1
|
Sun S, Defosse T, Boyd A, Sop J, Verderose F, Surray D, Aziz M, Howland M, Wu S, Changela N, Jang J, Schindler K, Xing J, McKim KS. Whole transcriptome screening for novel genes involved in meiosis and fertility in Drosophila melanogaster. Sci Rep 2024; 14:3602. [PMID: 38351116 PMCID: PMC10864285 DOI: 10.1038/s41598-024-53346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Reproductive success requires the development of viable oocytes and the accurate segregation of chromosomes during meiosis. Failure to segregate chromosomes properly can lead to infertility, miscarriages, or developmental disorders. A variety of factors contribute to accurate chromosome segregation and oocyte development, such as spindle assembly and sister chromatid cohesion. However, many proteins required for meiosis remain unknown. In this study, we aimed to develop a screening pipeline for identifying novel meiotic and fertility genes using the genome of Drosophila melanogaster. To accomplish this goal, genes upregulated within meiotically active tissues were identified. More than 240 genes with no known function were silenced using RNA interference (RNAi) and the effects on meiosis and fertility were assessed. We identified 94 genes that when silenced caused infertility and/or high levels of chromosomal nondisjunction. The vast majority of these genes have human and mouse homologs that are also poorly studied. Through this screening process, we identified novel genes that are crucial for meiosis and oocyte development but have not been extensively studied in human or model organisms. Understanding the function of these genes will be an important step towards the understanding of their biological significance during reproduction.
Collapse
Affiliation(s)
- Siqi Sun
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tyler Defosse
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Ayla Boyd
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Joel Sop
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Faith Verderose
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Diya Surray
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Mark Aziz
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Margaret Howland
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Siwen Wu
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Neha Changela
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Janet Jang
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA.
| | - Kim S McKim
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Hu MZ, Dai ZZ, Ji HY, Zheng AQ, Liang H, Shen MM, Liu JN, Tang KF, Zhu SJ, Wang KJ. Upregulation of FAM50A promotes cancer development. Med Oncol 2023; 40:217. [PMID: 37393403 DOI: 10.1007/s12032-023-02072-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
FAM50A encodes a nuclear protein involved in mRNA processing; however, its role in cancer development remains unclear. Herein, we conducted an integrative pan-cancer analysis using The Cancer Genome Atlas, Genotype-Tissue Expression, and the Clinical Proteomic Tumor Analysis Consortium databases. Based on the gene expression data from TCGA and GTEx databases, we compared FAM50A mRNA levels in 33 types of human cancer tissues to those in corresponding normal tissues and found that FAM50A mRNA level was upregulated in 20 of the 33 types of common cancer tissues. Then, we compared the DNA methylation status of the FAM50A promoter in tumor tissues to that in corresponding normal tissues. FAM50A upregulation was accompanied by promoter hypomethylation in 8 of the 20 types of tumor tissues, suggesting that promoter hypomethylation contributes to the upregulation of FAM50A in these cancer tissues. Elevated FAM50A expression in 10 types of cancer tissues was associated with poor prognosis in patients with cancer. FAM50A expression was positively correlated with CD4+ T-lymphocyte and dendritic cell infiltration in cancer tissues but was negatively correlated with CD8+ T-cell infiltration in cancer tissues. FAM50A knockdown caused DNA damage, induced interferon beta and interleukin-6 expression, and repressed the proliferation, invasion, and migration of cancer cells. Our findings indicate that FAM50A might be useful in cancer detection, reveal insights into its role in cancer development, and may contribute to the development of cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Mei-Zhen Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhi-Zheng Dai
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hong-Yu Ji
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - An-Qi Zheng
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325015, People's Republic of China
| | - Hang Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mei-Mei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Choqing, 400016, People's Republic of China
| | - Jun-Nan Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shu-Juan Zhu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Ke-Jian Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nat Commun 2020; 11:3698. [PMID: 32703943 PMCID: PMC7378245 DOI: 10.1038/s41467-020-17452-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3′ alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development. Armfield X-linked disability (XLID) disorder has previously been linked to a locus in Xq28. Here, the authors report rare missense variants in FAM50A at Xq28, show that FAM50A interacts with the spliceosome, and that mis-splicing is enriched in knockout zebrafish suggesting it is a spliceosomopathy.
Collapse
|
4
|
New class of transcription factors controls flagellar assembly by recruiting RNA polymerase II in Chlamydomonas. Proc Natl Acad Sci U S A 2018; 115:4435-4440. [PMID: 29632184 DOI: 10.1073/pnas.1719206115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells have developed regulatory mechanisms that underlie flagellar assembly and maintenance, including the transcriptional regulation of flagellar genes, an initial step for making flagella. Although transcriptional regulation of flagellar gene expression is required for flagellar assembly in Chlamydomonas, no transcription factor that regulates the transcription of flagellar genes has been identified. We report that X chromosome-associated protein 5 (XAP5) acts as a transcription factor to regulate flagellar assembly in Chlamydomonas While XAP5 proteins are evolutionarily conserved across diverse organisms and play vital roles in diverse biological processes, nothing is known about the biochemical function of any member of this important protein family. Our data show that loss of XAP5 leads to defects in flagellar assembly. Posttranslational modifications of XAP5 track flagellar length during flagellar assembly, suggesting that cells possess a feedback system that modulates modifications to XAP5. Notably, XAP5 regulates flagellar gene expression via directly binding to a motif containing a CTGGGGTG-core. Furthermore, recruitment of RNA polymerase II (Pol II) machinery for transcriptional activation depends on the activities of XAP5. Our data demonstrate that, through recruitment of Pol II, XAP5 defines a class of transcription factors for transcriptional regulation of ciliary genes. This work provides insights into the biochemical function of the XAP5 family and the fundamental biology of the flagellar assembly, which enhance our understanding of the signaling and functions of flagella.
Collapse
|
5
|
Kim Y, Hur SW, Jeong BC, Oh SH, Hwang YC, Kim SH, Koh JT. The Fam50a positively regulates ameloblast differentiation via interacting with Runx2. J Cell Physiol 2017; 233:1512-1522. [PMID: 28574578 DOI: 10.1002/jcp.26038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/01/2017] [Indexed: 11/12/2022]
Abstract
Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D-PAGE analysis using mouse ameloblast lineage cell line (mALCs) cultured with mineralizing medium. Of identified proteins, family with sequence similarity 50 member A (Fam50a) was significantly increased during differentiation of mALCs. Fam50a protein was also highly expressed in secretory ameloblasts of mouse tooth germs. In mALCs cultures, forced expression of Fam50a up-regulated the expression of enamel matrix protein genes such as amelogenin, ameloblastin, and enamelin. In addition, up-regulation of Fam50a also increased ALP activity and mineralized nodule formation in a dose-dependent manner. In contrast, knockdown of Fam50a decreased expression levels of enamel matrix protein genes, ALP activity, and mineralized nodule formation. By fluorescence microscopy, endogenous Fam50a protein was found to be localized to the nucleus of ameloblasts. In addition, Fam50a synergistically increased Ambn transactivation by Runx2. Moreover, Fam50a increased binding affinity of Runx2 to Ambn promoter by physically interacting with Runx2. Taken together, these results suggest Fam50a might be a new positive regulator of ameloblast differentiation.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sung-Woong Hur
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Byung-Chul Jeong
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sin-Hye Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Yun-Chan Hwang
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sun-Hun Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Anver S, Roguev A, Zofall M, Krogan NJ, Grewal SIS, Harmer SL. Yeast X-chromosome-associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO Rep 2014; 15:894-902. [PMID: 24957674 DOI: 10.15252/embr.201438902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chromatin regulatory proteins affect diverse developmental and environmental response pathways via their influence on nuclear processes such as the regulation of gene expression. Through a genome-wide genetic screen, we implicate a novel protein called X-chromosome-associated protein 5 (Xap5) in chromatin regulation. We show that Xap5 is a chromatin-associated protein acting in a similar manner as the histone variant H2A.Z to suppress expression of antisense and repeat element transcripts throughout the fission yeast genome. Xap5 is highly conserved across eukaryotes, and a plant homolog rescues xap5 mutant yeast. We propose that Xap5 likely functions as a chromatin regulator in diverse organisms.
Collapse
Affiliation(s)
- Shajahan Anver
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| |
Collapse
|
7
|
Kostianets O, Antoniuk S, Filonenko V, Kiyamova R. Immunohistochemical analysis of medullary breast carcinoma autoantigens in different histological types of breast carcinomas. Diagn Pathol 2012; 7:161. [PMID: 23181716 PMCID: PMC3533517 DOI: 10.1186/1746-1596-7-161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND On the past decade a plethora of investigations were directed on identification of molecules involved in breast tumorogenesis, which could represent a powerful tool for monitoring, diagnostics and treatment of this disease. In current study we analyzed six previously identified medullary breast carcinoma autoantigens including LGALS3BP, RAD50, FAM50A, RBPJ, PABPC4, LRRFIP1 with cancer restricted serological profile in different histological types of breast cancer. METHODS Semi-quantitative immunohistochemical analysis of 20 tissue samples including medullary breast carcinoma, invasive ductal carcinoma, invasive lobular carcinoma and non-cancerous tissues obtained from patients with fibrocystic disease (each of five) was performed using specifically generated polyclonal antibodies. Differences in expression patterns were evaluated considering percent of positively stained cells, insensitivity of staining and subcellular localization in cells of all tissue samples. RESULTS All 6 antigens predominantly expressed in the most cells of all histological types of breast tumors and non-cancerous tissues with slight differences in intensity of staining and subcellular localization. The most significant differences in expression pattern were revealed for RAD50 and LGALS3BP in different histological types of breast cancer and for PABPC4 and FAM50A antigens in immune cells infiltrating breast tumors. CONCLUSIONS This pilot study made possible to select 4 antigens LGALS3BP, RAD50, PABPC4, and FAM50A as promising candidates for more comprehensive research as potential molecular markers for breast cancer diagnostics and therapy. VIRTUAL SLIDES The virtual slides' for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1860649350796892.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Adult
- Aged
- Antigens, Neoplasm/analysis
- Autoantigens/analysis
- Biomarkers, Tumor/analysis
- Blood Proteins/analysis
- Breast Neoplasms/classification
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/classification
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/classification
- Carcinoma, Lobular/immunology
- Carcinoma, Lobular/pathology
- Carcinoma, Medullary/classification
- Carcinoma, Medullary/immunology
- Carcinoma, Medullary/pathology
- Carrier Proteins/analysis
- DNA Repair Enzymes/analysis
- DNA-Binding Proteins/analysis
- Female
- Fibrocystic Breast Disease/immunology
- Fibrocystic Breast Disease/pathology
- Glycoproteins/analysis
- Humans
- Immunohistochemistry
- Middle Aged
- Nuclear Proteins/analysis
- Pilot Projects
- Poly(A)-Binding Proteins/analysis
- RNA-Binding Proteins
Collapse
Affiliation(s)
- Olga Kostianets
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo str., Kyiv, Ukraine
- Educational and Scientific Centre “Institute of Biology”, Taras Shevchenko National University of Kyiv, 64, Volodymyrs’ka Str., Kyiv, Ukraine
| | - Stepan Antoniuk
- Dnipropetrovsk Clinical Oncological Center, Dnipropetrovsk, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo str., Kyiv, Ukraine
| | - Ramziya Kiyamova
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150, Zabolotnogo str., Kyiv, Ukraine
| |
Collapse
|
8
|
Kostianets O, Shyian M, Sergiy D, Antoniuk S, Gout I, Filonenko V, Kiyamova R. Serological Analysis of SEREX-Defined Medullary Breast Carcinoma-Associated Antigens. Cancer Invest 2012; 30:519-27. [DOI: 10.3109/07357907.2012.697231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Zhang A, Skaar DA, Li Y, Huang D, Price TM, Murphy SK, Jirtle RL. Novel retrotransposed imprinted locus identified at human 6p25. Nucleic Acids Res 2011; 39:5388-400. [PMID: 21421564 PMCID: PMC3141237 DOI: 10.1093/nar/gkr108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentially methylated regions (DMRs) are stable epigenetic features within or in proximity to imprinted genes. We used this feature to identify candidate human imprinted loci by quantitative DNA methylation analysis. We discovered a unique DMR at the 5′-end of FAM50B at 6p25.2. We determined that sense transcripts originating from the FAM50B locus are expressed from the paternal allele in all human tissues investigated except for ovary, in which expression is biallelic. Furthermore, an antisense transcript, FAM50B-AS, was identified to be monoallelically expressed from the paternal allele in a variety of tissues. Comparative phylogenetic analysis showed that FAM50B orthologs are absent in chicken and platypus, but are present and biallelically expressed in opossum and mouse. These findings indicate that FAM50B originated in Therians after divergence from Prototherians via retrotransposition of a gene on the X chromosome. Moreover, our data are consistent with acquisition of imprinting during Eutherian evolution after divergence of Glires from the Euarchonta mammals. FAM50B expression is deregulated in testicular germ cell tumors, and loss of imprinting occurs frequently in testicular seminomas, suggesting an important role for FAM50B in spermatogenesis and tumorigenesis. These results also underscore the importance of accounting for parental origin in understanding the mechanism of 6p25-related diseases.
Collapse
Affiliation(s)
- Aiping Zhang
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Martin-Tryon EL, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER coordinates light signals for proper timing of photomorphogenesis and the circadian clock in Arabidopsis. THE PLANT CELL 2008; 20:1244-59. [PMID: 18515502 PMCID: PMC2438460 DOI: 10.1105/tpc.107.056655] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 04/24/2008] [Accepted: 05/08/2008] [Indexed: 05/24/2023]
Abstract
Numerous, varied, and widespread taxa have an internal circadian clock that allows anticipation of rhythmic changes in the environment. We have identified XAP5 CIRCADIAN TIMEKEEPER (XCT), an Arabidopsis thaliana gene important for light regulation of the circadian clock and photomorphogenesis. XCT is essential for proper clock function: xct mutants display a shortened circadian period in all conditions tested. Interestingly, XCT plays opposite roles in plant responses to light depending both on trait and wavelength. The clock in xct plants is hypersensitive to red but shows normal responses to blue light. By contrast, inhibition of hypocotyl elongation in xct is hyposensitive to red light but hypersensitive to blue light. Finally, XCT is important for ribulose-1,5-bisphosphate carboxylase/oxygenase production and plant greening in response to light. This novel combination of phenotypes suggests XCT may play a global role in coordinating growth in response to the light environment. XCT contains a XAP5 domain and is well conserved across diverse taxa, suggesting it has a common function in higher eukaryotes. Downregulation of the XCT ortholog in Caenorhabditis elegans is lethal, suggesting that studies in Arabidopsis may be instrumental to understanding the biochemical activity of XCT.
Collapse
Affiliation(s)
- Ellen L Martin-Tryon
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
11
|
Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics 2000; 155:85-104. [PMID: 10790386 PMCID: PMC1461074 DOI: 10.1093/genetics/155.1.85] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis elegans daf-11 and daf-21 mutants share defects in specific chemosensory responses mediated by several classes of sensory neurons, indicating that these two genes have closely related functions in an assortment of chemosensory pathways. We report that daf-11 encodes one of a large family of C. elegans transmembrane guanylyl cyclases (TM-GCs). The cyclic GMP analogue 8-bromo-cGMP rescues a sensory defect in both daf-11 and daf-21 mutants, supporting a role for DAF-11 guanylyl cyclase activity in this process and further suggesting that daf-21 acts at a similar step. daf-11::gfp fusions are expressed in five identified pairs of chemosensory neurons in a pattern consistent with most daf-11 mutant phenotypes. We also show that daf-21 encodes the heat-shock protein 90 (Hsp90), a chaperone with numerous specific protein targets. We show that the viable chemosensory-deficient daf-21 mutation is an unusual allele resulting from a single amino acid substitution and that the daf-21 null phenotype is early larval lethality. These results demonstrate that cGMP is a prominent second messenger in C. elegans chemosensory transduction and suggest a previously unknown role for Hsp90 in regulating cGMP levels.
Collapse
Affiliation(s)
- D A Birnby
- Department of Genetics, University of Washington, Seattle, Washington 98195-7360, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sedlacek Z, Münstermann E, Dhorne-Pollet S, Otto C, Bock D, Schütz G, Poustka A. Human and mouse XAP-5 and XAP-5-like (X5L) genes: identification of an ancient functional retroposon differentially expressed in testis. Genomics 1999; 61:125-32. [PMID: 10534398 DOI: 10.1006/geno.1999.5931] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although most retroposons that arose by reverse transcription of cellular mRNAs and by reintegration into the genome are nonfunctional, several examples exist in which the retroposon acquired a novel function and became fixed in the genome as a functional gene. We identified another such case: the ubiquitously expressed X-linked XAP-5 gene with unknown function gave rise to its retroposed counterpart, XAP-5-like (X5L), which has an intronless open reading frame and is autosomal in human. Phylogenetic analysis of the human and mouse XAP-5 and X5L genes shows that the retroposition most likely took place before the radiation of eutherian mammals. The XAP-5 and X5L genes are expressed in a wide range of tissues but are differentially expressed in testis. The ancient origin and broad expression of the X5L retroposon indicate that the XAP-5 and X5L genes may have assumed different functions in somatic cells. In addition to this, because of its autosomal location and its high level and particular pattern of expression in spermatogenic cells, the X5L expression in testis may compensate for the X-linked XAP-5 gene, which may be silenced during spermatogenesis.
Collapse
Affiliation(s)
- Z Sedlacek
- Molekulare Genomanalyse, Deutsches Krebsforschungszentrum, Heidelberg, 69120, Germany
| | | | | | | | | | | | | |
Collapse
|