1
|
Zhang Y, Watanabe S, Tsutsumi A, Kadokura H, Kikkawa M, Inaba K. Cryo-EM analysis provides new mechanistic insight into ATP binding to Ca 2+ -ATPase SERCA2b. EMBO J 2021; 40:e108482. [PMID: 34459010 DOI: 10.15252/embj.2021108482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca2+ uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca2+ state, revealing a new conformation for Ca2+ -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca2+ -bound SERCA1a. Multiple conformations generated by 3D classification of cryo-EM maps reflect the intrinsically dynamic nature of the cytosolic domains in this state. Notably, ATP binding residues of SERCA2b in the E1·2Ca2+ state are located at similar positions to those in the E1·2Ca2+ -ATP state; hence, the cryo-EM structure likely represents a preformed state immediately prior to ATP binding. Consistently, a SERCA2b mutant with an interdomain disulfide bridge that locks the closed cytosolic domain arrangement displayed significant autophosphorylation activity in the presence of Ca2+ . We propose a novel mechanism of ATP binding to SERCA2b.
Collapse
Affiliation(s)
- Yuxia Zhang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Akihisa Tsutsumi
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Sarcolipin Exhibits Abundant RNA Transcription and Minimal Protein Expression in Horse Gluteal Muscle. Vet Sci 2020; 7:vetsci7040178. [PMID: 33202832 PMCID: PMC7711957 DOI: 10.3390/vetsci7040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.
Collapse
|
3
|
Autry JM, Karim CB, Cocco M, Carlson SF, Thomas DD, Valberg SJ. Purification of sarcoplasmic reticulum vesicles from horse gluteal muscle. Anal Biochem 2020; 610:113965. [PMID: 32956693 DOI: 10.1016/j.ab.2020.113965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
We have analyzed protein expression and enzyme activity of the sarcoplasmic reticulum Ca2+-transporting ATPase (SERCA) in horse gluteal muscle. Horses exhibit a high incidence of recurrent exertional rhabdomyolysis, with myosolic Ca2+ proposed, but yet to be established, as the underlying cause. To better assess Ca2+ regulatory mechanisms, we developed an improved protocol for isolating sarcoplasmic reticulum (SR) vesicles from horse skeletal muscle, based on mechanical homogenization and optimized parameters for differential centrifugation. Immunoblotting identified the peak subcellular fraction containing the SERCA1 protein (fast-twitch isoform). Gel analysis using the Stains-all dye demonstrated that calsequestrin (CASQ) and phospholipids are highly enriched in the SERCA-containing subcellular fraction isolated from horse gluteus. Immunoblotting also demonstrated that these horse SR vesicles show low content of glycogen phosphorylase (GP), which is likely an abundant contaminating protein of traditional horse SR preps. The maximal Ca2+-activated ATPase activity (Vmax) of SERCA in horse SR vesicles isolated using this protocol is 5‒25-fold greater than previously-reported SERCA activity in SR preps from horse skeletal muscle. We propose that this new protocol for isolating SR vesicles will be useful for determining enzymatic parameters of horse SERCA with high fidelity, plus assessing regulatory effect of SERCA peptide subunit(s) expressed in horse muscle.
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mariana Cocco
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Samuel F Carlson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephanie J Valberg
- Department of Large Animal Clinical Sciences, McPhail Equine Performance Center, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
4
|
Oh MR, Lee KJ, Huang M, Kim JO, Kim DH, Cho CH, Lee EH. STIM2 regulates both intracellular Ca 2+ distribution and Ca 2+ movement in skeletal myotubes. Sci Rep 2017; 7:17936. [PMID: 29263348 PMCID: PMC5738411 DOI: 10.1038/s41598-017-18256-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) along with Orai1 mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various tissues including skeletal muscle. However, the role(s) of STIM2, a homolog of STIM1, in skeletal muscle has not been well addressed. The present study, first, was focused on searching for STIM2-binding proteins from among proteins mediating skeletal muscle functions. This study used a binding assay, quadrupole time-of-flight mass spectrometry, and co-immunoprecipitation assay with bona-fide STIM2- and SERCA1a-expressing rabbit skeletal muscle. The region for amino acids from 453 to 729 of STIM2 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a). Next, oxalate-supported 45Ca2+-uptake experiments and various single-myotube Ca2+ imaging experiments using STIM2-knockdown mouse primary skeletal myotubes have suggested that STIM2 attenuates SERCA1a activity during skeletal muscle contraction, which contributes to the intracellular Ca2+ distribution between the cytosol and the SR at rest. In addition, STIM2 regulates Ca2+ movement through RyR1 during skeletal muscle contraction as well as SOCE. Therefore, via regulation of SERCA1a activity, STIM2 regulates both intracellular Ca2+ distribution and Ca2+ movement in skeletal muscle, which makes it both similar to, yet different from, STIM1.
Collapse
Affiliation(s)
- Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Ock Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Do Han Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
5
|
Lee JM, Noguchi S. Calcium Dyshomeostasis in Tubular Aggregate Myopathy. Int J Mol Sci 2016; 17:ijms17111952. [PMID: 27879676 PMCID: PMC5133946 DOI: 10.3390/ijms17111952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
Calcium is a crucial mediator of cell signaling in skeletal muscles for basic cellular functions and specific functions, including contraction, fiber-type differentiation and energy production. The sarcoplasmic reticulum (SR) is an organelle that provides a large supply of intracellular Ca2+ in myofibers. Upon excitation, it releases Ca2+ into the cytosol, inducing contraction of myofibrils. During relaxation, it takes up cytosolic Ca2+ to terminate the contraction. During exercise, Ca2+ is cycled between the cytosol and the SR through a system by which the Ca2+ pool in the SR is restored by uptake of extracellular Ca2+ via a specific channel on the plasma membrane. This channel is called the store-operated Ca2+ channel or the Ca2+ release-activated Ca2+ channel. It is activated by depletion of the Ca2+ store in the SR by coordination of two main molecules: stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel protein 1 (ORAI1). Recently, myopathies with a dominant mutation in these genes have been reported and the pathogenic mechanism of such diseases have been proposed. This review overviews the calcium signaling in skeletal muscles and role of store-operated Ca2+ entry in calcium homeostasis. Finally, we discuss the phenotypes and the pathomechanism of myopathies caused by mutations in the STIM1 and ORAI1 genes.
Collapse
Affiliation(s)
- Jong-Mok Lee
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8551, Japan.
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8502, Japan.
| | - Satoru Noguchi
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8551, Japan.
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Neuropsychiatry, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
6
|
RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats. PLoS One 2015; 10:e0123966. [PMID: 25893406 PMCID: PMC4404103 DOI: 10.1371/journal.pone.0123966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Second generation antipsychotics (SGAs), like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1), while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.
Collapse
|
7
|
Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel TA. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol 2015; 93:843-54. [PMID: 25730320 DOI: 10.1139/cjpp-2014-0463] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca(2+)) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca(2+) sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca(2+) sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca(2+) transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.
Collapse
Affiliation(s)
- Andrew N Stammers
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Shanel E Susser
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| | - Naomi C Hamm
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Michael W Hlynsky
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Dustin E Kimber
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - D Scott Kehler
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Todd A Duhamel
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| |
Collapse
|
8
|
Lee KJ, Hyun C, Woo JS, Park CS, Kim DH, Lee EH. Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1a (SERCA1a) in skeletal muscle. Pflugers Arch 2014; 466:987-1001. [PMID: 24077737 DOI: 10.1007/s00424-013-1361-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022]
Abstract
Stromal interaction molecule 1 (STIM1) mediates Ca2+ movements from the extracellular space to the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various cells including skeletal muscle cells. In the present study, to reveal the unidentified functional role of the STIM1 C terminus from 449 to 671 amino acids in skeletal muscle, binding assays and quadrupole time-of-flight mass spectrometry were used to identify proteins binding in this region along with proteins that mediate skeletal muscle contraction and relaxation. STIM1 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a) via this region (called STIM1-SBR). The binding was confirmed in endogenous full-length STIM1 in rabbit skeletal muscle and mouse primary skeletal myotubes via co-immunoprecipitation assay and immunocytochemistry. STIM1 knockdown in mouse primary skeletal myotubes decreased Ca2+ uptake from the cytosol to the sarcoplasmic reticulum (SR) through SERCA1a only at micromolar cytosolic Ca2+ concentrations, suggesting that STIM1 could be required for the full activity of SERCA1a possibly during the relaxation of skeletal muscle. Various Ca2+ imaging experiments using myotubes expressing STIM1-SBR suggest that STIM1 is involved in intracellular Ca2+ distributions between the SR and the cytosol via regulating SERCA1a activity without affecting SOCE. Therefore, in skeletal muscle, STIM1 could play an important role in regulating Ca2+ movements between the SR and the cytosol.
Collapse
|
9
|
Kósa M, Brinyiczki K, van Damme P, Goemans N, Hancsák K, Mendler L, Zádor E. The neonatal sarcoplasmic reticulum Ca2+-ATPase gives a clue to development and pathology in human muscles. J Muscle Res Cell Motil 2014; 36:195-203. [PMID: 25487304 DOI: 10.1007/s10974-014-9403-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/03/2014] [Indexed: 01/07/2023]
Abstract
The sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) has two muscle specific splice isoforms; SERCA1a in fast-type adult and SERCA1b in neonatal and regenerating skeletal muscles. At the protein level the only difference between these two isoforms is that SERCA1a has C-terminal glycine while SERCA1b has an octapeptide tail instead. This makes the generation of a SERCA1a specific antibody not feasible. The switch between the two isoforms is a hallmark of differentiation so we describe here a method based on the signal ratios of the SERCA1b specific and pan SERCA1 antibodies to estimate the SERCA1b/SERCA1a dominance on immunoblot of human muscles. Using this method we showed that unlike in mouse and rat, SERCA1b was only expressed in pre-matured infant leg and arm muscles; it was replaced by SERCA1a in more matured neonatal muscles and was completely absent in human foetal and neonatal diaphragms. Interestingly, only SERCA1a and no SERCA1b were detected in muscles of 7-12 years old boys with Duchenne, a degenerative-regenerative muscular dystrophy. However, in adult patients with myotonic dystrophy type 2 (DM2), the SERCA1b dominated over SERCA1a. Thus the human SERCA1b has a different expression pattern from that of rodents and it is associated with DM2.
Collapse
Affiliation(s)
- Magdolna Kósa
- Department of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
10
|
Jin S, Kim J, Willert T, Klein-Rodewald T, Garcia-Dominguez M, Mosqueira M, Fink R, Esposito I, Hofbauer LC, Charnay P, Kieslinger M. Ebf factors and MyoD cooperate to regulate muscle relaxation via Atp2a1. Nat Commun 2014; 5:3793. [PMID: 24786561 DOI: 10.1038/ncomms4793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023] Open
Abstract
Myogenic regulatory factors such as MyoD and Myf5 lie at the core of vertebrate muscle differentiation. However, E-boxes, the cognate binding sites for these transcription factors, are not restricted to the promoters/enhancers of muscle cell-specific genes. Thus, the specificity in myogenic transcription is poorly defined. Here we describe the transcription factor Ebf3 as a new determinant of muscle cell-specific transcription. In the absence of Ebf3 the lung does not unfold at birth, resulting in respiratory failure and perinatal death. This is due to a hypercontractile diaphragm with impaired Ca(2+) efflux-related muscle functions. Expression of the Ca(2+) pump Serca1 (Atp2a1) is downregulated in the absence of Ebf3, and its transgenic expression rescues this phenotype. Ebf3 binds directly to the promoter of Atp2a1 and synergises with MyoD in the induction of Atp2a1. In skeletal muscle, the homologous family member Ebf1 is strongly expressed and together with MyoD induces Atp2a1. Thus, Ebf3 is a new regulator of terminal muscle differentiation in the diaphragm, and Ebf factors cooperate with MyoD in the induction of muscle-specific genes.
Collapse
Affiliation(s)
- Saihong Jin
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Jeehee Kim
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Torsten Willert
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Tanja Klein-Rodewald
- Institute of Pathology, Helmholtz Zentrum München, National Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, 81377 Munich, Germany
| | - Mario Garcia-Dominguez
- 1] Developmental Biology Section, Ecole Normale Supérieure, Rue d'Ulm 46, 75230 Paris, France [2] Stem Cells Department, CABIMER (CISC), Av Américo Vespucio, 41092 Sevilla, Spain
| | - Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Rainer Fink
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Irene Esposito
- 1] Institute of Pathology, Helmholtz Zentrum München, National Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, 81377 Munich, Germany [2] Institute of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Metabolic Bone Diseases, Department of Medicine III, TU Dresden Medical Center, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Patrick Charnay
- Developmental Biology Section, Ecole Normale Supérieure, Rue d'Ulm 46, 75230 Paris, France
| | - Matthias Kieslinger
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| |
Collapse
|
11
|
Costamagna D, Quattrocelli M, Duelen R, Sahakyan V, Perini I, Palazzolo G, Sampaolesi M. Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity. Cell Mol Life Sci 2014; 71:615-27. [PMID: 23949444 PMCID: PMC11113798 DOI: 10.1007/s00018-013-1445-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023]
Abstract
Regenerative medicine for skeletal and cardiac muscles still constitutes a fascinating and ambitious frontier. In this perspective, understanding the possibilities of intrinsic cell plasticity, present in post-natal muscles, is vital to define and improve novel therapeutic strategies for acute and chronic diseases. In addition, many somatic stem cells are now crossing the boundaries of basic/translational research to enter the first clinical trials. However, it is still an open question whether a lineage switch between skeletal and cardiac adult myogenesis is possible. Therefore, this review focuses on resident somatic stem cells of post-natal skeletal and cardiac muscles and their plastic potential toward the two lineages. Furthermore, examples of myogenic lineage switch in adult stem cells are also reported and discussed.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Mattia Quattrocelli
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Vardine Sahakyan
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Ilaria Perini
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Giacomo Palazzolo
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Bridgewater LC, Mayo JL, Evanson BG, Whitt ME, Dean SA, Yates JD, Holden DN, Schmidt AD, Fox CL, Dhunghel S, Steed KS, Adam MM, Nichols CA, Loganathan SK, Barrow JR, Hancock CR. A novel bone morphogenetic protein 2 mutant mouse, nBmp2NLS(tm), displays impaired intracellular Ca2+ handling in skeletal muscle. BIOMED RESEARCH INTERNATIONAL 2013; 2013:125492. [PMID: 24369527 PMCID: PMC3863484 DOI: 10.1155/2013/125492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/12/2013] [Accepted: 10/29/2013] [Indexed: 01/17/2023]
Abstract
We recently reported a novel form of BMP2, designated nBMP2, which is translated from an alternative downstream start codon and is localized to the nucleus rather than secreted from the cell. To examine the function of nBMP2 in the nucleus, we engineered a gene-targeted mutant mouse model (nBmp2NLS(tm)) in which nBMP2 cannot be translocated to the nucleus. Immunohistochemistry demonstrated the presence of nBMP2 staining in the myonuclei of wild type but not mutant skeletal muscle. The nBmp2NLS(tm) mouse exhibits altered function of skeletal muscle as demonstrated by a significant increase in the time required for relaxation following a stimulated twitch contraction. Force frequency analysis showed elevated force production in mutant muscles compared to controls from 10 to 60 Hz stimulation frequency, consistent with the mutant muscle's reduced ability to relax between rapidly stimulated contractions. Muscle relaxation after contraction is mediated by the active transport of Ca(2+) from the cytoplasm to the sarcoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA), and enzyme activity assays revealed that SERCA activity in skeletal muscle from nBmp2NLS(tm) mice was reduced to approximately 80% of wild type. These results suggest that nBMP2 plays a role in the establishment or maintenance of intracellular Ca(2+) transport pathways in skeletal muscle.
Collapse
Affiliation(s)
- Laura C. Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Jaime L. Mayo
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Bradley G. Evanson
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Megan E. Whitt
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Spencer A. Dean
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Joshua D. Yates
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Devin N. Holden
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Alina D. Schmidt
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Christopher L. Fox
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Saroj Dhunghel
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Kevin S. Steed
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Michael M. Adam
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Caitlin A. Nichols
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Sampath K. Loganathan
- Department of Microbiology and Molecular Biology, Brigham Young University, 775-A WIDB, Provo, UT 84602, USA
| | - Jeffery R. Barrow
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Chad R. Hancock
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
13
|
Guglielmi V, Vattemi G, Gualandi F, Voermans NC, Marini M, Scotton C, Pegoraro E, Oosterhof A, Kósa M, Zádor E, Valente EM, De Grandis D, Neri M, Codemo V, Novelli A, van Kuppevelt TH, Dallapiccola B, van Engelen BG, Ferlini A, Tomelleri G. SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fibers. Mol Genet Metab 2013; 110:162-9. [PMID: 23911890 DOI: 10.1016/j.ymgme.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Brody disease is an inherited myopathy associated with a defective function of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) protein. Mutations in the ATP2A1 gene have been reported only in some patients. Therefore it has been proposed to distinguish patients with ATP2A1 mutations, Brody disease (BD), from patients without mutations, Brody syndrome (BS). We performed a detailed study of SERCA1 protein expression in muscle of patients with BD and BS, and evaluated the alternative splicing of SERCA1 in primary cultures of normal human muscle and in infant muscle. SERCA1 reactivity was observed in type 2 muscle fibers of patients with and without ATP2A1 mutations and staining intensity was similar in patients and controls. Immunoblot analysis showed a significant reduction of SERCA1 band in muscle of BD patients. In addition we demonstrated that the wild type and mutated protein exhibits similar solubility properties and that RIPA buffer improves the recovery of the wild type and mutated SERCA1 protein. We found that SERCA1b, the SERCA1 neonatal form, is the main protein isoform expressed in cultured human muscle fibers and infant muscle. Finally, we identified two novel heterozygous mutations within exon 3 of the ATP2A1 gene from a previously described patient with BD.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Voermans N, Laan A, Oosterhof A, van Kuppevelt T, Drost G, Lammens M, Kamsteeg E, Scotton C, Gualandi F, Guglielmi V, van den Heuvel L, Vattemi G, van Engelen B. Brody syndrome: A clinically heterogeneous entity distinct from Brody disease. Neuromuscul Disord 2012; 22:944-54. [DOI: 10.1016/j.nmd.2012.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/08/2012] [Accepted: 03/30/2012] [Indexed: 12/30/2022]
|
15
|
Mitsugumin 53 attenuates the activity of sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a) in skeletal muscle. Biochem Biophys Res Commun 2012; 428:383-8. [PMID: 23103543 DOI: 10.1016/j.bbrc.2012.10.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/16/2012] [Indexed: 11/22/2022]
Abstract
Mitsugumin 53 (MG53) is a member of the membrane repair system in skeletal muscle. However, the roles of MG53 in the unique functions of skeletal muscle have not been addressed, although it is known that MG53 is expressed only in skeletal and cardiac muscle. In the present study, MG53-binding proteins were examined along with proteins that mediate skeletal muscle contraction and relaxation using the binding assays of various MG53 domains and quadrupole time-of-flight mass spectrometry. MG53 binds to sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a) via its tripartite motif (TRIM) and PRY domains. The binding was confirmed in rabbit skeletal muscle and mouse primary skeletal myotubes by co-immunoprecipitation and immunocytochemistry. MG53 knockdown in mouse primary skeletal myotubes increased Ca(2+)-uptake through SERCA1a (more than 35%) at micromolar Ca(2+) but not at nanomolar Ca(2+), suggesting that MG53 attenuates SERCA1a activity possibly during skeletal muscle contraction or relaxation but not during the resting state of skeletal muscle. Therefore MG53 could be a new candidate for the diagnosis and treatment of patients with Brody syndrome, which is not related to the mutations in the gene coding for SERCA1a, but still accompanies exercise-induced muscle stiffness and delayed muscle relaxation due to a reduction in SERCA1a activity.
Collapse
|
16
|
|
17
|
Brody Disease: Insights Into Biochemical Features of SERCA1 and Identification of a Novel Mutation. J Neuropathol Exp Neurol 2010; 69:246-52. [DOI: 10.1097/nen.0b013e3181d0f7d5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Chami M, Oulès B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Bréchot P. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 2009; 32:641-51. [PMID: 19061639 DOI: 10.1016/j.molcel.2008.11.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 08/05/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
Among the new players at the endoplasmic reticulum (ER)-mitochondria interface regulating interorganelle calcium signaling, those specifically involved during ER stress are not known at present. We report here that the truncated variant of the sarcoendoplasmic reticulum Ca(2+)-ATPase 1 (S1T) amplifies ER stress through the PERK-eIF2alpha-ATF4-CHOP pathway. S1T, which is localized in the ER-mitochondria microdomains, determines ER Ca(2+) depletion due to increased Ca(2+) leak, an increased number of ER-mitochondria contact sites, and inhibition of mitochondria movements. This leads to increased Ca(2+) transfer to mitochondria in both resting and stimulated conditions and activation of the mitochondrial apoptotic pathway. Interestingly, S1T knockdown was shown to prevent ER stress, mitochondrial Ca(2+) overload, and subsequent apoptosis. Thus, by bridging ER stress to apoptosis through increased ER-mitochondria Ca(2+) transfer, S1T acts as an essential determinant of cellular fate.
Collapse
|
19
|
Liu YH, Qi J, Hou YX, Wang F. Effects of sex hormones on genioglossal muscle contractility and SR Ca2+-ATPase activity in aged rat. Arch Oral Biol 2008; 53:353-60. [PMID: 18070614 DOI: 10.1016/j.archoralbio.2007.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 09/19/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
20
|
Fan W, Li C, Li S, Feng Q, Xie L, Zhang R. Cloning, characterization, and expression patterns of three sarco/endoplasmic reticulum Ca2+-ATPase isoforms from pearl oyster (Pinctada fucata). Acta Biochim Biophys Sin (Shanghai) 2007; 39:722-30. [PMID: 17805468 DOI: 10.1111/j.1745-7270.2007.00330.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A large amount of calcium is required for mollusk biomineralization. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a well-known protein with the function of sustaining the calcium homeostasis. How does it possibly function in the process of pearl oyster biomineralization? Three SERCA isoforms, namely PSERA, PSERB, and PSERC were cloned from the pearl oyster, Pinctada fucata. The cDNAs of the three isoforms were isolated by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. PSERA consisted of 3568 bp encoding 1007 amino acids, PSERB included 3953 bp encoding 1024 amino acids, and PSERC comprised of 3450 bp encoding 1000 amino acids. The three isoforms showed high homology (65%-87%) with SERCAs from other species. Consistent with the results from other invertebrates, Southern blot analysis revealed that the three isoforms originated from a single gene that was also related to SERCA1, SERCA2, and SERCA3 of vertebrates. The splicing mechanism of the three isoforms was similar to that of isoforms of vertebrate SERCA3. Semiquantitative RT-PCR was carried out to study the expression patterns of the three isoforms. The results showed that PSERB was ubiquitously expressed in all tested tissues and was a potential "housekeeping" SERCA isoform; PSERA was expressed in the adductor muscle and foot and was likely to be a muscle-specific isoform, and PSERC was expressed in the other tissues except the adductor muscle or foot with the highest expression levels in the gill and mantle, indicating that it was a non-muscle-specific isoform and might be involved in calcium homeostasis during pearl oyster biomineralization.
Collapse
Affiliation(s)
- Weimin Fan
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Sarco(endo)plasmic reticulum (SER) Ca2+ ATPases represent a highly conserved family of Ca2+ pumps which actively transport Ca2+ from the cytosol to the SER against a large concentration gradient. In humans, 3 genes (ATP2A1-3) generate multiple isoforms (SERCAla,b, SERCA2a-c, SECA3a-f) by developmental or tissue-specific alternative splicing. These pumps differ by their regulatory and kinetic properties, allowing for optimized function in the tissue where they are expressed. They play a central role in calcium signalling through regenerating SER Ca2+ stores, maintaining appropriate Ca2+ levels in this organelle and shaping cytosolic and nuclear Ca2+ variations which govern cell response. Defects in ATP2A1 encoding SERCA1 cause recessive Brody myopathy, mutations in ATP2A2 coding for SERCA2 underlie a dominant skin disease, Darier disease and its clinical variants. SERCA2a expression is reduced in heart failure in human and in mice models. Gene-targeting studies in mouse confirmed the expected function of these isoforms in some cases, but also resulted in unexpected phenotypes: SERCA1 null mutants die from respiratory failure, SERCA2 heterozygous mutant mice develop skin cancer with age and SERCA3 null mice display no diabetes. These unique phenotypes have provided invaluable information on the role of these pumps in specific tissues and species, and have improved our understanding of Ca2+ regulated processes in muscles, the heart and the skin in human and in mice. Although the understanding of the pathogenesis of these diseases is still incomplete, these recent advances hold the promise of improved knowledge on the disease processes and the identification of new targets for therapeutic interventions.
Collapse
|
22
|
Miyauchi Y, Daiho T, Yamasaki K, Takahashi H, Ishida-Yamamoto A, Danko S, Suzuki H, Iizuka H. Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. J Biol Chem 2006; 281:22882-95. [PMID: 16766529 DOI: 10.1074/jbc.m601966200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined possible defects of sarco(endo)plasmic reticulum Ca2+-ATPase 2b (SERCA2b) associated with its 51 mutations found in Darier disease (DD) pedigrees, i.e. most of the substitution and deletion mutations of residues reported so far. COS-1 cells were transfected with each of the mutant cDNAs, and the expression and function of the SERCA2b protein was analyzed with microsomes prepared from the cells and compared with those of the wild type. Fifteen mutants showed markedly reduced expression. Among the other 36, 29 mutants exhibited completely abolished or strongly inhibited Ca2+-ATPase activity, whereas the other seven possessed fairly high or normal ATPase activity. In four of the aforementioned seven mutants, Ca2+ transport activity was significantly reduced or almost completely lost, therefore uncoupled from ATP hydrolysis. The other three were exceptional cases as they were seemingly normal in protein expression and Ca2+ transport function, but were found to have abnormalities in the kinetic properties altered by the three mutations, which happened to be in the three DD pedigrees found by us previously (Sato, K., Yamasaki, K., Daiho, T., Miyauchi, Y., Takahashi, H., Ishida-Yamamoto, A., Nakamura, S., Iizuka, H., and Suzuki, H. (2004) J. Biol. Chem. 279, 35595-35603). Collectively, our results indicated that in most cases (48 of 51) DD mutations cause severe disruption of Ca2+ homeostasis by the defects in protein expression and/or transport function and hence DD, but even a slight disturbance of the homeostasis will result in the disease. Our results also provided further insight into the structure-function relationship of SERCAs and revealed critical regions and residues of the enzyme.
Collapse
Affiliation(s)
- Yuki Miyauchi
- Departments of Biochemistry and Dermatology, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The sarcoplasmic reticulum (SR) provides feedback control required to balance the processes of calcium storage, release, and reuptake in skeletal muscle. This balance is achieved through the concerted action of three major classes of SR calcium-regulatory proteins: (1) luminal calcium-binding proteins (calsequestrin, histidine-rich calcium-binding protein, junctate, and sarcalumenin) for calcium storage; (2) SR calcium release channels (type 1 ryanodine receptor or RyR1 and IP3 receptors) for calcium release; and (3) sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) pumps for calcium reuptake. Proper calcium storage, release, and reuptake are essential for normal skeletal muscle function. We review SR structure and function during normal skeletal muscle activity, the proteins that orchestrate calcium storage, release, and reuptake, and how phenotypically distinct muscle diseases (e.g., malignant hyperthermia, central core disease, and Brody disease) can result from subtle alterations in the activity of several key components of the SR calcium-regulatory machinery.
Collapse
Affiliation(s)
- Ann E Rossi
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | | |
Collapse
|
24
|
|
25
|
Hirata H, Saint-Amant L, Waterbury J, Cui W, Zhou W, Li Q, Goldman D, Granato M, Kuwada JY. accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development 2004; 131:5457-68. [PMID: 15469975 DOI: 10.1242/dev.01410] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When wild-type zebrafish embryos are touched at 24 hours post-fertilization (hpf), they typically perform two rapid alternating coils of the tail. By contrast, accordion (acc) mutants fail to coil their tails normally but contract the bilateral trunk muscles simultaneously to shorten the trunk, resulting in a pronounced dorsal bend. Electrophysiological recordings from muscles showed that the output from the central nervous system is normal in mutants, suggesting a defect in muscles is responsible. In fact, relaxation in acc muscle is significantly slower than normal. In vivo imaging of muscle Ca2+ transients revealed that cytosolic Ca2+ decay was significantly slower in acc muscle. Thus, it appears that the mutant behavior is caused by a muscle relaxation defect due to the impairment of Ca2+ re-uptake. Indeed, acc mutants carry a mutation in atp2a1 gene that encodes the sarco(endo)plasmic reticulum Ca2+-ATPase 1 (SERCA1), a Ca2+ pump found in the muscle sarcoplasmic reticulum (SR) that is responsible for pumping Ca2+ from the cytosol back to the SR. As SERCA1 mutations in humans lead to Brody disease, an exercise-induced muscle relaxation disorder, zebrafish accordion mutants could be a useful animal model for this condition.
Collapse
Affiliation(s)
- Hiromi Hirata
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-0720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gutiérrez-Martín Y, Martín-Romero FJ, Iñesta-Vaquera FA, Gutiérrez-Merino C, Henao F. Modulation of sarcoplasmic reticulum Ca(2+)-ATPase by chronic and acute exposure to peroxynitrite. ACTA ACUST UNITED AC 2004; 271:2647-57. [PMID: 15206930 DOI: 10.1111/j.1432-1033.2004.04193.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SERCA), an integral membrane protein, becomes irreversibly inactivated in vitro by the addition of a single bolus of peroxynitrite with a K(0.5) of 200-300 microm, and this results in a large decrease of the ATP-dependent Ca2+ gradient across the sarcoplasmic reticulum (SR) membranes. The inactivation of SERCA is raised by treatment of SR vesicles with repetitive micromolar pulses of peroxynitrite. The inhibition of the SERCA is due to the oxidation of thiol groups and tyrosine nitration. Scavengers that react directly with peroxynitrite, such as cysteine, reduced glutathione, NADH, methionine, ascorbate or Trolox, a water-soluble analog of alpha-tocopherol, afforded significant protection. However, dimethyl sulfoxide and mannitol, two hydroxyl radical scavengers, and alpha-tocopherol did not protect SERCA from inactivation. Our results showed that the target of peroxynitrite is the cytosolic globular domain of the SERCA and that major skeletal muscle intracellular reductants (ascorbate, NADH and reduced glutathione) protected against inhibition of this ATPase by peroxynitrite.
Collapse
Affiliation(s)
- Yolanda Gutiérrez-Martín
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias y Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
27
|
Sato K, Yamasaki K, Daiho T, Miyauchi Y, Takahashi H, Ishida-Yamamoto A, Nakamura S, Iizuka H, Suzuki H. Distinct types of abnormality in kinetic properties of three Darier disease-causing sarco(endo)plasmic reticulum Ca2+-ATPase mutants that exhibit normal expression and high Ca2+ transport activity. J Biol Chem 2004; 279:35595-603. [PMID: 15208303 DOI: 10.1074/jbc.m404887200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The possible functional abnormalities in three different Darier disease-causing Ca(2+)-ATPase (SERCA2b) mutants, Ile(274) --> Val at the lumenal end of M3, Leu(321) --> Phe on the cytoplasmic part of M4, and Met(719) --> Ile in P domain, were explored, because they exhibited nearly normal expression and localization in COS-1 cells and the high ATPase and coupled Ca(2+) transport activities that were essentially identical (L321F) or slightly lower (I274V by approximately 35% and M719I by approximately 30%) as compared with those of the wild type. These mutations happened to be in Japanese patients found previously by us. Kinetic analyses revealed that each of the mutants possesses distinct types of abnormalities; M719I and L321F possess the 2-3-fold reduced affinity for cytoplasmic Ca(2+), whereas I274V possesses the normal high affinity. L321F exhibited also the remarkably reduced sensitivity to the feedback inhibition of the transport cycle by accumulated lumenal Ca(2+), as demonstrated with the effect of Ca(2+) ionophore on ATPase activity and more specifically with the effects of Ca(2+) (up to 50 mm) on the decay of phosphoenzyme intermediates. The results on I274V and M719I suggest that the physiological requirement for Ca(2+) homeostasis in keratinocytes to avoid haploinsufficiency is very strict, probably much more than considered previously. The insensitivity to lumenal Ca(2+) in L321F likely brings the lumenal Ca(2+) to an abnormally elevated level. The three mutants with their distinctively altered kinetic properties will thus likely cause different types of perturbation of intracellular Ca(2+) homeostasis, but nevertheless all types of perturbation result in Darier disease. It might be possible that the observed unique feature of L321F could possibly be associated with the specific symptoms in the pedigree with this mutation, neuropsychiatric disorder, and behavior problems. The results also provided further insight into the global nature of conformational changes of SERCAs for ATP-driven Ca(2+) transport.
Collapse
Affiliation(s)
- Katsuhiko Sato
- Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Novelli A, Valente EM, Bernardini L, Ceccarini C, Sinibaldi L, Caputo V, Cavalli P, Dallapiccola B. Autosomal dominant Brody disease cosegregates with a chromosomal (2;7)(p11.2;p12.1) translocation in an Italian family. Eur J Hum Genet 2004; 12:579-83. [PMID: 15083169 DOI: 10.1038/sj.ejhg.5201200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Brody disease is a rare muscle disorder characterized by exercise-induced impairment in muscle relaxation, due to a markedly reduced influx of calcium ions in the sarcoplasmic reticulum. A subset of autosomal recessive families harbour mutations in the ATP2A1 gene, encoding the fast-twitch skeletal muscle sarcoplasmic reticulum Ca(2+) ATPase (SERCA1). Rare autosomal dominant families have been described, in which ATP2A1 was excluded as the causative gene, further supporting genetic heterogeneity. We report four individuals from a three-generation Italian family with a clinical phenotype of Brody disease, in which linkage analysis excluded ATP2A1 as the responsible gene. The disease cosegregates in an autosomal dominant fashion with an apparently balanced constitutional chromosome translocation (2;7)(p11.2;p12.1), suggesting a causal relationship between the rearrangement and the phenotype. FISH analysis using YAC and PAC clones as probes refined the breakpoint regions to genomic segments of about 164 and 120 kb, respectively, providing a possible clue to pinpoint the location of a novel gene responsible for this rare muscle disorder.
Collapse
|
29
|
Dode L, Andersen JP, Leslie N, Dhitavat J, Vilsen B, Hovnanian A. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady-state and transient kinetic analyses. J Biol Chem 2003; 278:47877-89. [PMID: 12975374 DOI: 10.1074/jbc.m306784200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steady-state and rapid kinetic studies were conducted to functionally characterize the overall and partial reactions of the Ca2+ transport cycle mediated by the human sarco(endo)plasmic reticulum Ca2+-ATPase 2 (SERCA2) isoforms, SERCA2a and SERCA2b, and 10 Darier disease (DD) mutants upon heterologous expression in HEK-293 cells. SERCA2b displayed a 10-fold decrease in the rate of Ca2+ dissociation from E1Ca2 relative to SERCA2a (i.e. SERCA2b enzyme manifests true high affinity at cytosolic Ca2+ sites) and a lower rate of dephosphorylation. These fundamental kinetic differences explain the increased apparent affinity for activation by cytosolic Ca2+ and the reduced catalytic turnover rate in SERCA2b. Relative to SERCA1a, both SERCA2 isoforms displayed a 2-fold decrease of the rate of E2 to E1Ca2 transition. Furthermore, seven DD mutants were expressed at similar levels as wild type. The expression level was 2-fold reduced for Gly23 --> Glu and Ser920 --> Tyr and 10-fold reduced for Gly749 --> Arg. Uncoupling between Ca2+ translocation and ATP hydrolysis and/or changes in the rates of partial reactions account for lack of function for 7 of 10 mutants: Gly23 --> Glu (uncoupling), Ser186 --> Phe, Pro602 --> Leu, and Asp702 --> Asn (block of E1 approximately P(Ca2) to E2-P transition), Cys318 --> Arg (uncoupling and 3-fold reduction of E2-P to E2 transition rate), and Thr357 --> Lys and Gly769 --> Arg (lack of phosphorylation). A 2-fold decrease in the E1 approximately P(Ca2) to E2-P transition rate is responsible for the 2-fold decrease in activity for Pro895 --> Leu. Ser920 --> Tyr is a unique DD mutant showing an enhanced molecular Ca2+ transport activity relative to wild-type SERCA2b. In this case, the disease may be a consequence of the low expression level and/or reduction of Ca2+ affinity and sensitivity to inhibition by lumenal Ca2+.
Collapse
Affiliation(s)
- Leonard Dode
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Pan Y, Zvaritch E, Tupling AR, Rice WJ, de Leon S, Rudnicki M, McKerlie C, Banwell BL, MacLennan DH. Targeted disruption of the ATP2A1 gene encoding the sarco(endo)plasmic reticulum Ca2+ ATPase isoform 1 (SERCA1) impairs diaphragm function and is lethal in neonatal mice. J Biol Chem 2003; 278:13367-75. [PMID: 12556521 DOI: 10.1074/jbc.m213228200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote SERCA1(-/-) mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size variability. The V(max) of Ca(2+) transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No compensatory responses were detected in analysis of mRNAs encoding other Ca(2+) handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers, and the absence of compensatory increases in other Ca(2+) handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal respiration, can account for respiratory failure in term SERCA1-null mice.
Collapse
Affiliation(s)
- Yan Pan
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gélébart P, Martin V, Enouf J, Papp B. Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 2003; 303:676-84. [PMID: 12659872 DOI: 10.1016/s0006-291x(03)00405-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sarco/endoplasmic reticulum-type calcium transport ATPases (SERCA enzymes) pump calcium ions from the cytosol into the endoplasmic reticulum. We report that in addition to the ubiquitously expressed SERCA2b isoform, a new splice variant of SERCA2 can be detected (SERCA2c) that arises from the inclusion of a short intronic sequence located between exons 20 and 21 of the SERCA2a isoform. Sequence analysis revealed classical splice donor and acceptor sites, as well as a branch-point site. Due to the presence in the new exon of an in-frame stop codon that is preceded by a 17 bp coding sequence, this mRNA potentially codes for a protein with a truncated C-terminus containing a short unique C-terminal peptide stretch. SERCA2c message was detected in epithelial, mesenchymal, and hematopoietic cell lines, as well as in primary human monocytes. Moreover, we found that during monocytic differentiation total SERCA2 ATPase expression is induced on the protein and mRNA level and that the novel SERCA2c messenger is also up-regulated during this process. These data indicate that the alternative splicing pattern of the 3(') region of the SERCA2 primary transcript is more complex than that previously thought and that this enzyme may be involved in the process of monocyte differentiation.
Collapse
Affiliation(s)
- Pascal Gélébart
- U. 348 INSERM, IFR-6, Hôpital Lariboisière, 8, rue Guy Patin, 75010 Paris, France
| | | | | | | |
Collapse
|
32
|
Dode L, Vilsen B, Van Baelen K, Wuytack F, Clausen JD, Andersen JP. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses. J Biol Chem 2002; 277:45579-91. [PMID: 12207029 DOI: 10.1074/jbc.m207778200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steady-state and transient-kinetic studies were conducted to characterize the overall and partial reactions of the Ca(2+)-transport cycle mediated by the human sarco(endo)plasmic reticulum Ca(2+)-ATPase 3 (SERCA3) isoforms: SERCA3a, SERCA3b, and SERCA3c. Relative to SERCA1a, all three human SERCA3 enzymes displayed a reduced apparent affinity for cytosolic Ca(2+) in activation of the overall reaction due to a decreased E(2) to E(1)Ca(2) transition rate and an increased rate of Ca(2+) dissociation from E(1)Ca(2). At neutral pH, the ATPase activity of the SERCA3 enzymes was not significantly enhanced upon permeabilization of the microsomal vesicles with calcium ionophore, indicating a difference from SERCA1a with respect to regulation of the lumenal Ca(2+) level (either an enhanced efflux of lumenal Ca(2+) through the pump in E(2) form or insensitivity to inhibition by lumenal Ca(2+)). Other differences from SERCA1a with respect to the overall ATPase reaction were an alkaline shift of the pH optimum, increased catalytic turnover rate at pH optimum (highest for SERCA3b, the isoform with the longest C terminus), and an increased sensitivity to inhibition by vanadate that disappeared under equilibrium conditions in the absence of Ca(2+) and ATP. The transient-kinetic analysis traced several of the differences from SERCA1a to an enhancement of the rate of dephosphorylation of the E(2)P phosphoenzyme intermediate, which was most pronounced at alkaline pH and increased with the length of the alternatively spliced C terminus.
Collapse
Affiliation(s)
- Leonard Dode
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
An experiment performed in London nearly 120 years ago, which by today's standards would be considered unacceptably sloppy, marked the beginning of the calcium (Ca(2+)) signaling saga. Sidney Ringer [Ringer, S. (1883) J. Physiol. 4, 29-43] was studying the contraction of isolated rat hearts. In earlier experiments, Ringer had suspended them in a saline medium for which he admitted to having used London tap water, which is hard: The hearts contracted beautifully. When he proceeded to replace the tap water with distilled water, he made a startling finding: The beating of the hearts became progressively weaker, and stopped altogether after about 20 min. To maintain contraction, he found it necessary to add Ca(2+) salts to the suspension medium. Thus, Ringer had serendipitously discovered that Ca(2+), hitherto exclusively considered as a structural element, was active in a tissue that has nothing to do with bone or teeth, and performed there a completely novel function: It carried the signal that initiated heart contraction. It was a landmark observation, which should have immediately aroused wide interest. Unexpectedly, however, for decades it attracted no particular attention. Occasionally, farsighted pioneers argued forcefully for a messenger role of Ca(2+), offering compelling experimental evidence. Among them, one could quote L. V. Heilbrunn [Heilbrunn, L. V. (1940) Physiol. Zool. 13, 88-94], who contracted frog muscle fibers by applying Ca(2+) salts to their cut ends, but not to their surfaces. Heilbrunn correctly concluded that Ca(2+) had diffused from the cut ends to the internal contractile elements to elicit their contraction. One could also quote K. Bailey [Bailey, K. (1942) Biochem. J. 36, 121-139], who showed that the ATPase activity of myosin was strongly activated by Ca(2+) (but not by Mg(2+)), and concluded that the liberation of Ca(2+) in the neighborhood of the myosin controlled muscle contraction. Clearly, enough evidence was there, but only a handful of people had the vision to see it and to foresee its far-reaching implications. Perhaps no better example of clairvoyance can be offered than the quip by O. Loewy in 1959: "Ja Kalzium, das ist alles!"
Collapse
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
34
|
Kovács T, Felföldi F, Papp B, Pászty K, Bredoux R, Enouf J. All three splice variants of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene are translated to proteins: a study of their co-expression in platelets and lymphoid cells. Biochem J 2001; 358:559-68. [PMID: 11535119 PMCID: PMC1222092 DOI: 10.1042/0264-6021:3580559] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular cloning of two previously unknown human sarco/endoplasmic reticulum Ca(2+)-ATPase 3 (SERCA3) 3'-end transcripts, 3b and 3c, has been recently published. Data were lacking, however, for the presence of these SERCA3 variants in different tissue or cell types at the protein level. Here we report the co-expression of three human SERCA3 protein isoforms in platelets and T lymphoid Jurkat cells. Isoform-specific polyclonal anti-peptide antibodies have been generated that recognize specifically the SERCA3a, 3b or 3c splice variants at their C-termini, and this has been confirmed by peptide-competition experiments as well. None of these antibodies cross-reacted with the housekeeping SERCA2b isoform co-expressed endogenously with SERCA3 proteins in non-muscle cells. Although all three SERCA3 isoforms could be detected in platelets, the 3a form was the most abundantly expressed species. Its size matched the apparent size of SERCA3a over-expressed in HEK-293 cells. Immunoprecipitation of the SERCA3 variants from platelet membranes using a PL/IM 430-affinity matrix provided evidence that the putative pan-anti-SERCA3 antibody, PL/IM 430, recognizes all SERCA3 protein isoforms. The epitope for the PL/IM 430 antibody could be localized in a 40 kDa N-terminal tryptic fragment common to all three SERCA3 variants. Comparative Western-blot analysis showed that the expression level of the SERCA3a, 3b and 3c isoforms was more than 10 times lower in Jurkat cells than in platelets, whereas expression of the ubiquitous SERCA2b was nearly identical. This work highlights new Ca(2+)-transporting proteins of haematopoietic cells and provides specific antibodies for their detection.
Collapse
Affiliation(s)
- T Kovács
- National Institute of Haematology and Immunology, H-1113 Budapest, Daróczi u. 24, Hungary.
| | | | | | | | | | | |
Collapse
|
35
|
Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, Pinton P, Lecoeur H, Gougeon ML, le Maire M, Rizzuto R, Bréchot C, Paterlini-Bréchot P. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 2001; 153:1301-14. [PMID: 11402072 PMCID: PMC2192035 DOI: 10.1083/jcb.153.6.1301] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca(2+) accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis.
Collapse
Affiliation(s)
- Mounia Chami
- The French Institute of Health and Medical Research Institut National de la Santé et de la Recherche Médicale (INSERM/Pasteur U370)/Necker Faculty Institute of Medicine, 75015 Paris, France
| | - Devrim Gozuacik
- The French Institute of Health and Medical Research Institut National de la Santé et de la Recherche Médicale (INSERM/Pasteur U370)/Necker Faculty Institute of Medicine, 75015 Paris, France
| | - David Lagorce
- The French Institute of Health and Medical Research Institut National de la Santé et de la Recherche Médicale (INSERM/Pasteur U370)/Necker Faculty Institute of Medicine, 75015 Paris, France
| | - Marisa Brini
- Department of Biochemistry and Center for the Study of Biomembranes of the National Research Council (CNR), University of Padova, 35121 Padova, Italy
| | - Pierre Falson
- URA Centre National de Recherche Scientifique (CNRS) 2096, CEA Saclay, 91191 Gif sur Yvette, France
| | - Gérard Peaucellier
- National Center Scientific Research, URA 2156, Arago Laboratory, F66651 Banyuls sur mer, France
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, 44100 Ferrara, Italy
| | - Hervé Lecoeur
- Pasteur Institute, Unit of Viral Oncology, SIDA Department of Retrovirus, 75015 Paris, France
| | - Marie-Lyse Gougeon
- Pasteur Institute, Unit of Viral Oncology, SIDA Department of Retrovirus, 75015 Paris, France
| | - Marc le Maire
- URA Centre National de Recherche Scientifique (CNRS) 2096, CEA Saclay, 91191 Gif sur Yvette, France
| | - Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, 44100 Ferrara, Italy
| | - Christian Bréchot
- The French Institute of Health and Medical Research Institut National de la Santé et de la Recherche Médicale (INSERM/Pasteur U370)/Necker Faculty Institute of Medicine, 75015 Paris, France
| | - Patrizia Paterlini-Bréchot
- The French Institute of Health and Medical Research Institut National de la Santé et de la Recherche Médicale (INSERM/Pasteur U370)/Necker Faculty Institute of Medicine, 75015 Paris, France
| |
Collapse
|
36
|
Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:195-262. [PMID: 10958931 DOI: 10.1016/s0079-6107(00)00006-7] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contractile and energetic properties of human skeletal muscle have been studied for many years in vivo in the body. It has been, however, difficult to identify the specific role of muscle fibres in modulating muscle performance. Recently it has become possible to dissect short segments of single human muscle fibres from biopsy samples and make them work in nearly physiologic conditions in vitro. At the same time, the development of molecular biology has provided a wealth of information on muscle proteins and their genes and new techniques have allowed analysis of the protein isoform composition of the same fibre segments used for functional studies. In this way the histological identification of three main human muscle fibre types (I, IIA and IIX, previously called IIB) has been followed by a precise description of molecular composition and functional and biochemical properties. It has become apparent that the expression of different protein isoforms and therefore the existence of distinct muscle fibre phenotypes is one of the main determinants of the muscle performance in vivo. The present review will first describe the mechanisms through which molecular diversity is generated and how fibre types can be identified on the basis of structural and functional characteristics. Then the molecular and functional diversity will be examined with regard to (1) the myofibrillar apparatus; (2) the sarcolemma and the sarcoplasmic reticulum; and (3) the metabolic systems devoted to producing ATP. The last section of the review will discuss the advantage that fibre diversity can offer in optimizing muscle contractile performance.
Collapse
Affiliation(s)
- R Bottinelli
- Institute of Human Physiology, University of Pavia, Via Forlanni 6, 27100, Pavia, Italy.
| | | |
Collapse
|
37
|
East JM. Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/function and biology (review). Mol Membr Biol 2000; 17:189-200. [PMID: 11302372 DOI: 10.1080/09687680010009646] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This review examines the structure and function of the sarco(endo)plasmic reticulum calcium pump (SERCA1a) in the light of the recent publication of the 2.6 A resolution structure of this protein, and looks at the increasing awareness of the key role played by SERCAs in calcium signalling. The roles played by the calcium pump isoforms, SERCA1a/b, SERCA2a/b and SERCA3a/b/c in cellular function are discussed, and the modulation of SERCA activity by phospholamban, sarcolipin and other modulatory influences is examined. The recent discoveries of human SERCA mutations leading to disease states is reviewed, and the insights into SERCA function using transgenic approaches are outlined.
Collapse
Affiliation(s)
- J M East
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK.
| |
Collapse
|
38
|
Abstract
Transient elevations of intracellular Ca2+ play a signalling role in such complex cellular functions as contraction, secretion, fertilization, proliferation, metabolism, heartbeat and memory. However, prolonged elevation of Ca2+ above about 10 microM is deleterious to a cell and can activate apoptosis. In muscle, there is a narrow window of Ca2+ dysregulation in which abnormalities in Ca2+ regulatory proteins can lead to disease, rather than apoptosis. Key proteins in the regulation of muscle Ca2+ are the voltage-dependent, dihydropyridine-sensitive, L-type Ca2+ channels located in the transverse tubule and Ca2+ release channels in the junctional terminal cisternae of the sarcoplasmic reticulum. Abnormalities in these proteins play a key role in malignant hyperthermia (MH), a toxic response to anesthetics, and in central core disease (CCD), a muscle myopathy. Sarco(endo)plasmic reticulum Ca2+ ATPases (SERCAs) return sarcoplasmic Ca2+ to the lumen of the sarcoplasmic reticulum. Loss of SERCA1a Ca2+ pump function is one cause of exercise-induced impairment of the relaxation of skeletal muscle, in Brody disease. Phospholamban expressed in cardiac muscle and sarcolipin expressed in skeletal muscle regulate SERCA activity. Studies with knockout and transgenic mice show that gain of inhibitory function of phospholamban alters cardiac contractility and could be a causal feature in some cardiomyopathies. Calsequestrin, calreticulin, and a series of other acidic, lumenal, Ca2+ binding proteins provide a buffer for Ca2+ stored in the sarcoplasmic reticulum. Overexpression of cardiac calsequestrin leads to cardiomyopathy and ablation of calreticulin alters cardiac development.
Collapse
Affiliation(s)
- D H MacLennan
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
40
|
Chami M, Gozuacik D, Saigo K, Capiod T, Falson P, Lecoeur H, Urashima T, Beckmann J, Gougeon ML, Claret M, le Maire M, Bréchot C, Paterlini-Bréchot P. Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene 2000; 19:2877-86. [PMID: 10871838 DOI: 10.1038/sj.onc.1203605] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have used the Hepatitis B Virus DNA genome as a probe to identify genes clonally mutated in vivo, in human liver cancers. In a tumor, HBV-DNA was found to be integrated into the gene encoding Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA), which pumps calcium, an important intracellular messenger for cell viability and growth, from the cytosol to the endoplasmic reticulum. The HBV X gene promoter cis-activates chimeric HBV X/SERCA1 transcripts, with splicing of SERCA1 exon 11, encoding C-terminally truncated SERCA1 proteins. Two chimeric HBV X/SERCA1 proteins accumulate in the tumor and form dimers. In vitro analyses have demonstrated that these proteins localize to the ER, determine its calcium depletion and induce cell death. We have also shown that these biological effects are related to expression of the SERCA, rather than of the viral moiety. This report involves for the first time the expression of mutated SERCA proteins in vivo in a tumor cell proliferation and in vitro in the control of cell viability. Oncogene (2000).
Collapse
Affiliation(s)
- M Chami
- U-370 INSERM, Necker Institute, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Adductor pollicis muscle function of a 21-year-old man with genetically confirmed Brody's disease (sarcoplasmic reticulum [SR] -Ca2+ATPase deficiency) was investigated to study the possible effects of reduced SR-Ca2+ATPase activity on muscle relaxation and force production. Following maximal electrical activation of the ulnar nerve, tetanic muscle half-relaxation time was greater in the patient (246 +/- 10 ms) than control subjects (97 +/- 4 ms, n = 8). During repetitive activation, there was a similar decline in maximal shortening velocity in the patient and controls, indicating a comparable reduction in cross-bridge cycling rate. The finding that the slowing of relaxation was greater in the patient (329 ms versus 138 +/- 20 ms) suggests that there was a further reduction of SR-Ca2+ATPase activity in the patient's muscle during fatigue. Following a voluntary contraction, involuntary activity of the antagonist muscles facilitated force decline and masked the impaired relaxation in the patient. This antagonist-induced relaxation indicates that it might be difficult to establish impaired muscle relaxation with voluntary contractions.
Collapse
Affiliation(s)
- C J De Ruiter
- Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
A novel P-type Ca(2+)-ATPase gene has been cloned and sequenced in the yeast Kluyveromyces lactis. The gene has been named KlPMR1 and is localized on chromosome I. The putative gene product contains 936 residues and has a calculated molecular weight of 102,437 Da. Analysis of deduced amino acid sequence (KlPmr1p) indicated that the encoded protein retains all the highly conserved domains characterizing the P-type ATPases. KlPmr1p shares 71% amino acid identity with Pmr1p of S. cerevisiae, 62% with HpPmr1p of Hansenula polymorpha, 56% with Y1Pmr1p of Yarrowia lipolytica and 52% with the Ca(2+)-ATPase encoded for by the SPCA1 gene of Rattus norvegicus; these similarities place KlPmr1p in the SPCA group (secretory pathway Ca(2+)-ATPase) of the P-type ATPases. The K. lactis strain harbouring the Klpmr1 disrupted gene is not able to grow in presence of low calcium concentrations and shows hypersensitivity to high concentrations of EGTA in the medium. These defects are relieved by PMR1 of S. cerevisiae on a centromeric plasmid, demonstrating that KlPMR1 encodes for a functional Pmr1p homologue.
Collapse
Affiliation(s)
- D Uccelletti
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, Italy
| | | | | |
Collapse
|
44
|
Kang HA, Kim JY, Ko SM, Park CS, Ryu DD, Sohn JH, Choi ES, Rhee SK. Cloning and characterization of the Hansenula polymorpha homologue of the Saccharomyces cerevisiae PMR1 gene. Yeast 1998; 14:1233-40. [PMID: 9791894 DOI: 10.1002/(sici)1097-0061(19980930)14:13<1233::aid-yea322>3.0.co;2-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A gene homologous to Saccharomyces cerevisiae PMR1 has been cloned in the methylotrophic yeast Hansenula polymorpha. The partial DNA fragment of the H. polymorpha homologue was initially obtained by a polymerase chain reaction and used to isolate the entire gene which encodes a protein of 918 amino acids. The putative gene product contains all ten of the conserved regions observed in P-type ATPase. The cloned gene product exhibits 60.3% amino acid identity to the S. cerevisiae PMR1 gene product and complemented the growth defect of a S. cerevisiae pmr1 null mutant in the EGTA-containing medium. The results demonstrate that the H. polymorpha gene encodes the functional homologue of the S. cerevesiae PMR1 gene product, a P-type Ca(2+)-ATPase.
Collapse
Affiliation(s)
- H A Kang
- Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dode L, De Greef C, Mountian I, Attard M, Town MM, Casteels R, Wuytack F. Structure of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene. Promoter analysis and alternative splicing of the SERCA3 pre-mRNA. J Biol Chem 1998; 273:13982-94. [PMID: 9593748 DOI: 10.1074/jbc.273.22.13982] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human chromosome 17-specific genomic clones extending over 90 kilobases (kb) of DNA and coding for sarco/endoplasmic reticulum Ca2+-ATPase 3 (SERCA3) were isolated. The presence of the D17S1828 genetic marker in the cosmid contig enabled us to map the SERCA3 gene (ATP2A3) 11 centimorgans from the top of the short arm p of chromosome 17, in the vicinity of the cystinosis gene locus. The SERCA3 gene contains 22 exons spread over 50 kb of genomic DNA. The exon/intron boundaries are well conserved between human SERCA3 and SERCA1 genes, except for the junction between exons 8 and 9 which is found in the SERCA1 gene but not in SERCA3 and SERCA2 genes. The transcription start site (+1) is located 152 nucleotides (nt) upstream of the AUG codon. The 5'-flanking region, including exon 1, is embedded in a 1.5-kb CpG island and is characterized by the absence of a TATA box and by the presence of 14 putative Sp1 sites, 11 CACCC boxes, 5 AP-2-binding motifs, 3 GGCTGGGG motifs, 3 CANNTG boxes, a GATA motif, as well as single sites for Ets-1, c-Myc, and TFIIIc. Functional promoter analysis indicated that the GC-rich region (87% G + C) from -135 to -31 is of critical importance in initiating SERCA3 gene transcription in Jurkat cells. Exon 21 (human, 101 base pairs; mouse, 86 base pairs) can be alternatively excluded, partially included, or totally included, thus generating, respectively, SERCA3a (human and mouse, 999 amino acids (aa)), SERCA3b (human, 1043 aa; mouse, 1038 aa), or SERCA3c (human, 1024 aa; mouse, 1021 aa) isoforms with different C termini. Expression of the mouse SERCA3 isoforms in COS-1 cells demonstrated their ability to function as active pumps, although with different apparent affinities for Ca2+.
Collapse
Affiliation(s)
- L Dode
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
46
|
Nagata Y, Yamamoto T, Ema M, Mimura J, Fujii-Kuriyama Y, Suzuki T, Furukohri T, Konishi K, Sato D, Tajima G, Nakamura J. cDNA cloning and predicted primary structure of scallop sarcoplasmic reticulum Ca(2+)-ATPase. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:777-85. [PMID: 9787769 DOI: 10.1016/s0305-0491(98)00055-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarcoplasmic reticulum (SR) Ca(2+)-ATPase of the scallop cross-striated adductor muscle was purified with deoxycholate and digested with lysyl endopeptidase for sequencing of the digested fragments. Overlapping cDNA clones of the ATPase were isolated by screening the cDNA library with an RT-PCR product as a hybridization probe, which encodes the partial amino acid sequence of the ATPase. The predicted amino acid sequence of the ATPase contained all the partial sequences determined with the proteolytic fragments and consisted of the 993 residues with approximately 70% overall sequence similarity to those of the SR ATPases from rabbit fast-twitch and slow-twitch muscles. An outline of the structure of the scallop ATPase molecule is predicted to mainly consist of ten transmembrane and five 'stalk' domains with two large cytoplasmic regions as observed with the rabbit ATPase molecules. The sequence relationship between scallop and other sarco/endoplasmic reticulum-type Ca(2+)-ATPases is discussed.
Collapse
Affiliation(s)
- Y Nagata
- Biological Institute, Graduate School of Science, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Park CS, Kim JY, Crispino C, Chang CC, Ryu DD. Molecular cloning of YlPMR1, a S. cerevisiae PMR1 homologue encoding a novel P-type secretory pathway Ca2+ -ATPase, in the yeast Yarrowia lipolytica. Gene 1998; 206:107-16. [PMID: 9461422 DOI: 10.1016/s0378-1119(97)00573-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel P-type ATPase gene, Saccharomyces cerevisiae PMR1 homologue (YlPMR1), has been cloned and sequenced in the yeast, Yarrowia lipolytica. The putative gene product has 928 amino acids with a calculated molecular mass of 100050 Da and a pI of 5.15. The deduced amino-acid sequence analysis demonstrated that the cloned gene product contains all 10 of the conserved regions in P-type ATPases and exhibits 55% amino-acid identity to the S. cerevisiae PMR1 gene product; however, it shows a relatively lower homology to PMCA (24%) and SERCA (33%), confirming the presence of a third class of Ca2+-ATPase (secretory pathway Ca2+-ATPase, SPCA). The YlPMR1-disrupted strain shows defective growth in low Ca2+ or EGTA-containing medium. In fact, a longer lag time (60 h) was observed in YlPMR1-defective mutant cells during cultivation in EGTA-containing YPD medium. These growth defects were overcome by adding Ca2+ and Mn2+ into the medium. Interestingly, whereas Mn2+ inhibits growth of the control strain, it significantly improves the growth of YlPMR1-disrupted cells. These results suggest an involvement of the YlPMR1 gene product in Ca2+ and Mn2+ ion homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- C S Park
- Department of Chemical Engineering and Material Science, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
48
|
MacLennan DH, Rice WJ, Odermatt A. Structure/function analysis of the Ca2+ binding and translocation domain of SERCA1 and the role in Brody disease of the ATP2A1 gene encoding SERCA1. Ann N Y Acad Sci 1997; 834:175-85. [PMID: 9405806 DOI: 10.1111/j.1749-6632.1997.tb52249.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D H MacLennan
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, Ontario, Canada.
| | | | | |
Collapse
|
49
|
Odermatt A, Taschner PE, Scherer SW, Beatty B, Khanna VK, Cornblath DR, Chaudhry V, Yee WC, Schrank B, Karpati G, Breuning MH, Knoers N, MacLennan DH. Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics 1997; 45:541-53. [PMID: 9367679 DOI: 10.1006/geno.1997.4967] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sarcolipin (SLN) is a low-molecular-weight protein that copurifies with the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA1). Genomic DNA and cDNA encoding human sarcolipin (SLN) were isolated and characterized and the SLN gene was mapped to chromosome 11q22-q23. Human, rabbit, and mouse cDNAs encode a protein of 31 amino acids. Homology of SLN with phospholamban (PLN) suggests that the first 7 hydrophilic amino acids are cytoplasmic, the next 19 hydrophobic amino acids form a single transmembrane helix, and the last 5 hydrophilic amino acids are lumenal. The cytoplasmic and transmembrane sequences are not well conserved among the three species, but the lumenal sequence is highly conserved. Like SERCA1, SLN is highly expressed in rabbit fast-twitch skeletal muscle, but it is expressed to a lower extent in slow-twitch muscle and to an even lower extent in cardiac muscle, where SERCA2a and PLN are highly expressed. It is expressed in only trace amounts in pancreas and prostate. SLN and PLN genes resemble each other in having two small exons, with their entire coding sequences lying in exon 2 and a large intron separating the two segments. Brody disease is an inherited disorder of skeletal muscle function, characterized by exercise-induced impairment of muscle relaxation. Mutations in the ATP2A1 gene encoding SERCA1 have been associated with the autosomal recessive inheritance of Brody disease in three families, but not with autosomal dominant inheritance of the disease. A search for mutations in the SLN gene in five Brody families, four of which were not linked to ATP2A1, did not reveal any alterations in coding, splice junction or promoter sequences. The homozygous deletion of C438 in the coding sequence of ATP2A1 in Brody disease family 3, leading to a frameshift and truncation following Pro147 in SERCA1, is the fourth ATP2A1 mutation to be associated with autosomal recessive Brody disease.
Collapse
Affiliation(s)
- A Odermatt
- Charles H. Best Institute, University of Toronto, 112 College Street, Toronto, Ontario, M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Isoform Diversity and Regulation of Organellar-Type Ca2+-Transport ATPases. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|