1
|
Deejai N, Sawasdee N, Nettuwakul C, Wanachiwanawin W, Sritippayawan S, Yenchitsomanus PT, Rungroj N. Impaired trafficking and instability of mutant kidney anion exchanger 1 proteins associated with autosomal recessive distal renal tubular acidosis. BMC Med Genomics 2022; 15:228. [PMID: 36320073 PMCID: PMC9623938 DOI: 10.1186/s12920-022-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Mutations in solute carrier family 4 member 1 (SLC4A1) encoding anion exchanger 1 (AE1) are the most common cause of autosomal recessive distal renal tubular acidosis (AR dRTA) in Southeast Asians. To explain the molecular mechanism of this disease with hematological abnormalities in an affected family, we conducted a genetic analysis of SLC4A1 and studied wild-type and mutant AE1 proteins expressed in human embryonic kidney 293T (HEK293T) cells. Methods SLC4A1 mutations in the patient and family members were analyzed by molecular genetic techniques. Protein structure modeling was initially conducted to evaluate the effects of mutations on the three-dimensional structure of the AE1 protein. The mutant kidney anion exchanger 1 (kAE1) plasmid construct was created to study protein expression, localization, and stability in HEK293T cells. Results We discovered that the patient who had AR dRTA coexisting with mild hemolytic anemia carried a novel compound heterozygous SLC4A1 mutations containing c.1199_1225del (p.Ala400_Ala408del), resulting in Southeast Asian ovalocytosis (SAO), and c.1331C > A (p.Thr444Asn). Homologous modeling and in silico mutagenesis indicated that these two mutations affected the protein structure in the transmembrane regions of kAE1. We found the wild-type and mutant kAE1 T444N to be localized at the cell surface, whereas the mutants kAE1 SAO and SAO/T444N were intracellularly retained. The half-life of the kAE1 SAO, T444N, and SAO/T444N mutants was shorter than that of the wild-type protein. Conclusion These results suggest impaired trafficking and instability of kAE1 SAO/T444N as the likely underlying molecular mechanism explaining the pathogenesis of the novel SLC4A1 compound heterozygous mutation identified in this patient. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01381-y.
Collapse
Affiliation(s)
- Nipaporn Deejai
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nunghathai Sawasdee
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Choochai Nettuwakul
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanchai Wanachiwanawin
- grid.10223.320000 0004 1937 0490Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suchai Sritippayawan
- grid.10223.320000 0004 1937 0490Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanyawan Rungroj
- grid.10223.320000 0004 1937 0490Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
3
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
More TA, Kedar PS. Genotypic analysis of SLC4A1 A858D mutation in Indian population associated with distal renal tubular Acidosis (dRTA) coupled with hemolytic anemia. Gene 2020; 769:145241. [PMID: 33068675 DOI: 10.1016/j.gene.2020.145241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Although distinctive, distal renal tubular acidosis (dRTA) and Hereditary Spherocytosis (HS) shares a common protein, the anion exchanger1 (AE1) encoded by SLC4A1gene. In spite of this, the co-existence of dRTA and HS has rarely been observed. To date, 23 mutations have been identified in SLC4A1 gene causing both autosomal recessive (AR) and autosomal dominant (AD) forms of dRTA. METHODS We have assessed the applicability of the High Resolution Melting curve (HRM) method for the detection of SLC4A1 (A858D) mutation in 12 Indian families having AR dRTA coupled with HS. The reliability of the HRM analysis was verified by comparing the results of the HRM method with those of conventional methods such as Polymerase Chain Reaction-Restriction Fragment-Length Polymorphism (PCR-RFLP) and Sanger sequencing thereby confirming the diagnosis. RESULTS We here described the clinical, hematological and genetic data of 16 individuals from 12 families having AR dRTA coupled with HS. All patients carried homozygous SLC4A1 (A858D) mutation, whereas their family members had heterozygous A858D obtained by HRM analysis and confirmed by RFLP and Sanger sequencing. CONCLUSION Our data indicates that a missense mutation of A858D in SLC4A1 gene is the most common cause of dRTA coupled with HS in the Indian population. HRM analysis can be used as a rapid screening method for common SLC4A1 mutations that cause AR dRTA in the Indian population.
Collapse
Affiliation(s)
- Tejashree Anil More
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India
| | - Prabhakar S Kedar
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India.
| |
Collapse
|
5
|
Deejai N, Wisanuyotin S, Nettuwakul C, Khositseth S, Sawasdee N, Saetai K, Yenchitsomanus PT, Rungroj N. Molecular Diagnosis of Solute Carrier Family 4 Member 1 (SLC4A1) Mutation–Related Autosomal Recessive Distal Renal Tubular Acidosis. Lab Med 2018; 50:78-86. [DOI: 10.1093/labmed/lmy051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nipaporn Deejai
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwannee Wisanuyotin
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Thailand
| | - Choochai Nettuwakul
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sookkasem Khositseth
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nunghathai Sawasdee
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kiattichai Saetai
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanyawan Rungroj
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
γ-COPI mediates the retention of kAE1 G701D protein in Golgi apparatus – a mechanistic explanation of distal renal tubular acidosis associated with the G701D mutation. Biochem J 2017. [DOI: 10.1042/bcj20170088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations of the solute carrier family 4 member 1 (SLC4A1) gene encoding kidney anion (chloride/bicarbonate ion) exchanger 1 (kAE1) can cause genetic distal renal tubular acidosis (dRTA). Different SLC4A1 mutations give rise to mutant kAE1 proteins with distinct defects in protein trafficking. The mutant kAE1 protein may be retained in endoplasmic reticulum (ER) or Golgi apparatus, or mis-targeted to the apical membrane, failing to display its function at the baso-lateral membrane. The ER-retained mutant kAE1 interacts with calnexin chaperone protein; disruption of this interaction permits the mutant kAE1 to reach the cell surface and display anion exchange activity. However, the mechanism of Golgi retention of mutant kAE1 G701D protein, which is otherwise functional, is still unclear. In the present study, we show that Golgi retention of kAE1 G701D is due to a stable interaction with the Golgi-resident protein, coat protein complex I (COPI), that plays a role in retrograde vesicular trafficking and Golgi-based quality control. The interaction and co-localization of kAE1 G701D with the γ-COPI subunit were demonstrated in human embryonic kidney (HEK-293T) cells by co-immunoprecipitation and immunofluorescence staining. Small interference RNA (siRNA) silencing of COPI expression in the transfected HEK-293T cells increased the cell surface expression of transgenic kAE1 G701D, as shown by immunofluorescence staining. Our data unveil the molecular mechanism of Golgi retention of kAE1 G701D and suggest that disruption of the COPI-kAE1 G701D interaction could be a therapeutic strategy to treat dRTA caused by this mutant.
Collapse
|
7
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
8
|
Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO₃⁻) transporters. Mol Aspects Med 2013; 34:159-82. [PMID: 23506864 DOI: 10.1016/j.mam.2012.10.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023]
Abstract
The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
9
|
Basu A, Mazor S, Casey JR. Distance Measurements within a Concatamer of the Plasma Membrane Cl−/HCO3− Exchanger, AE1. Biochemistry 2010; 49:9226-40. [DOI: 10.1021/bi101134h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Arghya Basu
- Membrane Protein Research Group, Department of Physiology and Department of Biochemistry, School of Molecular and Systems Medicine, 721 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Shirley Mazor
- Membrane Protein Research Group, Department of Physiology and Department of Biochemistry, School of Molecular and Systems Medicine, 721 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Joseph R. Casey
- Membrane Protein Research Group, Department of Physiology and Department of Biochemistry, School of Molecular and Systems Medicine, 721 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
10
|
Wu J, Zhang YC, Suo WH, Liu XB, Shen WW, Tian H, Fu GH. Induction of anion exchanger-1 translation and its opposite roles in the carcinogenesis of gastric cancer cells and differentiation of K562 cells. Oncogene 2010; 29:1987-96. [PMID: 20062076 DOI: 10.1038/onc.2009.481] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anion exchanger-1 (AE1), an erythroid-specific membrane protein, mediates the Cl(-)/HCO(-)(3) exchange across the plasma membrane and regulates intracellular pH. We have found that AE1 was unexpectedly expressed in gastric cancer cells and participated in the tumorigenesis of the cancer. Here, we focus on the induction of AE1 expression and its role in gastric carcinogenesis as well as in the differentiation of K562 cells. The results show that expression of AE1 is not related to genetic mutation or the mRNA level, but rather, that it is modulated by miR-24. miR-24 decreases the expression of AE1 through binding to the 3'UTR of AE1 mRNA. Transfection of an miR-24 into gastric cancer cells reduced the elevation of the AE1 protein, which resulted in return of AE1-sequestrated p16 to the nucleus, thereby inhibiting proliferation of the cells. Furthermore, the miR-24 inhibitor cooperated with hemin to induce the expression of AE1 in K562 cells and differentiation of the cells, which is consistent with results obtained from the cells cultured at pH 7.6 or from forced stable expression of AE1. These findings establish a novel regulation of miR-24-related AE1 expression in gastric carcinogenesis and erythropoiesis.
Collapse
Affiliation(s)
- J Wu
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Kobayashi E, Shimizu R, Kikuchi Y, Takahashi S, Yamamoto M. Loss of the Gata1 gene IE exon leads to variant transcript expression and the production of a GATA1 protein lacking the N-terminal domain. J Biol Chem 2009; 285:773-83. [PMID: 19854837 DOI: 10.1074/jbc.m109.030726] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA1 is essential for the differentiation of erythroid cells and megakaryocytes. The Gata1 gene is composed of multiple untranslated first exons and five common coding exons. The erythroid first exon (IE exon) is important for Gata1 gene expression in hematopoietic lineages. Because previous IE exon knockdown analyses resulted in embryonic lethality, less is understood about the contribution of the IE exon to adult hematopoiesis. Here, we achieved specific deletion of the floxed IE exon in adulthood using an inducible Cre expression system. In this conditional knock-out mouse line, the Gata1 mRNA level was significantly down-regulated in the megakaryocyte lineage, resulting in thrombocytopenia with a marked proliferation of megakaryocytes. By contrast, in the erythroid lineage, Gata1 mRNA was expressed abundantly utilizing alternative first exons. Especially, the IEb/c and newly identified IEd exons were transcribed at a level comparable with that of the IE exon in control mice. Surprisingly, in the IE-null mouse, these transcripts failed to produce full-length GATA1 protein, but instead yielded GATA1 lacking the N-terminal domain inefficiently. With low level expression of the short form of GATA1, IE-null mice showed severe anemia with skewed erythroid maturation. Notably, the hematological phenotypes of adult IE-null mice substantially differ from those observed in mice harboring conditional ablation of the entire Gata1 gene. The present study demonstrates that the IE exon is instrumental to adult erythropoiesis by regulating the proper level of transcription and selecting the correct transcription start site of the Gata1 gene.
Collapse
Affiliation(s)
- Eri Kobayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
12
|
Hentschke M, Hentschke S, Borgmeyer U, Hübner CA, Kurth I. The murine AE4 promoter predominantly drives type B intercalated cell specific transcription. Histochem Cell Biol 2009; 132:405-12. [PMID: 19544066 DOI: 10.1007/s00418-009-0614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2009] [Indexed: 12/11/2022]
Abstract
AE4 is an anion exchanger almost exclusively expressed in the collecting ducts of the kidney. This very restricted expression prompted us to analyze its transcription in more detail. 5' RACE yielded alternative transcriptional start sites that are predicted to code for N-terminal protein variants. Comparison of the 5' genomic sequence between species identified a transcriptionally active region with three conserved spans. In transgenic mice beta-galactosidase expression driven by this fragment resembled endogenous AE4 expression and was predominantly restricted to type B intercalated cells. Hence this promoter could prove useful to target type B intercalated cells by genetic approaches.
Collapse
Affiliation(s)
- Moritz Hentschke
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | | | | | | | | |
Collapse
|
13
|
Yamamoto ML, Clark TA, Gee SL, Kang JA, Schweitzer AC, Wickrema A, Conboy JG. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis. Blood 2009; 113:3363-70. [PMID: 19196664 PMCID: PMC2665901 DOI: 10.1182/blood-2008-05-160325] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 12/02/2008] [Indexed: 12/19/2022] Open
Abstract
Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.
Collapse
Affiliation(s)
- Miki L Yamamoto
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Tan JS, Mohandas N, Conboy JG. High frequency of alternative first exons in erythroid genes suggests a critical role in regulating gene function. Blood 2005; 107:2557-61. [PMID: 16293607 PMCID: PMC1895744 DOI: 10.1182/blood-2005-07-2957] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human genome uses alternative pre-mRNA splicing as an important mechanism to encode a complex proteome from a relatively small number of genes. An unknown number of these genes also possess multiple transcriptional promoters and alternative first exons that contribute another layer of complexity to gene expression mechanisms. Using a collection of more than 100 erythroid-expressed genes as a test group, we used genome browser tools and genetic databases to assess the frequency of alternative first exons in the genome. Remarkably, 35% of these erythroid genes show evidence of alternative first exons. The majority of the candidate first exons are situated upstream of the coding exons, whereas a few are located internally within the gene. Computational analyses predict transcriptional promoters closely associated with many of the candidate first exons, supporting their authenticity. Importantly, the frequent presence of consensus translation initiation sites among the alternative first exons suggests that many proteins have alternative N-terminal structures whose expression can be coupled to promoter choice. These findings indicate that alternative promoters and first exons are more widespread in the human genome than previously appreciated and that they may play a major role in regulating expression of selected protein isoforms in a tissue-specific manner.
Collapse
Affiliation(s)
- Jeff S Tan
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | |
Collapse
|
15
|
Yenchitsomanus PT, Kittanakom S, Rungroj N, Cordat E, Reithmeier RAF. Molecular mechanisms of autosomal dominant and recessive distal renal tubular acidosis caused by SLC4A1 (AE1) mutations. J Mol Genet Med 2005; 1:49-62. [PMID: 19565014 PMCID: PMC2702069 DOI: 10.4172/1747-0862.1000013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/06/2005] [Accepted: 09/13/2005] [Indexed: 12/22/2022] Open
Abstract
Mutations of SLC4A1 (AE1) encoding the kidney anion (Cl−/HCO3−) exchanger 1 (kAE1 or band 3) can result in either autosomal dominant (AD) or autosomal recessive (AR) distal renal tubular acidosis (dRTA). The molecular mechanisms associated with SLC4A1 mutations resulting in these different modes of inheritance are now being unveiled using transfected cell systems. The dominant mutants kAE1 R589H, R901X and S613F, which have normal or insignificant changes in anion transport function, exhibit intracellular retention with endoplasmic reticulum (ER) localization in cultured non-polarized and polarized cells, while the dominant mutants kAE1 R901X and G609R are mis-targeted to apical membrane in addition to the basolateral membrane in cultured polarized cells. A dominant-negative effect is likely responsible for the dominant disease because heterodimers of kAE1 mutants and the wild-type protein are intracellularly retained. The recessive mutants kAE1 G701D and S773P however exhibit distinct trafficking defects. The kAE1 G701D mutant is retained in the Golgi apparatus, while the misfolded kAE1 S773P, which is impaired in ER exit and is degraded by proteosome, can only partially be delivered to the basolateral membrane of the polarized cells. In contrast to the dominant mutant kAE1, heterodimers of the recessive mutant kAE1 and wild-type kAE1 are able to traffic to the plasma membrane. The wild-type kAE1 thus exhibits a ‘dominant-positive effect’ relative to the recessive mutant kAE1 because it can rescue the mutant proteins from intracellular retention to be expressed at the cell surface. Consequently, homozygous or compound heterozygous recessive mutations are required for presentation of the disease phenotype. Future work using animal models of dRTA will provide additional insight into the pathophysiology of this disease.
Collapse
Affiliation(s)
- Pa-Thai Yenchitsomanus
- Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | |
Collapse
|
16
|
Branca R, Costa E, Rocha S, Coelho H, Quintanilha A, Cabeda JM, Santos-Silva A, Barbot J. Coexistence of congenital red cell pyruvate kinase and band 3 deficiency. ACTA ACUST UNITED AC 2004; 26:297-300. [PMID: 15279669 DOI: 10.1111/j.1365-2257.2004.00617.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The authors report the case of a 9-year-old Caucasian girl, born in northern Portugal, with chronic nonspherocytic haemolytic anaemia and without family history of anaemia. The aethiological study of this anaemia revealed pyruvate kinase deficiency (PKD), because of two previously described mutations (426Arg-->Trp and 510Arg-->Gln). Since the blood smear revealed features not fully compatible with PKD diagnosis, additional tests were performed for the propositus and her parents, namely red blood cell membrane protein analysis. A decrease in proteins band 3 (15%) and 4.2 (18%) was found in the propositus. Her father presented only a decrease in band 3 (11%). Coexistence of PKD and erythrocyte membrane proteins deficiency in the same patient is very uncommon. Our findings suggest that a careful blood smear observation may lead to the identification of a combined deficiency in erythrocyte membrane proteins and enzymopathies.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/etiology
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/metabolism
- Anion Exchange Protein 1, Erythrocyte/deficiency
- Anion Exchange Protein 1, Erythrocyte/genetics
- Anion Exchange Protein 1, Erythrocyte/metabolism
- Child
- DNA Mutational Analysis
- Erythrocytes/enzymology
- Erythrocytes/metabolism
- Exons
- Family Health
- Female
- Hematologic Tests
- Heterozygote
- Humans
- Point Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Kinase/metabolism
- Pyruvate Metabolism, Inborn Errors/complications
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/metabolism
Collapse
Affiliation(s)
- R Branca
- Serviço de Hematologia, Hospital de Crianças Maria Pia, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Malumbres R, Lecanda J, Melero S, Ciesielczyk P, Prieto J, Medina JF. HNF1alpha upregulates the human AE2 anion exchanger gene (SLC4A2) from an alternate promoter. Biochem Biophys Res Commun 2004; 311:233-40. [PMID: 14575719 DOI: 10.1016/j.bbrc.2003.09.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human AE2 gene (SLC4A2) is transcribed in a widespread fashion from the upstream promoter, the resultant full-length transcript AE2a being encountered in most tissues. Moreover, alternate promoter sequences within intron 2 may drive tissue-restricted expression of variants AE2b(1) and AE2b(2), mainly in liver and kidney. AE2b(2) proximal promoter sequences are highly active in transfected liver-derived HepG2 cells and contain an HNF1 motif. Mutation-disruption of this motif dramatically decreased alternate promoter activity in HepG2 cells but not in prostate-derived PC-3 cells. Electromobility shift and supershift assays indicated that HNF1alpha from HepG2 nuclear extracts binds the HNF1 sequence. Transactivation studies in PC-3 cells showed enhanced activity of the wild-type construct upon cotransfection with an HNF1alpha expression plasmid, while activity of the HNF1-mutated construct remained unaffected. Since liver AE2 is putatively involved in the biliary secretion of bicarbonate, HNF1alpha may have a role in increasing bicarbonate secretion in response to certain stimuli.
Collapse
Affiliation(s)
- Raquel Malumbres
- Laboratory of Molecular Genetics, Division of Hepatology and Gene Therapy, CIMA, University Clinic and Medical School, University of Navarra, E-31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO 3 - transporters. Pflugers Arch 2004; 447:495-509. [PMID: 14722772 DOI: 10.1007/s00424-003-1180-2] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 09/05/2003] [Indexed: 12/21/2022]
Abstract
The SLC4 family consists of ten genes. All appear to encode integral membrane proteins with very similar hydropathy plots-consistent with the presence of 10-14 transmembrane segments. At least eight SLC4 members encode proteins that transport HCO(3)(-) (or a related species, such as CO(3)(2-)) across the plasma membrane. Functionally, these eight proteins fall into two major groups: three Cl-HCO(3) exchangers (AE1-3) and five Na(+)-coupled HCO(3)(-) transporters (NBCe1, NBCe2, NBCn1, NDCBE, NCBE). Two of the Na(+)-coupled HCO(3)(- )transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO(3)(-) transporters and all three AEs are electroneutral. At least NDCBE transports Cl(-) in addition to Na(+) and HCO(3)(-). Whether NCBE transports Cl(-)-in addition to Na(+) and HCO(3)(-)-is unsettled. In addition, two other SLC4 members (AE4 and BTR1) do not yet have a firmly established function; on the basis of homology, they fall between the two major groups. A characteristic of many, though not all, SLC4 members is inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 gene products play important roles in the carriage of CO(2) by erythrocytes, the absorption or secretion of H(+) or HCO(3)(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Departments of Physiology and Biophysics and Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | | | |
Collapse
|
19
|
Yenchitsomanus PT, Sawasdee N, Paemanee A, Keskanokwong T, Vasuvattakul S, Bejrachandra S, Kunachiwa W, Fucharoen S, Jittphakdee P, Yindee W, Promwong C. Anion exchanger 1 mutations associated with distal renal tubular acidosis in the Thai population. J Hum Genet 2003; 48:451-456. [PMID: 12938018 DOI: 10.1007/s10038-003-0059-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Accepted: 07/03/2003] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that compound heterozygous (SAO/G701D) and homozygous (G701D/G701D) mutations of the anion exchanger 1 (AE1) gene, encoding erythroid and kidney AE1 proteins, cause autosomal recessive distal renal tubular acidosis (AR dRTA) in Thai patients. It is thus of interest to examine the prevalence of these mutations in the Thai population. The SAO and G701D mutations were examined in 844 individuals from north, northeast, central, and south Thailand. Other reported mutations including R602H, DeltaV850, and A858D were also examined in some groups of subjects. The SAO mutation was common in the southern Thai population; its heterozygote frequency was 7/206 and estimated allele frequency 1.70%. However, this mutation was not observed in populations of three other regions of Thailand. In contrast, the G701D mutation was not found in the southern population but was observed in the northern, northeastern, and central populations, with heterozygote frequencies of 1/216, 3/205, and 1/217, and estimated allele frequencies of 0.23%, 0.73%, and 0.23%, respectively. The higher allele frequency of the G701D mutation in the northeastern Thai population corresponds to our previous finding that all Thai patients with AR dRTA attributable to homozygous G701D mutation originate from this population. This suggests that the G701D allele that is observed in this region might arise in northeastern Thailand. The presence of patients with compound heterozygous SAO/G701D in southern Thailand and Malaysia and their apparently absence in northeastern Thailand indicate that the G701D allele may have migrated to the southern peninsular region where SAO is common, resulting in pathogenic allelic interaction.
Collapse
Affiliation(s)
- Pa-Thai Yenchitsomanus
- Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Medical Biotechnology Unit, National Center for Biotechnology and Genetic Engineering (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand.
| | - Nunghathai Sawasdee
- Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Atchara Paemanee
- Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Biotechnology and Genetic Engineering (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Thitima Keskanokwong
- Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somkiat Vasuvattakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sasitorn Bejrachandra
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Warunee Kunachiwa
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Supan Fucharoen
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Prapaporn Jittphakdee
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Wanwimon Yindee
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Charupon Promwong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| |
Collapse
|
20
|
Frazar TF, Weisbein JL, Anderson SM, Cline AP, Garrett LJ, Felsenfeld G, Gallagher PG, Bodine DM. Variegated expression from the murine band 3 (AE1) promoter in transgenic mice is associated with mRNA transcript initiation at upstream start sites and can be suppressed by the addition of the chicken beta-globin 5' HS4 insulator element. Mol Cell Biol 2003; 23:4753-63. [PMID: 12832463 PMCID: PMC162203 DOI: 10.1128/mcb.23.14.4753-4763.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The anion exchanger protein 1 (AE1; band 3) is an abundant erythrocyte transmembrane protein that regulates chloride-bicarbonate exchange and provides an attachment site for the erythrocyte membrane skeleton on the cytoplasmic domain. We analyzed the function of the erythroid AE1 gene promoter by using run-on transcription, RNase protection, transient transfection, and transgenic mouse assays. AE1 mRNA was transcribed at a higher level and maintained at a higher steady-state level than either ankyrin or beta-spectrin in mouse fetal liver cells. When linked to a human gamma-globin gene, two different AE1 promoters directed erythroid-specific expression of gamma-globin mRNA in 18 of 18 lines of transgenic mice. However, variegated expression of gamma-globin was observed in 14 of 18 lines. While there was a significant correlation between transgene copy number and the amount of gamma-globin mRNA in all 18 lines, the transgene mRNAs initiated upstream of the start site of the endogenous AE1 mRNA. Addition of the insulator element from 5'HS4 of the chicken beta-globin cluster to the AE1/gamma-globin transgene allowed position-independent, copy-number-dependent expression at levels similar to the AE1 transcription rate in six of six lines of transgenic mice. The mRNA from the insulated AE1/gamma-globin transgene mapped to the start site of the endogenous AE1 mRNA, and gamma-globin protein was expressed in 100% of erythrocytes in all lines. We conclude that the chicken beta-globin 5'HS4 element is necessary for full function of the AE1 promoter and that position effect variegation is associated with RNA transcription from the upstream start sites.
Collapse
Affiliation(s)
- Tiffany F Frazar
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Proteins of the erythrocyte membrane have served as the prototypes of homologous families of multifunctional proteins in erythroid and nonerythroid cells. These proteins demonstrate many different cell type, tissue-specific, and developmental stage-specific functions. This complex pattern of functional diversity appears to have evolved from the cell type, tissue-specific, developmentally regulated expression of multiple protein isoforms. Isoform diversity arises from different gene products from related genes; from differential, alternate splicing of the same gene product; from the use of tissue-specific promoters; and from alternate polyadenylation. The identification and characterization of the regulatory elements that control erythrocyte membrane protein gene expression have important implications for several biologic processes. These include disease pathogenesis, membrane assembly, hematopoiesis, gene regulation, and direction of other erythroid-specific genes in transgenic mouse and gene therapy applications.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA.
| |
Collapse
|
22
|
Abstract
Genetic disorders of acid-base transporters involve plasmalemmal and organellar transporters of H(+), HCO3(-), and Cl(-). Autosomal-dominant and -recessive forms of distal renal tubular acidosis (dRTA) are caused by mutations in ion transporters of the acid-secreting Type A intercalated cell of the renal collecting duct. These include the AE1 Cl(-)/HCO3(-) exchanger of the basolateral membrane and at least two subunits of the apical membrane vacuolar (v)H(+)-ATPase, the V1 subunit B1 (associated with deafness) and the V0 subunit a4. Recessive proximal RTA with ocular disease arises from mutations in the electrogenic Na(+)-bicarbonate cotransporter NBC1 of the proximal tubular cell basolateral membrane. Recessive mixed proximal-distal RTA accompanied by osteopetrosis and mental retardation is associated with mutations in cytoplasmic carbonic anhydrase II. The metabolic alkalosis of congenital chloride-losing diarrhea is caused by mutations in the DRA Cl(-)/HCO3(-) exchanger of the ileocolonic apical membrane. Recessive osteopetrosis is caused by deficient osteoclast acid secretion across the ruffled border lacunar membrane, the result of mutations in the vH(+)-ATPase V0 subunit or in the CLC-7 Cl(-) channel. X-linked nephrolithiasis and engineered deficiencies in some other CLC Cl(-) channels are thought to represent defects of organellar acidification. Study of acid-base transport disease-associated mutations should enhance our understanding of protein structure-function relationships and their impact on the physiology of cell, tissue, and organism.
Collapse
Affiliation(s)
- Seth L Alper
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Department of Medicine and Cell Biology, Harvard Medical School Boston, Massachusetts 02215, USA.
| |
Collapse
|
23
|
Abstract
All cells require inorganic sulfate for normal function. Sulfate is among the most important macronutrients in cells and is the fourth most abundant anion in human plasma (300 microM). Sulfate is the major sulfur source in many organisms, and because it is a hydrophilic anion that cannot passively cross the lipid bilayer of cell membranes, all cells require a mechanism for sulfate influx and efflux to ensure an optimal supply of sulfate in the body. The class of proteins involved in moving sulfate into or out of cells is called sulfate transporters. To date, numerous sulfate transporters have been identified in tissues and cells from many origins. These include the renal sulfate transporters NaSi-1 and sat-1, the ubiquitously expressed diastrophic dysplasia sulfate transporter DTDST, the intestinal sulfate transporter DRA that is linked to congenital chloride diarrhea, and the erythrocyte anion exchanger AE1. These transporters have only been isolated in the last 10-15 years, and their physiological roles and contributions to body sulfate homeostasis are just now beginning to be determined. This review focuses on the structural and functional properties of mammalian sulfate transporters and highlights some of regulatory mechanisms that control their expression in vivo, under normal physiological and pathophysiological states.
Collapse
Affiliation(s)
- D Markovich
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
24
|
Shmukler BE, Wilhelm S, Alper SL. Short sequence repeat polymorphism in the mouse slc4al gene encoding the AE1 Cl-/HCO3-exchanger. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:447-50. [PMID: 11328653 DOI: 10.3109/10425170009033995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human AE1 anion exchanger gene SLC4A1 encodes the Cl-/HCO3-exchangers of the erythrocyte and the Type Acid-secreting intercalated cell basolateral membrane. Mutations in SLC4A1 have been correspondingly linked with autosomal dominant hereditary spherocytotic anemia and with both dominant and recessive forms of distal renal tubular acidosis. Murine knockouts in the slc4a1Ae1 gene have also been generated, and lack erythroid and renal expression. However, intragenic polymorphic markers for the slc4a1 gene have been unavailable. Here we report that a previously identified CA repeat element of intron 13 of the murine Ae1 gene exhibits strain-specific length polymorphism.
Collapse
Affiliation(s)
- B E Shmukler
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center; Departments of Medicine and Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
25
|
McManus K, Lupe K, Coghlan G, Zelinski T. An amino acid substitution in the putative second extracellular loop of RBC band 3 accounts for the Froese blood group polymorphism. Transfusion 2000; 40:1246-9. [PMID: 11061863 DOI: 10.1046/j.1537-2995.2000.40101246.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The low incidence RBC antigen Fr(a) has been excluded from 17 of the 25 established blood group systems. Previous genetic analysis assigned the gene controlling Fr(a) expression to the same chromosomal region as the solute carrier family 4, anion exchanger member 1 gene (SLC4A1). Because SLC4A1 encodes RBC band 3 and controls the expression of Diego blood group system antigens, the possible relationship of Fr(a) to the Diego blood group system was investigated by molecular analysis of SLC4A1. STUDY DESIGN AND METHODS Blood samples were obtained from the members of two unrelated Mennonite kindreds segregating for Fr(a). DNA was extracted, amplified by PCR using intronic primer sets flanking exons 11-20 of SLC4A1, and screened by single-strand conformation polymorphism (SSCP) analysis. Those exons displaying SSCPs were subjected to DNA sequence analysis. RESULTS An exon 13 SSCP mobility shift was observed in the DNA from all Fr(a+) persons that was not seen in the DNA from Fr(a-) family members or control subjects. Linkage between the exon 13 SSCP and FR:(a) was established, with peak lods = 3.62 at theta = 0.00 for combined paternal and maternal meioses. DNA sequencing revealed a GAG --> AAG mutation that underlies a Glu480Lys substitution in RBC band 3. CONCLUSIONS A point mutation in exon 13 of SLC4A1 accounting for a Glu480Lys substitution in band 3 controls Fr(a) expression. On the basis of these our results, the International Society of Blood Transfusion Working Party on Terminology for Red Cell Surface Antigens has assigned Fr(a) to the Diego blood group system, with the designation DI20.
Collapse
Affiliation(s)
- K McManus
- Rh Laboratory, Departments of Pediatrics and Child Health and Human Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
26
|
Lecanda J, Urtasun R, Medina JF. Molecular cloning and genomic organization of the mouse AE2 anion exchanger gene. Biochem Biophys Res Commun 2000; 276:117-24. [PMID: 11006093 DOI: 10.1006/bbrc.2000.3439] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular organization of the AE2 (SLC4A2) gene, a member of the multigene family encoding sodium-independent chloride/bicarbonate anion exchangers, has previously been described in both humans and rats. In these two species, AE2 shows alternate promoter usages and tissue-specific expression of isoforms in a similar, but not identical, fashion. Here we report the molecular cloning and organization of the entire mouse AE2 gene. The gene consists of 23 exons and 22 introns and spans about 17 kb. Moreover, it drives transcription of N-terminal truncated isoforms from alternate promoter sequences in a way analogous to that described for rat and/or human orthologs. Thus, sequences within intron 2 function as overlapping alternate promoters for truncated isoforms AE2b(1) and AE2b(2), and sequences of intron 5 drive transcription of isoforms AE2c(1) and AE2c(2). Each of these variants has a specific alternative first exon, while remaining exons are common to the complete form of the message AE2a, the diversity at 5' leading to different N-termini in corresponding encoded proteins. As expected, mouse AE2 promoter sequences and the patterns of tissue expression of AE2 isoforms resemble rat counterparts more closely than human ones.
Collapse
Affiliation(s)
- J Lecanda
- Laboratory of Molecular Genetics, University Clinic and Medical School, Pamplona, E-31008, Spain
| | | | | |
Collapse
|
27
|
Medina JF, Lecanda J, Acín A, Ciesielczyk P, Prieto J. Tissue-specific N-terminal isoforms from overlapping alternate promoters of the human AE2 anion exchanger gene. Biochem Biophys Res Commun 2000; 267:228-35. [PMID: 10623603 DOI: 10.1006/bbrc.1999.1951] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previously, we isolated the human AE2 (SLC4A2) gene, a member of the sodium-independent anion exchanger family. Rat ortholog of this gene was reported to drive alternative transcription yielding N-terminal variants of the AE2a message. We thus analyzed the human AE2 gene in this regard. Using HepG2 cells, two alternative first exons, each splicing to exon 3 in alternative transcripts, were found to be transcribed from overlapping sequences of intron 2. Exon 1b(1) corresponds to the rat variant "b" and encodes three initial residues (MTQ) in AE2b(1) isoform that replace the first 17 amino acids of AE2a protein, while the novel exon 1b(2) encodes eight initial residues (MDFLLRPQ) in AE2b(2) isoform. The relative abundance of AE2b(1) and AE2b(2) mRNAs was about 10% of AE2a mRNA each. Alternate promoter sequences have multiple potential binding motifs for liver-enriched factors, and dual-luciferase assays indicated that they possess the ability for driving transcription in transiently transfected HepG2 cells. Tissue survey showed that expression of human AE2b(1) and AE2b(2) transcripts is restricted to liver and kidney, while AE2a mRNA was encountered in all examined tissues. Our findings reveal a characteristic tissue-specific expression of two N-terminal variants of human AE2 from overlapping sequences within intron 2, one of which is a novel isoform.
Collapse
Affiliation(s)
- J F Medina
- Unit of Hepatology, University of Navarra, Pamplona, E-31008, Spain.
| | | | | | | | | |
Collapse
|
28
|
Abstract
This review describes some of the naturally occurring band 3 (AEI) variants and their association with disease. Southeast Asian Ovalocytic (SAO) band 3, an inactive and misfolded protein, is probably only maintained in certain populations because it provides protection against the cerebral form of malaria. Many mutations that cause instability of band 3, either at the mRNA or protein level, result in hereditary spherocytosis (HS). Some polymorphisms alter amino acid residues in the extracellular loops of band 3 and are associated with blood group antigens. A truncated form of AEI is expressed in kidney cells and certain AEI mutations are associated with distal renal tubular acidosis (dRTA). The molecular basis of these variants and their effect on the structure and function of band 3 are discussed. The association between band 3 and glycophorin A (GPA) and the structure/function changes of band 3 in the absence of GPA are also described.
Collapse
MESH Headings
- Acidosis, Renal Tubular/blood
- Acidosis, Renal Tubular/genetics
- Anemia, Hemolytic, Congenital/blood
- Anemia, Hemolytic, Congenital/genetics
- Anion Exchange Protein 1, Erythrocyte/genetics
- Blood Group Antigens/chemistry
- Blood Group Antigens/genetics
- Elliptocytosis, Hereditary/blood
- Elliptocytosis, Hereditary/genetics
- Erythrocytes/metabolism
- Erythrocytes/pathology
- Genetic Variation/physiology
- Humans
- Mutation
- Spherocytosis, Hereditary/blood
- Spherocytosis, Hereditary/genetics
Collapse
Affiliation(s)
- L J Bruce
- Department of Biochemistry, University of Bristol, UK.
| | | |
Collapse
|
29
|
Karacay B, Chang LS. Induction of erythrocyte protein 4.2 gene expression during differentiation of murine erythroleukemia cells. Genomics 1999; 59:6-17. [PMID: 10395794 DOI: 10.1006/geno.1999.5846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein 4.2 (P4.2) is an important component in the erythrocyte membrane skeletal network that regulates the stability and flexibility of erythrocytes. Recently, we provided the evidence for specific P4.2 expression in erythroid cells during development (L. Zhu et al., 1998, Blood 91, 695-705). Using dimethyl sulfoxide (DMSO)-induced differentiation of murine erythroleukemia (MEL) cells as a model, transcription of the P4.2 gene was found to be induced during erythroid differentiation. To examine the mechanism for this induction, we isolated the mouse P4.2 genomic DNA containing the 5' flanking sequence and defined the location of the P4.2 promoter. Transcription of the mouse P4.2 gene initiates at multiple sites, with the major initiation site mapped at 174 nucleotides upstream of the ATG start codon. The mouse P4.2 promoter is TATA-less and contains multiple potential binding sites for erythroid transcription factors GATA-1, NF-E2, EKLF, and tal-1/SCL. Transient transfection experiments demonstrated that a 1.7-kb mouse P4.2 promoter fused with the luciferase coding regions was induced in DMSO-treated MEL cells. Deletion analysis showed that a 259-bp P4.2 promoter DNA (nucleotide position -88 to +171 relative to the major transcription initiation site designated +1), containing a GATA-binding site at position -29 to -24, could still respond to the induction in differentiated MEL cells. Importantly, mutations in the -29/-24 GATA motif rendered the promoter unresponsive to DMSO induction. Electrophoretic mobility shift assay revealed that GATA-1 could bind to the -29/-24 GATA motif and this was confirmed by the observation that the nuclear protein bound to the motif was supershifted by an anti-GATA-1 monoclonal antibody. Taken together, these results suggest that the erythroid transcription factor GATA-1 plays an important role in the induction of P4.2 gene expression during erythroid cell differentiation.
Collapse
Affiliation(s)
- B Karacay
- Department of Pediatrics, Children's Hospital and The Ohio State University, Columbus, Ohio 43205-2696, USA
| | | |
Collapse
|
30
|
Richards SM, Jaconi ME, Vassort G, Pucéat M. A spliced variant of AE1 gene encodes a truncated form of Band 3 in heart: the predominant anion exchanger in ventricular myocytes. J Cell Sci 1999; 112 ( Pt 10):1519-28. [PMID: 10212146 DOI: 10.1242/jcs.112.10.1519] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anion exchangers (AE) are encoded by a multigenic family that comprises at least three genes, AE1, AE2 and AE3, and numerous splicoforms. Besides regulating intracellular pH (pHi) via the Cl-/HCO3- exchange, the AEs exert various cellular functions including generation of a senescent antigen, anchorage of the cytoskeleton to the membrane and regulation of metabolism. Most cells express several AE isoforms. Despite the key role of this family of proteins, little is known about the function of specific AE isoforms in any tissue, including the heart. We therefore chose isolated cardiac cells, in which a tight control of pHi is mandatory for the excitation-contraction coupling process, to thoroughly investigate the expression of the AE genes at both the mRNA and protein levels. RT-PCR revealed the presence of AE1, AE2 and AE3 mRNAs in both neonatal and adult rat cardiomyocytes. AE1 is expressed both as the erythroid form (Band 3 or eAE1) and a novel alternate transcript (nAE1), which was more specifically characterized using a PCR mapping strategy. Two variants of AE2 (AE2a and AE2c) were found at the mRNA level. Cardiac as well as brain AE3 mRNAs were expressed in both neonatal and adult rat cardiomyocytes. Several AE protein isoforms were found, including a truncated form of AE1 and two AE3s, but there was no evidence of AE2 protein in adult rat cardiomyocytes. In cardiomyocytes transfected with an AE3 oligodeoxynucleotide antisense, AE3 immunoreactivity was dramatically decreased but the activity of the Cl-/HCO3- exchange was unchanged. In contrast, intracellular microinjection of blocking anti-AE1 antibodies inhibited the AE activity. Altogether, our findings suggest that a specific and novel AE1 splicoform (nAE1) mediates the cardiac Cl-/HCO3- exchange. The multiple gene and protein expression within the same cell type suggest numerous functions for this protein family.
Collapse
Affiliation(s)
- S M Richards
- INSERM U-390, Laboratoire de Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, Montpellier, France
| | | | | | | |
Collapse
|
31
|
Stricklett PK, Nelson RD, Kohan DE. The Cre/loxP system and gene targeting in the kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F651-7. [PMID: 10330046 DOI: 10.1152/ajprenal.1999.276.5.f651] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cre/loxP and Flp/FRT systems mediate site-specific DNA recombination and are being increasingly utilized to study gene function in vivo. These systems allow targeted gene disruption in a single cell type in vivo, thereby permitting study of the physiological and pathophysiological impact of a given gene product derived from a particular cell type. In the kidney, the Cre/loxP system has been employed to achieve gene deletion selectively within principal cells of the collecting duct. Disruption of target genes in the collecting duct, such as endothelin-1 or polycystic kidney disease-1 (PKD1), could lead to important insights into the biological roles of these gene products. With selection of the appropriate renal cell-specific promoters, these recombination systems could be used to target gene disruption to virtually any renal cell type. Although transgenic studies utilizing these recombination systems are promising, they are in their relative infancy and can be time consuming and expensive and yield unanticipated results. It is anticipated that continued experience with these systems will produce an important tool for analyzing gene function in renal health and disease.
Collapse
Affiliation(s)
- P K Stricklett
- Department of Internal Medicine, Veterans Affairs Medical Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
32
|
Schischmanoff PO, Cynober T, Miélot F, Leclerc L, Vasseur-Godbillon C, Baudin-Creuza V, Magowan C, Yeung J, Mohandas N, Tchernia G, Delaunay J. Southeast Asian ovalocytosis in White persons. Hemoglobin 1999; 23:47-56. [PMID: 10081985 DOI: 10.3109/03630269908996147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We describe two White persons, a girl and her mother, presenting with Southeast Asian ovalocytosis. The child was evaluated for scoliosis. The red cell indices were normal but the cell counter triggered an alarm due to a high fraction of hyperdense red cells. Blood smears showed ovalocytes and ovalostomatocytes. Red cells exhibited a total lack of deformability upon osmotic gradient ektacytometry performed immediately after blood drawing. Analysis of nucleic acids and proteins ascertained a 27 nucleotide deletion, resulting in the loss of amino acids 400 to 408, and the presence in cis of the Memphis I polymorphism. The sulfate transport was diminished by more than 50%. There was no acidosis. In vitro invasion of ovalocytes by Plasmodium falciparum was decreased. The mother presented with the same hematological picture. On the whole, the condition was Southeast Asian ovalocytosis in all respects. The present kindred had ancestors who had inhabited islands in the Southwestern Indian Ocean.
Collapse
Affiliation(s)
- P O Schischmanoff
- Service de Biochimie I, INSERM U 473, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Philipp S, Kneussel M, König J, Appelhans H. Molecular analysis of regulation of gene expression of the human erythroid anion exchanger (AE) 1. FEBS Lett 1998; 438:315-20. [PMID: 9827569 DOI: 10.1016/s0014-5793(98)01326-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The anion exchange protein AE1 is the most abundant membrane protein in human erythrocytes mediating the electroneutral chloride/bicarbonate exchange. We identified a promoter region in the 5' flanking region of the human AE1 gene which controls transcription in a cell type independent manner. In addition a second, distal promoter element mediates gene expression only in erythroid cells and in dependence upon differentiation. Within this distal promoter region we defined a 44 bp sequence containing a novel CT-rich motif with very strong promoter activity whereas a second 28 bp segment suppresses gene expression.
Collapse
Affiliation(s)
- S Philipp
- Max-Planck-Institut für Biophysik, Frankfurt, Germany.
| | | | | | | |
Collapse
|
34
|
Bebikhov DV, Postnov AY, Nikinenko TA. Role of retroposition in autoregulation of genomic processes (Do genes program the body and retroposons program the genome?). Bull Exp Biol Med 1998. [DOI: 10.1007/bf02446049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Jarolim P, Shayakul C, Prabakaran D, Jiang L, Stuart-Tilley A, Rubin HL, Simova S, Zavadil J, Herrin JT, Brouillette J, Somers MJ, Seemanova E, Brugnara C, Guay-Woodford LM, Alper SL. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3- exchanger. J Biol Chem 1998; 273:6380-8. [PMID: 9497368 DOI: 10.1074/jbc.273.11.6380] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distal renal tubular acidosis (dRTA) is characterized by defective urinary acidification by the distal nephron. Cl-/HCO3- exchange mediated by the AE1 anion exchanger in the basolateral membrane of type A intercalated cells is thought to be an essential component of lumenal H+ secretion by collecting duct intercalated cells. We evaluated the AE1 gene as a possible candidate gene for familial dRTA. We found in three unrelated families with autosomal dominant dRTA that all clinically affected individuals were heterozygous for a single missense mutation encoding the mutant AE1 polypeptide R589H. Patient red cells showed approximately 20% reduction in sulfate influx of normal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid sensitivity and pH dependence. Recombinant kidney AE1 R589H expressed in Xenopus oocytes showed 20-50% reduction in Cl-/Cl- and Cl-/HCO3- exchange, but did not display a dominant negative phenotype for anion transport when coexpressed with wild-type AE1. One apparently unaffected individual for whom acid-loading data were unavailable also was heterozygous for the mutation. Thus, in contrast to previously described heterozygous loss-of-function mutations in AE1 associated with red cell abnormalities and apparently normal renal acidification, the heterozygous hypomorphic AE1 mutation R589H is associated with dominant dRTA and normal red cells.
Collapse
Affiliation(s)
- P Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This review discusses recent advances in our understanding of the structure, function and molecular genetics of the membrane domain of red cell anion exchanger, band 3 (AE1), and its role in red cell and kidney disease. A new model for the topology of band 3 has been proposed, which suggests the membrane domain has 12 membrane spans, rather than the 14 membrane spans of earlier models. The major difference between the models is in the topology of the region on the C-terminal side of membrane spans 1-7. Two dimensional crystals of the deglycosylated membrane domain of band 3 have yielded two and three dimensional projection maps of the membrane domain dimer at low resolution. The human band 3 gene has been completely sequenced and this has facilitated the study of natural band 3 mutations and their involvement in disease. About 20% of hereditary spherocytosis cases arise from heterozygosity for band 3 mutations, and result in the absence or decrease of the mutant protein in the red cell membrane. Several other natural band 3 mutations are known that appear to be clinically benign, but alter red cell phenotype or are associated with altered red cell blood group antigens. These include the mutant band 3 present in Southeast Asian ovalocytosis, a condition which provides protection against cerebral malaria in children. Familial distal renal tubular acidosis, a condition associated with kidney stones, has been shown to result from a novel group of band 3 mutations. The total absence of band 3 has been described in animals-occurring naturally in cattle and after targeted disruption in mice. Some of these severely anaemic animals survive, so band 3 is not strictly essential for life. Although the band 3-negative red cells were very unstable, they contained a normally-assembled red cell skeleton, suggesting that the bilayer of the normal red cell membrane is stabilized by band 3 interactions with membrane lipids, rather than by interactions with the spectrin skeleton.
Collapse
Affiliation(s)
- M J Tanner
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK
| |
Collapse
|
37
|
Abstract
We present two novel alleles of the anion-exchanger 1 (AE1) gene, allele Coimbra and allele Mondego. Allele Coimbra (V488M, GTG → ATG) affects a conserved position in the putative second ectoplasmic loop of erythrocyte band 3. In 15 simple heterozygotes, it yielded a mild form of hereditary spherocytosis (HS) with band 3 deficiency (−20% ± 2%) and a reduced number of 4,4′-diisothiocyano-1,2-diphenylethane-2,2′-disulfonate (H2DIDS) binding sites (−35%). However, two additional heterozygotes presented with an aggravated HS and a more pronounced reduction of band 3 (−40%) and of H2DIDS binding sites (−48%). They carried, in trans to allele Coimbra, allele Mondego, defined by two mutations: E40K, GAG → AAG, the known mutation Montefiore, and P147S, CCT → TCT, a novel mutation, both located in the cytoplasmic domain of band 3. Allele Mondego itself resulted in no clinical or hematologic HS signs in the simple heterozygous state. Yet it yielded a slight decrease in band 3 (−6% to −12%) and in the number of H2DIDS binding sites (−19%). Thus, the more pronounced decrease in band 3 in the two compound heterozygotes derived from the additive effects of two unequally expressed AE1 alleles, resulting in a more severe clinical picture.
Collapse
|
38
|
Abstract
AbstractWe present two novel alleles of the anion-exchanger 1 (AE1) gene, allele Coimbra and allele Mondego. Allele Coimbra (V488M, GTG → ATG) affects a conserved position in the putative second ectoplasmic loop of erythrocyte band 3. In 15 simple heterozygotes, it yielded a mild form of hereditary spherocytosis (HS) with band 3 deficiency (−20% ± 2%) and a reduced number of 4,4′-diisothiocyano-1,2-diphenylethane-2,2′-disulfonate (H2DIDS) binding sites (−35%). However, two additional heterozygotes presented with an aggravated HS and a more pronounced reduction of band 3 (−40%) and of H2DIDS binding sites (−48%). They carried, in trans to allele Coimbra, allele Mondego, defined by two mutations: E40K, GAG → AAG, the known mutation Montefiore, and P147S, CCT → TCT, a novel mutation, both located in the cytoplasmic domain of band 3. Allele Mondego itself resulted in no clinical or hematologic HS signs in the simple heterozygous state. Yet it yielded a slight decrease in band 3 (−6% to −12%) and in the number of H2DIDS binding sites (−19%). Thus, the more pronounced decrease in band 3 in the two compound heterozygotes derived from the additive effects of two unequally expressed AE1 alleles, resulting in a more severe clinical picture.
Collapse
|
39
|
Overdier DG, Ye H, Peterson RS, Clevidence DE, Costa RH. The winged helix transcriptional activator HFH-3 is expressed in the distal tubules of embryonic and adult mouse kidney. J Biol Chem 1997; 272:13725-30. [PMID: 9153225 DOI: 10.1074/jbc.272.21.13725] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hepatocyte nuclear factor-3 (HNF-3)/fork head homolog (HFH) proteins are an extensive family of transcription factors, which share homology in the winged helix DNA binding domain. Members of the HFH/winged helix family have been implicated in cell fate determination during pattern formation, in organogenesis, and in cell-type-specific gene expression. In this study we isolated a full-length HFH-3 cDNA clone from a human kidney library which encoded a 351-amino acid protein containing a centrally located winged helix DNA binding domain. We demonstrate that HFH-3 is a potent transcriptional activator requiring 138 C-terminal residues for activity. We used in situ hybridization to demonstrate that HFH-3 expression is restricted to the epithelium of the renal distal convoluted tubules. We determined the HFH-3 DNA binding consensus sequence by in vitro DNA binding site selection using recombinant HFH-3 protein and used this consensus sequence to identify putative HFH-3 target genes expressed there. These putative HFH-3 target genes include the Na/K-ATPase, Na/H and anion exchangers, E-cadherin, and mineralocorticoid receptor genes as well as genes for the transcription factors HNF-1, vHNF-1, and HNF-4.
Collapse
Affiliation(s)
- D G Overdier
- Department of Biochemistry, University of Illinois, Chicago, Illinois 60612-7334, USA
| | | | | | | | | |
Collapse
|
40
|
Chapter 13 Structure of the erythrocyte band 3 anion exchanger. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|