1
|
Zhang H, Hua H, Wang C, Zhu C, Xia Q, Jiang W, Hu X, Zhang Y. Construction of an artificial neural network diagnostic model and investigation of immune cell infiltration characteristics for idiopathic pulmonary fibrosis. BMC Pulm Med 2024; 24:458. [PMID: 39289672 PMCID: PMC11409795 DOI: 10.1186/s12890-024-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a severe lung condition, and finding better ways to diagnose and treat the disease is crucial for improving patient outcomes. Our study sought to develop an artificial neural network (ANN) model for IPF and determine the immune cell types that differed between the IPF and control groups. METHODS From the Gene Expression Omnibus (GEO) database, we first obtained IPF microarray datasets. To conduct protein-protein interaction (PPI) networks and enrichment analyses, differentially expressed genes (DEGs) were screened between tissues of patients with IPF and tissues of controls. Afterward, we identified the important feature genes associated with IPF using random forest (RF) analysis, and then constructed and validated a prediction ANN mode. In addition, the proportions of immune cells were quantified using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) analysis, which was performed on microarray datasets based on gene expression profiling. RESULTS A total of 11 downregulated and 36 upregulated DEGs were identified. PPI networks and enrichment analyses were carried out; the immune system and extracellular matrix were the subjects of the enrichments. Using RF analysis, the significant feature genes LRRC17, COMP, ASPN, CRTAC1, POSTN, COL3A1, PEBP4, IL13RA2, and CA4 were identified. The nine feature gene scores were integrated into the ANN to develop a diagnostic prediction model. The receiver operating characteristic (ROC) curves demonstrated the strong diagnostic ability of the ANN in predicting IPF in the training and testing sets. An analysis of IPF tissues in comparison to normal tissues revealed a reduction in the infiltration of natural killer cells resting, monocytes, macrophages M0, and neutrophils; conversely, the infiltration of T cells CD4 memory resting, mast cells, and macrophages M0 increased. CONCLUSION LRRC17, COMP, ASPN, CRTAC1, POSTN, COL3A1, PEBP4, IL13RA2, and CA4 were determined as key feature genes for IPF. The nine feature genes in the ANN model will be extremely important for diagnosing IPF. It may be possible to use differentiated immune cells from IPF samples in comparison to normal samples as targets for immunotherapy in patients with IPF.
Collapse
Affiliation(s)
- Huizhe Zhang
- Department of Respiratory Medicine, Yancheng Hospital of Traditional Chinese Medicine; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, 224005, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
| | - Cong Wang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Chenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Qingqing Xia
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Weilong Jiang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China.
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China.
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China.
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China.
| | - Yufeng Zhang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine; Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China.
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China.
| |
Collapse
|
2
|
Hay AM, Rhoades MJ, Bangerter S, Ferguson SA, Lee H, T. Gill M, Page GL, Pope A, Measom GJ, Hager RL, Seeley MK. Serum Cartilage Oligomeric Matrix Protein Concentration Increases More After Running Than Swimming for Older People. Sports Health 2024; 16:534-541. [PMID: 37697665 PMCID: PMC11195858 DOI: 10.1177/19417381231195309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Knee osteoarthritis is common in older people. Serum cartilage oligomeric matrix protein (sCOMP) is a biomarker of knee articular cartilage metabolism. The purpose of this study was 2-fold: to (1) determine acute effects of running and swimming on sCOMP concentration in older people; and (2) investigate relationships between sCOMP concentration change due to running and swimming and measures of knee health in older people. HYPOTHESES Running would result in greater increase in sCOMP concentration than swimming, and increase in sCOMP concentration due to running and swimming would associate positively with measures of poor knee health. STUDY DESIGN Cross-sectional. LEVEL OF EVIDENCE Level 3. METHODS A total of 20 participants ran 5 km and 19 participants swam 1500 m. sCOMP concentration was measured immediately before, immediately after, and 15, 30, and 60 minutes after running or swimming. sCOMP concentration change due to running and swimming was compared. Correlations between sCOMP concentration change due to running and swimming, and other measures of knee health were evaluated, including the Tegner Activity Scale and Knee injury and Osteoarthritis Outcome Score. RESULTS sCOMP concentration increased 29% immediately after running, relative to baseline, but only 6% immediately after swimming (P < 0.01). No significant relationship was observed between acute sCOMP change due to running and swimming, and observed measures of knee health (P > 0.05). Participants with clinically relevant knee symptoms exhibited greater sCOMP concentration before and after running and swimming (P = 0.03) and had greater body mass (P = 0.04). CONCLUSION Running results in greater acute articular cartilage metabolism than swimming; however, the chronic effects of this are unclear. Older people with clinically relevant knee symptoms possess greater sCOMP concentration and are heavier, independent of exercise mode and physical activity level. CLINICAL RELEVANCE These results describe the effects of exercise (running and swimming) for older physically active persons, with and without knee pain.
Collapse
Affiliation(s)
- Alexandra M. Hay
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | | | | | - Seth A. Ferguson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Hyunwook Lee
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Martha T. Gill
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Garritt L. Page
- Department of Statistics, Brigham Young University, Provo, Utah
| | - Andrew Pope
- Department of Statistics, Brigham Young University, Provo, Utah
| | - Gary J. Measom
- Department of Nursing, Utah Valley University, Orem, Utah
| | - Ronald L. Hager
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Matthew K. Seeley
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
3
|
Graf SD, Keber CU, Hattesohl A, Teply-Szymanski J, Hattesohl S, Guder M, Gercke N, Di Fazio P, Slater EP, Jesinghaus M, Denkert C, Bartsch DK, Lehman B. Mesenteric fibrosis in patients with small intestinal neuroendocrine tumors is associated with enrichment of alpha-smooth muscle actin-positive fibrosis and COMP-expressing stromal cells. J Neuroendocrinol 2024; 36:e13364. [PMID: 38246597 DOI: 10.1111/jne.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Neuroendocrine tumors of the small intestine (SI-NETs) often develop lymph node metastasis (LNM)-induced mesenteric fibrosis (MF). MF can cause intestinal obstruction as well as ischemia and render surgical resection technically challenging. The underlying pathomechanisms of MF are still not well understood. We examined mesenteric LNM and the surrounding stroma compartment from 24 SI-NET patients, including 11 with in situ presentation of strong MF (MF+) and 13 without MF (MF-). Differential gene expression was assessed with the HTG EdgeSeq Oncology Biomarker Panel comparing MF+ with MF- within LNM and paired stromal samples, respectively. Most interesting differentially expressed genes were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in combination with validation of associated protein levels utilizing immunohistochemistry (IHC) staining of MF+ and MF- formalin-fixed, paraffin-embedded (FFPE) patient samples. Overall, 14 genes measured with a 2549-gene expression panel were differentially expressed in MF+ patients compared to MF-. Of those, nine were differentially expressed genes in LNM and five genes in the stromal tissue (>2-fold change, p < .05). The top hits included increased COMP and COL11A1 expression in the stroma of MF+ patients compared to MF-, as well as decreased HMGA2, COL6A6, and SLC22A3 expression in LNM of MF+ patients compared to LNM of MF- patients. RT-qPCR confirmed high levels of COMP and COL11A1 in stroma samples of MF+ compared to MF- patients. IHC staining confirmed the enrichment of α-smooth muscle actin-positive fibrosis in MF+ compared to MF- patients with corresponding increase of COMP-expressing stromal cells in MF+. Since COMP is associated with the known driver for fibrosis development transforming growth factor beta and with a cancer-associated fibroblasts enriched environment, it seems to be a promising new target for MF research.
Collapse
Affiliation(s)
- Sebastian D Graf
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Corinna U Keber
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Akira Hattesohl
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Sophia Hattesohl
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Marc Guder
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Norman Gercke
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Emily P Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Bettina Lehman
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Sun YC, Shen PH, Wang CC, Liu HY, Lu CH, Su SC, Liu JS, Li PF, Huang CL, Ho LJ, Hung YJ, Lee CH, Kuo FC. DFATs derived from infrapatellar fat pad hold advantage on chondrogenesis and adipogenesis to evade age mediated influence. J Orthop Translat 2023; 42:113-126. [PMID: 37680904 PMCID: PMC10480672 DOI: 10.1016/j.jot.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
Background Dedifferentiated fat cells (DFATs) are highly homogeneous and multipotent compared with adipose-derived stromal cells (SCs). Infrapatellar fat pad (IFP)-SCs have advanced chondrogenic potency; however, whether IFP-DFATs could serve as better cell material remains unclear. Here, we aimed to examine the influence of age and body mass index (BMI) on the features of IFPs and IFP-derived cells (IFP-SCs and IFP-DFATs) with exploration of the clinical utilization of IFP-DFATs. Methods We collected IFPs with isolation of paired IFP-SCs and IFP-DFATs from individuals aged 65 years and older with distinct body weights who underwent total knee replacement for osteoarthritis (OA). Flow cytometry was used to characterize the cellular immunophenotypes. Adipogenesis and chondrogenesis were performed in vitro. Real-time qPCR, western blotting, and Oil Red O or Alcian blue staining were performed to evaluate inflammation, adipogenesis, and chondrogenesis. RNA sequencing and Seahorse analyses were conducted to explore the underlying mechanisms. Results We found that IFPs from old or normal-weight individuals with knee OA were pro-inflammatory, and that interleukin-6 (IL-6) signaling was associated with multiple immune-related molecules, whereas IFP-derived cells could escape the inflammatory properties. Aging plays an important role in diminishing the chondrogenic and adipogenic abilities of IFP-SCs; however, this effect was avoided in IFP-DFATs. Generally, IFP-DFATs presented a steady state of chondrogenesis (less influenced by age) and consistently enhanced adipogenesis compared to paired IFP-SCs in different age or BMI groups. RNA sequencing and Seahorse analysis suggested that the downregulation of eukaryotic initiation factor 2 (EIF2) signaling and enhanced mitochondrial function may contribute to the improved cellular biology of IFP-DFATs. Conclusions Our data indicate that IFP-DFATs are superior cell material compared to IFP-SCs for cartilage differentiation and adipogenesis, particularly in advanced aging patients with knee OA. The translational potential of this article These results provide a novel concept and supportive evidence for the use of IFP-DFATs for cell therapy or tissue engineering in patients with knee OA. Using Ingenuity Pathway Analysis (IPA) of RNA-seq data and Seahorse analysis of mitochondrial metabolic parameters, we highlighted that some molecules, signaling pathways, and mitochondrial functions are likely to be jointly coordinated to determine the enhanced biological function in IFP-DFATs.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Hung Shen
- Department of Orthopedics, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Wang
- Department of Orthopedics, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | | | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Fei Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Luen Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ju Ho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Hsing Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Chih Kuo
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Liang H, Hou Y, Pang Q, Jiang Y, Wang O, Li M, Xing X, Zhu H, Xia W. Clinical, Biochemical, Radiological, Genetic and Therapeutic Analysis of Patients with COMP Gene Variants. Calcif Tissue Int 2022; 110:313-323. [PMID: 34709441 DOI: 10.1007/s00223-021-00920-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia type 1 (MED1) are two rare skeletal disorders caused by cartilage oligomeric matrix protein (COMP) variants. This study aims to analyze the genotype and phenotype of patients with COMP variants. Clinical information for 14 probands was collected; DNA was extracted from blood for COMP variant detection. Clinical manifestations and radiology scoring systems were established to evaluate the severity of each patient's condition. Serum COMP levels in PSACH patients and healthy subjects were measured. Thirty-nine patients were included, along with 12 PSACH probands and two MED1 probands. Disproportionate short stature, waddling gait, early-onset osteoarthritis and skeletal deformities were the most common features. The height Z-score of PSACH patients correlated negatively with age at evaluation (r = - 0.603, p = 0.01) and the clinical manifestation score (r = - 0.556, p = 0.039). Over 50% of the PSACH patients were overweight/obese. The median serum COMP level in PSACH patients was 16.75 ng/ml, which was significantly lower than that in healthy controls (98.53 ng/ml; p < 0.001). The condition of MED1 patients was better than that of PSACH patients. Four novel variants of COMP were detected: c.874T>C, c.1123_1134del, c.1531G>A, and c.1576G>T. Height Z-scores and serum COMP levels were significantly lower in patients carrying mutations located in calmodulin-like domains 6, 7, and 8. As the two phenotypes overlap to different degrees, PSACH and MED1 are suggested to combine to produce "spondyloepiphyseal dysplasia, COMP type". Clinical manifestations and radiology scoring systems, serum COMP levels and genotype are important for evaluating patient condition severity.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yanfang Hou
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Qianqian Pang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yan Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ou Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Mei Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Weibo Xia
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Mak CCH, To K, Fekir K, Brooks RA, Khan WS. Infrapatellar fat pad adipose-derived stem cells co-cultured with articular chondrocytes from osteoarthritis patients exhibit increased chondrogenic gene expression. Cell Commun Signal 2022; 20:17. [PMID: 35151341 PMCID: PMC8841120 DOI: 10.1186/s12964-021-00815-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Aim The variable results in clinical trials of adipose tissue-derived stem cells (ASCs) for chondral defects may be due to the different ex vivo culture conditions of the ASCs which are implanted to treat the lesions. We sought to determine the optimal in vitro chondrocyte co-culture condition that promotes infrapatellar fat pad-derived (IFPD) ASC chondrogenic gene expression in a novel co-culture combination. Methods In our study, we utilized an in vitro autologous co-culture of IFPD ASCs and articular chondrocytes derived from Kellgren–Lawrence Grade III/IV osteoarthritic human knee joints at ASC-to-chondrocyte seeding log ratios of 1:1, 10:1, and 100:1. Gene expression following in vitro co-culture was quantified by RT-qPCR with a panel comprising COL1A1, COL2A1, COL10A1, L-SOX5, SOX6, SOX9, ACAN, HSPG2, and COMP for chondrogenic gene expression. Results The chondrogenic gene expression profiles from co-cultures were greater than would be expected from an expression profile modeled from chondrocyte and ASC-only monocultures. Additionally, chondrogenic gene expression decreased with increasing ASC-to-chondrocyte seeding ratios. Conclusions These findings provide insight into the mechanisms underlying clinical ASC therapies and signifies that IFPD ASCs pre-conditioned by chondrocyte co-culture may have improved chondrogenic potential for cartilage repair. This model can help further understand IFPD ASCs in chondral and osteochondral repair and the chondrogenic pathways involved. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00815-x.
Collapse
|
7
|
Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol J 2022; 17:e2100074. [PMID: 35073451 DOI: 10.1002/biot.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics Xinchang People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing Zhejiang Province 312000 P. R. China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| |
Collapse
|
8
|
Waluyo Y, Soraya GV, Kusuma SH, Anwar F, Wahyuni IN. Incidental Finding of Elevated Serum Cartilage Oligomeric Matrix Protein (sCOMP) in Knee Osteoarthritis Patient with Undiagnosed Colon Cancer: A Case Report. Int Med Case Rep J 2021; 14:455-458. [PMID: 34262360 PMCID: PMC8275040 DOI: 10.2147/imcrj.s283797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
Background The clinical utility of cartilage oligomeric matrix protein (COMP) as a diagnostic and prognostic biomarker is currently under intense study. COMP has been associated primarily with musculoskeletal disorders such as rheumatoid and osteoarthritis (OA) or muscular and ligament trauma. Aside from its established role as a biomarker of arthritis, an increasing number of studies have also suggested the role of COMP in tumorigenesis, based on findings of its expression in breast, prostate, and colon cancers. Case Presentation We described the case of a 61-year-old man with knee osteoarthritis and was prescribed physical therapy and a course of prolotherapy injection. We found elevated sCOMP levels in our patient (twice higher than average). After a month of follow-up, he was diagnosed with colorectal cancer. Conclusion It makes us wonder about other conditions of the patients. There is no standard COMP parameter to differentiate OA patients from colorectal cancer patients, but it considers the increase is higher in colorectal cancer patients. We suggest to clinicians who use the COMP level to monitor OA condition to be aware of other conditions when the level is much higher than average OA patients.
Collapse
Affiliation(s)
- Yose Waluyo
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | |
Collapse
|
9
|
Anti-Osteoarthritic Effects of a Mixture of Dried Pomegranate Concentrate Powder, Eucommiae Cortex, and Achyranthis Radix 5:4:1 ( g/ g) in a Surgically Induced Osteoarthritic Rabbit Model. Nutrients 2020; 12:nu12030852. [PMID: 32235804 PMCID: PMC7146119 DOI: 10.3390/nu12030852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/07/2023] Open
Abstract
In this study, we aimed to determine the synergistic effects of a formula consisting of dried pomegranate concentrate powder, Eucommiae Cortex, and Achyranthis Radix 5:4:1 (g/g) (PCP:EC:AR) in a surgically induced osteoarthritis (OA) rabbit model. PCP:EC:AR was orally administered once per day. Knee thickness, maximum extension of the knee joint, gross articular defect area, and the histopathological appearance of the cartilage were monitored, along with serum collagen type II C-telopeptide (CTX-II), cartilage oligomeric matrix protein (COMP), matrix metalloproteinase (MMP)-3, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and subchondral IL-1β and TNF-α levels. Roentgenographic images were also evaluated. PCP:EC:AR significantly inhibited the surgically induced increase in knee thickness, maximum extension of both knees, knee thickness after capsule exposure, gross femoral and tibial articular defect areas, loss of the knee joint area, serum and synovial COMP, CTX-II, and MMP expression, and synovial IL-1β, and TNF-α expression. In addition, surgically induced narrowing of the knee bones, loss of the joint area, cartilage damage, and osteophyte formation were reduced. PCP:EC:AR suppressed the surgically induced increases in the Mankin score, and subchondral IL-1β and TNF-α immunolabeled cell numbers. PCP:EC:AR exerted potent OA protective effects in a surgically induced OA rabbit model.
Collapse
|
10
|
Kronemberger GS, Matsui RAM, Miranda GDASDCE, Granjeiro JM, Baptista LS. Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks. World J Stem Cells 2020; 12:110-122. [PMID: 32184936 PMCID: PMC7062040 DOI: 10.4252/wjsc.v12.i2.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/19/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by “bottom-up” approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
| | - Renata Akemi Morais Matsui
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| | - Guilherme de Almeida Santos de Castro e Miranda
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 25255-030 Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
11
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Tran V, Karsai A, Fong MC, Cai W, Yik JHN, Klineberg E, Haudenschild DR, Liu GY. Label-Free and Direct Visualization of Multivalent Binding of Bone Morphogenetic Protein-2 with Cartilage Oligomeric Matrix Protein. J Phys Chem B 2019; 123:39-46. [PMID: 30554512 DOI: 10.1021/acs.jpcb.8b08564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents the first direct evidence of multivalent binding between bone morphogenetic protein-2 (BMP-2) and cartilage oligomeric matrix protein (COMP) using high-resolution atomic force microscopy (AFM) imaging. AFM topographic images reveal the molecular morphology of COMP, a pentameric protein whose five identical monomer units bundle together at N-termini, extending out with flexible chains to C-termini. Upon addition of BMP-2, COMP molecules undergo conformational changes at the C-termini to enable binding with BMP-2 molecules. AFM enables local structural changes of COMP to be revealed upon binding various numbers, 1-5, of BMP-2 molecules. These BMP-2/COMP complexes exhibit very different morphologies from those of COMP: much more compact and thus less flexible. These molecular-level insights deepen current understanding of the mechanism of how the BMP-2/COMP complex enhances osteogenesis among osteoprogenitor cells, i.e., multivalent presentation of BMP-2 via the stable and relatively rigid BMP-2/COMP complex could form a lattice of interaction between multiple BMP-2 and BMP-2 receptors. These ligand-receptor clusters lead to fast initiation and sustained activation of the Smad signaling pathway, resulting in enhanced osteogenesis. This work is also of translational importance as the outcome may enable use of lower BMP-2 dosage for bone repair and regeneration.
Collapse
Affiliation(s)
- Victoria Tran
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Arpad Karsai
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Michael C Fong
- Department of Biomedical Engineering , University of California , Davis , California 95616 , United States
| | - Weiliang Cai
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Jasper H N Yik
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Eric Klineberg
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery , University of California-Davis Medical Center , Sacramento , California 95817 , United States
| | - Gang-Yu Liu
- Department of Chemistry , University of California , Davis , California 95616 , United States
| |
Collapse
|
13
|
Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice. PLoS One 2018; 13:e0203398. [PMID: 30188931 PMCID: PMC6126849 DOI: 10.1371/journal.pone.0203398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier.
Collapse
|
14
|
Oralova V, Matalova E, Killinger M, Knopfova L, Smarda J, Buchtova M. Osteogenic Potential of the Transcription Factor c-MYB. Calcif Tissue Int 2017; 100:311-322. [PMID: 28012106 DOI: 10.1007/s00223-016-0219-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/10/2016] [Indexed: 12/30/2022]
Abstract
The transcription factor c-MYB is a well-known marker of undifferentiated cells such as haematopoietic cell precursors, but recently it has also been observed in differentiated cells that produce hard tissues. Our previous findings showed the presence of c-MYB in intramembranous bones and its involvement in the chondrogenic steps of endochondral ossification, where the up-regulation of early chondrogenic markers after c-myb overexpression was observed. Since we previously detected c-MYB in osteoblasts, we aimed to analyse the localisation of c-MYB during later stages of endochondral bone formation and address its function during bone matrix production. c-MYB-positive cells were found in the chondro-osseous junction zone in osteoblasts of trabecular bone as well as deeper in the zone of ossification in cells of spongy bone. To experimentally evaluate the osteogenic potential of c-MYB during endochondral bone formation, micromasses derived from embryonic mouse limb buds were established. Nuclear c-MYB protein expression was observed in long-term micromasses, especially in the areas around nodules. c-myb overexpression induced the expression of osteogenic-related genes such as Bmp2, Comp, Csf2 and Itgb1. Moreover, alizarin red staining and osteocalcin labelling promoted mineralised matrix production in c-myb-overexpressing cultures, whereas downregulation of c-myb by siRNA reduced mineralised matrix production. In conclusion, c-Myb plays a role in the osteogenesis of long bones by inducing osteogenic genes and causing the enhancement of mineral matrix production. This action of the transcription factor c-Myb might be of interest in the future for the establishment of novel approaches to tissue regeneration.
Collapse
Affiliation(s)
- V Oralova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium.
| | - E Matalova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - M Killinger
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - L Knopfova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - J Smarda
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - M Buchtova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Ideta H, Uchiyama S, Hayashi M, Kosho T, Nakamura Y, Kato H. Painful locking of the wrist in a patient with pseudoachondroplasia confirmed by COMP mutation. J Surg Case Rep 2017; 2017:rjw216. [PMID: 28044000 PMCID: PMC5204134 DOI: 10.1093/jscr/rjw216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We report the case of a 40-year-old woman with pseudoachondroplasia (PSACH), with a heterozygous mutation (c.806A > G, p.Asp269Gly) located in the Type 3 repeats domain of the cartilage oligomeric matrix protein gene, who complained of the unusual symptom of painful locking of the wrist. Her condition was caused by a non-traumatic enlargement of the extensor carpi radialis longus (ECRL) and brevis (ECRB) tendons along with bulbous swelling of the synoviums around them. Surgical treatment resolved these unusual tendon-related symptoms. Repetitive mechanical loading of the wrist in daily activities, including distal intersection tenosynovitis between the extensor pollicis longus tendon and ECRL and ECRB tendons, may have contributed to changes in the structural integrity of the tendons. We should pay more attention to tendon-related symptoms in patients with PSACH.
Collapse
Affiliation(s)
- Hirokazu Ideta
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shigeharu Uchiyama
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Hayashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
16
|
Affiliation(s)
- Yin Tintut
- From the Departments of Medicine (Cardiology) (Y.T., L.L.D.), Physiology (Y.T., L.L.D.), Orthopaedic Surgery (Y.T.), and Bioengineering (L.L.D.), University of California, Los Angeles (UCLA)
| | - Linda L Demer
- From the Departments of Medicine (Cardiology) (Y.T., L.L.D.), Physiology (Y.T., L.L.D.), Orthopaedic Surgery (Y.T.), and Bioengineering (L.L.D.), University of California, Los Angeles (UCLA).
| |
Collapse
|
17
|
Yu WJ, Zhang Z, He JW, Fu WZ, Wang C, Zhang ZL. Identification of two novel mutations in the COMP gene in six families with pseudoachondroplasia. Mol Med Rep 2016; 14:2180-6. [DOI: 10.3892/mmr.2016.5486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 04/13/2016] [Indexed: 11/05/2022] Open
|
18
|
Hellewell AL, Adams JC. Insider trading: Extracellular matrix proteins and their non-canonical intracellular roles. Bioessays 2015; 38:77-88. [PMID: 26735930 DOI: 10.1002/bies.201500103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous microenvironment that has important supportive and instructive roles. Although the primary site of action of ECM proteins is extracellular, evidence is emerging for non-canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF-binding protein 3 and biglycan, and relate to roles in transcription, cell-stress responses, autophagy and cancer. These findings pose conceptual problems on how proteins signalled for secretion can be routed to the cytosol or nucleus, or can function in environments with diverse redox, pH and ionic conditions. We review evidence for intracellular locations and functions of ECM proteins, and current knowledge of the mechanisms by which they may enter intracellular compartments. We evaluate the experimental methods that are appropriate to obtain rigorous evidence for intracellular localisation and function. Better insight into this under-researched topic is needed to decipher the complete spectrum of physiological and pathological roles of ECM proteins.
Collapse
|
19
|
Modulation of the extracellular matrix patterning of thrombospondins by actin dynamics and thrombospondin oligomer state. Biosci Rep 2015; 35:BSR20140168. [PMID: 26182380 PMCID: PMC4613707 DOI: 10.1042/bsr20140168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/21/2015] [Indexed: 01/01/2023] Open
Abstract
Thrombospondins (TSPs) are evolutionarily-conserved, secreted glycoproteins that interact with cell surfaces and extracellular matrix (ECM) and have complex roles in cell interactions. Unlike the structural components of the ECM that form networks or fibrils, TSPs are deposited into ECM as arrays of nanoscale puncta. The cellular and molecular mechanisms for the patterning of TSPs in ECM are poorly understood. In the present study, we investigated whether the mechanisms of TSP patterning in cell-derived ECM involves actin cytoskeletal pathways or TSP oligomer state. From tests of a suite of pharmacological inhibitors of small GTPases, actomyosin-based contractility, or actin microfilament integrity and dynamics, cytochalasin D and jasplakinolide treatment of cells were identified to result in altered ECM patterning of a model TSP1 trimer. The strong effect of cytochalasin D indicated that mechanisms controlling puncta patterning depend on global F-actin dynamics. Similar spatial changes were obtained with endogenous TSPs after cytochalasin D treatment, implicating physiological relevance. Under matched experimental conditions with ectopically-expressed TSPs, the magnitude of the effect was markedly lower for pentameric TSP5 and Drosophila TSP, than for trimeric TSP1 or dimeric Ciona TSPA. To distinguish between the variables of protein sequence or oligomer state, we generated novel, chimeric pentamers of TSP1. These proteins accumulated within ECM at higher levels than TSP1 trimers, yet the effect of cytochalasin D on the spatial distribution of puncta was reduced. These findings introduce a novel concept that F-actin dynamics modulate the patterning of TSPs in ECM and that TSP oligomer state is a key determinant of this process.
Collapse
|
20
|
Ruthard J, Kamper M, Renno JH, Kühn G, Hillebrand U, Höllriegl S, Johannis W, Zaucke F, Klatt AR. COMP does not directly modify the expression of genes involved in cartilage homeostasis in contrast to several other cartilage matrix proteins. Connect Tissue Res 2014; 55:348-56. [PMID: 25111190 DOI: 10.3109/03008207.2014.951440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated whether COMP may modify cartilage metabolism and play a role as an endogenous disease aggravating factor in OA. MATERIALS AND METHODS Full-length and momomeric COMP was recombinantly expressed in human embryonic kidney cells and purified it via affinity chromatography. Purified COMP was used to stimulate either primary human chondrocytes or cartilage explants. Changes in the expression profiles of inflammatory genes, differentiation markers and growth factors were examined by immunoassay and by quantitative real-time reverse-transcription polymerase chain reaction. RESULTS Incubation of primary human chondrocytes or cartilage explants in the presence of COMP did not induce statistically significant changes in the expression of IL-6, MMP1, MMP13, collagen I, collagen II, collagen X, TGF-β1 and BMP-2. CONCLUSIONS In contrast to collagen II and matrilin-3, COMP lacks the ability to trigger a proinflammatory response in chondrocytes, although it carries an RGD motif and can bind to integrins. COMP is a well-accepted biomarker for osteoarthritis but increased COMP levels do not necessarily correlate with inflammation.
Collapse
Affiliation(s)
- Johannes Ruthard
- Institute for Clinical Chemistry, University of Cologne , Cologne , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol 2014; 37:102-11. [PMID: 24997222 DOI: 10.1016/j.matbio.2014.06.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.
Collapse
Affiliation(s)
- Chitrangada Acharya
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Ashleen Kishore
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Victoria Van Dinh
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Paul E Di Cesare
- Department of Orthopaedics and Rehabilitation, New York Hospital Queens, New York, NY 11355, USA
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
22
|
Duquette M, Nadler M, Okuhara D, Thompson J, Shuttleworth T, Lawler J. Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity. Matrix Biol 2014; 37:15-24. [PMID: 24845346 PMCID: PMC4502920 DOI: 10.1016/j.matbio.2014.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 01/24/2023]
Abstract
The thrombospondins (TSPs) are a family of matricellular proteins that regulate cellular phenotype through interactions with a myriad of other proteins and proteoglycans. We have identified a novel interaction of the members of the TSP gene family with stromal interaction molecule 1 (STIM1). This association is robust since it is preserved in Triton X-100, can be detected with multiple anti-TSP-1 and anti-STIM1 antibodies, and is detected in a wide range of cell types. We have also found that STIM1 co-immunoprecipitates with TSP-4 and cartilage oligomeric matrix protein (COMP), and that a recombinant version of the N-terminal domain of STIM1 binds to the signature domain of TSP-1 and COMP. The association of the TSPs with STIM1 is observed in both the presence and absence of calcium indicating that the calcium-dependent conformation of the signature domain of TSPs is not required for binding. Thus, this interaction could occur in the ER under conditions of normal or low calcium concentration. Furthermore, we observed that the expression of COMP in HEK 293 cells decreases STIM1-mediated calcium release activated calcium (CRAC) channel currents and increases arachidonic acid calcium (ARC) channel currents. These data indicate that the TSPs regulate STIM1 function and participate in the reciprocal regulation of two channels that mediate calcium entry into the cell.
Collapse
Affiliation(s)
- Mark Duquette
- The Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical School, Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, United States
| | - Monica Nadler
- The Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical School, Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, United States
| | - Dayne Okuhara
- Synta Pharmaceuticals, 45 Hartwell Avenue, Lexington, MA 02421, United States
| | - Jill Thompson
- The Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Trevor Shuttleworth
- The Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Jack Lawler
- The Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical School, Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, United States.
| |
Collapse
|
23
|
Momohara S, Yamanaka H, Holledge MM, Mizumura T, Ikari K, Okada N, Kamatani N, Tomatsu T. Cartilage oligomeric matrix protein in serum and synovial fluid of rheumatoid arthritis: potential use as a marker for joint cartilage damage. Mod Rheumatol 2014. [DOI: 10.3109/s10165-004-0323-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Vuga LJ, Milosevic J, Pandit K, Ben-Yehudah A, Chu Y, Richards T, Sciurba J, Myerburg M, Zhang Y, Parwani AV, Gibson KF, Kaminski N. Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis. PLoS One 2013; 8:e83120. [PMID: 24376648 PMCID: PMC3869779 DOI: 10.1371/journal.pone.0083120] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/30/2013] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and life threatening disease with median survival of 2.5-3 years. The IPF lung is characterized by abnormal lung remodeling, epithelial cell hyperplasia, myofibroblast foci formation, and extracellular matrix deposition. Analysis of gene expression microarray data revealed that cartilage oligomeric matrix protein (COMP), a non-collagenous extracellular matrix protein is among the most significantly up-regulated genes (Fold change 13, p-value <0.05) in IPF lungs. This finding was confirmed at the mRNA level by nCounter® expression analysis in additional 115 IPF lungs and 154 control lungs as well as at the protein level by western blot analysis. Immunohistochemical analysis revealed that COMP was expressed in dense fibrotic regions of IPF lungs and co-localized with vimentin and around pSMAD3 expressing cells. Stimulation of normal human lung fibroblasts with TGF-β1 induced an increase in COMP mRNA and protein expression. Silencing COMP in normal human lung fibroblasts significantly inhibited cell proliferation and negatively impacted the effects of TGF-β1 on COL1A1 and PAI1. COMP protein concentration measured by ELISA assay was significantly increased in serum of IPF patients compared to controls. Analysis of serum COMP concentrations in 23 patients who had prospective blood draws revealed that COMP levels increased in a time dependent fashion and correlated with declines in force vital capacity (FVC). Taken together, our results should encourage more research into the potential use of COMP as a biomarker for disease activity and TGF-β1 activity in patients with IPF. Hence, studies that explore modalities that affect COMP expression, alleviate extracellular matrix rigidity and lung restriction in IPF and interfere with the amplification of TGF-β1 signaling should be persuaded.
Collapse
Affiliation(s)
- Louis J. Vuga
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Jadranka Milosevic
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kusum Pandit
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ahmi Ben-Yehudah
- Pittsburgh Development Center, Magee-Women’s Research Institute and Foundation, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yanxia Chu
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thomas Richards
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Joshua Sciurba
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael Myerburg
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yingze Zhang
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Anil V. Parwani
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kevin F. Gibson
- Dorothy P and Richard P Simmons Center for Interstitial Lung Diseases, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
25
|
Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, von Eisenhart-Rothe R, Südkamp NP, Weyh T, Imhoff AB, Alini M, Salzmann GM. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Bioelectromagnetics 2013; 35:116-28. [PMID: 24203577 DOI: 10.1002/bem.21822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/16/2013] [Indexed: 12/21/2022]
Abstract
Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.
Collapse
Affiliation(s)
- Florian M Hilz
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany; AO Research Institute, Davos, Switzerland; Clinic of Orthopaedics and Sport Orthopaedics, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen J, Xi J, Tian Y, Bova GS, Zhang H. Identification, prioritization, and evaluation of glycoproteins for aggressive prostate cancer using quantitative glycoproteomics and antibody-based assays on tissue specimens. Proteomics 2013; 13:2268-77. [PMID: 23716368 DOI: 10.1002/pmic.201200541] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/01/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022]
Abstract
Prostate cancer is highly heterogeneous in nature; while the majority of cases are clinically insignificant, some cases are lethal. Currently, there are no reliable screening methods for aggressive prostate cancer. Since most established serum and urine biomarkers are glycoproteins secreted or leaked from the diseased tissue, the current study seeks to identify glycoprotein markers specific to aggressive prostate cancer using tissue specimens. With LC-MS/MS glycoproteomic analysis, we identified 350 glycopeptides with 17 being altered in aggressive prostate cancer. ELISA assays were developed/purchased to evaluate four candidates, that is, cartilage oligomeric matrix protein (COMP), periostin, membrane primary amine oxidase (VAP-1), and cathepsin L, in independent tissue sets. In agreement with the proteomic analysis, we found that COMP and periostin expressions were significantly increased in aggressive prostate tumors while VAP-1 expression was significantly decreased in aggressive tumor. In addition, the expression of these proteins in prostate metastases also follows the same pattern observed in the proteomic analysis. This study provides a workflow for biomarker discovery, prioritization, and evaluation of aggressive prostate cancer markers using tissue specimens. Our data suggest that increase in COMP and periostin and decrease in VAP-1 expression in the prostate may be associated with aggressive prostate cancer.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
27
|
Ishida K, Acharya C, Christiansen BA, Yik JHN, DiCesare PE, Haudenschild DR. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone 2013; 55:23-35. [PMID: 23528838 DOI: 10.1016/j.bone.2013.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic proteins (BMPs) are effective for bone regeneration, and are used clinically. However, supraphysiological doses are required, which limits their use. Cartilage oligomeric matrix protein is an extracellular matrix protein, which we have previously shown can bind to growth factors of the TGFs family, suggesting that COMP may also bind to BMP-2. Rather than being a passive component of the matrix, COMP may serve as an "instructive matrix" component capable of increasing local growth factor concentration, slowing the diffusion of growth factors, and promoting their biological activity. The purpose of this investigation was to determine whether COMP binds to BMP-2, and whether it promotes the biological activity of BMP-2 with respect to osteogenesis. We found that COMP binds BMP-2, and characterized the biochemical nature of the binding interaction. COMP binding enhanced BMP-2-induced intracellular signaling through Smad proteins, increased the levels of BMP receptors, and up-regulated the luciferase activity from a BMP-2-responsive reporter construct. COMP binding enhanced BMP-2-dependent osteogenesis in vitro, in the C2C12 cell line and in primary human bone mesenchymal stem cells, as measured by alkaline phosphatase activity, matrix mineralization, and gene expression. Finally, we found that COMP enhanced BMP-2-dependent ectopic bone formation in a rat model assessed histologically, by alkaline phosphatase activity, gene expression, and micro-CT. In summary, this study demonstrates that COMP enhances the osteogenic activity of BMP-2, both in-vitro and in-vivo.
Collapse
Affiliation(s)
- Kazunari Ishida
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, 4635 Second Avenue Suite 2000, Sacramento CA 95817, USA
| | | | | | | | | | | |
Collapse
|
28
|
Xie X, Liao L, Gao J, Luo X. A novel COMP mutation in a Chinese patient with pseudoachondroplasia. Gene 2013; 522:102-6. [PMID: 23562786 DOI: 10.1016/j.gene.2013.02.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
A 2.75-year-old Chinese boy presented with typical clinical features of pseudoachondroplasia, including disproportionate short-limb short stature, brachydactyly, genu varus and waddling gait. Radiologically, tubular bones were short with widened metaphyses, irregular and small epiphyses; anterior tonguing or beaking of vertebral bodies were characteristic. DNA sequencing analysis of the COMP gene revealed a heterozygous mutation (c.1511G>A, p.Cys504Tyr) in the patient but his parents were unaffected without this genetic change. The missense mutation (c.1511G>A) was not found in 100 healthy controls and has not been reported previously. Our findings expand the spectrum of known mutations in COMP leading to pseudoachondroplasia.
Collapse
Affiliation(s)
- Xuemei Xie
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | |
Collapse
|
29
|
Abstract
This review primarily focuses on how the macromolecular composition and architecture of articular cartilage and its unique biomechanical properties play a pivotal role in the ability of articular cartilage to withstand mechanical loads several magnitudes higher than the weight of the individual. Current findings on short-term and long-term effects of exercise on human articular cartilage are reviewed, and the importance of appropriate exercises for individuals with normal and diseased or aberrated cartilage is discussed.
Collapse
Affiliation(s)
- Harpal K Gahunia
- Orthopedic Science Consulting Services, Oakville, Ontario, Canada.
| | | |
Collapse
|
30
|
Dai L, Xie L, Wang Y, Mao M, Li N, Zhu J, Kim C, Zhang Y. A novel COMPmutation in a pseudoachondroplasia family of Chinese origin. BMC MEDICAL GENETICS 2011; 12:72. [PMID: 21599986 PMCID: PMC3119180 DOI: 10.1186/1471-2350-12-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/21/2011] [Indexed: 11/10/2022]
Abstract
Background Pseudoachondroplasia (PSACH) is caused exclusively by mutations in the gene for cartilage oligomeric matrix protein (COMP). Only a small number of studies have documented the clinical phenotype and genetic basis in Chinese PSACH patients. Case presentation We investigated a four-generation PSACH pedigree of Chinese Han origin. Two patients and two unaffected individuals were recruited for clinical evaluation and molecular genetic analysis. The genomic DNA was extracted from peripheral blood leukocytes. Polymerase chain reaction (PCR) was adopted to amplify the 8-19 exons of COMP gene. Then the products were sequenced bi-directionally for screening mutation. Clinical evaluation revealed that PSACH patients in this pedigree had a severe disproportionate short stature (-10SD). A heterozygous TGTCCCTGG insertion in exon 13, between nucleotide 1352T and 1353G, were identified in the patients except the unaffected individuals, which resulted in a three-amino-acid insertion (451V_452P ins VPG) in the sixth calmodulin-like repeat of the COMP protein. Conclusion This c. 1352_1353ins TGTCCCTGG is a novel mutation responsible for severe familial PSACH.
Collapse
|
31
|
Li H, Haudenschild D, Posey K, Hecht J, Di Cesare P, Yik J. Comparative analysis with collagen type II distinguishes cartilage oligomeric matrix protein as a primary TGFβ-responsive gene. Osteoarthritis Cartilage 2011; 19:1246-53. [PMID: 21843649 PMCID: PMC4098880 DOI: 10.1016/j.joca.2011.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aims to investigate the regulation of expression of Cartilage oligomeric matrix protein (COMP), which is predominately expressed by chondrocytes and functions to organize the extracellular matrix. Mutations in COMP cause two skeletal dysplasias: pseudoachondroplasia and multiple epiphyseal dysplasia. The mechanism controlling COMP expression during chondrocyte differentiation is still poorly understood. DESIGN Primary human bone marrow-derived stem cells were induced to differentiate into chondrocyte by pellet cultures. We then compared the temporal expression of COMP with the well-characterized cartilage-specific Type II collagen (Col2a1), and their response to transforming growth factor (TGF)β and Sox trio (Sox5, 6, and 9) stimulation. RESULTS COMP and Col2a1 expression are differentially regulated by three distinct mechanisms. First, upregulation of COMP mRNA precedes Col2a1 by several days during chondrogenesis. Second, COMP expression is independent of high cell density but requires TGF-β1. Induction of COMP mRNA by TGF-β1 is detected within 2h in the absence of protein synthesis and is blocked by specific inhibitors of the TGFβ signaling pathway; and therefore, COMP is a primary TFGβ-response gene. Lastly, while Col2a1 expression is intimately controlled by the Sox trio, overexpression of Sox trio fails to activate the COMP promoter. CONCLUSION COMP and Col2a1 expression are regulated differently during chondrogenesis. COMP is a primary response gene of TGFβ and its fast induction during chondrogenesis suggests that COMP is suitable for rapidly accessing the chondrogenic potential of stem cells.
Collapse
Affiliation(s)
- H. Li
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - D.R. Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - K.L. Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Texas, USA
| | - J.T. Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Texas, USA
| | - P.E. Di Cesare
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - J.H.N. Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA,Address correspondence and reprint requests to: J.H.N. Yik, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, 4635 Second Ave, Research Building 1, Room 2000, Sacramento, CA 95817, USA. Fax: 1-916-734-5750. (J.H.N. Yik)
| |
Collapse
|
32
|
Abstract
Thrombospondins are evolutionarily conserved, calcium-binding glycoproteins that undergo transient or longer-term interactions with other extracellular matrix components. They share properties with other matrix molecules, cytokines, adaptor proteins, and chaperones, modulate the organization of collagen fibrils, and bind and localize an array of growth factors or proteases. At cell surfaces, interactions with an array of receptors activate cell-dependent signaling and phenotypic outcomes. Through these dynamic, pleiotropic, and context-dependent pathways, mammalian thrombospondins contribute to wound healing and angiogenesis, vessel wall biology, connective tissue organization, and synaptogenesis. We overview the domain organization and structure of thrombospondins, key features of their evolution, and their cell biology. We discuss their roles in vivo, associations with human disease, and ongoing translational applications. In many respects, we are only beginning to appreciate the important roles of these proteins in physiology and pathology.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
33
|
Haudenschild DR, Hong E, Yik JHN, Chromy B, Mörgelin M, Snow KD, Acharya C, Takada Y, Di Cesare PE. Enhanced activity of transforming growth factor β1 (TGF-β1) bound to cartilage oligomeric matrix protein. J Biol Chem 2011; 286:43250-8. [PMID: 21940632 DOI: 10.1074/jbc.m111.234716] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an important non-collagenous cartilage protein that is essential for the structural integrity of the cartilage extracellular matrix. The repeated modular structure of COMP allows it to "bridge" and assemble multiple cartilage extracellular matrix components such as collagens, matrilins, and proteoglycans. With its modular structure, COMP also has the potential to act as a scaffold for growth factors, thereby affecting how and when the growth factors are presented to cell-surface receptors. However, it is not known whether COMP binds growth factors. We studied the binding interaction between COMP and TGF-β1 in vitro and determined the effect of COMP on TGF-β1-induced signal transduction in reporter cell lines and primary cells. Our results demonstrate that mature COMP protein binds to multiple TGF-β1 molecules and that the peak binding occurs at slightly acidic pH. These interactions were confirmed by dual polarization interferometry and visualized by rotary shadow electron microscopy. There is cation-independent binding of TGF-β1 to the C-terminal domain of COMP. In the presence of manganese, an additional TGF-β-binding site is present in the TSP3 repeats of COMP. Finally, we show that COMP-bound TGF-β1 causes increased TGF-β1-dependent transcription. We conclude that TGF-β1 binds to COMP and that TGF-β1 bound to COMP has enhanced bioactivity.
Collapse
Affiliation(s)
- Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thomas CM, Murray R, Sharif M. Chondrocyte apoptosis determined by caspase-3 expression varies with fibronectin distribution in equine articular cartilage. Int J Rheum Dis 2011; 14:290-7. [PMID: 21816026 DOI: 10.1111/j.1756-185x.2011.01627.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The purpose of this study was to investigate associations between the extent of chondrocyte apoptosis and expression of the articular cartilage (AC) extracellular matrix (ECM) molecules, cartilage oligomeric matrix protein (COMP) and fibronectin. METHOD Cartilage from four sites (when available) on equine left middle carpal joints (n = 12) were used. Expression of COMP and fibronectin was determined using specific polyclonal antibodies and a biotin-streptavidin/peroxidase method. The intensity of staining for matrix molecules was graded (none, mild, moderate, strong) in each cartilage zone. Apoptosis of chondrocytes in AC sections was assessed by their expression of active caspase-3 using immunohistochemistry. RESULTS The intensity of fibronectin expression varied significantly according to cartilage depth, with greater expression in the deep zone than in either the superficial or middle layers (P < 0.001). A significant positive association was found overall between intensity of fibronectin expression and chondrocyte apoptosis (r = 0.44, P = 0.0187). The data were also significant for superficial and deep zones (r = 0.44, P = 0.0239 and r = 0.42, P = 0.0279 respectively). Conversely, intensity of COMP expression did not show zonal differences and was un-associated with degree of apoptosis. However, COMP expression was significantly more intense in cartilage than fibronectin (P = 0.0007), and the correlation between overall intensity of COMP and fibronectin was statistically significant (r = 0.56, P = 0.0018). CONCLUSION The positive correlation between the incidence of apoptosis and expression of fibronectin, a key ECM molecule involved in communication between the chondrocyte and surrounding matrix, suggests that chondrocyte death by apoptosis may alter cartilage metabolism, supporting the role of this process in the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Carla M Thomas
- Department of Anatomy, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
35
|
Cao LH, Wang LB, Wang SS, Ma HW, Ji CY, Luo Y. Identification of novel and recurrent mutations in the calcium binding type III repeats of cartilage oligomeric matrix protein in patients with pseudoachondroplasia. GENETICS AND MOLECULAR RESEARCH 2011; 10:955-63. [PMID: 21644213 DOI: 10.4238/vol10-2gmr1111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pseudoachondroplasia is an autosomal dominant osteochondrodysplasia characterized by disproportionate short stature, joint laxity, and early onset osteoarthrosis. Pseudoachondroplasia is caused by mutations in the gene encoding cartilage oligomeric matrix protein (COMP). We looked for mutations in the COMP gene in three sporadic Chinese pseudoachondroplasia patients and identified two novel mutations, c.1189G>T (p.D397Y) and c.1220G>A (p.C407Y), and one recurrent mutation, c.1318G>C (p.G440R), in the calcium binding type III repeats of COMP. This study confirms the relationship between mutations of the COMP gene and clinical findings of pseudoachondroplasia; it also provides evidence for the importance of the calcium binding domains to the functioning of COMP.
Collapse
Affiliation(s)
- L H Cao
- Research Center for Medical Genomics, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
36
|
Wang L, Zheng J, Du Y, Huang Y, Li J, Liu B, Liu CJ, Zhu Y, Gao Y, Xu Q, Kong W, Wang X. Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With α
7
β
1
Integrin. Circ Res 2010; 106:514-25. [DOI: 10.1161/circresaha.109.202762] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rational
:
Vascular smooth muscle cells (VSMCs) switching from a contractile/differentiated to a synthetic/dedifferentiated phenotype has an essential role in atherosclerosis, postangioplastic restenosis and hypertension. However, how normal VSMCs maintain the differentiated state is less understood.
Objective
:
We aimed to indentify the effect of cartilage oligomeric matrix protein (COMP), a normal vascular extracellular matrix, on modulation of VSMCs phenotype.
Methods and Results
:
We demonstrated that COMP was associated positively with the expression of VSMC differentiation marker genes during phenotype transition. Knockdown of COMP by small interfering (si)RNA favored dedifferentiation. Conversely, adenoviral overexpression of COMP markedly suppressed platelet-derived growth factor-BB-elicited VSMC dedifferentiation, characterized by altered VSMC morphology, actin fiber organization, focal adhesion assembly, and the expression of phenotype-dependent markers. Whereas α
7
integrin coimmunoprecipitated with COMP in normal rat VSMCs and vessels, neutralizing antibody or siRNA against α
7
integrin inhibited VSMC adhesion to COMP, which indicated that α
7
β
1
integrin is a potential receptor for COMP. As well, blocking or interference by siRNA of α
7
integrin completely abolished the effect of COMP on conserving the contractile phenotype. In accordance, ectopic adenoviral overexpression of COMP greatly retarded VSMC phenotype switching, rescued contractility of carotid artery ring, and inhibited neointima formation in balloon-injured rats.
Conclusions
:
Our data suggest that COMP is essential for maintaining a VSMC contractile phenotype and the protective effects of COMP are mainly mediated through interaction with α
7
β
1
integrin. Investigations to identify the factors affecting the expression and integrity of COMP may provide a novel therapeutic target for vascular disorders.
Collapse
Affiliation(s)
- Li Wang
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Jingang Zheng
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Yaoyao Du
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Yaqian Huang
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Jing Li
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Bo Liu
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Chuan-ju Liu
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Yi Zhu
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Yuansheng Gao
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Qingbo Xu
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Wei Kong
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| | - Xian Wang
- From the Department of Physiology and Pathophysiology (L.W., Y.D., Y.H., J.L., B.L., Y.Z., Y.G., W.K., X.W.), School of Basic Medical Sciences, Peking University; and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People’s Republic of China; Department of Cardiology (J.Z.), China-Japan Friendship Hospital, Beijing, People’s Republic of China; Departments of Orthopaedic Surgery and Cell Biology (C.-j.L.), New York University School of Medicine; and Cardiovascular
| |
Collapse
|
37
|
Elliott A, Bocangel P, Reed M, Greenberg C. Case Report A novel COMP mutation in an Inuit patient with pseudoachondroplasia and severe short stature. GENETICS AND MOLECULAR RESEARCH 2010; 9:1785-90. [DOI: 10.4238/vol9-3gmr897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Cartilage oligomeric matrix protein promotes cell attachment via two independent mechanisms involving CD47 and alphaVbeta3 integrin. Mol Cell Biochem 2009; 338:215-24. [PMID: 20033473 DOI: 10.1007/s11010-009-0355-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Cartilage oligomeric matrix protein (COMP) is a pentameric approximately 524 kDa multidomain extracellular matrix protein and is the fifth member of the thrombospondin family. COMP is abundantly expressed in proliferating and hypertrophic chondrocytes of the growth plate, articular cartilage, synovium, tendon, and ligament. The spatial localization of COMP highlights its importance in the phenotypes of pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), COMP disorders that are characterized by disproportionate short stature, brachydactyly, scoliosis, early-onset osteoarthritis, and joint hypermobility. In this study, the role of COMP in ligament was investigated with a series of cell attachment assays using ligament cells binding to COMP. A dose-dependent cell attachment activity was found, which was inhibited by a peptide containing the SFYVVMWK amino acid sequence derived from the globular C-terminal domain of COMP. This activity was independent of the recently described RGD-dependent attachment activity. Function-blocking antibodies to CD47 and alphaVbeta3 integrin reduced cell attachment to COMP, implicating the participation of these cell surface molecules in COMP cell binding. Immunofluorescence studies showed that cell attachment to COMP induced the formation of lamellae containing F-actin microspikes associated with fascin. We propose that COMP promotes cell attachment via two independent mechanisms involving cell surface CD47 and alphaVbeta3 integrin and that a consequence of cell attachment to COMP is the specific induction of fascin-stabilized actin microspikes.
Collapse
|
39
|
Kwak YH, Roh JY, Lee KS, Park HW, Kim HW. Altered synthesis of cartilage-specific proteoglycans by mutant human cartilage oligomeric matrix protein. Clin Orthop Surg 2009; 1:181-7. [PMID: 19956474 PMCID: PMC2784957 DOI: 10.4055/cios.2009.1.4.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 11/26/2008] [Indexed: 11/09/2022] Open
Abstract
Background The mechanism by which mutant cartilage oligomeric matrix protein (COMP) induces a pseudoachondroplasia phenotype remains unknown, and the reason why a mutation of a minor protein of the growth plate cartilage causes total disruption of endochondral bone formation has not yet been determined. The current study was performed to investigate the effects of mutated COMP on the synthesis of the cartilage-specific major matrix proteins of Swarm rat chondrosarcoma chondrocytes. Methods The Swarm rat chondrosarcoma chondrocytes transfected with a chimeric construct, which consisted of a mutant gene of human COMP and an amino acid FLAG tag sequence, were cultured in agarose gel. Formation of extracellular proteoglycan and type-II collagen by the cells was evaluated by immunohistochemical staining and measuring the 35S-sulfate incorporation. Results No difference was observed for the detection of type-II collagen among the cell lines expressing mutant COMP and the control cell lines. Histochemical staining of sulfated proteoglycans with safranin-O showed that lesser amounts of proteoglycans were incorporated into the extracellular matrix of the chondrocytes transfected with the mutant gene. 35S-sulfate incorporation into the cell/matrix fractions demonstrated markedly lower radiolabel incorporation, as compared to that of the control cells. Conclusions Mutation of COMP has an important impact on the processing of proteoglycans, rather than type-II collagen, in the three-dimensional culture of Swarm rat chondrosarcoma chondrocytes.
Collapse
Affiliation(s)
- Yoon Hae Kwak
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | | | | | | | | |
Collapse
|
40
|
BJØRNHART BIRGITTE, JUUL ANDERS, NIELSEN SUSAN, ZAK MAREK, SVENNINGSEN PERNILLE, MÜLLER KLAUS. Cartilage Oligomeric Matrix Protein in Patients with Juvenile Idiopathic Arthritis: Relation to Growth and Disease Activity. J Rheumatol 2009; 36:1749-54. [DOI: 10.3899/jrheum.080942] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective.Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients with recent-onset juvenile idiopathic arthritis (JIA). COMP levels in JIA and healthy children were compared with those in healthy adults. Plasma levels of insulin-like growth factor I (IGF-1), which has been associated with COMP expression and growth velocity, were studied in parallel.Methods.87 patients with JIA entered the study, including oligoarticular JIA (n = 34), enthesitis-related arthritis (n = 8), polyarticular rheumatoid factor (RF)-positive JIA (n = 2), polyarticular RF-negative JIA (n = 27), systemic JIA (n = 6), and undifferentiated JIA (n = 10). Plasma levels of COMP were measured by ELISA and IGF-1 by a radioimmunoassay.Results.Significantly higher COMP levels [mean 18.9 U/l (95% CI 17.3–20.5)] were found in healthy children compared with healthy adults [mean 10.7 U/l (95% CI 9.4–12.1)] (p < 0.0001). COMP levels in the JIA patients [mean 13.5 U/l (95% CI 12.4–14.7)] were significantly reduced compared to healthy children (p < 0.0001), and correlated negatively with C-reactive protein (CRP; r = −0.29, p = 0.01) and thrombocyte count (r = −0.28, p = 0.02). COMP levels in the JIA patients correlated positively with growth velocity (cm/yr) (r = 0.38, p = 0.0003) and growth velocity (SDS) (r = 0.29, p = 0.007).Conclusion.We found reduced COMP levels in children with JIA compared with healthy children. COMP levels in JIA correlated negatively with inflammatory activity as evaluated by CRP and the thrombocyte counts, and were associated with reduced growth rate.
Collapse
|
41
|
Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: Current models and regulation of fibril assembly. ACTA ACUST UNITED AC 2008; 84:228-44. [DOI: 10.1002/bdrc.20130] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Chen TLL, Posey KL, Hecht JT, Vertel BM. COMP mutations: domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes. J Cell Biochem 2008; 103:778-87. [PMID: 17570134 DOI: 10.1002/jcb.21445] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mutations in cartilage oligomeric matrix protein (COMP) produce clinical phenotypes ranging from the severe end of the spectrum, pseudoachondroplasia (PSACH), which is a dwarfing condition, to a mild condition, multiple epiphyseal dysplasia (MED). Patient chondrocytes have a unique morphology characterized by distended rER cisternae containing lamellar deposits of COMP and other extracellular matrix proteins. It has been difficult to determine why different mutations give rise to variable clinical phenotypes. Using our in vitro cell system, we previously demonstrated that the most common PSACH mutation, D469del, severely impedes trafficking of COMP and type IX collagen in chondrocytic cells, consistent with observations from patient cells. Here, we hypothesize that PSACH and MED mutations variably affect the cellular trafficking behavior of COMP and that the extent of defective trafficking correlates with clinical phenotype. Twelve different recombinant COMP mutations were expressed in rat chondrosarcoma cells and the percent cells with ER-retained COMP was assessed. For mutations in type 3 (T3) repeats, trafficking defects correlated with clinical phenotype; PSACH mutations had more cells retaining mutant COMP, while MED mutations had fewer. In contrast, the cellular trafficking pattern observed for mutations in the C-terminal globular domain (CTD) was not predictive of clinical phenotype. The results demonstrate that different COMP mutations in the T3 repeat domain have variable effects on intracellular transport, which correlate with clinical severity, while CTD mutations do not show such a correlation. These findings suggest that other unidentified factors contribute to the effect of the CTD mutations. J. Cell. Biochem. 103: 778-787, 2008. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Tung-Ling L Chen
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
43
|
Cederroth CR, Schaad O, Descombes P, Chambon P, Vassalli JD, Nef S. Estrogen receptor alpha is a major contributor to estrogen-mediated fetal testis dysgenesis and cryptorchidism. Endocrinology 2007; 148:5507-19. [PMID: 17673513 DOI: 10.1210/en.2007-0689] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Failure of the testes to descend into the scrotum (cryptorchidism) is one of the most common birth defects in humans. In utero exposure to estrogens, such as 17beta-estradiol (E2) or the synthetic estrogen diethylstilbestrol (DES), down-regulates insulin-like 3 (Insl3) expression in embryonic Leydig cells, which in turn results in cryptorchidism in mice. To identify the molecular mechanism whereby xenoestrogens block Insl3 gene transcription, we performed a microarray analysis of wild-type or estrogen receptor (ER) alpha-mutant testes exposed in utero to pharmacological doses of E2 or DES. Six and 31 genes were respectively down-regulated and up-regulated by estrogen exposure (> or =4-fold). All six genes down-regulated by estrogen exposure, including Insl3 and the steroidogenic genes steroidogenic acute regulatory protein and cytochrome P450 17alpha-hydroxylase/17,20-lyase, were done so by an ERalpha-dependent mechanism. In contrast, up-regulation was mediated either by ERalpha for 12 genes or by an independent mechanism for the 19 remaining genes. Finally, we show that Insl3 gene expression and testicular descent were not affected by in utero exposure to E2 or DES in ERalpha mutant mice, whereas absence of ERbeta did not influence the effect of these estrogens. Collectively, these data demonstrate that xenoestrogens inhibit the endocrine functions of fetal Leydig cells through an ERalpha-dependent mechanism.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Genetic Medicine and Development University of Geneva Medical School 1, rue Michel-Servet, CH 1211, Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Fresquet M, Jowitt TA, Ylöstalo J, Coffey P, Meadows RS, Ala-Kokko L, Thornton DJ, Briggs MD. Structural and functional characterization of recombinant matrilin-3 A-domain and implications for human genetic bone diseases. J Biol Chem 2007; 282:34634-43. [PMID: 17881354 PMCID: PMC2673055 DOI: 10.1074/jbc.m705301200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in matrilin-3 result in multiple epiphyseal dysplasia, which is characterized by delayed and irregular bone growth and early onset osteoarthritis. The majority of disease-causing mutations are located within the beta-sheet of the single A-domain of matrilin-3, suggesting that they disrupt the structure and/or function of this important domain. Indeed, the expression of mutant matrilin-3 results in its intracellular retention within the rough endoplasmic reticulum of cells, where it elicits an unfolded protein response. To understand the folding characteristics of the matrilin-3 A-domain we determined its structure using CD, analytical ultracentrifugation, and dual polarization interferometry. This study defined novel structural features of the matrilin-3 A-domain and identified a conformational change induced by the presence or the absence of Zn(2+). In the presence of Zn(2+) the A-domain adopts a more stable "tighter" conformation. However, after the removal of Zn(2+) a potential structural rearrangement of the metal ion-dependent adhesion site motif occurs, which leads to a more "relaxed" conformation. Finally, to characterize the interactions of the matrilin-3 A-domain we performed binding studies on a BIAcore using type II and IX collagen and cartilage oligomeric matrix protein. We were able to demonstrate that it binds to type II and IX collagen and cartilage oligomeric matrix protein in a Zn(2+)-dependent manner. Furthermore, we have also determined that the matrilin-3 A-domain appears to bind exclusively to the COL3 domain of type IX collagen and that this binding is abolished in the presence of a disease causing mutation in type IX collagen.
Collapse
Affiliation(s)
- Maryline Fresquet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Thomas A. Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Joni Ylöstalo
- Center Center for Gene Therapy, Tulane University Health Sciences, New Orleans, LA 70123, USA
| | - Paul Coffey
- School of Physics & Astronomy, University of Manchester, Manchester, UK
| | - Roger S. Meadows
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Leena Ala-Kokko
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
- Connective Tissue Gene Tests, Allentown, Pennsylvania, USA
| | - David J. Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Michael D. Briggs
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
- Corresponding author, Michael D. Briggs, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT. Tel. +44 161 275 5642, Fax. +44 161 275 5082,
| |
Collapse
|
45
|
Stoffel W, Jenke B, Holz B, Binczek E, Günter RH, Knifka J, Koebke J, Niehoff A. Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:153-61. [PMID: 17591962 PMCID: PMC1941606 DOI: 10.2353/ajpath.2007.061285] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neutral sphingomyelinase SMPD3 (nSMase2), a sphingomyelin phosphodiesterase, resides in the Golgi apparatus and is ubiquitously expressed. Gene ablation of smpd3 causes a generalized prolongation of the cell cycle that leads to late embryonic and juvenile hypoplasia because of the SMPD3 deficiency in hypothalamic neurosecretory neurons. We show here that this novel form of combined pituitary hormone deficiency is characterized by the perturbation of the hypothalamus-pituitary growth axis, associated with retarded chondrocyte development and enchondral ossification in the epiphyseal growth plate. To study the contribution by combined pituitary hormone deficiency and by the local SMPD3 deficiency in the epiphyseal growth plate to the skeletal phenotype, we introduced the full-length smpd3 cDNA transgene under the control of the chondrocyte-specific promoter Col2a1. A complete rescue of the smpd3(-/-) mouse from severe short-limbed skeletal dysplasia was achieved. The smpd3(-/-) mouse shares its dwarf and chondrodysplasia phenotype with the most common form of human achondrodysplasia, linked to the fibroblast-growth-factor receptor 3 locus, not linked to deficits in the hypothalamic-pituitary epiphyseal growth plate axis. The rescue of smpd3 in vivo has implications for future research into dwarfism and, particularly, growth and development of the skeletal system and for current screening and future treatment of combined dwarfism and chondrodysplasia.
Collapse
Affiliation(s)
- Wilhelm Stoffel
- University of Cologne, Laboratory of Molecular Neurosciences, Joseph Stelzmannstrasse 52, Cologne, Germany 50931, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Campos-Barros A, Benito-Sanz S, Ross JL, Zinn AR, Heath KE. Compound heterozygosity of SHOX-encompassing and downstream PAR1 deletions results in Langer mesomelic dysplasia (LMD). Am J Med Genet A 2007; 143A:933-8. [PMID: 17394206 DOI: 10.1002/ajmg.a.31676] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present the clinical and molecular characteristics of a multi-generation family in which the proband presented with clinical features of Langer mesomelic dysplasia (LMD) whilst different family members had a diagnosis of Léri-Weill dyschondrosteosis (LWD) and/or pseudoachondroplasia (PSACH). In the LMD proband two different deletions were identified in the pseudoautosomal 1 region (PAR1) of the X and Y chromosomes: a SHOX-encompassing deletion inherited from his father and a downstream PAR1 deletion, which did not include SHOX, inherited from his mother. The individuals with PSACH features presented the previously described G719D mutation in the C-terminal globular domain of the cartilage oligomeric matrix protein gene (COMP). The LMD proband described here represents the first LMD case due to compound heterozygosity for deletions of the two different PAR1 regions, SHOX-encompassing and downstream from SHOX, that have been shown to be implicated in the pathogenesis of LWD and LMD.
Collapse
Affiliation(s)
- Angel Campos-Barros
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Chen FH, Herndon ME, Patel N, Hecht JT, Tuan RS, Lawler J. Interaction of cartilage oligomeric matrix protein/thrombospondin 5 with aggrecan. J Biol Chem 2007; 282:24591-8. [PMID: 17588949 PMCID: PMC2905148 DOI: 10.1074/jbc.m611390200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cartilage oligomeric matrix protein/thrombospondin 5 (COMP/TSP5) is a major component of the extracellular matrix (ECM) of the musculoskeletal system. Its importance is underscored by its association with several growth disorders. In this report, we investigated its interaction with aggrecan, a major component of cartilage ECM. We also tested a COMP/TSP5 mutant, designated MUT3 that accounts for 30% of human pseudoachondroplasia cases, to determine if the mutation affects function. Using a solid-phase binding assay, we have shown that COMP/TSP5 can bind aggrecan. This binding was decreased with MUT3, or when COMP/TSP5 was treated with EDTA, indicating the presence of a conformation-dependent aggrecan binding site. Soluble glycosaminoglycans (GAGs) partially inhibited binding, suggesting that the interaction was mediated in part through aggrecan GAG side chains. Using affinity co-electrophoresis, we showed that COMP/TSP5, in its calcium-replete conformation, bound to heparin, chondroitin sulfates, and heparan sulfate; this binding was reduced with EDTA treatment of COMP/TSP5. MUT3 showed weaker binding than calcium-repleted COMP/TSP5. Using recombinant COMP/TSP5 fragments, we found that the "signature domain" could bind to aggrecan, suggesting that this domain can mediate the interaction of COMP/TSP5 and aggrecan. In summary, our data indicate that COMP/TSP5 is an aggrecan-binding protein, and this interaction is regulated by the calcium-sensitive conformation of COMP/TSP5; interaction of COMP with aggrecan can be mediated through the GAG side chains on aggrecan and the "signature domain" of COMP/TSP5. Our results suggest that COMP/TSP5 may function to support matrix interactions in cartilage ECM.
Collapse
Affiliation(s)
- Faye Hui Chen
- Cartilage Biology and Orthopaedics Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Tian H, Stogiannidis I. Up-regulation of cartilage oligomeric matrix protein gene expression by insulin-like growth factor-I revealed by real-time reverse transcription-polymerase chain reaction. Acta Biochim Biophys Sin (Shanghai) 2006; 38:677-82. [PMID: 17033713 DOI: 10.1111/j.1745-7270.2006.00218.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) strengthens cartilage by binding to type II and type IX collagen-forming bridges between collagen fibrils. It was hypothesized that perhaps one or more anabolic growth factors such as insulin-like growth factor-I (IGF-I), fibroblast growth factor-1 (FGF-1) or platelet derived growth factor-BB (PDGF-BB) increase COMP gene expression. Their effects on primary human chondrocytes and the chondrogenic cell line ATDC5 were studied using real time reverse transcript-polymerase chain reaction (RT-PCR) for quantification. IGF-I, but not the FGF-1 or PDGF-BB, up-regulated COMP gene expression by approximate 5-fold in human adult chondrocytes in a dose- and time-dependent manner. IGF-I exerted similar effects on ATDC5 cells. Results from these real time RT-PCR experiments were confirmed by transfecting into ATDC5 cells a full-length mouse COMP promoter cloned upstream of a luciferase reporter gene. On stimulation with IGF-I, the luciferase reporter activity increased by about eight times. In conclusion, IGF-I seems to be an important positive regulator of COMP, which may play an important role in an attempted repair of either traumatized or degenerated cartilage.
Collapse
Affiliation(s)
- Hua Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100083, China.
| | | |
Collapse
|
49
|
Vaes BLT, Ducy P, Sijbers AM, Hendriks JMA, van Someren EP, de Jong NG, van den Heuvel ER, Olijve W, van Zoelen EJJ, Dechering KJ. Microarray analysis on Runx2-deficient mouse embryos reveals novel Runx2 functions and target genes during intramembranous and endochondral bone formation. Bone 2006; 39:724-38. [PMID: 16774856 DOI: 10.1016/j.bone.2006.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/10/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
A major challenge in developmental biology is to correlate genome-wide gene expression modulations with developmental processes in vivo. In this study, we analyzed the role of Runx2 during intramembranous and endochondral bone development, by comparing gene expression profiles in 14.5 dpc wild-type and Runx2 (-/-) mice. A total of 1277, 606 and 492 transcripts were found to be significantly modulated by Runx2 in calvaria, forelimbs and hindlimbs, respectively. Bioinformatics analysis indicated that Runx2 not only controls the processes of osteoblast differentiation and chondrocyte maturation, but may also play a role in axon formation and hematopoietic cell commitment during bone development. A total of 41 genes are affected by the Runx2 deletion in both intramembranous and endochondral bone, indicating common pathways between these two developmental modes of bone formation. In addition, we identified genes that are specifically involved in endochondral ossification. In conclusion, our data show that a comparative genome-wide expression analysis of wild-type and mutant mouse models allows the examination of mutant phenotypes in complex tissues.
Collapse
Affiliation(s)
- Bart L T Vaes
- Department of Applied Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ishii Y, Thomas AO, Guo XE, Hung CT, Chen FH. Localization and distribution of cartilage oligomeric matrix protein in the rat intervertebral disc. Spine (Phila Pa 1976) 2006; 31:1539-46. [PMID: 16778685 DOI: 10.1097/01.brs.0000221994.61882.4a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Whole rat intervertebral disc (IVD), as well as the anulus fibrosus (AF) and the nucleus pulposus (NP) were studied using immunoblot, immunohistochemistry, and reverse-transcription followed by polymerase chain reaction (RT-PCR) methods to investigate the expression and distribution of cartilage oligomeric matrix protein (COMP). OBJECTIVES To investigate the expression and distribution patterns of COMP in normal IVD. SUMMARY OF BACKGROUND DATA COMP is an extracellular matrix protein abundantly expressed in articular and growth plate cartilage, as well as bone, ligament, tendon, and synovium. The potential importance of COMP to the spine has been underscored by its mutations that lead to skeletal dysplasia with characteristic platyspondyly. However, the expression and distribution of COMP in spine and IVD has not been illustrated before. METHODS The presence of COMP protein was investigated by immunoblotting using a COMP antibody F8 on protein extractions from whole IVD and AF or NP. To compare the expression levels of COMP between lumbar and tail IVDs, and between AF and NP of the IVD, wet weight of the tissues were used for normalization. To show that COMP can be made by IVD cells in situ, RT-PCR was used to investigate the COMP mRNA message. The distribution patterns of COMP in IVD were investigated using immunohistochemistry studies with COMP antibody F8. RESULTS COMP is expressed at both the protein and mRNA levels in both the AF and NP of both the lumbar spine and tail IVD. Immunohistochemistry studies show that COMP is found in the extracellular matrix of the IVD, exhibiting lamellar distribution pattern in the AF region. When normalized to wet weight, COMP is found to be expressed at higher levels in the lumbar than the tail IVD, and within the IVD, greater in the AF than the NP region. CONCLUSIONS Our results demonstrate the expression of COMP in both the AF and NP of the IVD. COMP is a component of the extracellular matrix of AF and NP, with a lamellar distribution pattern in the AF. Our data suggest that COMP may play a role in the normal structure of IVD.
Collapse
Affiliation(s)
- Yoshimasa Ishii
- Department of Orthopaedic Surgery, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|