1
|
Fang Y, Chen L, Yuan Y, Zhou S, Fu J, Zhang Q, Zhang N, Huang Y, Li Y, Yuan L, Chen L, Xiang C. Human menstrual blood-derived stem cells secreted ECM1 directly interacts with LRP1α to ameliorate hepatic fibrosis through FoxO1 and mTOR signaling pathway. Stem Cell Res Ther 2025; 16:230. [PMID: 40336034 PMCID: PMC12060366 DOI: 10.1186/s13287-025-04351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Human menstrual blood-derived stem cells (MenSCs), a major class of mesenchymal stem cells (MSCs), modulate intercellular signals via paracrine factors. Previous studies found that MenSC-derived secretomes exert protective effects against liver fibrosis. However, the underlying mechanisms of these observations remain unclear. METHODS Extracellular Matrix Protein 1 (ECM1), identified in MenSCs culture medium using mass spectrometry, was employed to stably overexpress ECM1-HA or silence in MenSCs using lentiviral vectors. These genetically engineered cells were either intravenously injected into the carbon tetrachloride (CCl4)-induced liver fibrosis mice or co-cultured with hepatic stellate cells (HSCs)-LX-2. The interaction between ECM1 and low-density lipoprotein receptor-related protein 1α (LRP1α) was confirmed using Co-Immunoprecipitation (Co-ip), Duolink Proximity Ligation Assays (PLA) and pull-down. LRP1 deficient mice were generated via intravenous administration of adeno-associated-virus-8. The downstream molecular mechanisms were characterized by non-target metabolomics and multiplex immunohistochemical staining. RNA sequencing was performed to evaluate the genetic alterations in various genes within the MenSCs. RESULTS MenSC-secreted ECM1 exhibits potential to ameliorate liver fibrosis by inactivating HSCs, improving liver functions, and reducing collagen deposition in both cellular and mouse model of the CCl4-induced liver fibrosis. Mechanistically, a novel interaction was identified that ECM1 directly bound to cell surface receptor LRP1α. Notably, the antifibrotic efficacy of MenSC was negated in LRP1-deficient cells and mice. Moreover, the ECM1-LRP1 axis contributed to the alleviation of liver fibrosis by suppressing AKT/mTOR while activating the FoxO1 signaling pathway, thereby facilitating pyrimidine and purine metabolism. Additionally, ECM1-modified MenSCs regulate the transcription of intrinsic cytokine genes, further mitigating liver fibrosis. CONCLUSIONS These findings highlight an extensive network of ECM1-LRP1 interaction, which serve as a link for providing promising insights into the mechanism of MenSC-based drug development for liver fibrosis. Our study also potentially presents novel avenues for clinical antifibrotic therapy.
Collapse
Affiliation(s)
- Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Lin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250117, China.
| |
Collapse
|
2
|
Zhou M, Tian M, Li Z, Wang C, Guo Z. Overview of splicing variation in ovarian cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189288. [PMID: 39993511 DOI: 10.1016/j.bbcan.2025.189288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Ovarian cancer remains one of the deadliest gynecological malignancies, with a persistently high mortality rate despite promising advancements in immunotherapy. Aberrant splicing events play a crucial role in cancer heterogeneity and treatment resistance. Many splicing variants, especially those involving key molecular markers such as BRCA1/2, are closely linked to disease progression and treatment outcomes. These variants and related splicing factors hold significant clinical value as diagnostic and prognostic biomarkers and therapeutic targets. This review provides a comprehensive overview of splicing variants in ovarian cancer, emphasizing their role in metastasis and resistance, and offers insights to advance biomarker development and treatment strategies.
Collapse
Affiliation(s)
- Min Zhou
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengdie Tian
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuoer Li
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Wang
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiqiang Guo
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Sun C, Fan W, Basha S, Tian T, Jin-Smith B, Barkin J, Xie H, Zhou J, Yin XM, Ling C, Sun B, Petersen B, Pi L. Extracellular matrix protein 1 binds to connective tissue growth factor against liver fibrosis and ductular reaction. Hepatol Commun 2024; 8:e0564. [PMID: 39470347 PMCID: PMC11524739 DOI: 10.1097/hc9.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Extracellular matrix protein 1 (ECM1) can inhibit TGFβ activation, but its antifibrotic action remains largely unknown. This study aims to investigate ECM1 function and its physical interaction with the profibrotic connective tissue growth factor (CTGF) in fibrosis and ductular reaction (DR). METHODS Ecm1 knockouts or animals that ectopically expressed this gene were subjected to induction of liver fibrosis and DR by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or α-naphthyl-isothiocyanate (ANIT). ECM1 and CTGF were also examined in the livers of patients with alcohol-associated liver disease (ALD) or ethanol-exposed animals that were fed the western diet for 4 months in the WDA model with liver pathology resembing ALD in patients. RESULTS ECM1 bound to CTGF in yeast two-hybrid systems, cultured liver cells, and cholestatic livers damaged by DDC or α-naphthyl-isothiocyanate. This interaction blocked integrin αvβ6-mediated TGFβ activation, thereby reducing fibrotic responses in vitro. ECM1 downregulation was associated with biliary CTGF induction during human ALD progression. In experimental models, Ecm1 loss enhanced susceptibility to DDC-induced cholestasis with upregulation of Ctgf, αvβ6, alpha-smooth muscle actin, procollagen type I, serum transaminase, and total bilirubin levels in germline knockouts, whereas forced expression of this gene significantly attenuated DR and biliary fibrosis after the feeding of DDC or α-naphthyl-isothiocyanate containing diets. Moreover, ectopic Ecm1 inhibited not only alcohol-associated fibrosis but also TGFβ-mediated deregulation of hepatocyte nuclear factor 4α, preventing the production of the fetal p2 promoter-driven isoforms in the WDA model. CONCLUSIONS We uncover a novel antifibrotic action by ECM1 that binds CTGF and inhibits integrin αvβ6-mediated TGFβ activation. Targeting its loss has therapeutic potential for the treatment of DR and liver fibrosis in chronic conditions, such as cholangiopathy and ALD.
Collapse
Affiliation(s)
- Chunbao Sun
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Weiguo Fan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | | | - Tian Tian
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Joshua Barkin
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Hanhui Xie
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Junmei Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiao-Ming Yin
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Bryon Petersen
- Department of Pediatrics, University of Florida Gainesville, Florida, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Zhang C, Cheng H, Ye X, Cui H, Li Y, Zhu H, Chang X. ECM1 promotes migration and invasion in endometriosis. Reprod Biol 2024; 24:100826. [PMID: 37992590 DOI: 10.1016/j.repbio.2023.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Extracellular matrix protein 1 (ECM1) is a glycoprotein that may be a key player in tumorigenesis and tumor progression. However, knowledge regarding the role of ECM1 in endometriosis (EM) is still lacking. Microarray analyses were performed to compare the mRNA expression patterns between paired EU tissues and ectopic endometrial (EC) tissues (n = 4) from EM patients. ECM1 expression was significantly increased in the eutopic endometrial (EU) tissues than paired EC tissues of endometriotic patients and normal endometrial (NE) tissues of controls without EM. Blocking ECM1 with siRNA attenuated the migration and invasion of hEM15A cells and modified the distribution of the F-actin cytoskeleton. We conducted microarray analyses and bioinformatics analyses to investigate the differentially expressed genes (DEGs) and related pathways regulated by ECM1. A total of 161 DEGs between the siECM1 and the negative control (siNC) treatments were identified, consisting of 79 downregulated genes and 82 upregulated genes. Enriched DEGs were associated with 9 gene ontology (GO) terms. Moreover, a protein-protein interaction (PPI) network was constructed for the hub genes and modules. Radixin (RDX) was the second most downregulated gene in the siECM1 group compared with the siNC group. ECM1 knockdown significantly decreased the expression of RDX, RhoC, ROCK1, N-cadherin and β-catenin but not ROCK2. ECM1 showed high tissue-specific expression in EU tissues from EM patients, and may contribute to the migration, invasion and reorganization of the F-actin cytoskeleton in eutopic endometrial stromal cells via the RhoC/ROCK1 signaling pathway in EM.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xue Ye
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Heng Cui
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Yi Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
5
|
Hardy SA, Liesinger L, Patrick R, Poettler M, Rech L, Gindlhuber J, Mabotuwana NS, Ashour D, Stangl V, Bigland M, Murtha LA, Starkey MR, Scherr D, Hansbro PM, Hoefler G, Campos Ramos G, Cochain C, Harvey RP, Birner-Gruenberger R, Boyle AJ, Rainer PP. Extracellular Matrix Protein-1 as a Mediator of Inflammation-Induced Fibrosis After Myocardial Infarction. JACC Basic Transl Sci 2023; 8:1539-1554. [PMID: 38205347 PMCID: PMC10774582 DOI: 10.1016/j.jacbts.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 01/12/2024]
Abstract
Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.
Collapse
Affiliation(s)
- Sean A. Hardy
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ralph Patrick
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Maria Poettler
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nishani S. Mabotuwana
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - DiyaaEldin Ashour
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mark Bigland
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Malcolm R. Starkey
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Daniel Scherr
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine 1, University Hospital of Würzburg, Würzburg, Germany
| | - Clement Cochain
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Richard P. Harvey
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J. Boyle
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Peter P. Rainer
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Department of Medicine, St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| |
Collapse
|
6
|
Wang Y, Wang J, Yan Z, Liu S, Xu W. Potential drug targets for asthma identified in the plasma and brain through Mendelian randomization analysis. Front Immunol 2023; 14:1240517. [PMID: 37809092 PMCID: PMC10551444 DOI: 10.3389/fimmu.2023.1240517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Background Asthma is a heterogeneous disease, and the involvement of neurogenic inflammation is crucial in its development. The standardized treatments focus on alleviating symptoms. Despite the availability of medications for asthma, they have proven to be inadequate in controlling relapses and halting the progression of the disease. Therefore, there is a need for novel drug targets to prevent asthma. Methods We utilized Mendelian randomization to investigate potential drug targets for asthma. We analyzed summary statistics from the UK Biobank and then replicated our findings in GWAS data by Demenais et al. and the FinnGen cohort. We obtained genetic instruments for 734 plasma and 73 brain proteins from recently reported GWAS. Next, we utilized reverse causal relationship analysis, Bayesian co-localization, and phenotype scanning as part of our sensitivity analysis. Furthermore, we performed a comparison and protein-protein interaction analysis to identify causal proteins. We also analyzed the possible consequences of our discoveries by the given existing asthma drugs and their targets. Results Using Mendelian randomization analysis, we identified five protein-asthma pairs that were significant at the Bonferroni level (P < 6.35 × 10-5). Specifically, in plasma, we found that an increase of one standard deviation in IL1R1 and ECM1 was associated with an increased risk of asthma, while an increase in ADAM19 was found to be protective. The corresponding odds ratios were 1.03 (95% CI, 1.02-1.04), 1.00 (95% CI, 1.00-1.01), and 0.99 (95% CI, 0.98-0.99), respectively. In the brain, per 10-fold increase in ECM1 (OR, 1.05; 95% CI, 1.03-1.08) and PDLIM4 (OR, 1.05; 95% CI, 1.04-1.07) increased the risk of asthma. Bayesian co-localization found that ECM1 in the plasma (coloc.abf-PPH4 = 0.965) and in the brain (coloc.abf-PPH4 = 0.931) shared the same mutation with asthma. The target proteins of current asthma medications were found to interact with IL1R1. IL1R1 and PDLIM4 were validated in two replication cohorts. Conclusion Our integrative analysis revealed that asthma risk is causally affected by the levels of IL1R1, ECM1, and PDLIM4. The results suggest that these three proteins have the potential to be used as drug targets for asthma, and further investigation through clinical trials is needed.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxi Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhanfeng Yan
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Siming Liu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Xu M, Zhou J, Yan J, Wang J. Identification of a Novel Mutation of Extracellular Matrix Protein 1 Gene in a Chinese Family with Lipoid Proteinosis. Clin Cosmet Investig Dermatol 2023; 16:1515-1519. [PMID: 37337569 PMCID: PMC10277017 DOI: 10.2147/ccid.s415682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Lipoid proteinosis (LP) is a rare autosomal recessive disorder caused by mutations in extracellular matrix protein 1 (ECM1), a glycoprotein expressed in skin. Whole-exome sequencing (WES) was used to investigate two Chinese siblings with suggestive clinical features of LP. They shared one known (c.960G>A) and one novel (c.1081G>T) pathogenic variant in ECM1 gene, inherited from their unaffected parents. The novel mutation (c.1081G>T) led to a termination codon at position 361 and caused nonsense-mediated mRNA decay and lost the function. Our finding expands the genetic etiology spectrum of LP.
Collapse
Affiliation(s)
- Mengjun Xu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jiong Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jianliang Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jianyou Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Wang J, Chen Y, Luo Z, Huang Q, Zhang Y, Ning H, Liu S, Wang J, Han X. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. herb pair suppresses breast cancer liver metastasis by targeting ECM1-mediated cholesterol biosynthesis pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154896. [PMID: 37247588 DOI: 10.1016/j.phymed.2023.154896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Liver metastasis is a frequent event in breast cancer that causes low survival rate and poor prognosis. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. (CR), a traditional Chinese herb pair, is used for the treatment of breast cancer liver metastasis or cholesterol gallstone disease in clinics. PURPOSE This study attempted to investigate the potential therapeutic target and mechanism of CR herb pair on breast cancer liver metastasis. METHODS The anti-metastatic and cholesterol-lowering activities of CR extract were evaluated in triple-negative breast cancer (TNBC) cell lines and an experimental liver metastasis model. The role of extracellular matrix protein 1 (ECM1) in the cholesterol biosynthesis pathway was determined by the knockdown and overexpression of ECM1 gene of TNBC cells. Changes in the gene and protein expression levels of ECM1 and the cholesterol biosynthesis pathway after CR treatment were detected in vitro and in vivo by real-time PCR and Western blot. RESULTS The invasive and metastatic potentials and hypercholesterol levels of TNBC cells were positively associated with ECM1 expression. ECM1 knockdown reduced tumor cholesterol levels via downregulating cholesterol biosynthesis genes, including ACAT2, HMGCS1, HMGCR, MVK, and MVD, whereas ECM1 overexpression elicited the opposite effects. CR herb pair exerts the potential therapeutic effects on TNBC liver metastasis, which is partially mediated by disrupting ECM1-activated cholesterol biosynthesis process in TNBC cells. CONCLUSION This study reveals that ECM1 is a novel target for the activation of cholesterol biosynthesis to promote TNBC liver metastasis occurrence. CR herb pair, an ECM1 inhibitor, maybe be considered to serve as an adjuvant therapeutic drug for liver metastasis in clinical practice.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiang Chen
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanyang Luo
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyi Wang
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Li M, Fischer J, Safwat S, Shoman W, Chazli YE, Alter S, Has C, Abdalla E. Lipoid proteinosis: Novel ECM1 pathogenic variants and intrafamilial variability in four unrelated Arab families. Pediatr Dermatol 2023; 40:113-119. [PMID: 36670503 DOI: 10.1111/pde.15105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND/OBJECTIVES Lipoid proteinosis (LP) is a rare autosomal recessive multisystem disorder that is caused by loss-of-function pathogenic variants in the extracellular matrix protein-1 (ECM1) gene. The typical clinical manifestations of LP include hoarseness of voice, beaded papules on the eyelids, infiltration and scarring of the skin and mucosa, as well as neuropsychological abnormalities. Currently, more than 70 pathogenic variants have been reported, including nonsense, missense, splice site, deletion and insertion pathogenic variants, and more than half of them occurred in exons 6 and 7. METHODS Clinical evaluation and Sanger sequencing were performed on eight patients from four unrelated Arab families. RESULTS We identified two novel ECM1 variants, one nonsense pathogenic variant in exon 6 (c.579G>A, p.Trp193*) and a deletion of three nucleotides (c.1390_1392del, p.Glu464del) in exon 9, and two previously reported frameshift variants; c.692_693delAG, in exon 6 and c.11dupC in exon 1. CONCLUSIONS Although all patients had characteristic manifestations of lipoid proteinosis, we observed intrafamilial phenotypic variability. Our data expand the pathogenic variant spectrum of ECM1 and also supports the fact that exon 6 is one of the most common hot spots of pathological variants in ECM1.
Collapse
Affiliation(s)
- Mingfeng Li
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Judith Fischer
- Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sylvia Safwat
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Walaa Shoman
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine El Chazli
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Svenja Alter
- Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Lichen Sclerosus: A Current Landscape of Autoimmune and Genetic Interplay. Diagnostics (Basel) 2022; 12:diagnostics12123070. [PMID: 36553077 PMCID: PMC9777366 DOI: 10.3390/diagnostics12123070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Lichen sclerosus (LS) is an acquired chronic inflammatory dermatosis predominantly affecting the anogenital area with recalcitrant itching and soreness. Progressive or persistent LS may cause urinary and sexual disturbances and an increased risk of local skin malignancy with a prevalence of up to 11%. Investigations on lipoid proteinosis, an autosomal recessive genodermatosis caused by loss-of-function mutations in the extracellular matrix protein 1 (ECM1) gene, led to the discovery of a humoral autoimmune response to the identical molecule in LS, providing evidence for an autoimmune and genetic counterpart targeting ECM1. This paper provides an overview of the fundamental importance and current issue of better understanding the immunopathology attributed to ECM1 in LS. Furthermore, we highlight the pleiotropic action of ECM1 in homeostatic and structural maintenance of skin biology as well as in a variety of human disorders possibly associated with impaired or gained ECM1 function, including the inflammatory bowel disease ulcerative colitis, Th2 cell-dependent airway allergies, T-cell and B-cell activation, and the demyelinating central nervous system disease multiple sclerosis, to facilitate sharing the concept as a plausible therapeutic target of this attractive molecule.
Collapse
|
11
|
Lv C, Ren C, Yu Y, Yin H, Huang C, Yang G, Hong Y. Wentilactone A Reverses the NF-κB/ECM1 Signaling-Induced Cisplatin Resistance through Inhibition of IKK/IκB in Ovarian Cancer Cells. Nutrients 2022; 14:nu14183790. [PMID: 36145166 PMCID: PMC9504226 DOI: 10.3390/nu14183790] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Wentilactone A (WA) is a tetranorditerpenoid isolated from marine algae. We previously found that WA inhibited cancer cell proliferation with little toxicity. In this study, we show that high expression of extracellular matrix protein-1 (ECM1) promotes cancer cell cisplatin resistance, and the secreted ECM1 activates normal fibroblasts (NFs) to transform cells with characteristics of cancer-associated fibroblasts (CAFs). Transcription of the ECM1 gene is regulated largely by NF-κB through EP881C/T-EP266C binding sites. WA supresses the phosphorylation of NF-κB through inhibition of the upstream IKK/IκB phoshorylation to block the expression of ECM1, which reverses the cisplatin-induced activation of NF-κB/ECM1. On the contrary, cisplatin facilitates phosphorylation of NF-κB to enhance the expression of ECM1. These results highlight ECM1 as a potential target for treatment of cisplatin-resistant cancers associated with the ECM1 activated signaling. In addition, WA reverses cisplatin resistance by targeting both tumor cells and the tumor microenvironment through IKK/IκB/NF-κB signaling to reduce the expression of the ECM1 protein.
Collapse
Affiliation(s)
- Cuiting Lv
- Central Laboratory, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yinjue Yu
- Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Yin
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai 200433, China
- Correspondence: (C.H.); (G.Y.); (Y.H.)
| | - Gong Yang
- Central Laboratory, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Correspondence: (C.H.); (G.Y.); (Y.H.)
| | - Yang Hong
- Central Laboratory, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Department of Orthopedics, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Correspondence: (C.H.); (G.Y.); (Y.H.)
| |
Collapse
|
12
|
Abstract
Extracellular matrix protein 1 (ECM1) is associated with a poor prognosis of breast cancers. However, the role of ECM1 with endocrine resistance in estrogen receptor-positive (ER+) breast cancers has not been elucidated yet. We show that ECM1 promotes endocrine resistance in ER+ breast cancers. ECM1 is overexpressed in luminal breast cancer patients compared to the basal type of breast cancer. Significantly, higher expression of ECM1 is associated with poor response to endocrine therapies in luminal B breast cancer patients. We found that ECM1 is upregulated in CAMA1 and MDA-MB-361 cells grown in long-term estrogen-deprived (LTED) conditions. Moreover, the ablation of ECM1 significantly inhibited the proliferation of CAMA1 LTED and MDA-MB-361 LTED cells. Finally, an interrogation of a dataset containing transcriptome and proteome of breast cancer cell lines revealed that the level of ECM1 mRNA is positively correlated with that of phosphorylated Src. Based on these findings, we strongly suggest that ECM1 significantly contributes to the acquisition of endocrine resistance in ER+ breast cancers by the activation of Src.
Collapse
Affiliation(s)
- Tae Won Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyung-min Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Chai T, Tian M, Yang X, Qiu Z, Lin X, Chen L. Genome-Wide Identification of Associations of Circulating Molecules With Spontaneous Coronary Artery Dissection and Aortic Aneurysm and Dissection. Front Cardiovasc Med 2022; 9:874912. [PMID: 35571188 PMCID: PMC9091499 DOI: 10.3389/fcvm.2022.874912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Circulating proteins play functional roles in various biological processes and disease pathogenesis. The aim of this study was to highlight circulating proteins associated with aortic aneurysm and dissection (AAD) and spontaneous coronary artery dissection (SCAD). We examined the associations of circulating molecule levels with SCAD by integrating data from a genome-wide association study (GWAS) of CanSCAD and 7 pQTL studies. Mendelian randomization (MR) analysis was applied to examine the associations between circulating molecule levels and AAD by using data from UK Biobank GWAS and pQTL studies. The SCAD-associated SNPs in 1q21.2 were strongly associated with circulating levels of extracellular matrix protein 1 (ECM1) and 25 other proteins (encoded by CTSS, CAT, CNDP1, KNG1, SLAMF7, TIE1, CXCL1, MBL2, ESD, CXCL16, CCL14, KCNE5, CST7, PSME1, GPC3, MAP2K4, SPOCK3, LRPPRC, CLEC4M, NOG, C1QTNF9, CX3CL1, SCP2D1, SERPINF2, and FN1). These proteins were enriched in biological processes such as regulation of peptidase activity and regulation of cellular protein metabolic processes. Proteins (FGF6, FGF9, HGF, BCL2L1, and VEGFA) involved in the Ras signaling pathway were identified to be related to AAD. In addition, SCAD- and AAD-associated SNPs were associated with cytokine and lipid levels. MR analysis showed that circulating ECM1, SPOCK3 and IL1b levels were associated with AAD. Circulating levels of low-density lipoprotein cholesterol and small very-low-density lipoprotein particles were strongly associated with AAD. The present study found associations between circulating proteins and lipids and SCAD and AAD. Circulating ECM1 and low-density lipoprotein cholesterol may play a role in the pathology of SCAD and AAD.
Collapse
Affiliation(s)
- Tianci Chai
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
- Department of Anesthesiology, Xinyi People’s Hospital, Xuzhou, China
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojie Yang
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
- *Correspondence: Liangwan Chen,
| |
Collapse
|
14
|
Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun 2021; 12:4230. [PMID: 34244494 PMCID: PMC8270969 DOI: 10.1038/s41467-021-24315-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix protein-1 (ECM1) promotes tumorigenesis in multiple organs but the mechanisms associated to ECM1 isoform subtypes have yet to be clarified. We report in this study that the secretory ECM1a isoform induces tumorigenesis through the GPR motif binding to integrin αXβ2 and the activation of AKT/FAK/Rho/cytoskeleton signaling. The ATP binding cassette subfamily G member 1 (ABCG1) transduces the ECM1a-integrin αXβ2 interactive signaling to facilitate the phosphorylation of AKT/FAK/Rho/cytoskeletal molecules and to confer cancer cell cisplatin resistance through up-regulation of the CD326-mediated cell stemness. On the contrary, the non-secretory ECM1b isoform binds myosin and blocks its phosphorylation, impairing cytoskeleton-mediated signaling and tumorigenesis. Moreover, ECM1a induces the expression of the heterogeneous nuclear ribonucleoprotein L like (hnRNPLL) protein to favor the alternative mRNA splicing generating ECM1a. ECM1a, αXβ2, ABCG1 and hnRNPLL higher expression associates with poor survival, while ECM1b higher expression associates with good survival. These results highlight ECM1a, integrin αXβ2, hnRNPLL and ABCG1 as potential targets for treating cancers associated with ECM1-activated signaling. Extracellular matrix protein 1 (ECM1) has been associated with cancer but the underlying molecular mechanisms are not clear. Here, the authors show that while ECM1b isoform is a tumour suppressor, the secreted isoform ECM1a promotes tumourigenesis and chemoresistance through increasing stemness and alternative mRNA splicing in ovarian cancer.
Collapse
|
15
|
Cicuéndez M, Casarrubios L, Feito MJ, Madarieta I, Garcia-Urkia N, Murua O, Olalde B, Briz N, Diez-Orejas R, Portolés MT. Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence. Int J Mol Sci 2021; 22:ijms22083847. [PMID: 33917732 PMCID: PMC8068109 DOI: 10.3390/ijms22083847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage’s functional role.
Collapse
Affiliation(s)
- Mónica Cicuéndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Nerea Garcia-Urkia
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - Nerea Briz
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| |
Collapse
|
16
|
Zhu T, Bai X, Ma D, Yang T. Identification of a novel three-nucleotide duplication in ECM1 in Chinese siblings affected with lipoid proteinosis. Clin Chim Acta 2020; 512:122-126. [PMID: 33159951 DOI: 10.1016/j.cca.2020.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022]
Abstract
Lipoid proteinosis (LP) is a rare autosomal recessive disorder caused by pathological mutations in the glycoprotein extracellular matrix protein 1 gene (ECM1). In this study, we examined two sibling patients who were suspected of LP in a consanguineous Chinese family for clinical manifestations and sequenced the all coding exonic regions of ECM1 in the proband. Both siblings were detected a homozygous three-nucleotide duplication, c.506_508dupCTG in the exon 6 of ECM1. This mutation introduces an alanine addition between two highly conserved amino acids (Pro169 and Gly170), designated as p.169_170insA, within one of the two tandem repeat domains which are functional important for protein-protein interactions. Their parents were unaffected and heterozygous for this mutation. This mutation wasn't found in one hundred normal Chinese individuals screened and wasn't previously reported elsewhere, excluding it as a common neutral polymorphism. These evidences supported this duplication as the causative mutation of LP. Our finding expanded the spectrum of disease-causing mutations in LP and provides further evidence for the importance of ECM1 gene in the development of this rare genodermatosis.
Collapse
Affiliation(s)
- Tieshan Zhu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730 Beijing, China
| | - Xiao Bai
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730 Beijing, China; Department of Medical Genetics & McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Donglai Ma
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730 Beijing, China
| | - Tao Yang
- Department of Medical Genetics & McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
17
|
Kumar N, Singh NK. "Emerging role of Novel Seminal Plasma Bio-markers in Male Infertility: A Review". Eur J Obstet Gynecol Reprod Biol 2020; 253:170-179. [PMID: 32871440 DOI: 10.1016/j.ejogrb.2020.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 02/03/2023]
Abstract
Male infertility has emerged as an important cause of infertility worldwide. There are many factors affecting male fertility and research is going on to know impact of various factors on sperm functions. Semen analysis is gold standard diagnostic test for male infertility, but it is crude method for estimation of male infertility as seminal composition gets affected by environmental factors, infections, other pathologies, hence, results of semen analysis either becomes normal/ambiguous, leading to failure of diagnosis and delayed treatment. Hence, with need of newer, better tests for assessing male factor infertility, seminal plasma is being tested for biomarkers. Seminal plasma is considered gold mine for male fertility as it contains molecules from male reproductive glands which play important role in sperm function. Study of seminal plasma molecules can give an idea about sperm concentration, motility, morphology and cause of infertility and can serve as biomarkers for male infertility. Present review briefs on some of these novel seminal plasma biomarkers which may play significant role in male fertility and can be used in future for better identification, assessment of infertile males. METHODOLOGY Literature from 1985 to 2019 was searched from various databases including PUBMED, SCOPUS, Google Scholar on seminal plasma biomarkers using keywords: "seminal plasma protein biomarkers", "novel seminal plasma markers and male infertility", "hormones in seminal plasma and male infertility", "oxidative stress and male infertility", "Reactive Oxygen Species and sperm DNA", "immunoinfertility". INCLUSION CRITERIA All full length original or review articles or abstracts on seminal plasma markers and male infertility published in English language in various peer-reviewed journals were considered. EXCLUSION CRITERIA Articles published in languages other than English were excluded from the study. RESULTS Seminal plasma is a big reservoir of molecules derived from the various male reproductive glands which can be used as potential biomarkers of male fertility. CONCLUSION Hence, seminal plasma biomarkers can be used in future for better assessment of male factor infertility, its causes and may play an important role in management of male factor infertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Mangalagiri, 522503, Guntur, Andhra Pradesh, India.
| | - Namit Kant Singh
- Department of Otorhinolaryngology, Katuri Medical College and Hospital, Guntur, Andhra Pradesh, India.
| |
Collapse
|
18
|
Utsunomiya N, Utsunomiya A, Chino T, Hasegawa M, Oyama N. Gene silencing of extracellular matrix protein 1 (ECM1) results in phenotypic alterations of dermal fibroblasts reminiscent of clinical features of lichen sclerosus. J Dermatol Sci 2020; 100:99-109. [PMID: 33046330 DOI: 10.1016/j.jdermsci.2020.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lichen sclerosus (LS) is an acquired inflammatory mucocutaneous disease affecting the anogenital area, characterized histologically by hyalinosis and thickened vessel walls in the dermis. The presence of serum autoantibodies against extracellular matrix protein 1 (ECM1) in LS patients may suggest its involvement in disease pathogenesis. OBJECTIVE To examine if reduced ECM1 production by dermal fibroblasts contributes to the pathogenic features of LS. METHODS Gene expression in ECM1 knockdown human dermal fibroblasts was analyzed by cDNA microarray. Functional enrichment for genes involved in cellular functions was conducted. Protein expression was analyzed by ELISA and confocal laser scanning microscopy using LS skin. RESULTS Microarray analysis identified 3035 differentially expressed genes in ECM1 knockdown cells, wherein 1471 were upregulated genes related exclusively to cell adhesion, proliferation, apoptosis, intracellular signaling, and extracellular matrix organization. Further narrowing with criteria specific for localization and function of ECM1 identified 48 upregulated genes identified to have structural, fibrogenic, and carcinogenic properties. Of these, laminin-332 and collagen-IV displayed altered immunolabeling within the basement membrane zone (BMZ) and dermal vessels in LS skin, similar to that of collagen-VII, which exhibited unchanged transcription levels in ECM1-knockdown fibroblasts. Collagen-VII bound to recombinant ECM1 in a solid-phase immunoassay and colocalized with ECM1 in the skin BMZ. Further, ECM1-knockdown fibroblasts exhibited a marked delay in cell migration and gel contraction. CONCLUSION In the absence of ECM1 expression in fibroblasts there is selective dysregulation and disassembly of structural and extracellular matrix molecules, which may result in microstructural abnormalities reminiscent of LS.
Collapse
Affiliation(s)
- Natsuko Utsunomiya
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takenao Chino
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Noritaka Oyama
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
19
|
Tran DA, Tan X, Macri CJ, Goldstein AT, Fu SW. Lichen Sclerosus: An autoimmunopathogenic and genomic enigma with emerging genetic and immune targets. Int J Biol Sci 2019; 15:1429-1439. [PMID: 31337973 PMCID: PMC6643151 DOI: 10.7150/ijbs.34613] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Lichen sclerosus (LS) is an inflammatory dermatosis with a predilection for anogenital skin. Developing lesions lead to vulvar pain and sexual dysfunction, with a significant loss of structural anatomical architecture, sclerosis, and increased risk of malignancy. Onset may occur at any age in both sexes, but typically affects more females than males, presenting in a bimodal fashion among pre-pubertal children and middle-aged adults. A definitive cure remains elusive as the exact pathogenesis of LS remains unknown. A general review of LS, histologic challenges, along with amounting support for LS as an autoimmune disease with preference for a Th1 immune response against a genetic background is summarized. In addition to the classically referenced ECM1 (extracellular matrix protein 1), a following discussion of other immune and genetic targets more recently implicated as causative or accelerant agents of disease, particularly miR-155, downstream targets of ECM1, galectin-7, p53, and epigenetic modifications to CDKN2A, are addressed from the viewpoint of their involvement in three different, but interconnected aspects of LS pathology. Collectively, these emerging targets serve not only as inherently potential therapeutic targets for treatment, but may also provide further insight into this debilitating and cryptic disease.
Collapse
Affiliation(s)
- Davis A. Tran
- Department of Medicine (Division of Genomic Medicine), and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Xiaohui Tan
- Department of Medicine (Division of Genomic Medicine), and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Charles J. Macri
- Department of Obstetrics and Gynecology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Andrew T. Goldstein
- Department of Obstetrics and Gynecology, The George Washington University School of Medicine and Health Sciences, Washington, DC
- Center for Vulvovaginal Disorders, Washington, DC
| | - Sidney W. Fu
- Department of Medicine (Division of Genomic Medicine), and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
20
|
Hardy SA, Mabotuwana NS, Murtha LA, Coulter B, Sanchez-Bezanilla S, Al-Omary MS, Senanayake T, Loering S, Starkey M, Lee RJ, Rainer PP, Hansbro PM, Boyle AJ. Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction. PLoS One 2019; 14:e0212230. [PMID: 30789914 PMCID: PMC6383988 DOI: 10.1371/journal.pone.0212230] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The prevalence of heart failure increases in the aging population and following myocardial infarction (MI), yet the extracellular matrix (ECM) remodeling underpinning the development of aging- and MI-associated cardiac fibrosis remains poorly understood. A link between inflammation and fibrosis in the heart has long been appreciated, but has mechanistically remained undefined. We investigated the expression of a novel protein, extracellular matrix protein 1 (ECM1) in the aging and infarcted heart. METHODS Young adult (3-month old) and aging (18-month old) C57BL/6 mice were assessed. Young mice were subjected to left anterior descending artery-ligation to induce MI, or transverse aortic constriction (TAC) surgery to induce pressure-overload cardiomyopathy. Left ventricle (LV) tissue was collected early and late post-MI/TAC. Bone marrow cells (BMCs) were isolated from young healthy mice, and subject to flow cytometry. Human cardiac fibroblast (CFb), myocyte, and coronary artery endothelial & smooth muscle cell lines were cultured; human CFbs were treated with recombinant ECM1. Primary mouse CFbs were cultured and treated with recombinant angiotensin-II or TGF-β1. Immunoblotting, qPCR and mRNA fluorescent in-situ hybridization (mRNA-FISH) were conducted on LV tissue and cells. RESULTS ECM1 expression was upregulated in the aging LV, and in the infarct zone of the LV early post-MI. No significant differences in ECM1 expression were found late post-MI or at any time-point post-TAC. ECM1 was not expressed in any resident cardiac cells, but ECM1 was highly expressed in BMCs, with high ECM1 expression in granulocytes. Flow cytometry of bone marrow revealed ECM1 expression in large granular leucocytes. mRNA-FISH revealed that ECM1 was indeed expressed by inflammatory cells in the infarct zone at day-3 post-MI. ECM1 stimulation of CFbs induced ERK1/2 and AKT activation and collagen-I expression, suggesting a pro-fibrotic role. CONCLUSIONS ECM1 expression is increased in ageing and infarcted hearts but is not expressed by resident cardiac cells. Instead it is expressed by bone marrow-derived granulocytes. ECM1 is sufficient to induce cardiac fibroblast stimulation in vitro. Our findings suggest ECM1 is released from infiltrating inflammatory cells, which leads to cardiac fibroblast stimulation and fibrosis in aging and MI. ECM1 may be a novel intermediary between inflammation and fibrosis.
Collapse
Affiliation(s)
- Sean A. Hardy
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S. Mabotuwana
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brianna Coulter
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Mohammed S. Al-Omary
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Tharindu Senanayake
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Svenja Loering
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Malcolm Starkey
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Randall J. Lee
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
- Edyth and Eli Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States of America
| | - Peter P. Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre’s for Healthy Lungs and GrowUpWell, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for inflammation, Centenary Institute, Sydney, NSW, Australia
- University of Technology, Faculty of Science, Ultimo, NSW, Australia
| | - Andrew J. Boyle
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
- * E-mail:
| |
Collapse
|
21
|
Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1. Oncogene 2018; 37:5305-5324. [PMID: 29858602 PMCID: PMC6160402 DOI: 10.1038/s41388-018-0294-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Aberrant transforming growth factor-β (TGF-β) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-β signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-β signaling activity and that stromal cell-conditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner. DKK3 silencing increased the level of the cell-adhesion regulator TGF-β-induced protein (TGFBI) in stromal and epithelial cell-conditioned media, and recombinant TGFBI increased prostate cancer cell invasion. Reduced expression of Dkk-3 in patient tumors was associated with increased expression of TGFBI. DKK3 silencing reduced the level of extracellular matrix protein-1 (ECM-1) in prostate stromal cell-conditioned media but increased it in epithelial cell-conditioned media, and recombinant ECM-1 inhibited TGFBI-induced prostate cancer cell invasion. Increased ECM1 and DKK3 mRNA expression in prostate tumors was associated with increased relapse-free survival. These observations are consistent with a model in which the loss of Dkk-3 in prostate cancer leads to increased secretion of TGFBI and ECM-1, which have tumor-promoting and tumor-protective roles, respectively. Determining how the balance between the opposing roles of extracellular factors influences prostate carcinogenesis will be key to developing therapies that target the tumor microenvironment.
Collapse
|
22
|
Fitzgerald HC, Evans J, Johnson N, Infusini G, Webb A, Rombauts LJR, Vollenhoven BJ, Salamonsen LA, Edgell TA. Idiopathic infertility in women is associated with distinct changes in proliferative phase uterine fluid proteins†. Biol Reprod 2018; 98:752-764. [DOI: 10.1093/biolre/ioy063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Harriet C Fitzgerald
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Nicholas Johnson
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Giuseppe Infusini
- The Walter & Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Webb
- The Walter & Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Luk J R Rombauts
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- Monash IVF, Clayton, Victoria, Australia
- Monash Women's & Newborn Program, Monash Health, Victoria, Australia
| | - Beverley J Vollenhoven
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- Monash IVF, Clayton, Victoria, Australia
- Monash Women's & Newborn Program, Monash Health, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tracey A Edgell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Salza R, Lethias C, Ricard-Blum S. The Multimerization State of the Amyloid-β42 Amyloid Peptide Governs its Interaction Network with the Extracellular Matrix. J Alzheimers Dis 2018; 56:991-1005. [PMID: 28106549 DOI: 10.3233/jad-160751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The goals of this work were i) to identify the interactions of amyloid-β (Aβ)42 under monomeric, oligomeric, and fibrillar forms with the extracellular matrix (ECM) and receptors, ii) to determine the influence of Aβ42 supramolecular organization on these interactions, and iii) to identify the molecular functions, biological processes, and pathways targeted by Aβ42 in the ECM. The ECM and cell surface partners of Aβ42 and its supramolecular forms were identified with protein and glycosaminoglycan (GAG) arrays (81 molecules in triplicate) probed by surface plasmon resonance imaging. The number of partners of Aβ42 increased upon its multimerization, ranging from 4 for the peptide up to 53 for the fibrillar aggregates. The peptide interacted only with ECM proteins but their percentage among Aβ42 partners decreased upon multimerization. Aβ42 and its supramolecular forms recognized different molecular features on their partners, and the partners of Aβ42 fibrillar forms were enriched in laminin IV-A, N-terminal, and EGF-like domains. Aβ42 oligomerization triggered interactions with receptors, whereas Aβ42 fibrillogenesis promoted binding to GAGs, proteoglycans, enzymes, and growth factors and the ability to interact with perineuronal nets. Fibril aggregation bind to further membrane proteins including tumor endothelial marker-8, syndecan-4, and discoidin-domain receptor-2. The partners of the Aβ42 supramolecular forms are enriched in proteins contributing to cell growth and/or maintenance, involved in integrin cell surface interactions and expressed in kidney cancer, preadipocytes, and dentin. In conclusion, the supramolecular assembly of Aβ42 governs its ability to interact in vitro with ECM proteins, remodeling and crosslinking ECM enzymes, proteoglycans, and receptors.
Collapse
Affiliation(s)
- Romain Salza
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| | - Claire Lethias
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305 CNRS - Université Lyon 1, Lyon, Cedex 07, France
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| |
Collapse
|
24
|
Graubner FR, Boos A, Aslan S, Kücükaslan I, Kowalewski MP. Uterine and placental distribution of selected extracellular matrix (ECM) components in the dog. Reproduction 2018; 155:403-421. [PMID: 29439094 DOI: 10.1530/rep-17-0761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
Abstract
For many years, modifications of the uterine extracellular matrix (ECM) during gestation have not been considered as critical for successful canine (Canis lupus familiaris) pregnancy. However, previous reports indicated an effect of free-floating blastocysts on the composition of the uterine ECM. Here, the expression of selected genes involved in structural functions, cell-to-cell communication and inhibition of matrix metalloproteinases were targeted utilizing qPCR and immunohistochemistry. We found that canine free-floating embryos affect gene expression of FN1, ECM1 and TIMP4 This seems to be associated with modulation of trophoblast invasion, and proliferative and adhesive functions of the uterus. Although not modulated at the beginning of pregnancy, the decrease of structural ECM components (i.e. COL1, -3, -4 and LAMA2) from pre-implantation toward post-implantation at placentation sites appears to be associated with softening of the tissue in preparation for trophoblast invasion. The further decrease of these components at placentation sites at the time of prepartum luteolysis seems to be associated with preparation for the release of fetal membranes. Reflecting a high degree of communication, intercellular cell adhesion molecules are induced following placentation (Cx26) or increase gradually toward prepartum luteolysis (Cx43). The spatio-temporal expression of TIMPs suggests their active involvement in modulating fetal invasiveness, and together with ECM1, they appear to protect deeper endometrial structures from trophoblast invasion. With this, the dog appears to be an interesting model for investigating placental functions in other species, e.g. in humans in which Placenta accreta appears to share several similarities with canine subinvolution of placental sites (SIPS). In summary, the canine uterine ECM is only moderately modified in early pregnancy, but undergoes vigorous reorganization processes in the uterus and placenta following implantation.
Collapse
Affiliation(s)
- Felix R Graubner
- Institute of Veterinary AnatomyVetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary AnatomyVetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and GynecologyFaculty of Veterinary Medicine, Near East University, Nicosia, North Cyprus, Turkey
| | - Ibrahim Kücükaslan
- Department of Obstetrics and GynecologyFaculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| | - Mariusz P Kowalewski
- Institute of Veterinary AnatomyVetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Izadi F, Mahjoubi F, Farhadi M, Kalayinia S, Bidmeshkipour A, Tavakoli MM, Samanian S. Extracellular matrix protein 1 gene (ECM1) mutations in nine Iranian families with lipoid proteinosis. Indian J Med Res 2017; 143:303-7. [PMID: 27241643 PMCID: PMC4892076 DOI: 10.4103/0971-5916.182620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background & objectives: Lipoid proteinosis (LP) is an autosomal recessive disease. Clinical characteristics of this disease are hoarse voice, scarring of the skin, brain calcifications, and eyelid papules (moniliform blepharosis). Mutations in the ECM1 gene on 1q21.2 are responsible for this disease. This study was conducted to investigate the mutation spectrum of ECM1 gene in nine Iranian families having at least one LP patient diagnosed clinically. Methods: The entire ECM1 gene was screened using PCR and direct sequencing in nine Iranian families with 12 suspected LP patients who were referred to the clinic, along with their parents and siblings. Thirty healthy individuals were included as controls. Results: In only one patient a homozygous G>A transition at nucleotide c.806 in exon 7 was detected. A G>A substitution at nucleotide 1243 in exon 8 that changes glycine (GGT) to serine (AGT) was observed in most of our patients. Furthermore, in one patient there was a change in the sequence of intron 8, the A>T transition in nucleotide 4307. In addition, in two cases (one patient and one healthy mother with affected child) there was a C (4249) deletion in intron 8. Interpretation & conclusions: Our results indicate that although mutation in ECM1gene is responsible for lipoid proteinosis, it is likely that this is not the only gene causing this disease and probably other genes may be involved in the pathogenesis of the LP disease.
Collapse
Affiliation(s)
- Farzad Izadi
- ENT & HNS Research Center, Hazart Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Medical Biotechnology Institute, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Farhadi
- Department & Research Center of Otolaryngology Head & Neck Surgery, Hazrat Rasool Hospital, Tehran University of Medical Sciences & Health Care Services, Tehran, Iran
| | | | | | - Mohammad Moein Tavakoli
- Department & Research Center of Otolaryngology Head & Neck Surgery, Hazrat Rasool Hospital, Tehran University of Medical Sciences & Health Care Services, Tehran, Iran
| | | |
Collapse
|
26
|
Wang F, Wang R, Li Q, Qu X, Hao Y, Yang J, Zhao H, Wang Q, Li G, Zhang F, Zhang H, Zhou X, Peng X, Bian Y, Xiao W. A transcriptome profile in hepatocellular carcinomas based on integrated analysis of microarray studies. Diagn Pathol 2017; 12:4. [PMID: 28086821 PMCID: PMC5237304 DOI: 10.1186/s13000-016-0596-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023] Open
Abstract
Background Despite new treatment options for hepatocellular carcinomas (HCC) recently, 5-year survival remains poor, ranging from 50 to 70%, which may attribute to the lack of early diagnostic biomarkers. Thus, developing new biomarkers for early diagnosis of HCC, is extremely urgent, aiming to decrease HCC-related deaths. Methods In the study, we conducted a comprehensive characterization of gene expression data of HCC based on a bioinformatics method. The results were confirmed by real time polymerase chain reaction (RT-PCR) and TCGA database to prove the credibility of this integrated analysis. Results After integrating analysis of seven HCC gene expression datasets, 1167 differential expressed genes (DEGs) were identified. These genes mainly participated in the process of cell cycle, oocyte meiosis, and oocyte maturation mediated by progesterone. The results of experiments and TCGA database validation in 10 genes was in full accordance with findings in integrated analysis, indicating the high credibility of our integrated analysis of different gene expression datasets. ASPM, CCT3, and NEK2 was showed to be significantly associated with overall survival of HCC patients in TCGA database. Conclusion This method of integrated analysis may be a useful tool to minish the heterogeneity of individual microarray, hopefully outputs more accurate HCC transcriptome profiles based on large sample size, and explores some potential biomarkers and therapy targets for HCC. Electronic supplementary material The online version of this article (doi:10.1186/s13000-016-0596-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Ruliang Wang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Qiuwen Li
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Xueling Qu
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Yixin Hao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Jingwen Yang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Huixia Zhao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Guanghui Li
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Fengyun Zhang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - He Zhang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Xuan Zhou
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Xioumei Peng
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Yang Bian
- Department of Bioinformatics, Beijing Medintell Biomed Co., Ltd, Beijing, China
| | - Wenhua Xiao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China.
| |
Collapse
|
27
|
Li Y, Li Y, Zhao J, Zheng X, Mao Q, Xia H. Development of a Sensitive Luciferase-Based Sandwich ELISA System for the Detection of Human Extracellular Matrix 1 Protein. Monoclon Antib Immunodiagn Immunother 2016; 35:273-279. [PMID: 27923104 DOI: 10.1089/mab.2016.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.
Collapse
Affiliation(s)
- Ya Li
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Yanqing Li
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Junli Zhao
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Xiaojing Zheng
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Qinwen Mao
- 2 Department of Pathology, Northwestern University Feinberg School of Medicine Chicago , Chicago, Illinois
| | - Haibin Xia
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| |
Collapse
|
28
|
Bai X, Liu JW, Ma DL. Novel Mutations in Extracellular Matrix Protein 1 Gene in a Chinese Patient with Lipoid Proteinosis. Chin Med J (Engl) 2016; 129:2765-2766. [PMID: 27824015 PMCID: PMC5126174 DOI: 10.4103/0366-6999.193446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Xiao Bai
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730; Department of Medical Genetics, McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jia-Wei Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dong-Lai Ma
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
29
|
Rey LK, Kohlhase J, Möllenhoff K, Dekomien G, Epplen JT, Hoffjan S. A Novel ECM1 Splice Site Mutation in Lipoid Proteinosis: Case Report plus Review of the Literature. Mol Syndromol 2016; 7:26-31. [PMID: 27194970 DOI: 10.1159/000444615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
Lipoid proteinosis (LP) is an autosomal recessive genodermatosis known to be caused by mutations in ECM1. Nonsense and missense mutations are the most common variations in LP. Up to date, only 6 splice site mutations have been observed. We report on a 26-year-old female LP patient from a Turkish consanguineous family carrying a novel homozygous splice site mutation in intron 8 of the ECM1 gene and summarize the current knowledge on ECM1 mutations and possible genotype-phenotype correlations.
Collapse
Affiliation(s)
- Linda K Rey
- Departments of Human Genetics, University Witten/Herdecke, Witten, Germany; Departments of Center for Rare Diseases Ruhr (CeSER), Bochum, Germany
| | | | - Katrin Möllenhoff
- Departments of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Germany; Departments of Center for Rare Diseases Ruhr (CeSER), Bochum, Germany
| | - Gabriele Dekomien
- Departments of Human Genetics, University Witten/Herdecke, Witten, Germany; Departments of Center for Rare Diseases Ruhr (CeSER), Bochum, Germany
| | - Jörg T Epplen
- Departments of Human Genetics, University Witten/Herdecke, Witten, Germany; Departments of Center for Rare Diseases Ruhr (CeSER), Bochum, Germany; Departments of Faculty of Health, University Witten/Herdecke, Witten, Germany
| | - Sabine Hoffjan
- Departments of Human Genetics, University Witten/Herdecke, Witten, Germany; Departments of Center for Rare Diseases Ruhr (CeSER), Bochum, Germany
| |
Collapse
|
30
|
Production and characterization of domain-specific monoclonal antibodies against human ECM1. Protein Expr Purif 2016; 121:103-11. [PMID: 26826312 DOI: 10.1016/j.pep.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Human extracellular matrix protein-1 (hECM1), a secreted glycoprotein, is widely expressed in different tissues and organs. ECM1 has been implicated in multiple biological functions, which are potentially mediated by the interaction of different ECM1 domains with its ligands. However, the exact biological functions of ECM1 have not been elucidated yet, and the functional study of ECM1 has been partially hampered by the lack of sensitive and specific antibodies, especially those targeting different ECM1 domains. In this study, six strains of monoclonal antibody (MAb) against hECM1 were generated using purified, prokaryotically-expressed hECM1 as an immunogen. The MAbs were shown to be highly sensitive and specific, and suitable for western blot, immunoprecipitation assays and immunohistochemistry. Furthermore, the particular ECM1 domains recognized by different MAbs were identified. Lastly, the MAbs were found to have neutralizing activities, inhibiting the proliferation, migration and metastasis of MDA-MB-231 cells. In conclusion, the domain-specific anti-ECM1 MAbs produced in this study should provide a useful tool for investigating ECM1's biological functions, and cellular pathways in which it is involved.
Collapse
|
31
|
Prager M, Buettner J, Buening C. Genes involved in the regulation of intestinal permeability and their role in ulcerative colitis. J Dig Dis 2015; 16:713-22. [PMID: 26512799 DOI: 10.1111/1751-2980.12296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified single nucleotide polymorphisms in genes that might influence intestinal barrier function (HNF4A, ECM1, CDH1 and LAMB1) to increase the risk for ulcerative colitis (UC). The aim of our study was to detect causative sequence alterations and provide a functional link to a disturbed intestinal permeability (IP) in UC. METHODS A total of 19 UC patients with increased IP (lactulose/mannitol ratio measured by sugar drink test) were identified from a large database, and exon/intron boundaries, coding and promoter regions of HNF4A, ECM1, CDH1 and LAMB1 were sequenced. Variants with putative protein alterations were studied for an association with IP in 82 UC patients. A case-control analysis including a genotype phenotype correlation was performed in 743 patients with inflammatory bowel disease (IBD) and 473 healthy controls. RESULTS In UC patients, we identified 11 missense-mutations, 12 synonymous mutations, one putative promoter variant and three variants in introns close to the intron/exon boundaries (CDH1, HNF4A). For several variants prediction tools revealed damaging protein alterations. None of the studied variants, however, showed an association with an increased IP in UC. In the case-control analysis, the frequency of all investigated variants did not differ between UC or Crohn's disease and healthy controls. Furthermore, no significant association was found to a distinct phenotype. CONCLUSIONS Despite our large sequencing approach, we could not identify protein altering variants in the genes HNF4A, ECM1, CDH1 and LAMB1 which could explain an impaired intestinal barrier function in UC. The functional relevance of these genes in IBD remains unknown.
Collapse
Affiliation(s)
- Matthias Prager
- Department of Hepatology and Gastroenterology, Charité, Universitätsmedizin Berlin, Campus Mitte
| | - Janine Buettner
- Department of Hepatology and Gastroenterology, Charité, Universitätsmedizin Berlin, Campus Mitte
| | - Carsten Buening
- Department of Hepatology and Gastroenterology, Charité, Universitätsmedizin Berlin, Campus Mitte.,Krankenhaus Waldfriede, Department of Internal Medicine, Berlin, Germany
| |
Collapse
|
32
|
Godoy CA, Teodoro WR, Velosa APP, Garippo AL, Eher EM, Parra ER, Sotto MN, Capelozzi VL. Unusual remodeling of the hyalinization band in vulval lichen sclerosus by type V collagen and ECM 1 protein. Clinics (Sao Paulo) 2015; 70:356-62. [PMID: 26039953 PMCID: PMC4449483 DOI: 10.6061/clinics/2015(05)09] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/20/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The vulva is the primary site affected in lichen sclerosus, a chronic dermatosis in women that is histologically characterized by a zone of collagen remodeling in the superior dermis. The normal physiological properties of the vulva depend on the assembly of collagen types I (COLI), III (COLIII) and V (COLV), which form heterotypic fibers, and extracellular matrix protein interactions. COLV regulates the heterotypic fiber diameter, and the preservation of its properties is important for maintaining normal tissue architecture and function. In the current work, we analyzed the expression of COLV and its relationship with COLI, COLIII, elastic fibers and extracellular matrix protein 1 in vulvar biopsies from patients with lichen sclerosus. METHODS Skin biopsies from 21 patients with lichen sclerosus, classified according to Hewitt histological criteria, were studied and compared to clinically normal vulvar tissue (N=21). Morphology, immunohistochemistry, immunofluorescence, 3D reconstruction and morphometric analysis of COLI, COLIII, COLV deposition, elastic fibers and extracellular matrix 1 expression in a zone of collagen remodeling in the superior dermis were performed. RESULTS A significant decrease of elastic fibers and extracellular matrix 1 protein was present in the hyalinization zone of lichen sclerosus compared to healthy controls. The non-homogeneous distribution of collagen fibers visualized under immunofluorescence in the hyalinization zone of lichen sclerosus and control skin was confirmed by histomorphometry. Lichen sclerosus dermis shows a significant increase of COLI, COLIII and COLV expression compared to the healthy controls. Significant inverse associations were found between elastic fibers and COLV and between COLV and extracellular matrix 1 expression. A direct association was found between elastic fiber content and extracellular matrix 1 expression. Tridimensional reconstruction of the heterotypic fibers of the lichen sclerosus zone of collagen remodeling confirmed the presence of densely clustered COLV. CONCLUSIONS Increased deposition of abnormal COLV and its correlation with extracellular matrix 1 and elastic fibers suggest that COLV may be a trigger in the pathogenesis of lichen sclerosus.
Collapse
Affiliation(s)
- Charles A.P. Godoy
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Walcy R. Teodoro
- Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Ana Paula P. Velosa
- Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Ana Lucia Garippo
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Esmeralda Miristeni Eher
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Edwin Roger Parra
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Mirian N. Sotto
- Department of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Vera L. Capelozzi
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
- *Corresponding author: Vera L. Capelozzi, E-mail:
| |
Collapse
|
33
|
Uematsu S, Goto Y, Suzuki T, Sasazawa Y, Dohmae N, Simizu S. N-Glycosylation of extracellular matrix protein 1 (ECM1) regulates its secretion, which is unrelated to lipoid proteinosis. FEBS Open Bio 2014; 4:879-85. [PMID: 25379385 PMCID: PMC4215116 DOI: 10.1016/j.fob.2014.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 11/21/2022] Open
Abstract
Extracellular matrix protein 1 (ECM1) plays roles in extracellular matrix formation. Two ECM1 gene mutations observed in lipoid proteinosis patients suppress its secretion. ECM1 is N-glycosylated at Asn354 and Asn444 residues. N-linked glycan at Asn354 negatively regulated secretion of ECM1.
Extracellular matrix protein 1 (ECM1) is expressed in a wide variety of tissues and plays important roles in extracellular matrix formation. Additionally, ECM1 gene mutations cause lipoid proteinosis (LP), a rare skin condition of genetic origin. However, an effective therapeutic approach of LP is not established. Here, we showed that ECM1 gene mutation observed in LP patients significantly suppresses its secretion. As ECM1 has three putative N-glycosylation sites and most of mutated ECM1 observed in LP patients are defective in these N-glycosylation sites, we investigated the correlation between LP and N-glycosylation of ECM1. We identified that the Asn354 and Asn444 residues in ECM1 were N-glycosylated by mass spectrometry analysis. In addition, an N-linked glycan at Asn354 negatively regulated secretion of ECM1, contrary to LP patient-derived mutants. These results indicate that the defect of N-glycosylation in ECM1 is not involved in the aberration of secretion of LP-derived mutated ECM1.
Collapse
Affiliation(s)
- Shiho Uematsu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Yuki Goto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | | | - Yukiko Sasazawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Naoshi Dohmae
- Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
- Corresponding author at: 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. Tel./fax: +81 45 566 1778.
| |
Collapse
|
34
|
Nasir M, Rahman SB, Sieber CMK, Mir A, Latif A, Ahmad N, Malik SA, Hameed A. Identification of recurrent c.742G>T nonsense mutation in ECM1 in Pakistani families suffering from lipoid proteinosis. Mol Biol Rep 2014; 41:2085-92. [PMID: 24413997 DOI: 10.1007/s11033-014-3057-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/04/2014] [Indexed: 11/28/2022]
Abstract
Lipoid proteinosis (LP) is one of the rare, recessive autosomal disorders clinically characterized by widespread deposition of hyaline-like material in the skin, mucosa and viscera. Classical features include beaded eyelid papules, laryngeal infiltration and hoarseness of voice caused by pathogenic mutations in the ECM1 gene located on 1q21.2. In present study ethnically different, three consanguineous Pakistani families with typical cutaneous features of LP were analysed to investigate the underlying molecular basis. PCR based linkage analysis using microsatellite markers localized the families to locus 1q21.2, harboring ECM1 gene. To identify the mutation in the candidate gene (ECM1), Sanger sequencing was carried out. All the families were found to carry c.742 G>T nonsense mutation in exon 7 of the ECM1 gene that resulted in a truncated ECM1 protein containing 247 amino acids instead of 540 (p.E248X). To further investigate the impact and importance of mutation in LP pathogenesis we applied different bioinformatics tools. In silico studies has predicted lack of functional domains and 65 % shorter ECM1 mutant protein. It is the first report of recurrence mutation from Pakistan as c.742G>T nonsense mutation was found in three ethnically different Pakistani families with LP. Study strengthens the conclusion that c.742G>T mutation is the pathological cause of LP. Furthermore, data also support the fact that exon 7 is one of the most common hot spots of pathological mutations in ECM1. The absence of functional domains and truncated sequence most likely contribute to the lack of ECM1 function and thereby influence several aspects of dermal homeostasis that leads to LP pathogenesis.
Collapse
Affiliation(s)
- Muhammad Nasir
- Institute of Biomedical & Genetic Engineering, 24-Mauve Area, G-9/1, Islamabad, Pakistan,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mondejar R, Garcia-Moreno JM, Rubio R, Solano F, Delgado M, Garcia-Bravo B, Rios-Martin JJ, Martinez-Mir A, Lucas M. Clinical and molecular study of the extracellular matrix protein 1 gene in a spanish family with lipoid proteinosis. J Clin Neurol 2014; 10:64-8. [PMID: 24465266 PMCID: PMC3896652 DOI: 10.3988/jcn.2014.10.1.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/14/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Lipoid proteinosis (LP) is a rare autosomal recessive disorder characterized by a hoarse voice, variable scarring, and infiltration of the skin and mucosa. This disease is associated with mutations of the gene encoding extracellular matrix protein 1 (ECM1). CASE REPORT This was a clinical and molecular study of a new case of LP with a severe phenotype. A 35-year-old female born to nonconsanguineous parents developed dermatological and extracutaneous symptoms in her 9th month of life. The neurological abnormalities of the disease began to appear at the age of 19 years. Computed tomography revealed cranial calcifications. CONCLUSIONS The diagnosis of LP was confirmed by histopathological findings and direct sequencing of ECM1. A new homozygous nonsense mutation was identified in exon 7 of ECM1, c.1076G>A (p.Trp359(*)). This mutation was not detected in 106 chromosomes of healthy individuals with a similar demographic origin. Microsatellite markers around ECM1 were used to construct the haplotype in both the parents and the patient. Reports on genotype-phenotype correlations in LP point to a milder phenotype in carriers of missense mutations in the Ecm1a isoform, whereas mutations in the Ecm1b isoform are thought to be associated with more severe phenotypes. The present findings in a Spanish patient carrying a truncating mutation in exon 7 revealed complete dermatological and neurological manifestations.
Collapse
Affiliation(s)
- Rufino Mondejar
- Department of Clinical Biochemistry, Virgen Macarena University Hospital Saville, Spain
| | | | - Rocio Rubio
- Department of Molecular Biology, Virgen Macarena University Hospital Saville, Spain
| | - Francisca Solano
- Department of Molecular Biology, Virgen Macarena University Hospital Saville, Spain
| | - Mercedes Delgado
- Department of Molecular Biology, Virgen Macarena University Hospital Saville, Spain
| | - Begona Garcia-Bravo
- Department of Dermatology, Virgen Macarena University Hospital Saville, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocio University Hospital, CSIC, Sevilla, Spain
| | - Miguel Lucas
- Department of Molecular Biology, Virgen Macarena University Hospital Saville, Spain
| |
Collapse
|
36
|
Human Melanoma cells over-express extracellular matrix 1 (ECM1) which is regulated by TFAP2C. PLoS One 2013; 8:e73953. [PMID: 24023917 PMCID: PMC3759440 DOI: 10.1371/journal.pone.0073953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Extracellular matrix 1 (ECM1) is over-expressed in multiple epithelial malignancies. However, knowledge regarding the expression of ECM1 in melanomas and the mechanisms of ECM1 regulation is limited. In this study, we found that ECM1 is over-expressed in several melanoma cell lines, when compared to primary melanocytes, and furthermore, that ECM1 expression paralleled that of TFAP2C levels in multiple cell lines. Knockdown of TFAP2C in the A375 cell line with siRNA led to a reduction in ECM1 expression, and upregulation of TFAP2C with adenoviral vectors in the WM793 cell line resulted in ECM1 upregulation. Utilizing 5’ RACE to identify transcription start sites (TSS) and luciferase reporter assays in the ECM1-overexpressing A375 cell line, we identified the minimal promoter region of human ECM1 and demonstrate that an approximately 100bp fragment upstream of the TSS containing a TATA box and binding sites for AP1, SP1 and Ets is sufficient for promoter activity. Chromatin immunoprecipitation and direct sequencing (ChIP-seq) for TFAP2C in the A375 cell line identified an AP2 regulatory region in the promoter of the ECM1 gene. Gelshift assays further confirmed binding of TFAP2C to this site. ECM1 knockdown reduces melanoma cell attachment and is consistent with findings that ECM1 overexpression has been associated with a poor prognosis. Our investigations show an as yet unrecognized role for TFAP2C in melanoma via its regulation of ECM1.
Collapse
|
37
|
Acitretin treatment for lipoid proteinosis. Case Rep Dermatol Med 2012; 2012:324506. [PMID: 23259080 PMCID: PMC3505959 DOI: 10.1155/2012/324506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/10/2012] [Indexed: 11/25/2022] Open
Abstract
Lipoid proteinosis (LP) is a rare, autosomal-recessive disease characterized by the hoarseness and widespread cutaneous scarring, more prominent on sun-exposed areas. Yellow-white plaques can be seen on oral mucosa and on the skin among depressed scars. Histological evaluation of the affected sites shows accumulation of hyaline-like material in dermis and disruption of basement membrane. Although LP is compatible with normal life expectancy, involvement of upper respiratory tract may endanger patient's life, especially in the case of a respiratory tract infection. Involvement of central nervous system has also been reported, but its clinical importance is obscure. Due to the rarity of LP, a definite therapeutical approach is not established. In this paper we describe a 21-year-old LP patient who was treated with acitretin for six months. Although the outcome with cutaneous lesions was not satisfactory, her hoarseness was significantly improved.
Collapse
|
38
|
Izadi F, Mahjoubi F, Farhadi M, Tavakoli MM, Samanian S. A novel missense mutation in exon 7 of the ECM1 gene in an Iranian lipoid proteinosis patient. GENETICS AND MOLECULAR RESEARCH 2012; 11:3955-60. [PMID: 23212332 DOI: 10.4238/2012.november.14.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lipoid proteinosis (LP) is a rare autosomal recessive disorder. Classical clinical features include warty skin infiltration, papules on the eyelids, skin scarring, as well as extracutaneous abnormalities such as hoarseness of the voice, epilepsy, and neuropsychiatric abnormalities. A defect in the ECM1 gene is responsible for this disease. A 21-year-old female patient from consanguineous parents (first cousins) was referred to our clinic with many symptoms of LP, such as hoarse voice from infancy, diffuse acneiform scars on her face, and hyperkeratosis on her knees and elbows. The entire ECM1 gene was screened using PCR and sequencing. A novel missense mutation was found in exon 7 of this patient. We report a novel missense mutation in exon 7 of the ECM1 gene found in an Iranian LP patient that causes a C269Y amino acid exchange.
Collapse
Affiliation(s)
- F Izadi
- ENT-Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
39
|
Kong D, Cardak S, Chen M, Gentz R, Zhang J. High cell density and productivity culture of Chinese hamster ovary cells in a fluidized bed bioreactor. Cytotechnology 2011; 29:215-20. [PMID: 19003344 DOI: 10.1023/a:1008064217040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recombinant Chinese hamster ovary clone was cultivated in a 2L Cytopilot Mini fluidized bed bioreactor using Cytoline 1 microcarriers and a 10L B. Braun stirred tank bioreactor with Cytodex 1 microcarriers. Cytoline 1 is a macroporous polyethylene microcarrier and Cytodex 1 is a solid DEAE-dextran microcarrier. Cytoline 1 microcarriers in the fluidized bed bioreactor were gently mixed by an uplifting flow. Circulation and sparging in Cytopilot Mini were separated from the fluidized microcarrier bed. Cytopilot Mini bioreactor with Cytoline 1 microcarriers offered 2.3 times more surface area than the stirred tank bioreactor. The 2L fluidized bed bioreactor accommodated approximately half the cells in the 10L stirred tank bioreactor. Moreover, Cytopilot Mini had approximately three times more product output rate and 5.5 times higher specific productivity than the stirred tank bioreactor.
Collapse
Affiliation(s)
- D Kong
- Human Genome Sciences, Inc., 9410 Key West Ave., Rockville, MD, 20850, USA
| | | | | | | | | |
Collapse
|
40
|
Salih MA, Abu-Amero KK, Alrasheed S, Alorainy IA, Liu L, McGrath JA, Van Maldergem L, Al-Faky YH, AlSuhaibani AH, Oystreck DT, Bosley TM. Molecular and neurological characterizations of three Saudi families with lipoid proteinosis. BMC MEDICAL GENETICS 2011; 12:31. [PMID: 21349189 PMCID: PMC3050790 DOI: 10.1186/1471-2350-12-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/24/2011] [Indexed: 01/14/2023]
Abstract
Background Lipoid proteinosis is a rare autosomal recessive disease characterized by cutaneous and mucosal lesions and hoarseness appearing in early childhood. It is caused by homozygous or compound heterozygous mutations in the ECM1 gene. The disease is largely uncharacterized in Arab population and the mutation(s) spectrum in the Arab population is largely unknown. We report the neurologic and neuroradiologic characteristics and ECM1 gene mutations of seven individuals with lipoid proteinosis (LP) from three unrelated consanguineous families. Methods Clinical, neurologic, and neuro-ophthalmologic examinations; skin histopathology; brain CT and MRI; and sequencing of the fullECM1 gene. Results All seven affected individuals had skin scarring and hoarseness from early childhood. The two children in Family 1 had worse skin involvement and worse hoarseness than affected children of Families 2 and 3. Both children in Family 1 were modestly mentally retarded, and one had typical calcifications of the amygdalae on CT scan. Affected individuals in Families 2 and 3 had no grossneurologic, neurodevelopmental, or neuroimaging abnormalities. Skin histopathology was compatible with LP in all three families. Sequencing the full coding region of ECM1 gene revealed two novel mutationsin Family 1 (c.1300-1301delAA) and Family 2 (p.Cys269Tyr) and in Family 3 a previously described 1163 bp deletion starting 34 bp into intron 8. Conclusions These individuals illustrate the neurologic spectrum of LP, including variable mental retardation, personality changes, and mesial temporal calcificationand imply that significant neurologic involvement may be somewhat less common than previously thought. The cause of neurologic abnormalities was not clear from either neuroimaging or from what is known about ECM1 function. The severity of dermatologic abnormalities and hoarseness generally correlated with neurologic abnormalities, with Family 1 being somewhat more affected in all spheres than the other two families. Nevertheless, phenotype-genotype correlation was not obvious, possibly because of difficulty quantifying the neurologic phenotype and because of genetic complexity.
Collapse
Affiliation(s)
- Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen H, Jia WD, Li JS, Wang W, Xu GL, Ma JL, Ren WH, Ge YS, Yu JH, Liu WB, Zhang CH, Wang YC. Extracellular matrix protein 1, a novel prognostic factor, is associated with metastatic potential of hepatocellular carcinoma. Med Oncol 2010; 28 Suppl 1:S318-25. [PMID: 21128013 DOI: 10.1007/s12032-010-9763-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Extracellular matrix protein 1 (ECM1) is a glycoprotein involved in a number of biologic processes. To investigate the expression of ECM1 in hepatocellular carcinoma (HCC) and determine its correlation with tumor progression and prognosis, the expression levels of ECM1 in three HCC and one normal liver cell lines, tumor, and corresponding adjacent tissues from 18 HCC patients were analyzed by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Immunohistochemistry assay was used to determine the expression of ECM1 in HCC and corresponding paracarcinomatous tissues from 77 patients. The results of Western blotting were consistent with the results from RT-PCR analysis of ECM1 mRNA expression. Among the four cell lines, the expression level in HCCLM3, which with the highest metastatic potential, was significantly higher than that with lower (P < 0.05); while ECM1 expression was not detected in normal liver cell line. Expression level of ECM1 was significantly increased in HCC compared with adjacent and normal liver tissues (P < 0.05). Immunohistochemically, the expression of ECM1 in HCC was judged to be positive in 57 (74.0%) cases, significantly higher than that in corresponding paracarcinomatous tissues (P < 0.01), and it was associated with tumor size (P = 0.036), number of tumor nodules (P = 0.048), TNM stage (P = 0.029), and vascular invasion (P = 0.007). In particular, the expression of ECM1 was found to be an independent factor for predicting overall and disease-free survival of HCC. The expression level of ECM1 was associated with metastatic potential of HCC, and its abnormal expression may be used as a predictive factor of unfavorable prognosis and recurrence for HCC after surgery.
Collapse
Affiliation(s)
- Hao Chen
- Center for the Study of Liver Cancer and Department of Hepatic Surgery, Anhui Provincial Hospital, Anhui Medical University, No 17 Lujiang Road, Hefei, 230001 Anhui, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Merregaert J, Van Langen J, Hansen U, Ponsaerts P, El Ghalbzouri A, Steenackers E, Van Ostade X, Sercu S. Phospholipid scramblase 1 is secreted by a lipid raft-dependent pathway and interacts with the extracellular matrix protein 1 in the dermal epidermal junction zone of human skin. J Biol Chem 2010; 285:37823-37. [PMID: 20870722 DOI: 10.1074/jbc.m110.136408] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We examined the interaction of ECM1 (extracellular matrix protein 1) using yeast two-hybrid screening and identified the type II transmembrane protein, PLSCR1 (phospholipid scramblase 1), as a binding partner. This interaction was then confirmed by in vitro and in vivo co-immunoprecipitation experiments, and additional pull-down experiments with GST-tagged ECM1a fragments localized this interaction to occur within the tandem repeat region of ECM1a. Furthermore, immunohistochemical staining revealed a partial overlap of ECM1 and PLSCR1 in human skin at the basal epidermal cell layer. Moreover, in human skin equivalents, both proteins are expressed at the basal membrane in a dermal fibroblast-dependent manner. Next, immunogold electron microscopy of ultrathin human skin sections showed that ECM1 and PLSCR1 co-localize in the extracellular matrix, and using antibodies against ECM1 or PLSCR1 cross-linked to magnetic immunobeads, we were able to demonstrate PLSCR1-ECM1 interaction in human skin extracts. Furthermore, whereas ECM1 is secreted by the endoplasmic/Golgi-dependent pathway, PLSCR1 release from HaCaT keratinocytes occurs via a lipid raft-dependent mechanism, and is deposited in the extracellular matrix. In summary, we here demonstrate that PLSCR1 interacts with the tandem repeat region of ECM1a in the dermal epidermal junction zone of human skin and provide for the first time experimental evidence that PLSCR1 is secreted by an unconventional secretion pathway. These data suggest that PLSCR1 is a multifunctional protein that can function both inside and outside of the cell and together with ECM1 may play a regulatory role in human skin.
Collapse
Affiliation(s)
- Joseph Merregaert
- Laboratory of Molecular Biotechnology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kong L, Tian Q, Guo F, Mucignat MT, Perris R, Sercu S, Merregaert J, Di Cesare PE, Liu CJ. Interaction between cartilage oligomeric matrix protein and extracellular matrix protein 1 mediates endochondral bone growth. Matrix Biol 2010; 29:276-86. [PMID: 20138147 DOI: 10.1016/j.matbio.2010.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/02/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
Abstract
In an effort to define the biological functions of COMP, a functional genetic screen was performed. This led to the identification of extracellular matrix protein 1 (ECM1) as a novel COMP-associated partner. COMP directly binds to ECM1 both in vitro and in vivo. The EGF domain of COMP and the C-terminus of ECM1 mediate the interaction between them. COMP and ECM1 colocalize in the growth plates invivo. ECM1 inhibits chondrocyte hypertrophy, matrix mineralization, and endochondral bone formation, and COMP overcomes the inhibition by ECM1. In addition, COMP-mediated neutralization of ECM1 inhibition depends on their interaction, since COMP largely fails to overcome the ECM1 inhibition in the presence of the EGF domain of COMP, which disturbs the association of COMP and ECM1. These findings provide the first evidence linking the association of COMP and ECM1 and the biological significance underlying the interaction between them in regulating endochondral bone growth.
Collapse
Affiliation(s)
- Li Kong
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lal G, Hashimi S, Smith BJ, Lynch CF, Zhang L, Robinson RA, Weigel RJ. Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: a Hospital-based Cohort Study in Iowa. Ann Surg Oncol 2009; 16:2280-7. [PMID: 19521735 DOI: 10.1245/s10434-009-0533-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Previous work in a small, unselected series showed that up to 83% of breast carcinomas overexpress ECM1 by immunohistochemistry (IHC) and that tumors with lymph node metastases are more likely to be ECM1-positive. We sought to further evaluate ECM1 expression and its effect on prognosis in an unselected cohort of patients with breast cancer. METHODS ECM1 expression was examined by IHC in 134 women diagnosed with invasive breast cancer between 1986 and 1989 and correlated with clinical parameters and outcomes, including disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS) using Cox proportional hazards regression. RESULTS During follow-up, 83 of 134 (66%) patients died. The median follow-up was 211 (range, 183-245) months for surviving patients. Based on a previously described cutoff of 10% staining, 47% of breast cancers were ECM1-positive. ECM1-positive tumors were associated with increasing patient age (P = 0.01). In multivariate analyses, while controlling for age, ER status, tumor grade, stage, and treatment, ECM1 expression emerged as a significant predictor of DSS (hazard ratios, 4.16 (P = 0.009) and 11.6 (P = 0.01) at 10 and 15 years, respectively) and DFS (hazard ratio, 3.08 (P = 0.03) at 15 years) with ECM1 overexpression predicting poorer survival. CONCLUSIONS ECM1 was overexpressed in approximately half of invasive breast carcinomas and is an important prognostic marker, particularly for predicting poorer DSS, with its predictive value increasing with time from diagnosis. Further work is needed to confirm these findings and determine whether ECM1 expression is predictive of response to specific therapy.
Collapse
Affiliation(s)
- Geeta Lal
- Department of Surgery, University of Iowa, Iowa City, IA, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Hannan NJ, Salamonsen LA. CX3CL1 and CCL14 Regulate Extracellular Matrix and Adhesion Molecules in the Trophoblast: Potential Roles in Human Embryo Implantation1. Biol Reprod 2008; 79:58-65. [DOI: 10.1095/biolreprod.107.066480] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
46
|
Sercu S, Zhang L, Merregaert J. The extracellular matrix protein 1: its molecular interaction and implication in tumor progression. Cancer Invest 2008; 26:375-84. [PMID: 18443958 DOI: 10.1080/07357900701788148] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The extracellular matrix protein 1 (ECM1) is expressed around blood vessels, which suggest a role for ECM1 in angiogenesis. Recombinant ECM1 stimulates proliferation of cultured endothelial cells and promotes blood vessel formation in the chorioallantoic membrane of chicken embryos. These observations make ECM1 a possible trigger for angiogenesis, tumor progression and malignancies. Interaction of ECM1 with perlecan, MMP-9 and fibulin-1C/D contributes to this hypothesis. However, the importance of ECM1 in cancer biology has been neglected so far. Nevertheless, a survey of ECM1 expression in different tumors indicated that ECM1, although not tumor specific, is significantly elevated in many malignant epithelial tumors that give rise to metastases, emphasizing its relevance in the cancer process.
Collapse
Affiliation(s)
- S Sercu
- Laboratory of Molecular Biotechnology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | | | | |
Collapse
|
47
|
Interaction of extracellular matrix protein 1 with extracellular matrix components: ECM1 is a basement membrane protein of the skin. J Invest Dermatol 2008; 128:1397-408. [PMID: 18200062 DOI: 10.1038/sj.jid.5701231] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The extracellular matrix protein 1 (ECM1) is a secreted glycoprotein, which plays an important role in the structural and functional biology of the skin as demonstrated by the identification of loss-of-function mutations in ECM1 as cause of the genodermatosis lipoid proteinosis, characterized by reduplication of the skin basement membrane and hyalinization of the underlying dermis. To search for binding partner(s) of ECM1, we tested the in vitro binding activity of ECM1a, a major isoform of four ECM1 splice variants, to different skin extracellular matrix proteins (such as laminin 332, collagen type IV, and fibronectin) and polysaccharides (such as hyaluronan, heparin, and chondroitin sulfate A) with solid-phase binding assay. We demonstrated that ECM1a utilizes different regions to bind to a variety of extracellular matrix components. Ultrastructurally, ECM1 is a basement membrane protein in human skin and is part of network-like suprastructures containing perlecan, collagen type IV, and laminin 332 as constituents. Furthermore, ECM1a enhanced the binding of collagen IV to laminin 332 dose-dependently, showing its involvement in the dermal-epidermal junction and interstitial dermis and making the functional link to the pathophysiology of lipoid proteinosis. To our knowledge, this is previously unreported.
Collapse
|
48
|
Chan I, Liu L, Hamada T, Sethuraman G, McGrath JA. The molecular basis of lipoid proteinosis: mutations in extracellular matrix protein 1. Exp Dermatol 2007; 16:881-90. [PMID: 17927570 DOI: 10.1111/j.1600-0625.2007.00608.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ien Chan
- Genetic Skin Disease Group, St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, The Guy's, King's College and St Thomas' School of Medicine, London, UK
| | | | | | | | | |
Collapse
|
49
|
Fujimoto N, Terlizzi J, Aho S, Brittingham R, Fertala A, Oyama N, McGrath JA, Uitto J. Extracellular matrix protein 1 inhibits the activity of matrix metalloproteinase 9 through high-affinity protein/protein interactions. Exp Dermatol 2006; 15:300-7. [PMID: 16512877 DOI: 10.1111/j.0906-6705.2006.00409.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Extracellular matrix protein 1 (ECM1), an approximately 85-kDa glycoprotein with broad tissue distribution, harbors mutations in lipoid proteinosis (LP), a heritable disease characterized by reduplication of basement membranes and hyalinization of dermis, associated with neurologic disorders. The mechanisms leading from ECM1 mutations to LP phenotype are unknown. In this study, we explored ECM1 protein-protein interactions utilizing yeast two-hybrid genetic screen of human placental library, which identified nine interacting proteins, including matrix metalloproteinase 9 (MMP9). The interactions were confirmed by beta-galactosidase assay with isolated clones and by co-immunoprecipitation which narrowed the interacting segment in ECM1 to the C-terminal tandem repeat 2 (amino acids 236-361). This peptide segment also inhibited MMP9 activity in a gelatin-based ELISA assay. We propose that ECM1-mediated reduction in MMP9 proteolytic activity may have relevance to pathogenesis of LP.
Collapse
Affiliation(s)
- Norihiro Fujimoto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang CY, Zhang PZ, Zhang FR, Liu J, Tian HQ, Yu L. New compound heterozygous mutations in a Chinese family with lipoid proteinosis. Br J Dermatol 2006; 155:470-2. [PMID: 16882193 DOI: 10.1111/j.1365-2133.2006.07292.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C Y Wang
- Shandong Provincial Institute of Dermatology and Venereology, 57 Jiyan Road, Jinan, China
| | | | | | | | | | | |
Collapse
|