1
|
Shi B, Lu H, Zhang L, Zhang W. Nr5a1b promotes and Nr5a2 inhibits transcription of lhb in the orange-spotted grouper, Epinephelus coioides†. Biol Reprod 2019; 101:800-812. [PMID: 31317174 DOI: 10.1093/biolre/ioz121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
Nr5a1 (Sf-1) up-regulates lhb expression across vertebrates; however, its regulatory roles on fshb remain to be defined. Moreover, the involvement of Nr5a2 in the regulation of gonadotropin expression is not clear either. In the present study, the involvement of Nr5a1b (a homologue of Nr5a1) and Nr5a2 in the regulation of lhb and fshb expression in the orange-spotted grouper was examined. Dual fluorescent immunohistochemistry using homologous antisera showed that in the pituitary of orange-spotted groupers, Lh cells contain both immunoreactive Nr5a1b and Nr5a2 signals, whereas Fsh cells contain neither of them. In LβT2 cells, Nr5a1b up-regulated basal activities of lhb and fshb promoters possibly via Nr5a sites, and synergistically (on lhb promoter) or additively (on fshb promoter) with forskolin. Surprisingly, Nr5a2 inhibited basal activities of lhb promoter possibly via Nr5a sites and attenuated the stimulatory effects of both forskolin and Nr5a1b. In contrast, Nr5a2 had no effects on fshb promoter. Chromatin immunoprecipitation analysis showed that both Nr5a1b and Nr5a2 bound to lhb promoter, but not fshb promoter in the pituitary of the orange-spotted grouper. The abundance of Nr5a1b bound to lhb promoter was significantly higher at the vitellogenic stage than the pre-vitellogenic stage, whereas that of Nr5a2 exhibited an opposite trend. Taken together, data of the present study demonstrated antagonistic effects of Nr5a1b and Nr5a2 on lhb transcription in the orange-spotted grouper and revealed novel regulatory mechanisms of differential expression of lhb and fshb genes through Nr5a homologues in vertebrates.
Collapse
Affiliation(s)
- Boyang Shi
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huijie Lu
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Hu Q, Meng Y, Tian H, Zhang YU, Xiao H. Sexually Dimorphic Expression of Foxl2 and Ftz-F1 in Chinese Giant Salamander Andrias Davidianus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:363-374. [PMID: 27527384 DOI: 10.1002/jez.b.22693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/22/2016] [Accepted: 07/17/2016] [Indexed: 11/11/2022]
Abstract
Foxl2 and FTZ-F1 play a crucial role in the regulation of gonad development in fish and mammals, but studies of their function in amphibians are scarce. We isolated the full length of Foxl2 (adFoxl2) and Ftz-F1 (adFtz-f1) cDNA from the Chinese giant salamander Andrias davidianus and quantified its expression in various tissues and developing gonads. The adFoxl2 gene encodes 301aa including a conserved forkhead box, and the adFtz-f1 gene encodes 467aa containing an Ftz-F1 box. The amino acid sequences showed high homology with other amphibians. adFoxl2 expression was high in ovary, whereas adFtz-f1 was higher in testis, moderate in pituitary, ovary, and kidney; and low in the remaining tested tissues. Expression of adFoxl2 gradually increased from 1Y to 5Y in ovary, whereas adFtz-f1 expression gradually decreased in testis. In addition, adFoxl2 and adFtz-f1 were detected in granulosa cell in ovary and in spermatocytes in testis. The adFoxl2 transcription was inhibited in brain and ovary after treatment with methyltestosterone and with letrozole, whereas adFtz-f1 expression was upregulated. High-temperature suppressed the expression of adFxl2 in ovary and enhanced the transcription of adFtz-f1. These results suggest that adFoxl2 functioned in ovary differentiation, whereas adFtz-f1 played a role in testis development, which lays a foundation for study of the sex differentiation mechanism in A. davidianus.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, People's Republic of China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, People's Republic of China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, People's Republic of China
| | - Y U Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, People's Republic of China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Gata4 is required for formation of the genital ridge in mice. PLoS Genet 2013; 9:e1003629. [PMID: 23874227 PMCID: PMC3708810 DOI: 10.1371/journal.pgen.1003629] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022] Open
Abstract
In mammals, both testis and ovary arise from a sexually undifferentiated precursor, the genital ridge, which first appears during mid-gestation as a thickening of the coelomic epithelium on the ventromedial surface of the mesonephros. At least four genes (Lhx9, Sf1, Wt1, and Emx2) have been demonstrated to be required for subsequent growth and maintenance of the genital ridge. However, no gene has been shown to be required for the initial thickening of the coelomic epithelium during genital ridge formation. We report that the transcription factor GATA4 is expressed in the coelomic epithelium of the genital ridge, progressing in an anterior-to-posterior (A-P) direction, immediately preceding an A-P wave of epithelial thickening. Mouse embryos conditionally deficient in Gata4 show no signs of gonadal initiation, as their coelomic epithelium remains a morphologically undifferentiated monolayer. The failure of genital ridge formation in Gata4-deficient embryos is corroborated by the absence of the early gonadal markers LHX9 and SF1. Our data indicate that GATA4 is required to initiate formation of the genital ridge in both XX and XY fetuses, prior to its previously reported role in testicular differentiation of the XY gonad. During mammalian fetal development, the precursor of the testis or ovary first appears as a simple thickening, in a specific region, of the epithelial cell layer that lines the body cavity. The resulting structure is called the genital ridge, which then differentiates into either testis or ovary, depending on whether the sex chromosome constitution is XY or XX. A handful of genes, including Lhx9, Sf1, Wt1, and Emx2, are required to sustain the growth of the genital ridge. However, mice with mutations in any of these genes still undergo the initial step of epithelial thickening, suggesting that an additional step (or factor) is required to initiate genital ridge formation. We found that the evolutionarily conserved transcription factor GATA4 is expressed in the epithelium of the genital ridge before initial thickening. We produced a mouse with a Gata4 mutation in this tissue and demonstrated that the initial thickening does not take place; the mutant embryos fail to initiate gonad development. In support of this observation, the Gata4 mutant does not express the early gonadal markers LHX9 and SF1. These findings indicate that a genetically discrete, Gata4-dependent initiation step precedes the previously known processes that result in formation of testes and ovaries.
Collapse
|
4
|
Merchant-Larios H, Díaz-Hernández V. Environmental Sex Determination Mechanisms in Reptiles. Sex Dev 2013; 7:95-103. [DOI: 10.1159/000341936] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
5
|
Valenzuela N, Neuwald JL, Literman R. Transcriptional evolution underlying vertebrate sexual development. Dev Dyn 2012; 242:307-19. [DOI: 10.1002/dvdy.23897] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Jennifer L. Neuwald
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| |
Collapse
|
6
|
Chojnowski JL, Braun EL. An unbiased approach to identify genes involved in development in a turtle with temperature-dependent sex determination. BMC Genomics 2012; 13:308. [PMID: 22793670 PMCID: PMC3434017 DOI: 10.1186/1471-2164-13-308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 07/15/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Many reptiles exhibit temperature-dependent sex determination (TSD). The initial cue in TSD is incubation temperature, unlike genotypic sex determination (GSD) where it is determined by the presence of specific alleles (or genetic loci). We used patterns of gene expression to identify candidates for genes with a role in TSD and other developmental processes without making a priori assumptions about the identity of these genes (ortholog-based approach). We identified genes with sexually dimorphic mRNA accumulation during the temperature sensitive period of development in the Red-eared slider turtle (Trachemys scripta), a turtle with TSD. Genes with differential mRNA accumulation in response to estrogen (estradiol-17β; E(2)) exposure and developmental stages were also identified. RESULTS Sequencing 767 clones from three suppression-subtractive hybridization libraries yielded a total of 581 unique sequences. Screening a macroarray with a subset of those sequences revealed a total of 26 genes that exhibited differential mRNA accumulation: 16 female biased and 10 male biased. Additional analyses revealed that C16ORF62 (an unknown gene) and MALAT1 (a long noncoding RNA) exhibited increased mRNA accumulation at the male producing temperature relative to the female producing temperature during embryonic sexual development. Finally, we identified four genes (C16ORF62, CCT3, MMP2, and NFIB) that exhibited a stage effect and five genes (C16ORF62, CCT3, MMP2, NFIB and NOTCH2) showed a response to E(2) exposure. CONCLUSIONS Here we report a survey of genes identified using patterns of mRNA accumulation during embryonic development in a turtle with TSD. Many previous studies have focused on examining the turtle orthologs of genes involved in mammalian development. Although valuable, the limitations of this approach are exemplified by our identification of two genes (MALAT1 and C16ORF62) that are sexually dimorphic during embryonic development. MALAT1 is a noncoding RNA that has not been implicated in sexual differentiation in other vertebrates and C16ORF62 has an unknown function. Our results revealed genes that are candidates for having roles in turtle embryonic development, including TSD, and highlight the need to expand our search parameters beyond protein-coding genes.
Collapse
Affiliation(s)
- Jena L Chojnowski
- Genetics Department, University of Georgia, 500 DW Brooks Dr., Coverdell Center Rm270, Athens, GA, 30602, USA
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL, 32607, USA
| | - Edward L Braun
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL, 32607, USA
| |
Collapse
|
7
|
Tang B, Hu W, Hao J, Zhu Z. Developmental expression of steroidogenic factor-1, cyp19a1a and cyp19a1b from common carp (Cyprinus carpio). Gen Comp Endocrinol 2010; 167:408-16. [PMID: 20338172 DOI: 10.1016/j.ygcen.2010.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 11/21/2022]
Abstract
Steroidogenic factor-1 (SF-1), cyp19a1a and cyp19a1b play pivotal roles in vertebrate steroidogenesis and reproduction. In this study, a SF-1 cDNA (EU022463) was cloned from common carp (Cyprinus carpio). The transcript contains a 1509 base pair (bp) open reading frame (ORF) encoding a 503 amino acid sequence. Comparisons of deduced amino acid sequences demonstrated that carp SF-1 is highly homologous with those of other vertebrates. Tissue specific expressions of SF-1, cyp19a1a and cyp19a1b mRNA were analyzed in 10-month-old carp. SF-1 was abundant in the hypothalamus, pituitary, gonad, spleen and liver (females only). Cyp19a1b was preferentially expressed in the brain of both sexes but also was present at much lower levels in testis, ovary and kidney (females only). Although cyp19a1a expression was preferentially expressed in ovaries, it was also present at much lower levels in brain, testis, kidney and spleen (males only). Northern blot analysis revealed that testes and brains of both sexes expressed a transcript of about 2.8 kb in size. The expression pattern of SF-1, cyp19a1a and cyp19a1b in carp gonads suggested their involvement in sexual development. In 3-month-old carp, SF-1 and cyp19a1b were expressed highly in testes but were at much lower levels in ovaries, while the opposite pattern was observed with cyp19a1a expression. In 10-month-old carp, SF-1 expression was much higher in testes than in ovaries, while the opposite pattern was observed with cyp19a1a expression. These developmental expression patterns in carp gonads suggest important roles of SF-1 and cyp19a1b in testis development and of cyp19a1a in ovary development.
Collapse
Affiliation(s)
- Bin Tang
- College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
8
|
Rhen T, Schroeder A. Molecular mechanisms of sex determination in reptiles. Sex Dev 2010; 4:16-28. [PMID: 20145384 PMCID: PMC2918650 DOI: 10.1159/000282495] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/15/2009] [Indexed: 01/17/2023] Open
Abstract
Charles Darwin first provided a lucid explanation of how gender differences evolve nearly 140 years ago. Yet, a disconnect remains between his theory of sexual selection and the mechanisms that underlie the development of males and females. In particular, comparisons between representatives of different phyla (i.e., flies and mice) reveal distinct genetic mechanisms for sexual differentiation. Such differences are hard to comprehend unless we study organisms that bridge the phylogenetic gap. Analysis of variation within monophyletic groups (i.e., amniotes) is just as important if we hope to elucidate the evolution of mechanisms underlying sexual differentiation. Here we review the molecular, cellular, morphological, and physiological changes associated with sex determination in reptiles. Most research on the molecular biology of sex determination in reptiles describes expression patterns for orthologs of mammalian sex-determining genes. Many of these genes have evolutionarily conserved expression profiles (i.e., DMRT1 and SOX9 are expressed at a higher level in developing testes vs. developing ovaries in all species), which suggests functional conservation. However, expression profiling alone does not test gene function and will not identify novel sex-determining genes or gene interactions. For that reason, we provide a prospectus on various techniques that promise to reveal new sex-determining genes and regulatory interactions among these genes. We offer specific examples of novel candidate genes and a new signaling pathway in support of these techniques.
Collapse
Affiliation(s)
- T. Rhen
- Department of Biology, University of North Dakota, Grand Forks, N. Dak., USA
| | | |
Collapse
|
9
|
Rhen T, Jangula A, Schroeder A, Woodward-Bosh R. The platelet-derived growth factor signaling system in snapping turtle embryos, Chelydra serpentina: potential role in temperature-dependent sex determination and testis development. Gen Comp Endocrinol 2009; 161:335-43. [PMID: 19523392 PMCID: PMC2906392 DOI: 10.1016/j.ygcen.2009.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/05/2009] [Accepted: 01/20/2009] [Indexed: 12/31/2022]
Abstract
The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-alpha and PdgfR-beta in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-alpha mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-beta mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-alpha and PdgfR-beta in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle.
Collapse
Affiliation(s)
- Turk Rhen
- Department of Biology, Box 9019, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | | | |
Collapse
|
10
|
Ramsey M, Crews D. Steroid signaling and temperature-dependent sex determination-Reviewing the evidence for early action of estrogen during ovarian determination in turtles. Semin Cell Dev Biol 2009; 20:283-92. [PMID: 18992835 PMCID: PMC2695493 DOI: 10.1016/j.semcdb.2008.10.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/13/2008] [Indexed: 01/21/2023]
Abstract
The developmental processes underlying gonadal differentiation are conserved across vertebrates, but the triggers initiating these trajectories are extremely variable. The red-eared slider turtle (Trachemys scripta elegans) exhibits temperature-dependent sex determination (TSD), a system where incubation temperature during a temperature-sensitive period of development determines offspring sex. However, gonadal sex is sensitive to both temperature and hormones during this period-particularly estrogen. We present a model for temperature-based differences in aromatase expression as a critical step in ovarian determination. Localized estrogen production facilitates ovarian development while inhibiting male-specific gene expression. At male-producing temperatures aromatase is not upregulated, thereby allowing testis development.
Collapse
Affiliation(s)
- Mary Ramsey
- Section of Integrative Biology, University of Texas, Austin, Texas, 78712
| | - David Crews
- Section of Integrative Biology, University of Texas, Austin, Texas, 78712
| |
Collapse
|
11
|
Barske LA, Capel B. Blurring the edges in vertebrate sex determination. Curr Opin Genet Dev 2009; 18:499-505. [PMID: 19152784 DOI: 10.1016/j.gde.2008.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 11/28/2022]
Abstract
Sex in vertebrates is determined by genetically or environmentally based signals. These signals initiate molecular cascades and cell-cell interactions within the gonad that lead to the adoption of the male or female fate. Previously, genetically and environmentally based mechanisms were thought to be distinct, but this idea is fading as a result of the unexpected discovery of coincident genetic and thermal influences within single species. Together with accumulating phylogenetic evidence of frequent transitions between sex-determining mechanisms, these findings suggest that genetic and environmental sex determination actually represent points on a continuum rather than discrete categories, and that populations may shift in one direction or the other in response to mutations or changing ecological conditions. Elucidation of the underlying molecular basis of sex determination in mice has yielded a bistable model of mutually antagonistic signaling pathways and feedback regulatory loops. This system would be highly responsive to changes in the upstream primary signal and may provide a basis for the rapid evolution of and transitions between different methods of sex determination.
Collapse
Affiliation(s)
- Lindsey A Barske
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
12
|
Analyzing the coordinated gene network underlying temperature-dependent sex determination in reptiles. Semin Cell Dev Biol 2008; 20:293-303. [PMID: 19022389 DOI: 10.1016/j.semcdb.2008.10.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 02/07/2023]
Abstract
Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are relatively new areas of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research.
Collapse
|
13
|
Wu GC, Tomy S, Chang CF. The Expression of nr0b1 and nr5a4 During Gonad Development and Sex Change in Protandrous Black Porgy Fish, Acanthopagrus schlegeli1. Biol Reprod 2008; 78:200-10. [DOI: 10.1095/biolreprod.107.062612] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
14
|
Ramsey M, Shoemaker C, Crews D. Gonadal expression of Sf1 and aromatase during sex determination in the red-eared slider turtle (Trachemys scripta), a reptile with temperature-dependent sex determination. Differentiation 2007; 75:978-91. [PMID: 17490415 DOI: 10.1111/j.1432-0436.2007.00182.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many egg-laying reptiles have temperature-dependent sex determination (TSD), where the offspring sex is determined by incubation temperature during a temperature-sensitive period (TSP) in the middle third of development. The underlying mechanism transducing a temperature cue into an ovary or testis is unknown, but it is known that steroid hormones play an important role. During the TSP, exogenous application of estrogen can override a temperature cue and produce females, while blocking the activity of aromatase (Cyp19a1), the enzyme that converts testosterone to estradiol, produces males from a female-biased temperature. The production of estrogen is a key step in ovarian differentiation for many vertebrates, including TSD reptiles, and temperature-based differences in aromatase expression during the TSP may be a critical step in ovarian determination. Steroidogenic factor-1 (Sf1) is a key gene in vertebrate sex determination and regulates many steroidogenic enzymes, including aromatase. We find that Sf1 and aromatase are differentially expressed during sex determination in the red-eared slider turtle, Trachemys scripta elegans. Sf1 is expressed at higher levels during testis development while aromatase expression increases during ovary determination. We also assayed Sf1 and aromatase response to sex-reversing treatments via temperature or the modulation of estrogen availability. Sf1 expression was redirected to low-level female-specific patterns with feminizing temperature shift or exogenous estradiol application and redirected to more intense male-specific patterns with male-producing temperature shift or inhibition of aromatase activity. Conversely, aromatase expression was redirected to more intense female-specific patterns with female-producing treatment and redirected toward diffuse low-level male-specific patterns with masculinizing sex reversal. Our data do not lend support to a role for Sf1 in the regulation of aromatase expression during slider turtle sex determination, but do support a critical role for estrogen in ovarian development.
Collapse
Affiliation(s)
- Mary Ramsey
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | | | | |
Collapse
|
15
|
Ramsey M, Crews D. Adrenal-kidney-gonad complex measurements may not predict gonad-specific changes in gene expression patterns during temperature-dependent sex determination in the red-eared slider turtle (Trachemys scripta elegans). ACTA ACUST UNITED AC 2007; 307:463-70. [PMID: 17592622 DOI: 10.1002/jez.399] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many turtles, including the red-eared slider turtle (Trachemys scripta elegans) have temperature-dependent sex determination in which gonadal sex is determined by temperature during the middle third of incubation. The gonad develops as part of a heterogenous tissue complex that comprises the developing adrenal, kidney, and gonad (AKG complex). Owing to the difficulty in excising the gonad from the adjacent tissues, the AKG complex is often used as tissue source in assays examining gene expression in the developing gonad. However, the gonad is a relatively small component of the AKG, and gene expression in the adrenal-kidney (AK) compartment may interfere with the detection of gonad-specific changes in gene expression, particularly during early key phases of gonadal development and sex determination. In this study, we examine transcript levels as measured by quantitative real-time polymerase chain reaction for five genes important in slider turtle sex determination and differentiation (AR, ERalpha, ERbeta, aromatase, and Sf1) in AKG, AK, and isolated gonad tissues. In all cases, gonad-specific gene expression patterns were attenuated in AKG versus gonad tissue. All five genes were expressed in the AK in addition to the gonad at all stages/temperatures. Inclusion of the AK compartment masked important changes in gonadal gene expression. In addition, AK and gonad expression patterns are not additive, and gonadal gene expression cannot be predicted from intact AKG measurements.
Collapse
Affiliation(s)
- Mary Ramsey
- Department of Integrative Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
16
|
Valenzuela N, LeClere A, Shikano T. Comparative gene expression of steroidogenic factor 1 in Chrysemys picta and Apalone mutica turtles with temperature-dependent and genotypic sex determination. Evol Dev 2006; 8:424-32. [PMID: 16925678 DOI: 10.1111/j.1525-142x.2006.00116.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterizing the molecular network underlying temperature-dependent (TSD) and genotypic (GSD) sex determination, including patterns across closely related taxa, is crucial to elucidate the still enigmatic evolution of sex determining mechanisms in vertebrates. Here we examined the expression of an important gene for sexual differentiation common to both systems, Sf1, at male- and female-producing temperatures, in TSD (Chrysemys picta) and GSD turtles (Apalone mutica). We tested the hypotheses that Sf1 expression responds to temperature consistently across TSD turtles but is unaffected in GSD turtles, and that this differential expression starts no earlier than the onset of the thermosensitive period (TSP). As expected, Sf1 expression was thermally insensitive in A. mutica (GSD). Although Sf1 exhibited a differential expression by temperature in C. picta, the expression pattern differed from other TSD turtles (Trachemys scripta), perhaps reflecting divergence of the gene regulatory networks underlying sex determination over evolutionary time. Most notably, Sf1 was differentially expressed in C. picta (significantly higher at the male-producing temperature) before the onset of the TSP, implying that in TSD taxa significant thermal effects may occur early in development. This result may reconcile field observations where temperatures experienced prior to the TSP have an effect on sex ratios, thus challenging traditional TSP models. Importantly, the molecular factors that render TSD mechanisms thermosensitive remain unknown, and potential candidates are genes that express differentially before the onset of the TSP (genes shaping or opening the TSP-window rather those acting once the TSP window has opened). Therefore, our findings make Sf1 one such potential candidate.
Collapse
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
17
|
van Nes S, Andersen Ø. Temperature effects on sex determination and ontogenetic gene expression of the aromatases cyp19a and cyp19b, and the estrogen receptors esr1 and esr2 in atlantic halibut (Hippoglossus hippoglossus). Mol Reprod Dev 2006; 73:1481-90. [PMID: 16929526 DOI: 10.1002/mrd.20514] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aromatase (CYP19) and estrogen receptor (ESR) play important roles in the molecular mechanism of sex determination and differentiation of lower vertebrates. Several studies have proven these mechanisms to be temperature sensitive, which can influence the direction of phenotypic gender development. A temperature study was conducted to examine the effect of temperature on the sex differentiation in farmed Atlantic halibut. Sexually undifferentiated larvae were exposed to 7 degrees C, 10 degrees C, or 13 degrees C during gonadal differentiation. Temperature effects on the transcription rate of the aromatase genes cyp19a (ovary type) and cyp19b (brain type) and the ESR genes esr1 and esr2 were examined by quantitative real-time PCR. With increasing temperatures, both cyp19a mRNA levels and the female incidence showed a decreasing trend, thus strongly indicating a relation between the expression of cyp19a and morphological ovary differentiation. In contrast to cyp19a, the levels of cyp19b, esr1, and esr2 mRNA strongly increased in all temperature groups throughout the study period, and did not show obvious temperature-related expression patterns. The present data provide evidence that posthatching temperature exposure significantly affects the expression of cyp19a mRNA during the developmental period and that high temperature possibly influences genetic sex determination in Atlantic halibut. Though, the female incidence never exceeded 50%, suggesting that only the homogametic (XX) female is thermolabile. So whereas temperature treatment is not likely suitable for direct feminization in halibut, the possibility for high-temperature production of XX neomales for broodstock to obtain all-female offspring by crossing with XX females is suggested.
Collapse
Affiliation(s)
- Solveig van Nes
- AKVAFORSK Institute of Aquaculture Research, Norwegian University of Life Sciences, As, Norway.
| | | |
Collapse
|
18
|
Crews D, Lou W, Fleming A, Ogawa S. From gene networks underlying sex determination and gonadal differentiation to the development of neural networks regulating sociosexual behavior. Brain Res 2006; 1126:109-21. [PMID: 16905124 PMCID: PMC2394678 DOI: 10.1016/j.brainres.2006.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 06/30/2006] [Accepted: 07/06/2006] [Indexed: 11/30/2022]
Abstract
Genes are not expressed in isolation any more than social behavior has meaning outside of society. Both are in dynamic flux with the immediate environment that the gene/individual finds itself, which in turn establishes the timing, pattern, and conditions of expression. This means that complex behaviors and their genetic underpinnings should be viewed as a cumulative process, or as the result of experiences up to that point in time and, at the same time, as setting the stage for what will follow. The evidence indicates that as experiences accumulate throughout life, early experiences shape how genes/individuals will respond to later experiences, whereas later experiences modify the effects of these earlier experiences. A method of graphically representing and analyzing change in gene and neural networks is presented. Results from several animal model systems will be described to illustrate these methods. First, we will consider the phenomenon of temperature-dependent sex determination in reptiles. We will illustrate how the experience of a particular temperature during a sensitive period of embryogenesis sculpts not only the patterns of expression of genes involved in sex determination and gonadal differentiation but also the morphological, physiological, neuroendocrine, and behavioral traits of the adult phenotype. The second model system concerns the effects of the sex ratio in the litter in rats, and the genotype ratio in the litter of transgenic mice, on the nature and frequency of maternal care and how this in turn influences the patterns of activation of identified neural circuits subserving the offspring's sociosexual behavior when it is an adult.
Collapse
Affiliation(s)
- David Crews
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
19
|
Yao HHC, Capel B. Temperature, genes, and sex: a comparative view of sex determination in Trachemys scripta and Mus musculus. J Biochem 2005; 138:5-12. [PMID: 16046442 PMCID: PMC4066379 DOI: 10.1093/jb/mvi097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sex determination, the step at which differentiation of males and females is initiated in the embryo, is of central importance to the propagation of species. There is a remarkable diversity of mechanisms by which sex determination is accomplished. In general these mechanisms fall into two categories: Genetic Sex Determination (GSD), which depends on genetic differences between the sexes, and Environmental Sex Determination (ESD), which depends on extrinsic cues. In this review we will consider these two means of determining sex with particular emphasis on two species: a species that depends on GSD, Mus musculus, and a species that depends on ESD, Trachemys scripta. Because the structural organization of the adult testis and ovary is very similar across vertebrates, most biologists had expected that the pathways downstream of the sex-determining switch would be conserved. However, emerging data indicate that not only are the initial sex determining mechanisms different, but the downstream pathways and morphogenetic events leading to the development of a testis or ovary also are different.
Collapse
Affiliation(s)
- Humphrey H-C Yao
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center
| |
Collapse
|
20
|
Yao HHC, DiNapoli L, Capel B. Cellular mechanisms of sex determination in the red-eared slider turtle, Trachemys scripta. Mech Dev 2005; 121:1393-401. [PMID: 15454268 PMCID: PMC4067764 DOI: 10.1016/j.mod.2004.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/02/2004] [Accepted: 06/02/2004] [Indexed: 11/15/2022]
Abstract
In all vertebrates sex determination is the step at which development of a testis or ovary is initiated in the bipotential gonad. Although Mus musculus and the red-eared slider turtle, Trachemys scripta, use different mechanisms to initiate organogenesis of the testis (the Y-linked gene, Sry, in the mouse vs. the incubation temperature of the egg in the turtle), the structure of the adult testis is strikingly similar. We have identified several cellular mechanisms involved in testis organogenesis in mouse. Here we investigated whether these cellular mechanisms are conserved in T. scripta downstream of the temperature-dependent switch. Cell tracing experiments indicated that the coelomic epithelium in T. scripta contributes precursors for Sertoli cells and interstitial cells as in mouse. However, we detect no male-specific mesonephric cell migration, a process required for the de novo testis cord-forming process in mouse. In contrast to mouse gonads, where no cord structure is discernible until after the divergence of testis development, we find that primitive sex cords continuous with the coelomic epithelium exist in all T. scripta gonads from the earliest bipotential stages examined. We conclude that typical testis architecture results from the maintenance and elaboration of primitive sex cords in T. scripta rather than the assembly of de novo structures as in mouse.
Collapse
Affiliation(s)
| | | | - Blanche Capel
- Corresponding author. Tel.: +1-919-684-6290; fax: +1-919-684-5481. (B. Capel)
| |
Collapse
|
21
|
Murdock C, Wibbels T. Expression of Dmrt1 in a turtle with temperature-dependent sex determination. Cytogenet Genome Res 2003; 101:302-8. [PMID: 14684999 DOI: 10.1159/000074353] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 07/22/2003] [Indexed: 11/19/2022] Open
Abstract
There is a variety of sex determining mechanisms among vertebrates. Many reptiles possess temperature-dependent sex determination (TSD), in which the incubation temperature of the egg determines the sex of the hatchling. The red-eared slider turtle, Trachemys scripta has often been used as a model system for examining the physiology of TSD. In the current study, the expression of Dmrt1 was examined during TSD in this turtle. Dmrt1 is a putative regulator of sex determination/differentiation and has been identified in a variety of vertebrates, including fishes, amphibians, reptiles, birds, and mammals. Specifically, Dmrt1 has been shown to be up-regulated in a male-specific pattern during embryonic development in many vertebrates. In the current study, the expression patterns of Dmrt1 were examined in the developing adrenal-kidney-gonad complexes of T. scripta during embryonic development. Using a quantitative competitive RT-PCR, Dmrt1 was shown to be up-regulated during the thermosensitive period of sex determination in males. In contrast, levels of Dmrt1 remained low in females throughout the thermosensitive period. These data suggest that the up-regulation of Dmrt1 may play a role in male sex determination/sex differentiation during TSD in T. scripta.
Collapse
Affiliation(s)
- C Murdock
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| | | |
Collapse
|
22
|
Abstract
In reptiles with temperature-dependent sex determination (TSD), the temperature at which the eggs are incubated determines the sex of the offspring. The molecular switch responsible for determining sex in these species has not yet been elucidated. We have examined the dynamics of yolk steroid hormones during embryonic development in the snapping turtle, Chelydra serpentina, and the alligator, Alligator mississippiensis, and have found that yolk estradiol (E(2)) responds differentially to incubation temperature in both of these reptiles. Based upon recently reported roles for E(2) in modulation of steroidogenic factor 1, a transcription factor known to be significant in the sex differentiation process, we hypothesize that yolk E(2) is a link between temperature and the gene expression pathway responsible for sex determination and differentiation in at least some of these species. Here we review the evidence that supports our hypothesis.
Collapse
Affiliation(s)
- P K Elf
- University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716-5100, USA.
| |
Collapse
|
23
|
Schmahl J, Yao HH, Pierucci-Alves F, Capel B. Colocalization of WT1 and cell proliferation reveals conserved mechanisms in temperature-dependent sex determination. Genesis 2003; 35:193-201. [PMID: 12717730 PMCID: PMC4041374 DOI: 10.1002/gene.10176] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During vertebrate development the gonad has two possible fates, the testis or the ovary. The choice between these fates is made by a variety of sex-determining mechanisms, from the sex-determining gene on the Y chromosome (Sry) in mammals, to nongenetic temperature-dependent systems in many reptiles. Despite the differences in the mechanisms at the top of the sex-determining cascade, the resulting morphology and many genes involved in early testis and ovarian development are common to most vertebrates, leading to the hypothesis that the underlying processes of sex determination are conserved. In this study, we examined the early steps of gonad development in the red-eared slider turtle (Trachemys scripta), a species that uses the temperature of egg incubation to determine sex. A dramatic increase in cell proliferation was observed in the male gonad during the earliest stages of sex determination. Using the localization of Wilms' Tumor suppressor 1 (WT1), we determined that this proliferation increase occurred in a population that contained pre-Sertoli cells. The proliferation of pre-Sertoli cells has been documented during sex determination in both mice and alligators, suggesting that proliferation of this cell type has an important role in vertebrate testis organogenesis and the determination of male fate.
Collapse
Affiliation(s)
| | | | | | - Blanche Capel
- Correspondence to: Blanche Capel, Box 3709 Duke University Medical Center, Durham NC, 27710.
| |
Collapse
|
24
|
Mayer LP, Overstreet SL, Dyer CA, Propper CR. Sexually dimorphic expression of steroidogenic factor 1 (SF-1) in developing gonads of the American bullfrog, Rana catesbeiana. Gen Comp Endocrinol 2002; 127:40-7. [PMID: 12161200 DOI: 10.1016/s0016-6480(02)00019-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic sex determination leads to gonadal differentiation and ultimately the differences between the sexes in steroid hormone secretion. Gonadal steroidogenesis is critical for the development of a sexually dimorphic phenotype and adult reproductive function. Control of gonadal development and steroidogenesis is under the regulation, at least in part, of steroidogenic factor-1 (SF-1). We have begun to characterize SF-1 expression in an amphibian to determine the role of this protein in development and reproduction. We have detected a putative SF-1 protein from several tissues in the American bullfrog, Rana catesbeiana, that co-migrates with mouse SF-1 on a Western blot. Our results show that bullfrog SF-1 protein is expressed in steroidogenic and other reproductive tissues in a manner similar to that reported for other species, with high expression in the brain, pituitary, gonad, liver, and interrenal, but little or no expression in non-reproductive tissues such as skin and intestine. Using a quantitative Western blot analysis system, we documented changes in SF-1 protein in the gonads of developing tadpoles. Our results indicate that there is sexually dimorphic expression of SF-1 protein that becomes evident at the time of sexual differentiation of the gonads. In males, the expression of SF-1 decreases following testicular formation and in females the expression increases with the formation of ovaries. This is the first study to investigate changes in SF-1 during development at the protein level. The expression is similar to that reported for changes in SF-1 mRNA expression in chickens and alligators, however, opposite to that seen in mammals and turtles. These results indicate that SF-1 may play a pivotal role in development of the reproductive system in amphibians as it does in other vertebrate groups.
Collapse
Affiliation(s)
- Loretta P Mayer
- Department of Physiology, University of Arizona, P.O. Box 5051, Tucson 85724-5051, USA.
| | | | | | | |
Collapse
|
25
|
Elf PK, Lang JW, Fivizzani AJ. Dynamics of yolk steroid hormones during development in a reptile with temperature-dependent sex determination. Gen Comp Endocrinol 2002; 127:34-9. [PMID: 12161199 DOI: 10.1016/s0016-6480(02)00018-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many oviparous reptiles exhibit temperature-dependent sex determination (TSD); i.e., the temperature at which the egg is incubated determines the sex of the offspring. In TSD reptiles, yolk steroids not only may influence sex determination, but also may mediate hormonal effects on subsequent growth and behavior, as in some avian species. We investigated changes in the levels of estradiol (E(2)) and testosterone (T) during development in yolks of snapping turtle eggs, examined how incubation temperature affects hormone levels, and determined how hormones in turtle eggs are influenced by individual females (=clutch effects). Results indicate significant decreases in both hormones (>50% decline) by the end of the sex-determining period, when two-thirds of the development is complete. The declines in both E(2) and T were significantly affected by incubation temperature, but in different ways. Eggs incubated at female-producing temperatures maintained high levels, those incubated at male-producing temperatures had low E(2) values, and eggs incubated at pivotal temperatures had intermediate levels of E(2). At all three temperatures, T values underwent significant but approximately equal declines, except during the developmental stages just after the sex-determining period, when T levels decreased more at the male-producing temperature than at either of the other two temperatures. Initially, there were significant clutch effects in both hormones, but such differences, attributable to individual females, were maintained only for E(2) later in development. Here we report for the first time that incubation temperature significantly affects the hormonal environment of the developing embryo of a turtle with temperature-dependent sex determination. Based on this and related findings, we propose that yolk sex steroids influence sexual differentiation in these TSD species and play a role in sex determination at pivotal temperatures.
Collapse
Affiliation(s)
- P K Elf
- Department of Biology, University of North Dakota, Grand Forks, USA.
| | | | | |
Collapse
|
26
|
Crews D, Fleming A, Willingham E, Baldwin R, Skipper JK. Role of steroidogenic factor 1 and aromatase in temperature-dependent sex determination in the red-eared slider turtle. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:597-606. [PMID: 11748608 DOI: 10.1002/jez.1110] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Red-eared slider turtles are genetically bipotential for sex determination. In this species, as in many other reptiles, incubation temperature of the egg determines gonadal sex. At higher incubation temperatures females are produced and increasing temperature appears to increase estrogen production in the embryonic brain. Treatment of eggs incubating at a male-producing temperature with exogenous estrogen causes ovaries to form. At a female-biased incubation temperature, prevention of estrogen biosynthesis or administration of nonaromatizable androgens results in the development of testes. In mammals, steroidogenic factor 1 (SF-1) regulates most genes required for estrogen biosynthesis, including aromatase. In both mammals and red-eared sliders, SF-1 is differentially expressed in males and females during gonadogenesis. We have examined both SF-1 gene expression and aromatase activity in embryos incubating at different temperatures and after manipulation to change the course of gonadal development. Our findings indicate a central role for SF-1 in enacting the effect of estrogen. Estrogen treatment directly or indirectly downregulates SF-1 and, ultimately, causes development of females. The inhibition of estrogen results in upregulation of SF-1 and male hatchlings. Thus, SF-1 may lie at the center of one molecular crossroad in male versus female differentiation of the red-eared slider.
Collapse
Affiliation(s)
- D Crews
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | |
Collapse
|
27
|
Western PS, Sinclair AH. Sex, genes, and heat: triggers of diversity. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:624-31. [PMID: 11748611 DOI: 10.1002/jez.1113] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vertebrates, sex is determined by a surprising variety of mechanisms. In many reptiles, the primary testis or ovary-determining trigger is regulated by egg incubation temperature. This temperature dependent sex determining (TSD) mechanism occurs in all crocodilians and marine turtles examined to date and is common in terrestrial turtles and viviparous lizards (Ewert et al. 1994. J Exp Zool 270:3-15; Lang and Andrews. 1994. J Exp Biol 270:28-44; Mrosovsky. 1994. J Exp Zool 270:16-27; Pieau. 1996. Bioessays 18:19-26; Viets et al. 1994. J Exp Zool 270:45-56; Wibbels et al. 1998. J Exp Zool 281:409-416). In contrast, sex in mammals and birds is determined chromosomally (CSD). Despite these differences, morphological development of the gonads in all these vertebrate groups appears to have been conserved through evolution. Therefore, the genetic mechanisms triggering sex determination appear not to have been conserved through evolution, although the basic genetic pathway controlling the morphological differentiation of the gonads appears to have been conserved.
Collapse
Affiliation(s)
- P S Western
- Dept. of Paediatrics and Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
28
|
Abstract
In humans, sexual differentiation is directed by SRY, a master regulatory gene located at the Y chromosome. This gene initiates the male pathway or represses the female pathway by regulating the transcription of downstream genes; however, the precise mechanisms by which SRY acts are largely unknown. Moreover, several genes have recently been implicated in the development of the bipotential gonad even before SRY is expressed. In some individuals, the normal process of sexual differentiation is altered and a sex reversal disorder is observed. These subjects present the chromosomes of one sex but the physical attributes of the other. Over the past years, considerable progress has been achieved in the molecular characterization of these disorders by using a combination of strategies including cell biology, animal models, and by studying patients with these pathologic entities.
Collapse
MESH Headings
- Animal Diseases/embryology
- Animal Diseases/genetics
- Animals
- DNA-Binding Proteins/physiology
- Disorders of Sex Development/genetics
- Disorders of Sex Development/pathology
- Female
- Genes, sry
- Genotype
- Gonadal Dysgenesis, 46,XX/embryology
- Gonadal Dysgenesis, 46,XX/epidemiology
- Gonadal Dysgenesis, 46,XX/genetics
- Gonadal Dysgenesis, 46,XX/pathology
- Gonadal Dysgenesis, 46,XX/therapy
- Gonadal Dysgenesis, 46,XX/veterinary
- Gonads/embryology
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/physiology
- Humans
- Karyotyping
- Mice
- Mice, Knockout
- Mosaicism
- Mutation
- Nuclear Proteins
- Phenotype
- SOX9 Transcription Factor
- Sex Determination Processes
- Sex Differentiation/genetics
- Sex Differentiation/physiology
- Sex-Determining Region Y Protein
- Transcription Factors/genetics
- Transcription Factors/physiology
- Translocation, Genetic/genetics
- Vertebrates/physiology
- X Chromosome/ultrastructure
- Y Chromosome/genetics
- Y Chromosome/ultrastructure
Collapse
Affiliation(s)
- J C Zenteno-Ruiz
- Department of Genetics, Hospital General de Mexico-Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
29
|
Whitworth DJ, Pask AJ, Shaw G, Marshall Graves JA, Behringer RR, Renfree MB. Characterization of steroidogenic factor 1 during sexual differentiation in a marsupial. Gene 2001; 277:209-19. [PMID: 11602358 DOI: 10.1016/s0378-1119(01)00677-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In eutherian mammals, such as mice and humans, steroidogenic factor 1 (SF1) plays important roles in the development of the gonad and in its steroidogenic activity. Marsupial and eutherian mammals have been evolving independently for at least 100 million years and so we were interested in comparing SF1 of a marsupial with that of eutherians. To this end, we have cloned SF1 from an Australian marsupial, the tammar wallaby. Although the amino acid sequence of SF1 is highly conserved among vertebrate species, tammar SF1 appears to have diverged less from the ancestral SF1 than have eutherian SF1 proteins. Tammar SF1 is expressed by both ovaries and testes on the day of birth, just prior to the onset of testicular differentiation, until at least 8 days after birth by which time the ovary also has begun to sexually differentiate. SF1 transcripts are localized predominantly to the pre-granulosa and Sertoli cells of the ovary and testis, respectively. In the testis SF1 transcripts are also present in the interstitial cells, although at a lower level than that which is observed in the Sertoli cells. SF1 is also transcribed in adult testis and ovary. In the adult ovary SF1 is expressed in the interstitial gland, and in the granulosa cells and theca interna of small to medium-sized antral follicles, but is not expressed in large antral follicles. Thus, although the structure of tammar SF1 is divergent from that of eutherians, its expression profile is similar, supporting a conserved role in gonadal development and steroidogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Northern
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Female
- Fushi Tarazu Transcription Factors
- Gene Expression
- Gene Expression Regulation, Developmental
- Homeodomain Proteins
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Macropodidae/genetics
- Macropodidae/growth & development
- Male
- Molecular Sequence Data
- Ovary/growth & development
- Ovary/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sex Differentiation/genetics
- Steroidogenic Factor 1
- Testis/growth & development
- Testis/metabolism
- Tissue Distribution
- Transcription Factors/genetics
Collapse
Affiliation(s)
- D J Whitworth
- Department of Molecular Genetics, Box 45, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Willingham E, Crews D. The Red-Eared Slider Turtle: An Animal Model for the Study of Low Doses and Mixtures 1. ACTA ACUST UNITED AC 2000. [DOI: 10.1668/0003-1569(2000)040[0421:tresta]2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Western PS, Harry JL, Marshall Graves JA, Sinclair AH. Temperature-dependent sex determination in the American alligator: expression of SF1, WT1 and DAX1 during gonadogenesis. Gene 2000; 241:223-32. [PMID: 10675033 DOI: 10.1016/s0378-1119(99)00466-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sex determination in mammals and birds is chromosomal, while in many reptiles sex determination is temperature dependent. Morphological development of the gonads in these systems is conserved, suggesting that many of the genes involved in gonad development are also conserved. The genes SF1, WT1 and DAX1 play various roles in the mammalian testis-determining pathway. SF1 and WT1 are thought to interact to cause male-specific gene expression during testis development, while DAX1 is believed to inhibit this male-specific gene expression. We have cloned SF1 and DAX1 from the American alligator, a species with temperature-dependent sex determination (TSD). SF1, DAX1 and WT1 are expressed in the urogenital system/gonad throughout the period of alligator gonadogenesis which is temperature sensitive. SF1 appears to be expressed at a higher level in females than in males. This SF1 expression pattern is concordant with the observed pattern during chicken gonadogenesis, but opposite to that observed during mouse gonadogenesis. Although the observed sexual dimorphism of gonadal SF1 expression in alligators and chickens is opposite that observed in the mouse, it is probable that SF1 is involved in control of gonadal steroidogenesis in all these vertebrates. DAX1 and WT1 are both expressed during stages 22-25 of both males and females. However, there appear to be no sex differences in the expression patterns of these genes. We conclude that DAX1, WT1 and SF1 may be involved in gonadal development of the alligator. These genes may form part of a gonadal-development pathway which has been conserved through vertebrate evolution.
Collapse
Affiliation(s)
- P S Western
- Department of Paediatrics and Centre for Hormone Research, University of Melbourne, Royal Children's Hospital, Victoria, Australia
| | | | | | | |
Collapse
|