed that natural photoperiod group of ovaries contained vitellogenic oocytes, but long photoperiod group of ovaries mainly contained perinucleolus staged oocyte and oil-drop staged oocytes. The FSH mRNA of olive flounder, under natural photoperiod group, showed a significantly higher expression but no significant difference under long photoperiod group. The LHβ mRNA showed a significantly higher expression only under natural photoperiod group. These results may suggest that long photoperiodic information regulates secretion of pituitary FSH and LH and maintain early growing stage of gonadal development in this species.
Collapse
Affiliation(s)
- Byeong-Hoon Kim
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Chi-Hoon Lee
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Sang-Woo Hur
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Sung-Pyo Hur
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Dae-Hwan Kim
- Department of Oceanography, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hae-Lip Suh
- Department of Oceanography, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sung-Yeon Kim
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Young-Don Lee
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| |
Collapse
|
15
|
Hachero-Cruzado I, Forniés A, Herrera M, Mancera JM, Martínez-Rodríguez G. Sperm production and quality in brill Scophthalmus rhombus L.: relation to circulating sex steroid levels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:215-220. [PMID: 22806610 DOI: 10.1007/s10695-012-9692-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
The aims of the present study were to characterize sperm quality and to quantify seasonal changes in sexual hormone (testosterone [T], 11-ketotestosterone [11-KT] and 17,20β-dihydroxypregn-4-en-3-one [17,20β-P]) levels in male brill (Scophthalmus rhombus) plasma, as well as to test a more intensive sampling strategy to establish relationships between sex steroid levels and sperm production parameters. Sperm concentration ranged from 0.5 to 3.1 × 10(9) spermatozoa mL(-1), and changes in sperm quality parameters depending on sampling date were observed. Plasma sexual steroid levels remained high and changed in parallel during the spawning season and afterwards decreased to very low levels in summer. The analysis of annual changes of 11-KT and T ratios suggests that 11-KT can be the main circulating androgen for stimulating spermatogenesis in S. rhombus and that T could be involved in the beginning of spermatogenesis through the positive feedback on brain-pituitary-gonad axis. Finally, daily 11-KT and T levels showed similar patterns of variation in males sampled, whereas 17,20β-P amounts showed somewhat opposite trends. These differences could be related with the different role of androgens and progestin during the spermatogenesis.
Collapse
Affiliation(s)
- Ismael Hachero-Cruzado
- Instituto de Investigación y Formación Agraria y Pesquera de Andalucía, Centro Agua del Pino, Carretera Cartaya, Punta Umbría s/n, 21459 Cartaya, Huelva, Spain.
| | | | | | | | | |
Collapse
|
16
|
Rosenfeld H, Mylonas CC, Bridges CR, Heinisch G, Corriero A, Vassallo-Aguis R, Medina A, Belmonte A, Garcia A, De la Gándara F, Fauvel C, De Metrio G, Meiri-Ashkenazi I, Gordin H, Zohar Y. GnRHa-mediated stimulation of the reproductive endocrine axis in captive Atlantic bluefin tuna, Thunnus thynnus. Gen Comp Endocrinol 2012; 175:55-64. [PMID: 22015989 DOI: 10.1016/j.ygcen.2011.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
Abstract
A controlled-release implant loaded with GnRH agonist (GnRHa) was used to induce spawning in Atlantic bluefin tuna (Thunnus thynnus) during two consecutive reproductive seasons. The fish were implanted underwater and sampled between days 2 and 8 after treatment. At the time of GnRHa treatment, females were in full vitellogenesis and males in spermiation. There was a rapid burst of pituitary luteinizing hormone (LH) release at day 2 after treatment in GnRHa-treated fish, and circulating LH remained elevated up to day 8 after treatment. In contrast, control fish had significantly lower levels in the plasma, but higher LH content in the pituitary, as observed in many other cultured fishes that fail to undergo oocyte maturation, ovulation and spawning unless induced by an exogenous GnRHa. Plasma testosterone (T) and 17β-estradiol (E(2)) were elevated in response to the GnRHa treatment in females, while 11-ketotestosterone (11-KT) but not T was elevated in males. Even though oocyte maturation and ovulation did occur in GnRHa-induced fish, no significant elevations in 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) or 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S), in either the free, conjugated or 5β-reduced,3α-hydroxylated forms was observed in fish sampled within 6 days after treatment. Interestingly, a significant peak in plasma free 17,20β-P levels occurred in both males and females at day 8 after treatment. Histological sections of the ovaries in these females contained oocytes at the migrating germinal vesicle stage, suggesting the role of this hormone as a maturation-inducing steroid in Atlantic bluefin tuna. In conclusion, the GnRHa implants activated effectively the reproductive endocrine axis in captive Atlantic bluefin tuna broodstocks, through stimulation of sustained elevations in plasma LH, which in turn evoked the synthesis and secretion of the relevant sex steroids leading to gamete maturation and release.
Collapse
Affiliation(s)
- H Rosenfeld
- Israel Oceanographic and Limnological Research, National Center for Mariculture, PO Box 1212, Eilat 88112, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hook SE, Nagler JJ, Cavileer T, Verducci J, Liu Y, Hayton W, Schultz IR. Relationships between the transcriptome and physiological indicators of reproduction in female rainbow trout over an annual cycle. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:309-318. [PMID: 21086553 DOI: 10.1002/etc.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Normal transcriptomic patterns along the brain-pituitary-gonad-liver (BPGL) axis should be better characterized if endocrine-disrupting compound-induced changes in gene expression are to be understood. Female rainbow trout were studied over a complete year-long reproductive cycle. Tissue samples from pituitary, ovary, and liver were collected for microarray analysis using the 16K Genomic Research on Atlantic Salmon Project (GRASP) microarray and for quantitative polymerase chain reaction measures of estrogen receptor (ER) isoform messenger RNA (mRNA) levels. Plasma was collected to determine levels of circulating estradiol-17β (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). As an a priori hypothesis, changes in gene expression were correlated to either circulating levels of E2, FSH, and LH, or ER mRNAs quantified by quantitative polymerase chain reaction. In the liver, most transcriptomic patterns correlated to levels of either E2, LH, or ERs. Fewer ovarian transcripts could be correlated to levels of E2, ERα, or FSH. No significant associations were obvious in the pituitary. As a post hoc hypothesis, changes in transcript abundance were compared with microarray features with known roles in gonadal maturation. Many altered transcripts in the ovary correlated to transcript levels of estradiol 17-beta-dehydrogenase 8 or 17 B HSD12, or to glycoprotein alpha chain 1 or 2. In the pituitary, genes involved with the growth axis (e.g., growth hormone, insulin-related growth factor binding protein) correlated with the most transcripts. These results suggest that transcriptional networks along the BPGL axis may be regulated by factors other than circulating steroid hormones.
Collapse
|
18
|
Choi S, Lee CH, Park W, Kim DJ, Sohn YC. Effects of shortened photoperiod on gonadotropin-releasing hormone, gonadotropin, and vitellogenin gene expression associated with ovarian maturation in rainbow trout. Zoolog Sci 2010; 27:24-32. [PMID: 20064005 DOI: 10.2108/zsj.27.24] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reproductive activities of salmonids are synchronized by changes in photoperiod, which control the endocrine system via the brain-pituitary-gonadal axis. Gonadotropin-releasing hormone (GnRH) in the brain regulates synthesis and release of the pituitary gonadotropins (GTHs; FSH and LH). FSH and LH in turn stimulate the production of sex steroids for oocyte growth and maturation-Inducing steroid hormones for oocyte maturation and ovulation, respectively, in female salmonids. To clarify effects of long-term photoperiod manipulations on the reproductive activity of salmonids from early recrudescence to ovulation, we Investigated the gene expression profiles of GnRH, GTHs, and vitellogenin (VTG), and plasma sex steroids in female rainbow trout (Oncorhynchus mykiss). In addition, the percentages of eyed embryos and hatched alevins were examined together with the number of ovulated eggs to evaluate the effects of photoperiod regimes on egg quality. During late summer, the mRNA levels of GnRHs, GTHalpha, and LHbeta, and the plasma level of a maturational steroid (17alpha,20beta-dihydroxy-4-pregnen-3-one; 17,20beta-P) were significantly elevated by a gradually shortened photoperiod under constant temperature, in accordance with accelerated sexual maturation. The percentages of eyed embryos and hatched alevins from fish ovulated in August were comparable to those of control fish observed in December. These results clearly indicate that syntheses of GnRHs, LH, VTG, and 17,20beta-P are effectively accelerated by a programmed long-short photoperiod regime in early recrudescent female rainbow trout, without a marked deterioration in egg quality.
Collapse
Affiliation(s)
- Sungchang Choi
- Department of Marine Molecular Biotechnology, Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Migaud H, Davie A, Taylor JF. Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. JOURNAL OF FISH BIOLOGY 2010; 76:27-68. [PMID: 20738699 DOI: 10.1111/j.1095-8649.2009.02500.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Seasonality is an important adaptive trait in temperate fish species as it entrains or regulates most physiological events such as reproductive cycle, growth profile, locomotor activity and key life-stage transitions. Photoperiod is undoubtedly one of the most predictable environmental signals that can be used by most living organisms including fishes in temperate areas. This said, however, understanding of how such a simple signal can dictate the time of gonadal recruitment and spawning, for example, is a complex task. Over the past few decades, many scientists attempted to unravel the roots of photoperiodic signalling in teleosts by investigating the role of melatonin in reproduction, but without great success. In fact, the hormone melatonin is recognized as the biological time-keeping hormone in fishes mainly due to the fact that it reflects the seasonal variation in daylength across the whole animal kingdom rather than the existence of direct evidences of its role in the entrainment of reproduction in fishes. Recently, however, some new studies clearly suggested that melatonin interacts with the reproductive cascade at a number of key steps such as through the dopaminergic system in the brain or the synchronization of the final oocyte maturation in the gonad. Interestingly, in the past few years, additional pathways have become apparent in the search for a fish photoneuroendocrine system including the clock-gene network and kisspeptin signalling and although research on these topics are still in their infancy, it is moving at great pace. This review thus aims to bring together the current knowledge on the photic control of reproduction mainly focusing on seasonal temperate fish species and shape the current working hypotheses supported by recent findings obtained in teleosts or based on knowledge gathered in mammalian and avian species. Four of the main potential regulatory systems (light perception, melatonin, clock genes and kisspeptin) in fish reproduction are reviewed.
Collapse
Affiliation(s)
- H Migaud
- Reproduction and Genetics Group, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | | | | |
Collapse
|
20
|
Milla S, Mandiki SNM, Hubermont P, Rougeot C, Mélard C, Kestemont P. Ovarian steroidogenesis inhibition by constant photothermal conditions is caused by a lack of gonadotropin stimulation in Eurasian perch. Gen Comp Endocrinol 2009; 163:242-50. [PMID: 19389402 DOI: 10.1016/j.ygcen.2009.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 11/28/2022]
Abstract
In fish, the reasons for the inhibition of reproduction by constant photothermal conditions of rearing are far from clear. In an in vivo experiment, two groups of females reared under natural (4-28 degrees C) or constant photothermal conditions (20-22 degrees C, photoperiod 12/12) were investigated for gonad development, sex-steroids (testosterone-T, 17-beta-estradiol-E2 and 11 Keto-Testosterone-11KT) dynamics and brain aromatase activity in January, February and March. Two days before each sampling date, a group of females reared under constant conditions was injected with HCG (Human Chorionic Gonadotropin: 100 UI/kg) and evaluated for the same parameters. In addition, in vitro ovarian steroidogenesis capacity for each female was determined with or without stimulation by HCG and/or IGF-1 (Insulin-like Growth Factor-1). The results indicate that vitellogenesis stage is the limit ovarian stage never reached in females submitted to constant photothermal conditions. This was associated with gonadogenesis delay and low levels of circulating sex-steroids (T, E2 and 11KT). Nevertheless, HCG injections partly counteracted the plasma steroid deprivation, indicating that ovaries from fish reared under constant photothermal conditions suffer from a lack of gonadotropin stimulation, maybe caused by plasma LH suppression. Such finding was confirmed by the in vitro ovary incubation test. HCG and IGF-1 treatments induced broad testosterone and 17-beta-estradiol elevations and the exposure to constant photothermal conditions, in some cases, decreased that response to HCG. In conclusion, we show that the inhibition of reproductive cycle in Eurasian perch females by constant photothermal conditions of rearing may be related to lower sex-steroid levels and to an inhibition of ovarian regulation by gonadotropins (at least LH), probably stopping gonadogenesis before vitellogenesis stage.
Collapse
Affiliation(s)
- S Milla
- University of Namur, URBO, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Andersson E, Nijenhuis W, Male R, Swanson P, Bogerd J, Taranger GL, Schulz RW. Pharmacological characterization, localization and quantification of expression of gonadotropin receptors in Atlantic salmon (Salmo salar L.) ovaries. Gen Comp Endocrinol 2009; 163:329-39. [PMID: 19442667 DOI: 10.1016/j.ygcen.2009.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/17/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
The gonadotropins Fsh and Lh interact with their receptors (Fshr and Lhr, respectively) in a highly specific manner in mammals with little overlap in biological activities. In fish, the biological activities seem less clearly separated considering, for example, the steroidogenic potency of both Fsh and Lh. Important determinants of the biological activity are the specificity of hormone-receptor interaction and the cellular site of receptor expression. Here, we report the pharmacological characterization of Atlantic salmon Fshr and Lhr, identify receptor-expressing cells in the ovary, and validate receptor mRNA quantification systems. For the pharmacological studies, we used highly purified coho salmon gonadotropins and found that the Fshr preferentially responded to Fsh, but was also activated by approximately 6-fold higher levels of Lh. The Lhr was specific for Lh and did not respond to Fsh. Photoperiod manipulation was used to generate ovarian tissue samples with largely differing stages of maturation. Specific real-time, quantitative (rtq) PCR assays revealed up to 40-fold (fshr) and up to 350-fold (lhr) changes in ovarian expression levels, which correlated well with the differences in ovarian weight, histology, and circulating oestrogen levels recorded in January and June, respectively. Vitellogenic ovaries were used to localise receptor-expressing cells by in situ hybridization. Granulosa cells of small and large vitellogenic follicles were positive for both receptors. Also theca cells of small and large vitellogenic follicles expressed fshr mRNA, while only in large vitellogenic follicles theca cells were (weakly) positive for lhr mRNA. While only ovulatory Lh levels seem high enough to cross-activate the Fshr, expression by both receptors by granulosa and theca cells suggests that homologous ligand receptor interaction will prevail.
Collapse
MESH Headings
- Animals
- Body Weight/drug effects
- Cell Line
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Colforsin/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Estrogens/blood
- Female
- Follicle Stimulating Hormone/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- In Situ Hybridization
- Luteinizing Hormone/pharmacology
- Ovary/drug effects
- Ovary/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, FSH/physiology
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/metabolism
- Receptors, Gonadotropin/physiology
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, LH/physiology
- Salmo salar/genetics
- Salmo salar/metabolism
Collapse
Affiliation(s)
- Eva Andersson
- Institute of Marine Research, Research Group Reproduction and Growth in Fish, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
22
|
Gesto M, Tintos A, Alvarez R, Soengas JL, Míguez JM. Alterations in the brain monoaminergic neurotransmitters of rainbow trout related to naphthalene exposure at the beginning of vitellogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:453-465. [PMID: 18931931 DOI: 10.1007/s10695-008-9271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 09/20/2008] [Indexed: 05/26/2023]
Abstract
The contents of dopamine (DA), noradrenaline (NA), serotonin (5HT), and some related metabolites were studied in different brain regions of rainbow trout at two different stages of sexual maturation (at the beginning of vitellogenesis), after naphthalene (NAP) administration. The effects of NAP varied according to duration of exposure, brain region and vitellogenesis stage of the trout, and were more significant during previtellogenesis. The changes observed in DA metabolism were generally stimulatory after exposure for 3 h, and either stimulatory or inhibitory (depending on the brain regions) after exposure for 3 days to NAP. NA levels were altered by NAP in various brain regions, but only during previtellogenesis. With respect to 5HT, treatment with NAP reduced levels of the amine and/or its main metabolite in most of the brain regions studied, particularly 3 h after treatment. The results suggest that NAP might interfere with the processes regulating brain monoamine metabolism, either locally or indirectly by altering steroid feedback to brain centres, and thus disrupt endocrine control of reproductive development through the brain-pituitary axis.
Collapse
Affiliation(s)
- Manuel Gesto
- Laboratorio de Fisiología Animal, Departamento de Biología Funcional y CC de la Salud, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain.
| | | | | | | | | |
Collapse
|
23
|
Yoda M, Yoneda M. Assessment of reproductive potential in multiple-spawning fish with indeterminate fecundity: a case study of yellow sea bream Dentex hypselosomus in the East China Sea. JOURNAL OF FISH BIOLOGY 2009; 74:2338-2354. [PMID: 20735557 DOI: 10.1111/j.1095-8649.2009.02246.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study examined the spawning season, spawning frequency and batch fecundity of yellow sea bream Dentex hypselosomus in the East China Sea to reassess the previously reported reproductive characteristics of the species. Time-course sampling showed that this species had a diurnal ovarian maturation rhythm. Late tertiary yolk-stage oocytes appeared 2 days before spawning, starting the process of germinal vesicle movement and breakdown. On the day of spawning, ovulation and subsequent spawning occurred in the early morning (0400-0800 hours). Postovulatory follicles disappeared from the ovaries within c. 24 h of ovulation. Seasonal changes in the ovarian conditions indicated that this species spawned more or less throughout the year, with the peak ranging from spring to autumn. The compositions of the developing oocytes and degenerating postovulatory follicles in the ovaries suggested that most females spawned repeatedly over 2 to 3 consecutive days during the peak of the spawning season. Somatic body condition did not have a significant effect on batch fecundity, but there was a significant relationship between batch fecundity and fork length according to spawning status. Females spawning on consecutive days were more fecund than those spawning every other day. The findings show that this species has much greater reproductive potential than previously estimated.
Collapse
Affiliation(s)
- M Yoda
- Seikai National Fisheries Research Institute, Fisheries Research Agency, 1551-8 Taira, Nagasaki 851-2213, Japan.
| | | |
Collapse
|
24
|
Gillet C, Breton B. LH secretion and ovulation following exposure of Arctic charr to different temperature and photoperiod regimes: responsiveness of females to a gonadotropin-releasing hormone analogue and a dopamine antagonist. Gen Comp Endocrinol 2009; 162:210-8. [PMID: 19303415 DOI: 10.1016/j.ygcen.2009.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/05/2009] [Accepted: 03/07/2009] [Indexed: 11/18/2022]
Abstract
The timing of ovulation and LH plasma levels were investigated in Arctic charr reared at 5 degrees C and 10 degrees C, exposed to the ambient photoperiod, or short or long-day photoperiod regimes during the prespawning period. The effectiveness of sGnRHa alone, or sGnRHa combined with a dopamine antagonist, in stimulating LH secretion and inducing ovulation was also investigated. With the natural photoperiod, ovulation occurred spontaneously at 5 degrees C, but was inhibited at 10 degrees C. A transition from 10 to 5 degrees C soon resulted in suppression of the inhibition. At 5 degrees C, the effectiveness of sGnRHa was similar to that of sGnRHa combined with pimozide in stimulating LH secretion and inducing ovulation. At 10 degrees C, sGnRHa+pimozide was more effective that sGnRHa alone in stimulating LH secretion and inducing a high rate of ovulation, suggesting that dopamine-induced inhibition of LH secretion could occur naturally in Arctic charr at 10 degrees C. Exposure of Arctic charr to a long day (LD) photoperiod regime in fall and winter did not completely inhibit ovulation, but markedly delayed it and prolonged the ensuing ovulation period. The LD photoperiod also reduced LH plasma levels in females while they were ovulating, but did not modify the responsiveness of the pituitary to GnRHa stimulation compared to a control group exposed to a short-day (SD) photoperiod. There was an interval of several weeks after a transition from LD to SD before LH secretion and ovulation were stimulated.
Collapse
|
25
|
Miranda LA, Strüssmann CA, Somoza GM. Effects of light and temperature conditions on the expression of GnRH and GtH genes and levels of plasma steroids in Odontesthes bonariensis females. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:101-108. [PMID: 19189237 DOI: 10.1007/s10695-008-9232-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/06/2008] [Indexed: 05/27/2023]
Abstract
In this study we examined the endocrine mediation between environmental factors (temperature and photoperiod) and the brain-pituitary-gonadal axis in females of pejerrey Odontesthes bonariensis. Changes in the expression of brain gonadotropin-releasing hormones (GnRHs) and gonadotropin (GtH) subunit [follicle stimulating-beta (FSH-beta), luteinizing hormone-beta (LH-beta), glycoprotein hormone-alpha (GPH-alpha)] genes, plasma gonadal steroids [estradiol (E(2)) and testosterone (T)], gonadal histology, and gonadosomatic index (GSI) in adult females exposed to combinations of short-day (8 h) or long-day (16 h) photoperiods and low (12 degrees C) or high (20 degrees C) temperatures after winter conditions (8 h light, 12 degrees C) were analyzed. Pejerrey females kept under the short photoperiod had low GSIs, and their ovaries contained only previtellogenic oocytes regardless of the experimental temperature. In contrast, females exposed to the long photoperiod had high GSIs and ovaries with vitellogenic oocytes at both temperatures. These fish also showed a significantly higher expression of sGnRH, pjGnRH, cGnRH-II (the three different GnRH variants found to date in the pejerrey brain), FSH-beta, LH-beta and GPH-alpha genes and plasma E(2 )levels than those at the shorter photoperiod. No significant changes were observed in plasma T levels. Based on these results, we concluded that the increase in day length but not that of temperature triggers the maturation of pejerrey females after the winter period of gonadal rest and that this occurs by an integrated stimulation of the various components of the brain-pituitary-gonad axis.
Collapse
Affiliation(s)
- L A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, B7130IWA Chascomus, Buenos Aires, Argentina.
| | | | | |
Collapse
|
26
|
Taylor JF, Porter MJR, Bromage NR, Migaud H. Relationships between environmental changes, maturity, growth rate and plasma insulin-like growth factor-I (IGF-I) in female rainbow trout. Gen Comp Endocrinol 2008; 155:257-70. [PMID: 17592733 DOI: 10.1016/j.ygcen.2007.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Size reflecting growth rate, energy balance or nutritional status is regarded as an important determinant of the ability of trout to undergo puberty. The relationship of a change in photoperiod, either natural (SNP) or advancing (ADV), with growth, IGF-I and reproduction was investigated in virgin female rainbow trout. Under SNP 63% of the population attained maturity while only 29% spawned 6 months in advance in the ADV regime. Under SNP both size and growth rate in late spring-early summer appeared to determine whether an individual may initiate reproduction while condition factor appeared to be a better predictor in the ADV regime. A complete seasonal relationship between plasma IGF-I, daylength and temperature was demonstrated under natural conditions, and provides direct evidence for the relationship between reproduction and IGF-I. Conversely, trout maintained under ADV exhibited a significantly different plasma IGF-I profile relative to those under a natural photoperiod. Furthermore, IGF-I levels accurately reflected growth rate prior to elevations in sex steroids, suggesting that IGF-I may provide an endocrine signal between the somatotropic and reproductive axes that growth rate and/or size is sufficient to initiate gonad development. In addition, maturing individuals under SNP typically expressed higher circulating IGF-I levels than those that remained immature and may reflect a greater opportunity for IGF-I to act on the pituitary to stimulate gonadotropin production. We observed elevated levels in maturing fish for 3 months under SNP compared to only 1 month under ADV were observed. This may reflect a reduction in the window of opportunity to initiate reproduction under advancing photoperiods and hence explain the reduction in fish successfully recruited.
Collapse
Affiliation(s)
- J F Taylor
- Institute of Aquaculture, University of Stirling, Stirling, Scotland FK9 4LA, UK.
| | | | | | | |
Collapse
|
27
|
Bowden TJ, Thompson KD, Morgan AL, Gratacap RML, Nikoskelainen S. Seasonal variation and the immune response: a fish perspective. FISH & SHELLFISH IMMUNOLOGY 2007; 22:695-706. [PMID: 17116408 DOI: 10.1016/j.fsi.2006.08.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/17/2006] [Accepted: 08/25/2006] [Indexed: 05/12/2023]
Abstract
The environment in which an animal lives affects the physiology and psychology of that animal. The greater the distance from the equator the more profound this influence becomes, as the environment becomes more variable over the years. Temperature, photoperiod, precipitation and other environmental conditions, which are directly or indirectly controlled by the season, can affect an animal. It is becoming apparent that these conditions may impact on the immune system, and this can affect animal health. This review looks at the known mechanisms for transducing environmental cues and how these can affect immune parameters and function. The main focus is fish, especially in relation to aquaculture and the associated disease risks. Work on other animal classes is included for comparison.
Collapse
Affiliation(s)
- Tim J Bowden
- Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK.
| | | | | | | | | |
Collapse
|
28
|
Grier HJ, Uribe MC, Parenti LR. Germinal epithelium, folliculogenesis, and postovulatory follicles in ovaries of rainbow trout,Oncorhynchus mykiss(Walbaum, 1792) (Teleostei, protacanthopterygii, salmoniformes). J Morphol 2007; 268:293-310. [PMID: 17309079 DOI: 10.1002/jmor.10518] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), is a salmoniform fish that spawns once per year. Ripe females that had ovulated naturally, and those induced to ovulate using salmon gonadotropin-releasing hormone, were studied to determine whether follicles were forming at the time of spawning and to describe the process of folliculogenesis. After ovulation, the ovaries of postspawned rainbow trout were examined histologically, using the periodic acid-Schiff procedure, to stain basement membranes that subtend the germinal epithelium and to interpret and define the activity of the germinal epithelium. After spawning, the ovary contained a few ripe oocytes that did not ovulate, numerous primary growth oocytes including oocytes with cortical alveoli, and postovulatory follicles. The germinal epithelium was active in postspawned rainbow trout, as determined by the presence of numerous cell nests, composed of oogonia, mitotic oogonia, early diplotene oocytes, and prefollicle cells. Cell nests were separated from the stroma by a basement membrane continuous with that subtending the germinal epithelium. Furthermore, follicles containing primary growth oocytes were connected to the germinal epithelium; the basement membrane surrounding the follicle joined that of the germinal epithelium. After ovulation, the basement membrane of the postovulatory follicle was continuous with that of the germinal epithelium. We observed consistent separation of the follicle, composed of an oocyte and surrounding follicle cells, from the ovarian stroma by a basement membrane. The follicle is derived from the germinal epithelium. As with the germinal epithelium, follicle cells derived from it never contact those of the connective tissue stroma. As with epithelia, they are always separated from connective tissue by a basement membrane.
Collapse
Affiliation(s)
- Harry J Grier
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia 20013-7012, USA.
| | | | | |
Collapse
|
29
|
Tintos A, Gesto M, Alvarez R, Míguez JM, Soengas JL. Interactive effects of naphthalene treatment and the onset of vitellogenesis on energy metabolism in liver and gonad, and plasma steroid hormones of rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol C Toxicol Pharmacol 2006; 144:155-65. [PMID: 16959543 DOI: 10.1016/j.cbpc.2006.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
The purpose of the study was to assess in female fish the possible interaction between treatment with a polycyclic aromatic hydrocarbon (PAH) like naphthalene and the onset of vitellogenesis. In a first experiment, female rainbow trout (Oncorhynchus mykiss) at stages 2-3 (previtellogenesis) or 4 (early vitellogenesis) were intraperitoneally injected (2 microl g(-1)) with vegetable oil alone (control) or containing naphthalene (50 mg kg(-1)) to be sampled 3 h later. A second experiment was similarly designed but using fish intraperitoneally implanted (10 microl g(-1)) with slow-release coconut oil implants alone (control) or containing 50 mg naphthalene kg(-1) body mass that were sampled 3 days after injection. On each sampling time, plasma levels of cortisol and 17beta-estradiol, and several metabolic parameters in plasma, liver and gonad were assessed. In controls, early vitellogenic fish compared with previtellogenic fish displayed changes that in some cases are confirmatory of previous studies whereas in other cases provide new information in plasma (increased amino acid levels), liver (decreased capacity for exporting glucose and reduced amino acid levels) and gonad (decreased amino acid levels). Naphthalene treatment produced in previtellogenic fish decreased 17beta-estradiol levels in plasma, increased plasma glucose or decreased liver gluconeogenic capacity whereas no major effects were noticed on parameters involved in lipid, amino acid and lactate metabolism. Differential effects of naphthalene treatment were noticed in early vitellogenic fish such as decreased 17beta-estradiol and glucose levels in plasma, increased hexokinase and glucokinase and lack of changes in fructose 1,6-bisphosphatase activities in liver, and a lower decrease of amino acid levels in gonad. Those alterations produced by naphthalene treatment resulted in a decreased capacity for covering the energy demand of vitellogenesis in liver and gonad that could contribute to a delay and/or impairment of the onset of maturation.
Collapse
Affiliation(s)
- Adrián Tintos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
30
|
Bhattacharyya S, Maitra SK. Environmental correlate of the testicular events in a major carpCatla catlain an annual reproductive cycle. BIOL RHYTHM RES 2006. [DOI: 10.1080/09291010500124605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Saumen Kumar Maitra
- a Department of Zoology , Visva-Bharati University , Santiniketan, 731 235, India
| |
Collapse
|
31
|
Vetillard A, Ferriere F, Jego P, Bailhache T. Regulation of salmon gonadotrophin-releasing hormone gene expression by sex steroids in rainbow trout brain. J Neuroendocrinol 2006; 18:445-53. [PMID: 16684134 DOI: 10.1111/j.1365-2826.2006.01432.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Salmon gonadotrophin-releasing hormone (sGnRH) is the major form of gonadotrophin-releasing hormone in the brain of Salmonids and is encoded by two different genes: sGnRH1 and sGnRH2. In the present study, we examined the expression patterns of these two genes during development and throughout the reproductive cycle of the female rainbow trout (Oncorhynchus mykiss), and also investigated the feedback action of sex steroids on brain mRNA levels. Both genes are expressed as early as 14 days postfertilisation and show a similar expression pattern during early life stages. In the adult female, sGnRH1 and sGnRH2 mRNAs are both present in neurones located in the ventral forebrain. This gene expression in the brain appears to be low during early vitellogenesis, and increases during oocyte maturation to reach a maximum after ovulation. The expression of sGnRH1 was not modified by in vivo steroid treatments in any experiment; however, testosterone and 5alpha-dihydrotestosterone down-regulate brain sGnRH2 gene in immature and adult ovariectomised females. Oestradiol treatment decreases sGnRH2 mRNA levels in the brain of adult ovariectomised females only. In the triploid fish brain, none of the steroids affect brain sGnRH mRNA levels. Our results suggest that, unlike sGnRH1, the sGnRH2 gene is under a strongly androgenic inhibitory control in the immature and adult female rainbow trout.
Collapse
Affiliation(s)
- A Vetillard
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
32
|
Carter V, Pierce R, Dufour S, Arme C, Hoole D. The tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea) inhibits LH expression and puberty in its teleost host, Rutilus rutilus. Reproduction 2005; 130:939-45. [PMID: 16322554 DOI: 10.1530/rep.1.00742] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tapewormLigula intestinalisoccurs in the body cavity of its cyprinid second intermediate host, in this study the roachRutilus rutilus, and inhibits host gonadal development. The mechanism by which infected fish are prevented from reproducing is unknown. Comparison of parameters, such as body length and weight, and condition factor and age, between infected and uninfected individuals, indicated only minor effects of parasitism on growth and condition. In contrast, seasonal gonadal development, as observed in uninfected fish, did not occur in infected fish, and gonads remained small and blocked at the primary oocyte stage in female roach. As immature ovaries and testes are still present, the parasite is presumed to act upon the brain–pituitary–gonadal axis of the fish to inhibit further development of reproductive organs. We investigated theLigula/fish interaction at the level of the pituitary gland by determination of gonadotrophin (LH) content using a heterologous RIA for carp (Cyprinus carpio) LHβ subunit. The results indicated that the pituitary glands of infected roach contained approximately 50% less LH than non-infected fish. After the cloning and sequencing of roach LHβ subunit, we measured roach LHβ mRNA levels by real-time RT-PCR. A corresponding 50% reduction in LHβ mRNA pituitary levels was determined. These results reflect a significant and measurable effect of parasitism on the pituitary gland, and lend support to the hypothesis that excretory/secretory products released from the parasite interact with the brain–pituitary–gonadal axis of the fish host and thus inhibit gonadal development.
Collapse
Affiliation(s)
- V Carter
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Huxley Building, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | | | |
Collapse
|
33
|
Bhattacharyya S, Dey R, Maitra SK. Photoperiodic regulation of annual testicular events in the Indian major carp Catla catla. ACTA ZOOL-STOCKHOLM 2005. [DOI: 10.1111/j.1463-6395.2005.00188.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Weltzien FA, Andersson E, Andersen Ø, Shalchian-Tabrizi K, Norberg B. The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 2004; 137:447-77. [PMID: 15123185 DOI: 10.1016/j.cbpb.2003.11.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/05/2003] [Accepted: 11/06/2003] [Indexed: 02/03/2023]
Abstract
The key component regulating vertebrate puberty and sexual maturation is the endocrine system primarily effectuated along the brain-pituitary-gonad (BPG) axis. By far most investigations on the teleost BPG axis have been performed on salmonids, carps, catfish and eels. Accordingly, earlier reviews on the BPG axis in teleosts have focused on these species, and mainly on females (e.g. 'Fish Physiology, vol. IXA. Reproduction (1983) pp. 97'; 'Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish. FishSymp91, Sheffield, UK, 1991, pp. 2'; 'Curr. Top. Dev. Biol. 30 (1995) pp. 103'; 'Rev. Fish Biol. Fish. 7 (1997) pp. 173'; 'Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. John Grieg A/S, Bergen, Norway, 2000, pp. 211'). However, in recent years new data have emerged on the BPG axis in flatfish, especially at the level of the brain and pituitary. The evolutionarily advanced flatfishes are important model species both from an evolutionary point of view and also because many are candidates for aquaculture. The scope of this paper is to review the present status on the male teleost BPG axis, with an emphasis on flatfish. In doing so, we will first discuss the present understanding of the individual constituents of the axis in the best studied teleost models, and thereafter discuss available data on flatfish. Of the three constituents of the BPG axis, we will focus especially on the pituitary and gonadotropins. In addition to reviewing recent information on flatfish, we present some entirely new information on the phylogeny and molecular structure of teleost gonadotropins.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway.
| | | | | | | | | |
Collapse
|
35
|
Weltzien FA, Kobayashi T, Andersson E, Norberg B, Andersen Ø. Molecular characterization and expression of FSHbeta, LHbeta, and common alpha-subunit in male Atlantic halibut (Hippoglossus hippoglossus). Gen Comp Endocrinol 2003; 131:87-96. [PMID: 12679085 DOI: 10.1016/s0016-6480(02)00606-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the role of the gonadotropins in the multiple spawner Atlantic halibut (Hippoglossus hippoglossus) full length cDNAs encoding FSHbeta, LHbeta, and the common alpha-subunit were cloned from pituitary glands by RACE-PCR. The three cDNAs consisted of 614, 595, and 666 nucleotides encoding peptides of 131, 146, and 124 amino acids, respectively. Halibut FSHbeta and LHbeta showed unique structural features among the vertebrate glycoprotein hormones. First, in contrast to all known FSHbeta, which contain either one or two conserved N-glycosylation sites, no potential binding site was found in Atlantic halibut FSHbeta. Second, the conserved glycosylation site in the N-terminus of all vertebrate LHbeta has been substituted with a unique C-terminal binding site in Atlantic halibut LHbeta. Furthermore, a specific cysteine residue of importance for the folding and heterodimerization of mammalian FSH is lacking in the FSHbeta from Atlantic halibut as well as many other teleosts. However, teleost FSHbeta is characterized by an additional N-terminal cysteine, which has likely replaced the missing residue, implicating a modified folding pattern of this subunit. In situ hybridization of mature male pituitaries revealed that FSHbeta and LHbeta mRNA were expressed in distinct cell types throughout the proximal pars distalis of the adenohypophysis, while alpha-subunit mRNA was identified in all parts of the proximal pars distalis, and also along the periphery of pars intermedia. Consistently, Northern blot analysis of pituitary RNA from mature males showed that FSHbeta, LHbeta, and alpha-subunit mRNAs were highly expressed. In juvenile male pituitaries very few cells containing FSHbeta, LHbeta, and alpha-subunit mRNA were identified by in situ hybridization. Low mRNA levels encoding LHbeta and the alpha-subunit were also demonstrated by Northern blot analysis of the juvenile pituitaries, while no FSHbeta mRNA was detected using this less sensitive technique. The results suggest that both FSH and LH play a role during both the very early and the final reproductive stages in Atlantic halibut males.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway
| | | | | | | | | |
Collapse
|
36
|
Gray SL, Adams BA, Warby CM, Von Schalburg KR, Sherwood NM. Transcription and translation of the salmon gonadotropin-releasing hormone genes in brain and gonads of sexually maturing rainbow trout (Oncorhynchus mykiss). Biol Reprod 2002; 67:1621-7. [PMID: 12390896 DOI: 10.1095/biolreprod.102.004788] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Rainbow trout sexually mature at the end of Year 3. The form of GnRH that controls gonadotropin release in trout is salmon GnRH (sGnRH). In the tetraploid rainbow trout, two genes encode an identical sGnRH peptide. The sGnRH gene-1 produces one mRNA, whereas sGnRH gene-2 can produce more than one. This study asks whether the transcripts and their protein products are expressed in the brain and gonads and whether the pattern correlates with sexual maturity over the final year leading to first spawning. Brain sGnRH mRNA and protein were continuously present throughout the third year. We show for the first time that the long sGnRH-2 mRNA transcript is expressed in neural tissue and not exclusively in gonadal tissue. Expression of the long sGnRH-2 mRNA in the brain coincides with high levels of sGnRH peptide in the brain during a time of increased gonadal growth. Thus, the long sGnRH-2 mRNA in the brain may act to regulate sGnRH production in a stage-specific rather than a tissue-specific manner. In gonads, local sGnRH is thought to play an autocrine/paracrine role in regulating gonadal maturation and spawning. In the maturing gonads, sGnRH gene-1 and -2 are expressed intermittently. Strikingly, sGnRH peptide was not detected in the gonads at any time during Year 3. These results suggest that either the sGnRH transcripts in the gonads are not translated into protein or, if translated, the protein is rapidly released, resulting in gonadal content below 1 fM per fish.
Collapse
Affiliation(s)
- Sarah L Gray
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|
37
|
Vacher C, Ferrière F, Marmignon MH, Pellegrini E, Saligaut C. Dopamine D2 receptors and secretion of FSH and LH: role of sexual steroids on the pituitary of the female rainbow trout. Gen Comp Endocrinol 2002; 127:198-206. [PMID: 12383448 DOI: 10.1016/s0016-6480(02)00046-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of sexual steroids in the modulation of a dopaminergic inhibitory tone on FSH and LH release was studied in the rainbow trout. The experiments were performed on previtellogenic trout, implanted or not with estradiol (E(2)), and vitellogenic trout. E(2) implant increased the circulating levels of LH and decreased the circulating levels of FSH in previtellogenic fish. The catecholamine inhibitor alphaMPT increased the circulating levels of LH, implanted or not with E(2). AlphaMPT increased circulating levels of LH in vitellogenic fish. This increase could be prevented by the dopaminergic agonist bromocryptine. The dopaminergic drugs had no effect on the circulating levels of FSH in all groups. E(2) decreased mRNA levels of sGnRH1 and sGnRH2 in the telencephalon of previtellogenic fish. The dopaminergic treatments had no effect on mRNA levels of both forms of sGnRH in previtellogenic and vitellogenic fish. Primary cultures of pituitary cells were primed for three days with steroids (E(2) or 17alpha-hydroxy, 20beta-dihydroprogesterone (17alpha20betaP)) before treatment with increasing doses of bromocryptine, associated or not with sGnRH. E(2), but not 17alpha20betaP, potentiated the sGnRH-induced release of LH. Bromocryptine induced a slight dose-dependent decrease of sGnRH-induced release of LH. This decrease was potentiated by 17alpha20betaP. E(2) and 17alpha20betaP had no effect on the release of FSH, but bromocryptine decreased the 10(-8)M sGnRH-induced release of FSH. In conclusion, the development of the dopaminergic inhibitory tone on gonadotropin release, at the onset of vitellogenesis, requires factors other than estradiol. E(2) should contribute in part to decrease the release of FSH. At the end of the reproductive cycle, 17alpha20betaP should reinforce the dopaminergic inhibitory tone.
Collapse
Affiliation(s)
- Coralie Vacher
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
38
|
Vacher C, Mañanos EL, Breton B, Marmignon MH, Saligaut C. Modulation of pituitary dopamine D1 or D2 receptors and secretion of follicle stimulating hormone and luteinizing hormone during the annual reproductive cycle of female rainbow trout. J Neuroendocrinol 2000; 12:1219-26. [PMID: 11106981 DOI: 10.1046/j.1365-2826.2000.00585.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two gonadotrophins follicle stimulating hormone (FSH) and luteinizing hormone (LH) have distinct temporal expression and release profiles in fish, but little is known regarding their neuroendocrine control, especially for FSH. The present experiments were performed on previtellogenic, mature and preovulatory female trout. The catecholamine synthesis inhibitor, alpha-methyl-p-tyrosine, increased plasma LH and FSH concentrations of mature fish. The dopamine agonist apomorphine decreased and the dopamine antagonist domperidone increased plasma LH concentration of preovulatory fish and delayed ovulation, but did not modify plasma FSH concentration. The dopamine D2 agonist bromocryptine inhibited LH release in cultured gonadotrophs from mature and preovulatory fish, but not from previtellogenic fish. Bromocryptine also significantly inhibited basal and salmon gonadotrophin releasing-hormone (sGnRH)-induced FSH release from cultured gonadotrophs of mature fish, but not of preovulatory fish, and increased FSH release from gonadotrophs of previtellogenic fish. The dopamine D1 agonist SKF 38393 had no observed effect on the release of FSH and LH, at any reproductive stage studied. The D1 agonist SKF 38393, the D2 agonist bromocriptine and sGnRH had no observed effects on cell contents of FSH and LH. Taken together, these data suggest that, at the level of the pituitary, dopamine inhibits LH release as vitellogenesis proceeds, via activation of dopamine D2 receptors. We demonstrate for the first time in fish a control of FSH release (a dopamine control), especially in mature fish which have low circulating concentrations of FSH.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Age Factors
- Animals
- Bromocriptine/pharmacology
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Female
- Fertility Agents, Female/pharmacology
- Follicle Stimulating Hormone/blood
- Follicle Stimulating Hormone/metabolism
- Follicular Phase/drug effects
- Follicular Phase/physiology
- Gonadotropin-Releasing Hormone/pharmacology
- In Vitro Techniques
- Luteinizing Hormone/blood
- Luteinizing Hormone/metabolism
- Oncorhynchus mykiss/physiology
- Pituitary Gland/cytology
- Pituitary Gland/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Sexual Maturation/physiology
Collapse
Affiliation(s)
- C Vacher
- Endocrinologie Moléculaire de la Reproduction, EMR, Biodiversité et Environnement, SCRIBE, INRA, Campus de Beaulieu, Rennes, France
| | | | | | | | | |
Collapse
|
39
|
Baker DM, Davies B, Dickhoff WW, Swanson P. Insulin-like growth factor I increases follicle-stimulating hormone (FSH) content and gonadotropin-releasing hormone-stimulated FSH release from coho salmon pituitary cells in vitro. Biol Reprod 2000; 63:865-71. [PMID: 10952933 DOI: 10.1095/biolreprod63.3.865] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The effects of insulin-like growth factor I (IGF-I) and insulin on the function of coho salmon gonadotropes in vitro were investigated. Dispersed pituitary cells from immature coho salmon (Oncorhynchus kisutch) were incubated with IGF-I for 1, 3, 7, or 10 days, then incubated with salmon GnRH for an additional 24 h. Medium FSH content before and after GnRH treatment and intracellular FSH content after GnRH treatment were measured. Incubation of pituitary cells with IGF-I for 7 or 10 days increased GnRH-stimulated FSH release and remaining cell content, but did not affect basal release. To examine the specificity of the effects of IGF-I, we compared FSH release and cell content of FSH and LH after 10-day incubation with a range of concentrations of IGF-I or insulin. Incubation with physiological concentrations of IGF-I resulted in significantly higher GnRH-stimulated FSH release and remaining cell content of FSH and LH. Conversely, supraphysiological concentrations of insulin were required to produce more moderate effects on gonadotropin levels. These results suggest that elevation of gonadotropin levels by IGF-I may be one mechanism by which somatic growth and nutrition promote pubertal development in salmon.
Collapse
Affiliation(s)
- D M Baker
- University of Washington School of Fisheries, Seattle, Washington 98192. Northwest Fisheries Science Center, Seattle, Washington 98112, USA
| | | | | | | |
Collapse
|
40
|
Dickey JT, Swanson P. Effects of salmon gonadotropin-releasing hormone on follicle stimulating hormone secretion and subunit gene expression in coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol 2000; 118:436-49. [PMID: 10843795 DOI: 10.1006/gcen.2000.7482] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work has indicated that, during the process of gametogenesis in salmon, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are differentially synthesized and released. Although substantial information is available on the regulation of LH in many fish species, relatively little is known about the regulation of FSH biosynthesis and secretion or the regulation of two types of alpha subunit in salmon. In this study, the effects of salmon gonadotropin-releasing hormone (sGnRH) on in vitro secretion of FSH, and alpha1, alpha2, LH beta, and FSH beta subunit gene expression were investigated in coho salmon (Oncorhynchus kisutch) using primary pituitary cell cultures. To quantify FSH beta, LH beta, alpha1, and alpha2 subunit transcript levels, a multiplex RNase protection assay (RPA) was developed. Probes for the beta subunits of coho salmon FSH and LH were available from previous studies. To generate probes for the alpha subunit RPAs, alpha1 and alpha2 subunit cDNAs were cloned using reverse transcriptase PCR. Release of FSH and LH into cell culture medium was quantified by radioimmunoassays. The effects of sGnRH on gonadotropin release and gene expression were tested at two points during the spring (April and May) prior to spawning in the autumn; a period when plasma and pituitary FSH levels are increasing and females are in early stages of secondary oocyte growth. In both experiments, sGnRH increased steady-state mRNA levels of FSH beta, alpha1, and alpha2, whereas LH beta mRNA levels were not detectable. Secretion of FSH was stimulated by sGnRH in a concentration-dependent manner. Medium LH was not detectable in the first experiment (April) and was measurable only after sGnRH treatment in the second experiment (May). Control levels of medium FSH and transcripts for FSH beta and alpha1 subunits increased approximately fourfold between April and May, whereas alpha2 transcript levels remained relatively constant, suggesting that the seasonal increase in FSH release may involve increased production of alpha1. Therefore, sGnRH has direct stimulatory effects on both secretion of FSH and FSH subunit biosynthesis, most likely due to increased transcription. However, alterations in rates of transcript degradation cannot be ruled out.
Collapse
Affiliation(s)
- J T Dickey
- Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98112, USA
| | | |
Collapse
|