1
|
Tseng WY, Stacey M, Lin HH. Role of Adhesion G Protein-Coupled Receptors in Immune Dysfunction and Disorder. Int J Mol Sci 2023; 24:ijms24065499. [PMID: 36982575 PMCID: PMC10055975 DOI: 10.3390/ijms24065499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders of the immune system, including immunodeficiency, immuno-malignancy, and (auto)inflammatory, autoimmune, and allergic diseases, have a great impact on a host’s health. Cellular communication mediated through cell surface receptors, among different cell types and between cell and microenvironment, plays a critical role in immune responses. Selective members of the adhesion G protein-coupled receptor (aGPCR) family are expressed differentially in diverse immune cell types and have been implicated recently in unique immune dysfunctions and disorders in part due to their dual cell adhesion and signaling roles. Here, we discuss the molecular and functional characteristics of distinctive immune aGPCRs and their physiopathological roles in the immune system.
Collapse
Affiliation(s)
- Wen-Yi Tseng
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hsi-Hsien Lin
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
2
|
Lin HH, Ng KF, Chen TC, Tseng WY. Ligands and Beyond: Mechanosensitive Adhesion GPCRs. Pharmaceuticals (Basel) 2022; 15:ph15020219. [PMID: 35215331 PMCID: PMC8878244 DOI: 10.3390/ph15020219] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Cells respond to diverse types of mechanical stimuli using a wide range of plasma membrane-associated mechanosensitive receptors to convert extracellular mechanical cues into intracellular signaling. G protein-coupled receptors (GPCRs) represent the largest cell surface protein superfamily that function as versatile sensors for a broad spectrum of bio/chemical messages. In recent years, accumulating evidence has shown that GPCRs can also engage in mechano-transduction. According to the GRAFS classification system of GPCRs, adhesion GPCRs (aGPCRs) constitute the second largest GPCR subfamily with a unique modular protein architecture and post-translational modification that are well adapted for mechanosensory functions. Here, we present a critical review of current evidence on mechanosensitive aGPCRs.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Correspondence: (H.-H.L.); (W.-Y.T.)
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (H.-H.L.); (W.-Y.T.)
| |
Collapse
|
3
|
Lin HH, Lo YL, Wang WC, Huang KY, I KY, Chang GW. Overexpression of FAM46A, a Non-canonical Poly(A) Polymerase, Promotes Hemin-Induced Hemoglobinization in K562 Cells. Front Cell Dev Biol 2020; 8:414. [PMID: 32528962 PMCID: PMC7264091 DOI: 10.3389/fcell.2020.00414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 01/11/2023] Open
Abstract
FAM46A belongs to the FAM46 subfamily of the nucleotidyltransferase-fold superfamily and is predicted to be a non-canonical poly(A) polymerase. FAM46A has been linked to several human disorders including retinitis pigmentosa, bone abnormality, cancer, and obesity. However, its molecular and functional characteristics are largely unknown. We herein report that FAM46A is expressed in cells of the hematopoietic system and plays a role in hemin-induced hemoglobinization. FAM46A is a nucleocytoplasmic shuttle protein modified by Tyr-phosphorylation only in the cytosol, where it is closely associated with ER. On the other hand, it is located proximal to the chromatin regions of active transcription in the nucleus. FAM46A is a cell cycle-dependent poly-ubiquitinated short-lived protein degraded mostly by proteasome and its overexpression inhibits cell growth and promotes hemin-induced hemoglobinization in K562 cell. Site-directed mutagenesis experiments confirm the non-canonical poly(A) polymerase activity of FAM46A is essential for enhanced hemin-induced hemoglobinization. In summary, FAM46A is a novel poly(A) polymerase that functions as a critical intracellular modulator of hemoglobinization.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Ling Lo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chih Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M, Hendrickson RC, Brennan CW, Sadelain M. Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell 2017; 32:506-519.e5. [PMID: 29017060 PMCID: PMC7025434 DOI: 10.1016/j.ccell.2017.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/02/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) therapy targeting CD19 has yielded remarkable outcomes in patients with acute lymphoblastic leukemia. To identify potential CAR targets in acute myeloid leukemia (AML), we probed the AML surfaceome for overexpressed molecules with tolerable systemic expression. We integrated large transcriptomics and proteomics datasets from malignant and normal tissues, and developed an algorithm to identify potential targets expressed in leukemia stem cells, but not in normal CD34+CD38- hematopoietic cells, T cells, or vital tissues. As these investigations did not uncover candidate targets with a profile as favorable as CD19, we developed a generalizable combinatorial targeting strategy fulfilling stringent efficacy and safety criteria. Our findings indicate that several target pairings hold great promise for CAR therapy of AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel H Berman
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajesh K Soni
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Eyquem
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohamad Hamieh
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
5
|
|
6
|
Adhesion GPCRs in immunology. Biochem Pharmacol 2016; 114:88-102. [DOI: 10.1016/j.bcp.2016.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
|
7
|
Abstract
Immune cells express several adhesion G protein-coupled receptors (aGPCRs), including the ADGRE subfamily members EMR1 (F4/80, ADGRE1), EMR2 (ADGRE2), EMR3 (ADGRE3), EMR4 (FIRE, ADGRE4), and CD97 (ADGRE5), the ADGRB subfamily member BAI1 (ADGRB1), and the ADGRG subfamily members GPR56 (ADGRG1), GPR97 (Pb99, ADGRG3), and GPR114 (ADGRG5). Expression of these molecules in hematopoietic stem and progenitor cells, monocytes/macrophages (Mφs), dendritic cells, granulocytes, and lymphocytes depends on lineage diversification and maturation, making them suitable markers for individual leukocyte subsets (e.g., F4/80 on mouse Mφs). Recent studies revealed intriguing activities of aGPCRs in tolerance induction (EMR1), granulopoiesis (CD97), engulfment of apoptotic cells and bacteria (BAI1), hematopoietic stem cell formation (GPR56), and control of cytotoxicity (GPR56). Here, we review these findings and discuss their biological and translational implications.
Collapse
|
8
|
Safaee M, Ivan ME, Oh MC, Oh T, Sayegh ET, Kaur G, Sun MZ, Bloch O, Parsa AT. The role of epidermal growth factor-like module containing mucin-like hormone receptor 2 in human cancers. Oncol Rev 2014; 8:242. [PMID: 25992231 PMCID: PMC4419612 DOI: 10.4081/oncol.2014.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 02/04/2023] Open
Abstract
G-protein coupled receptors (GPCRs) are among the most diverse and ubiquitous proteins in all of biology. The epidermal growth factor-seven span transmembrane (EGF-TM7) subfamily of adhesion GPCRs is a small subset whose members are mainly expressed on the surface of leukocytes. The EGF domains on the N-terminus add significant size to these receptors and they are considered to be among the largest members of the TM7 family. Although not all of their ligands or downstream targets have been identified, there is evidence implicating the EGF-TM7 family diverse processes such as cell adhesion, migration, inflammation, and autoimmune disease. Recent studies have identified expression of EGF-TM7 family members on human neoplasms including those of the thyroid, stomach, colon, and brain. Their presence on these tissues is not surprising given the ubiquity of GPCRs, but because their functional significance and pathways are not completely understood, they are of tremendous clinical and scientific interest. Current evidence suggests that expression of certain EGF-TM7 receptors is correlated with tumor grade, confers a more invasive phenotype, and increases the likelihood of metastatic disease. In this review, we will discuss the structure, function, and regulation of these receptors. We also describe the expression of these receptors in human cancers and explore their potential mechanistic significance.
Collapse
Affiliation(s)
- Michael Safaee
- Department of Neurological Surgery, University of California , San Francisco, CA, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of California , San Francisco, CA, USA
| | - Michael C Oh
- Department of Neurological Surgery, University of California , San Francisco, CA, USA
| | - Taemin Oh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Gurvinder Kaur
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Matthew Z Sun
- Department of Neurological Surgery, University of California , San Francisco, CA, USA
| | - Orin Bloch
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Andrew T Parsa
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| |
Collapse
|
9
|
Caceres NE, Aerts M, Marquez B, Mingeot-Leclercq MP, Tulkens PM, Devreese B, Van Bambeke F. Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC). PLoS One 2013; 8:e58285. [PMID: 23505477 PMCID: PMC3591400 DOI: 10.1371/journal.pone.0058285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 02/01/2013] [Indexed: 12/21/2022] Open
Abstract
Overexpression of multidrug transporters is a well-established mechanism of resistance to chemotherapy, but other changes may be co-selected upon exposure to drugs that contribute to resistance. Using a model of J774 macrophages made resistant to the fluoroquinolone antibiotic ciprofloxacin and comparing it with the wild-type parent cell line, we performed a quantitative proteomic analysis using the stable isotope labeling with amino acids in cell culture technology coupled with liquid chromatography electrospray ionization Fourier transform tandem mass spectrometry (LC-ESI-FT-MS/MS) on 2 samples enriched in membrane proteins (fractions F1 and F2 collected from discontinuous sucrose gradient). Nine hundred proteins were identified with at least 3 unique peptides in these 2 pooled fractions among which 61 (F1) and 69 (F2) showed a significantly modified abundance among the 2 cell lines. The multidrug resistance associated protein Abcc4, known as the ciprofloxacin efflux transporter in these cells, was the most upregulated, together with Dnajc3, a protein encoded by a gene located downstream of Abcc4. The other modulated proteins are involved in transport functions, cell adhesion and cytoskeleton organization, immune response, signal transduction, and metabolism. This indicates that the antibiotic ciprofloxacin is able to trigger a pleiotropic adaptative response in macrophages that includes the overexpression of its efflux transporter.
Collapse
Affiliation(s)
- Nancy E. Caceres
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Maarten Aerts
- Laboratorium voor Eiwitbiochemie en Biomoleculaire Engineering, Universiteit Gent, Belgium
| | - Béatrice Marquez
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M. Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bart Devreese
- Laboratorium voor Eiwitbiochemie en Biomoleculaire Engineering, Universiteit Gent, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Lin HH, Stacey M, Stein-Streilein J, Gordon S. F4/80: the macrophage-specific adhesion-GPCR and its role in immunoregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 706:149-56. [PMID: 21618834 DOI: 10.1007/978-1-4419-7913-1_13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a macrophage-restricted reagent, the generation and application of the F4/80 mAb has greatly benefited the phenotypic characterization of mouse tissue macrophages for three decades. Following the molecular identification of the F4/80 antigen as an EGF-TM7 member of the adhesion-GPCR family, great interest was ignited to understand its cell type-specific expression pattern as well as its functional role in macrophage biology. Recent studies have shown that the F4/80 gene is regulated by a novel set of transcription factors that recognized a unique promoter sequence. Gene targeting experiments have produced two F4/80 knock out animal models and showed that F4/80 is not required for normal macrophage development. Nevertheless, the F4/80 receptor was found to be necessary for the induction of efferent CD8+ regulatory T cells responsible for peripheral immune tolerance. The identification of cellular ligands for F4/80 and delineation of its signaling pathway remain elusive but are critical to understand the in vivo role of this macrophage-specific adhesion-GPCR.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hwa Ist Road, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | |
Collapse
|
11
|
Hamann J, Koning N, Pouwels W, Ulfman LH, van Eijk M, Stacey M, Lin HH, Gordon S, Kwakkenbos MJ. EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur J Immunol 2007; 37:2797-802. [PMID: 17823986 DOI: 10.1002/eji.200737553] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The EGF-TM7 F4/80 is a defining marker of murine macrophage populations. Applying flow cytometric analysis using the newly generated mAb A10, and quantitative real-time PCR, we here report the surprising observation that the human ortholog of F4/80, EGF-like module containing mucin-like hormone receptor (EMR)1, is absent on mononuclear phagocytic cells including monocytes, macrophages, and myeloid dendritic cells. Unexpectedly, we found that EMR1 expression is restricted to eosinophilic granulocytes, where expression is overlapping with the eotaxin receptor CCR3 and the immunoglobulin-like lectin Siglec-8. Absence on other leukocytes, including basophils, implies that EMR1 is a highly specific marker for eosinophils in humans.
Collapse
Affiliation(s)
- Jörg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yona S, Lin HH, Dri P, Davies JQ, Hayhoe RPG, Lewis SM, Heinsbroek SEM, Brown KA, Perretti M, Hamann J, Treacher DF, Gordon S, Stacey M. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J 2007; 22:741-51. [PMID: 17928360 DOI: 10.1096/fj.07-9435com] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At present, approximately 150 different members of the adhesion-G protein-coupled receptor (GPCR) family have been identified in metazoans. Surprisingly, very little is known about their function, although they all possess large extracellular domains coupled to a seven-transmembrane domain, suggesting a potential role in cell adhesion and signaling. Here, we demonstrate how the human-restricted adhesion-GPCR, EMR2 (epidermal growth factor-like module-containing mucin-like hormone receptor), regulates neutrophil responses by potentiating the effects of a number of proinflammatory mediators and show that the transmembrane region is critical for adhesion-GPCR function. Using an anti-EMR2 antibody, ligation of EMR2 increases neutrophil adhesion and migration, and augments superoxide production and proteolytic enzyme degranulation. On neutrophil activation, EMR2 is rapidly translocated to membrane ruffles and the leading edge of the cell. Further supporting the role in neutrophil activation, EMR2 expression on circulating neutrophils is significantly increased in patients with systemic inflammation. These data illustrate a definitive function for a human adhesion-GPCR within the innate immune system and suggest an important role in potentiating the inflammatory response. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function.
Collapse
Affiliation(s)
- Simon Yona
- Sir William Dunn School of Pathology, Oxford University, Oxford, OX1 3RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, Kerley M, Mucenski ML, Gordon S, Stein-Streilein J. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. ACTA ACUST UNITED AC 2005; 201:1615-25. [PMID: 15883173 PMCID: PMC2212925 DOI: 10.1084/jem.20042307] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We show that the mouse macrophage-restricted F4/80 protein is not required for the development and distribution of tissue macrophages but is involved in the generation of antigen-specific efferent regulatory T (T reg) cells that suppress antigen-specific immunity. In the in vivo anterior chamber (a.c.)–associated immune deviation (ACAID) model of peripheral tolerance, a.c. inoculation of antigen into F4/80−/− mice was unable to induce efferent T reg cells and suppress delayed-type hypersensitivity (DTH) responses. Moreover, the use of anti-F4/80 mAb and F4/80−/− APCs in an in vitro ACAID model showed that all APC cells in the culture must be able to express F4/80 protein if efferent T reg cells were to be generated. In a low-dose oral tolerance model, WT but not F4/80−/− mice generated an efferent CD8+ T reg cell population that suppressed an antigen-specific DTH response. Peripheral tolerance was restored in F4/80−/− mice by adoptive transfer of F4/80+ APCs in both peripheral tolerance models, indicating a central role for the F4/80 molecule in the generation of efferent CD8+ T reg cells.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang C, Kitsberg D, Chy H, Zhou Q, Morrison JR. Transposon-mediated generation of targeting vectors for the production of gene knockouts. Nucleic Acids Res 2005; 33:e24. [PMID: 15699181 PMCID: PMC549422 DOI: 10.1093/nar/gni014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.
Collapse
Affiliation(s)
- Chunfang Zhang
- CopyRat Pty Ltd 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
15
|
Wobus M, Vogel B, Schmücking E, Hamann J, Aust G. N-glycosylation of CD97 within the EGF domains is crucial for epitope accessibility in normal and malignant cells as well as CD55 ligand binding. Int J Cancer 2004; 112:815-22. [PMID: 15386373 DOI: 10.1002/ijc.20483] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CD97 is an EGF-TM7 receptor found on various carcinomas where expression levels correlate with dedifferentiation and tumor stage, smooth muscle cells and leukocytes. CD97 acts as an adhesion molecule by binding to its cellular ligand, CD55. In this study, we demonstrate that 2 immunodominant CD97 epitopes are not equally present in the various cell types. Differences were apparent in gastrointestinal tumors and smooth muscle cells where monoclonal antibodies (mAbs) to the first epidermal growth factor (EGF) domain (CD97(EGF)) showed a more restricted staining pattern than mAbs to the stalk region (CD97(stalk)). This discrepancy was not detectable in cultured gastrointestinal tumor cell lines. In fact, the selection of the CD97 mAb influences the result of clinical studies. Thus, we clarified the reason(s) for these differences in CD97 mAb staining on various cell types. We provide evidence that epitope accessibility for CD97(EGF) mAbs depends on N-glycosylation. Immunoprecipitation of CD97 from the Colo 205 tumor cell line revealed the established 78 and 83 kDa products, while a 52 and 57 kDa band were obtained from smooth muscle cells. N-glycosidase F reduced the size of CD97 in Colo 205 cells to 52-57 kDa. Culturing these cells with tunicamycin resulted in the same decrease in size and impaired CD97(EGF) mAb binding. As shown by site-directed mutagenesis, deletion of the N-glycosylation sites located within the EGF domains efficiently disturbed CD97(EGF) mAb immunoreactivity and, importantly, binding of CD55. In conclusion, CD97(EGF) epitope accessibility for mAbs and ligand binding is influenced by cell type-specific N-glycosylation.
Collapse
Affiliation(s)
- Manja Wobus
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
16
|
Leemans JC, te Velde AA, Florquin S, Bennink RJ, de Bruin K, van Lier RAW, van der Poll T, Hamann J. The Epidermal Growth Factor-Seven Transmembrane (EGF-TM7) Receptor CD97 Is Required for Neutrophil Migration and Host Defense. THE JOURNAL OF IMMUNOLOGY 2004; 172:1125-31. [PMID: 14707087 DOI: 10.4049/jimmunol.172.2.1125] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The epidermal growth factor-seven transmembrane (EGF-TM7) family is a group of seven-span transmembrane receptors predominantly expressed by cells of the immune system. Family members CD97, EGF module-containing mucin-like receptor (EMR) 1, EMR2, EMR3, EMR4, and EGF-TM7-latrophilin-related protein are characterized by an extended extracellular region with a variable number of N-terminal EGF-like domains. EGF-TM7 receptors bind cellular ligands as demonstrated by the interaction of CD97 with decay accelerating factor (CD55) and dermatan sulfate. Investigating the effect of newly generated mAb on the migration of neutrophilic granulocytes, we here report for the first time in vivo data on the function of CD97. In dextran sulfate sodium-induced experimental colitis, we show that homing of adoptively transferred neutrophils to the colon was significantly delayed when cells were preincubated with CD97 mAb. The consequences of this defect in neutrophil migration for host defense are demonstrated in a murine model of Streptococcus pneumoniae-induced pneumonia. Mice treated with CD97 mAb to EGF domain 1 (1B2) and EGF domain 3 (1C5) displayed a reduced granulocytic inflammatory infiltrate at 20 h after inoculation. This was associated with a significantly enhanced outgrowth of bacteria in the lungs at 44 h and a strongly diminished survival. Together, these findings indicate an essential role for CD97 in the migration of neutrophils.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Binding Sites, Antibody
- Cell Line
- Cell Movement/immunology
- Colitis/immunology
- Colitis/pathology
- Cricetinae
- Disease Models, Animal
- ErbB Receptors/metabolism
- Female
- Immunity, Innate
- Injections, Intraperitoneal
- Lung/immunology
- Lung/microbiology
- Lung/pathology
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Neutropenia/immunology
- Neutropenia/prevention & control
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Neutrophils/transplantation
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/pathology
- Receptors, G-Protein-Coupled
Collapse
Affiliation(s)
- Jaklien C Leemans
- Laboratory for Experimental Internal Medicine, Department of Pathology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kwakkenbos MJ, Kop EN, Stacey M, Matmati M, Gordon S, Lin HH, Hamann J. The EGF-TM7 family: a postgenomic view. Immunogenetics 2003; 55:655-66. [PMID: 14647991 DOI: 10.1007/s00251-003-0625-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 11/04/2003] [Indexed: 10/26/2022]
Abstract
With the human and mouse genome projects now completed, the receptor repertoire of mammalian cells has finally been elucidated. The EGF-TM7 receptors are a family of class B seven-span transmembrane (TM7) receptors predominantly expressed by cells of the immune system. Within the large TM7 superfamily, the molecular structure and ligand-binding properties of EGF-TM7 receptors are unique. Derived from the processing of a single polypeptide, they are expressed at the cell surface as heterodimers consisting of a large extracellular region associated with a TM7 moiety. Through a variable number of N-terminal epidermal growth factor (EGF)-like domains, EGF-TM7 receptors interact with cellular ligands such as CD55 and chondroitin sulfate. Recent in vivo studies demonstrate a role of the EGF-TM7 receptor CD97 in leukocyte migration. The different number of EGF-TM7 genes in man compared with mice, the chimeric nature of EMR2 and the inactivation of human EMR4 point toward a still-evolving receptor family. Here we discuss the currently available information on this intriguing receptor family.
Collapse
Affiliation(s)
- Mark J Kwakkenbos
- Laboratory for Experimental Immunology, Academic Medical Center, University of Amsterdam, G1-106, PO Box 22700, 1100 DE, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J, Gordon S, Lin HH. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 2003; 102:2916-24. [PMID: 12829604 DOI: 10.1182/blood-2002-11-3540] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using multivalent protein probes, an evolutionarily conserved endogenous ligand for EMR2, a human myeloid cell-restricted EGF-TM7 receptor, was identified on the surface of a number of adherent cell lines. In addition, in situ staining of the ligand has revealed specific in vivo patterns consistent with a connective tissue distribution. The interaction is conserved across species and mediated exclusively by the largest EMR2 isoform containing 5 epidermal growth factor (EGF)-like modules. Antibody-blocking studies subsequently revealed that the fourth EGF-like module constitutes the major ligand-binding site. The largest isoform of CD97, a related EGF-TM7 molecule containing an identical EGF-like module, also binds to the putative EMR2 ligand. Through the use of mutant Chinese hamster ovary (CHO) cell lines defective in glycosaminoglycans (GAGs) biosynthesis as well as the enzymatic removal of specific cell surface GAGs, the molecular identity of the EMR2 ligand was identified as chondroitin sulfate (CS). Thus, exogenous CS GAGs blocked the EMR2-ligand interaction in a dose-dependent manner. EMR2-CS interaction is Ca2+- and sulphation-dependent and results in cell attachment. This is the first report of a GAG ligand for the TM7 receptors extending the already vast repertoire of stimuli of the GPCR superfamily.
Collapse
Affiliation(s)
- Martin Stacey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Stacey M, Chang GW, Sanos SL, Chittenden LR, Stubbs L, Gordon S, Lin HH. EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J Biol Chem 2002; 277:29283-93. [PMID: 12023293 DOI: 10.1074/jbc.m204306200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel member of the EGF-TM7 family, mEMR4, was identified and characterized. The full-length mouse EMR4 cDNA encodes a predicted 689-amino acid protein containing two epidermal growth factor (EGF)-like modules, a mucin-like spacer domain, and a seven-transmembrane domain with a cytoplasmic tail. Genetic mapping established that mEMR4 is localized in the distal region of mouse chromosome 17 in close proximity to another EGF-TM7 gene, F4/80 (Emr1). Similar to F4/80, mEMR4 is predominantly expressed on resident macrophages. However, a much lower expression level was also detected in thioglycollate-elicited peritoneal neutrophils and bone marrow-derived dendritic cells. The expression of mEMR4 is up-regulated following macrophage activation in Biogel and thioglycollate-elicited peritoneal macrophages. Similarly, mEMR4 is over-expressed in TNF-alpha-treated resident peritoneal macrophages, whereas interleukin-4 and -10 dramatically reduce the expression. mEMR4 was found to undergo proteolytic processing within the extracellular stalk region resulting in two protein subunits associated noncovalently as a heterodimer. The proteolytic cleavage site was identified by N-terminal amino acid sequencing and located at the conserved GPCR (G protein-coupled receptor) proteolytic site in the extracellular region. Using multivalent biotinylated mEMR4-mFc fusion proteins as a probe, a putative cell surface ligand was identified on a B lymphoma cell line, A20, in a cell-binding assay. The mEMR4-ligand interaction is Ca2+-independent and is mediated predominantly by the second EGF-like module. mEMR4 is the first EGF-TM7 receptor known to mediate the cellular interaction between myeloid cells and B cells.
Collapse
Affiliation(s)
- Martin Stacey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Melnick M, Jaskoll T. Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 11:199-215. [PMID: 12002815 DOI: 10.1177/10454411000110020401] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Signal processing is the sine qua non of embryogenesis. At its core, any single signal transduction pathway may be understood as classic Information Theory, adapted as an open system such that, because of networking, the "receiver" is presented with more information than was initially signaled by the "source". Over 40 years ago, Waddington presented his "Epigenetic Landscape" as a metaphor for the hierarchical nature of embryogenesis. Mathematically, Waddington's landscape may be modeled as a neural net. The "black box" of the neural net is an interacting network of signal transduction pathways (using hormones, growth factors, cytokines, neurotransmitters, and others) which inform the Boolean logic gates. An emerging theme in developmental biology is that defined sets of epigenetic circuits are used in multiple places, at multiple times, for similar and sometimes different purposes during organogenesis. As we show here, submandibular gland embryonic and fetal development is a splendid paradigm of these epigenetic circuits and their phenotypic outcomes, such as branching and lumen formation.
Collapse
Affiliation(s)
- M Melnick
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles 90089-0641, USA.
| | | |
Collapse
|
21
|
Kwakkenbos MJ, Chang G, Lin H, Pouwels W, de Jong EC, van Lier RAW, Gordon S, Hamann J. The human EGF‐TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mark J. Kwakkenbos
- Laboratory for Experimental Immunology and Department of Immunobiology, CLB, The Netherlands
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands; and
| | - Gin‐Wen Chang
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | - Hsi‐Hsien Lin
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | - Walter Pouwels
- Laboratory for Experimental Immunology and Department of Immunobiology, CLB, The Netherlands
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands; and
| | - Esther C. de Jong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands; and
| | - René A. W. van Lier
- Laboratory for Experimental Immunology and Department of Immunobiology, CLB, The Netherlands
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands; and
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | - Jörg Hamann
- Laboratory for Experimental Immunology and Department of Immunobiology, CLB, The Netherlands
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands; and
| |
Collapse
|
22
|
Stacey M, Lin HH, Hilyard KL, Gordon S, McKnight AJ. Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. J Biol Chem 2001; 276:18863-70. [PMID: 11279179 DOI: 10.1074/jbc.m101147200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor (EGF)-TM7 subgroup of G-protein-coupled receptors is composed predominantly of leukocyte-restricted glycoproteins defined by their unique hybrid structure, in which extracellular EGF-like domains are coupled to a seven-span transmembrane moiety via a mucin-like stalk. The EGF-TM7 group comprises mouse F4/80, human EGF module-containing mucin-like hormone receptor (EMR) 1, human EMR2, and human and mouse CD97, the genes for which map to human chromosome 19p13 and the syntenic regions of the mouse genome. In this study we describe the cloning and characterization of EMR3, a novel human EGF-TM7 molecule, and show the existence of its cellular ligand. The EMR3 gene maps closely to the existing members of the EGF-TM7 family on human chromosome 19p13.1 and, in common with other EGF-TM7 genes, is capable of generating different protein isoforms through alternative splicing. Two alternative splice forms have been isolated: one encoding a 652-amino acid cell surface protein consisting of two EGF-like domains, a mucin stalk, and a putative G-protein-coupled receptor domain and the other encoding a truncated soluble form containing only two EGF-like domains. As with other members of the EGF-TM7 family, EMR3 mRNA displays a predominantly leukocyte-restricted expression pattern, with highest levels in neutrophils, monocytes, and macrophages. Through the use of soluble EMR3 multivalent probes we have shown the presence of a ligand at the surface of monocyte-derived macrophages and activated human neutrophils. These interactions suggest a potential role for EMR3 in myeloid-myeloid interactions during immune and inflammatory responses.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Biotinylation
- Chromosome Mapping
- Chromosomes, Human, Pair 19
- Cloning, Molecular
- DNA, Complementary/metabolism
- Epidermal Growth Factor/chemistry
- Humans
- Inflammation
- Leukocytes/metabolism
- Ligands
- Macrophages/metabolism
- Models, Chemical
- Molecular Sequence Data
- Monocytes/metabolism
- Mucins/chemistry
- Neutrophils/metabolism
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M Stacey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Jaspars LH, Vos W, Aust G, Van Lier RA, Hamann J. Tissue distribution of the human CD97 EGF-TM7 receptor. TISSUE ANTIGENS 2001; 57:325-31. [PMID: 11380941 DOI: 10.1034/j.1399-0039.2001.057004325.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD97 is a founding member of the EGF-TM7 family of class II seven-span transmembrane (7-TM) receptors. CD97 has an extended extracellular region with several N-terminal epidermal growth factor (EGF)-like domains, which mediate binding to CD55. Previous studies demonstrated the expression of CD97 on activated lymphocytes, monocytes, macrophages, granulocytes, and numerous haematopoietic and nonhaematopoietic cell lines. Here, we determined the cellular distribution of human CD97 in situ by immunohistochemistry (IH) and immunofluorescence (IF). Abundant expression of CD97 was detected on all types of macrophages and dendritic cells, except for microglia. Within the lymphoid lineage, most T cells but only a few B cells express CD97. Germinal centre B cells do not express the molecule. Except for smooth muscle cells, no staining was found on other cells outside the immune system. However, analysis of a restricted set of epithelial tumors revealed CD97 expression on the malignant cells in thyroid and gastrointestinal tract cancer.
Collapse
Affiliation(s)
- L H Jaspars
- Department of Pathology, Academic Hospital, Free University, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Lin HH, Stacey M, Hamann J, Gordon S, McKnight AJ. Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97. Genomics 2000; 67:188-200. [PMID: 10903844 DOI: 10.1006/geno.2000.6238] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermal growth factor (EGF)-TM7 proteins [EMR1, (EGF-like molecule containing mucin-like hormone receptor 1) F4/80, and CD97] constitute a recently defined class B GPCR subfamily and are predominantly expressed on leukocytes. These molecules possess N-terminal EGF-like domains coupled to a seven-span transmembrane (7TM) moiety via a mucin-like spacer domain. Genomic mapping analysis has suggested a possible EGF-TM7 gene family on the human chromosome 19p13 region. In this study, a new member of the EGF-TM7 family, EMR2, which shares strikingly similar molecular characteristics with CD97, is described. In addition to mapping closely to CD97 on human chromosome 19p13.1, EMR2 contains a total of five tandem EGF-like domains and expresses similar protein isoforms consisting of various numbers of EGF-like domains as a result of alternative RNA splicing. Furthermore, EMR2 and CD97 exhibit highly homologous EGF-like domains and share identical gene organization, indicating that both genes are the products of a recent gene duplication event. The homologous EGF-like domains enable the identification of both EMR2 and CD97 by monoclonal antibodies (mAbs) raised against the first EGF-like domain of CD97, whereas mAbs directed against the extracellular spacer domain of CD97 are able to differentiate these two proteins. Both EMR2 and CD97 are highly expressed in immune tissues; however, unlike CD97, which is ubiquitously expressed in most cell types, EMR2 expression is restricted to monocytes/Mφ and granulocytes. EMR2 fails to interact with CD55, the cellular ligand for CD97, suggesting the possibility of a different cellular ligand(s). EMR2 may therefore have a unique function in cells of monocyte/Mφ and granulocyte lineages.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antigens, CD
- Base Sequence
- Blotting, Northern
- COS Cells
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 19/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Epidermal Growth Factor/genetics
- Exons
- Gene Expression
- Gene Expression Regulation
- Genes/genetics
- HL-60 Cells
- Humans
- Introns
- Jurkat Cells
- K562 Cells
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H H Lin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Sumner R, Crawford A, Mucenski M, Frampton J. Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 2000; 19:3335-42. [PMID: 10918590 DOI: 10.1038/sj.onc.1203660] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The c-Myb transcriptional regulator is crucial to the development and functioning of haemopoietic cells, so much so that mouse embryos homozygous for an inactivated c-myb allele die from anaemia at about day 15 of gestation. By analysing c-myb(-/-) chimaeras we show that no mature cells of any lymphoid or myeloid lineage can be detected in adult haemopoietic tissues. This demonstrates that the effects of c-myb ablation on haemopoiesis are cell autonomous and correlates with an absence in the c-myb(-/-) foetal liver of uni- and multilineage CFUs. Indeed, CFU assays performed on E8.5 yolk sac cells revealed that haemopoietic progenitors are already defective at this stage. However, although cells expressing high levels of c-Kit were absent, we could detect a high proportion of CD34+CD45+ cells in the c-myb(-/-) foetal liver. Examination of chimaeric embryos revealed that c-myb(-/-) donor-derived CD34+/Kit+ cells, representing committed definitive progenitors, initially populated the foetal liver, but are unable to expand like wild type progenitors. Our results showing no megakaryocytic CFUs and a reduction in the absolute numbers of megakaryocytes in the c-myb(-/-) foetal liver also refute early suggestions that megakaryopoiesis is unaffected by the absence of c-Myb.
Collapse
Affiliation(s)
- R Sumner
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|
26
|
Stacey M, Lin HH, Gordon S, McKnight AJ. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 2000; 25:284-9. [PMID: 10838568 DOI: 10.1016/s0968-0004(00)01583-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A number of unusual seven-transmembrane molecules have recently been characterized that have significant amino acid sequence similarity within the membrane-spanning hydrophobic regions and intervening loops to members of G-protein-coupled receptor family B. However, in contrast to the family-B G-protein-coupled receptors, these molecules have unusually large N-terminal extracellular domains that contain a number of well- characterized protein modules. The range of cell types expressing these complex molecules and their potential roles in cell adhesion and signalling have become a major focus of research in a number of biological systems.
Collapse
Affiliation(s)
- M Stacey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK OX1 3RE
| | | | | | | |
Collapse
|
27
|
Balch SG, McKnight AJ, Seldin MF, Gordon S. Cloning of a novel C-type lectin expressed by murine macrophages. J Biol Chem 1998; 273:18656-64. [PMID: 9660840 DOI: 10.1074/jbc.273.29.18656] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning of a novel macrophage-restricted C-type lectin by differential display polymerase chain reaction. This molecule, named mouse macrophage C-type lectin, is a 219-amino acid, type II transmembrane protein with a single extracellular C-type lectin domain. Northern blot analysis indicates that it is expressed in cell lines and normal mouse tissues in a macrophage-restricted manner. The cDNA and genomic sequences of mouse macrophage C-type lectin indicate that it is related to the Group II animal C-type lectins. The mcl gene locus has been mapped between the genes for the interleukin-17 receptor and CD4 on mouse chromosome 6, the same chromosome as the mouse natural killer cell gene complex.
Collapse
Affiliation(s)
- S G Balch
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | | | | | |
Collapse
|
28
|
Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA. Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol 1998; 28:1701-7. [PMID: 9603477 DOI: 10.1002/(sici)1521-4141(199805)28:05<1701::aid-immu1701>3.0.co;2-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD97 is an activation-induced antigen on leukocytes which belongs to a new group of seven-span transmembrane (7-TM) molecules, designated EGF-TM7 family. Family members, including EMR1 and F4/80, are characterized by an extended extracellular region with several N-terminal epidermal growth factor-like (EGF) domains. Alternative splicing of CD97 results in isoforms possessing either three (EGF1, 2, 5), four (EGF1, 2, 3, 5) or five EGF domains (EGF1, 2, 3, 4, 5). We recently identified decay accelerating factor (DAF, CD55), a regulatory protein of the complement cascade, as a cellular ligand of the smallest isoform. Employing mutants of CD97(EGF1, 2, 5) in which the EGF domains have been systematically deleted, we here demonstrate the necessity of at least three tandemly linked EGF domains for the interaction with CD55. Consistent with the involvement of different EGF domains, monoclonal antibodies directed against the first EGF domain as well as the removal of Ca2+, for which binding sites exist in the second and fifth EGF domain, blocked binding to CD55. Compared to CD97(EGF1, 2 ,5) the larger isoforms CD97(EGF1, 2, 3, 5) and CD97(EGF1, 2, 3, 4, 5) have a significantly lower affinity for CD55. Thus, alternative splicing may regulate the ligand specificity of CD97 and probably other members of the EGF-TM7 family.
Collapse
Affiliation(s)
- J Hamann
- Central Laboratory of The Netherlands Red Cross Blood Transfusion Service, University of Amsterdam.
| | | | | | | | | | | |
Collapse
|
29
|
Planitzer SA, Machl AW, Rueckels M, Kubbies M. Identification of a novel c-DNA overexpressed in Fanconi's anemia fibroblasts partially homologous to a putative L-3-phosphoserine-phosphatase. Gene 1998; 210:297-306. [PMID: 9573387 DOI: 10.1016/s0378-1119(98)00083-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We applied the cDNA differential display technique (DDT) in a DNA-repair deficient cell model to isolate genes involved in dysregulation of cell proliferation and development of cancer. The comparative analysis of mRNA expression patterns of human diploid fibroblasts from Fanconi's amemia (FA) and normal phenotype led to the identification of a novel cDNA CO9. Northern blot analysis reveals that CO9 is significantly upregulated in FA fibroblasts but downregulated or absent in fibroblasts from normal donors. CO9 was also highly expressed in FA B-cells of complementation group A and in Raji cells. However, CO9 is not expressed in FA complementation groups B, C, D and E. The full-length cDNA is 840 bp long and contains an open reading frame of 216 bp (72 amino acids), which encodes for a 7.6-kDa protein. The lengths of the 5' and 3' untranslated region are 165 and 459 bp, respectively. The N-terminal and C-terminal nucleotide sequence of CO9 shows homology to a putative human L-3-phosphoserine phosphatase identified recently (HSPSPASE, EMBL Accession No. Y10275) but lacks a 476-bp stretch in the open reading frame. The loss of nucleotides within the open reading frame introduces a new termination codon in the CO9 cDNA along with a novel COOH terminus resulting in a new protein product. Database chromosome mapping localized CO9 to chromosome 7q 11.2. We hypothesize that CO9 represents a novel protein being a partial homologue to the L-3-phosphoserine phosphatase but with a different regulatory cell function.
Collapse
Affiliation(s)
- S A Planitzer
- Boehringer Mannheim Research Center, Penzberg, Germany.
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- A J McKnight
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
31
|
Spangenberg C, Winterpacht A, Zabel BU, Löbbert RW. Cloning and characterization of a novel gene (TM7SF1) encoding a putative seven-pass transmembrane protein that is upregulated during kidney development. Genomics 1998; 48:178-85. [PMID: 9521871 DOI: 10.1006/geno.1997.5170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used the cDNA differential display of mRNA technique to isolate genes differentially regulated during kidney development. Here we report the identification of a novel gene, TM7SF1, which is upregulated in the course of kidney development. The full-length cDNA of TM7SF1 is about 2.4 kb and contains an open reading frame of 1197 nucleotides. The predicted secondary structure of the corresponding protein displays seven putative helical transmembrane domains, a structural feature shared by all members of the G-protein-coupled receptor class of transmembrane proteins. Two minor alternatively spliced versions of approximately 2.3 and approximately 2.2 kb could be detected, one of which contains a nearly identical open reading frame with a truncated carboxy-terminus of the deduced protein. The second alternatively spliced version harbors a completely shifted open reading frame with a potential new ATG start codon. By the use of single-chromosome hybrid cells and fluorescence in situ hybridization experiments, TM7SF1 could be localized to chromosome 1q42-q43. Human multiple tissue Northern blot analysis revealed TM7SF1 transcripts in human kidney, heart, brain, and placenta tissue. Studies on Wilms tumor samples showed variable TM7SF1 expression, ranging from nearly undetectable levels to an abundant level of expression comparable to that of adult kidney tissue.
Collapse
|
32
|
Carulli JP, Artinger M, Swain PM, Root CD, Chee L, Tulig C, Guerin J, Osborne M, Stein G, Lian J, Lomedico PT. High throughput analysis of differential gene expression. J Cell Biochem 1998; 72 Suppl 30-31:286-296. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<286::aid-jcb35>3.0.co;2-d] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Accepted: 08/21/1998] [Indexed: 11/11/2022]
|