1
|
Ge SX. Exploratory bioinformatics investigation reveals importance of "junk" DNA in early embryo development. BMC Genomics 2017; 18:200. [PMID: 28231763 PMCID: PMC5324221 DOI: 10.1186/s12864-017-3566-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Instead of testing predefined hypotheses, the goal of exploratory data analysis (EDA) is to find what data can tell us. Following this strategy, we re-analyzed a large body of genomic data to study the complex gene regulation in mouse pre-implantation development (PD). RESULTS Starting with a single-cell RNA-seq dataset consisting of 259 mouse embryonic cells derived from zygote to blastocyst stages, we reconstructed the temporal and spatial gene expression pattern during PD. The dynamics of gene expression can be partially explained by the enrichment of transposable elements in gene promoters and the similarity of expression profiles with those of corresponding transposons. Long Terminal Repeats (LTRs) are associated with transient, strong induction of many nearby genes at the 2-4 cell stages, probably by providing binding sites for Obox and other homeobox factors. B1 and B2 SINEs (Short Interspersed Nuclear Elements) are correlated with the upregulation of thousands of nearby genes during zygotic genome activation. Such enhancer-like effects are also found for human Alu and bovine tRNA SINEs. SINEs also seem to be predictive of gene expression in embryonic stem cells (ESCs), raising the possibility that they may also be involved in regulating pluripotency. We also identified many potential transcription factors underlying PD and discussed the evolutionary necessity of transposons in enhancing genetic diversity, especially for species with longer generation time. CONCLUSIONS Together with other recent studies, our results provide further evidence that many transposable elements may play a role in establishing the expression landscape in early embryos. It also demonstrates that exploratory bioinformatics investigation can pinpoint developmental pathways for further study, and serve as a strategy to generate novel insights from big genomic data.
Collapse
Affiliation(s)
- Steven Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Box 2225, Brookings, SD, 57110, USA.
| |
Collapse
|
2
|
Evsikov AV, Marín de Evsikova C. Gene expression during the oocyte-to-embryo transition in mammals. Mol Reprod Dev 2009; 76:805-18. [PMID: 19363788 DOI: 10.1002/mrd.21038] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The seminal question in modern developmental biology is the origins of new life arising from the unification of sperm and egg. The roots of this question begin from 19th to 20th century embryologists studying fertilization and embryogenesis. Although the revolution of molecular biology has yielded significant insight into the complexity of this process, the overall orchestration of genes, molecules, and cells is still not fully formed. Early mammalian development, specifically the oocyte-to-embryo transition, is essentially under "maternal command" from factors deposited in the cytoplasm during oocyte growth, independent of de novo transcription from the nascent embryo. Many of the advances in understanding this developmental period occurred in tandem with application of new methods and techniques from molecular biology, from protein electrophoresis to sequencing and assemblies of whole genomes. From this bed of knowledge, it appears that precise control of mRNA translation is a key regulator coordinating the molecular and cellular events occurring during oocyte-to-embryo transition. Notably, oocyte transcriptomes share, yet retain some uniqueness, common genetic motifs among all chordates. The common genetic motifs typically define fundamental processes critical for cellular maintenance, whereas the unique genetic features may be a source of variation and a substrate for sexual selection, genetic drift, or gene flow. One purpose for this complex interplay among genes, proteins, and cells may allow for evolution to transform and act upon the underlying processes, at molecular, structural and organismal levels, to increase diversity, which is the ultimate goal of sexual reproduction.
Collapse
|
3
|
Croy BA, Wessels J, Linton N, Tayade C. Comparison of immune cell recruitment and function in endometrium during development of epitheliochorial (pig) and hemochorial (mouse and human) placentas. Placenta 2008; 30 Suppl A:S26-31. [PMID: 19010536 DOI: 10.1016/j.placenta.2008.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/30/2008] [Accepted: 09/30/2008] [Indexed: 12/28/2022]
Abstract
The role of maternal immune cells in early implantation sites has received special attention from reproductive biologists because immune cells participate in tissue transplant rejection. During normal pregnancy, endometrial immune cells differ from those in blood by subset distribution and appear to be activated but non-destructive of conceptuses. The immune system evolved well before placental mammals. By comparing the regulation and functions of endometrial immune cells between species in two phylogenetic clades that model differently evolved placental types (pig (Sus scrofa) versus mouse (Mus musculus) and human (Homo sapiens)), we seek to understand how "non-self" trophoblast cells thrive in most pregnancies. Our studies suggest recruitment of specific immune cells to conceptus-associated endometrium and immune cell-promoted endometrial angiogenesis are of key importance for mammalian conceptus well-being.
Collapse
Affiliation(s)
- B A Croy
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | | | | |
Collapse
|
4
|
Abstract
The principal route to understanding the biological significance of the genome sequence comes from discovery and characterization of that portion of the genome that is transcribed into RNA products. We now know that this ;transcriptome' is unexpectedly complex and its precise definition in any one species requires multiple technical approaches and an ability to work on a very large scale. A key step is the development of technologies able to capture snapshots of the complexity of the various kinds of RNA generated by the genome. As the human, mouse and other model genome sequencing projects approach completion, considerable effort has been focused on identifying and annotating the protein-coding genes as the principal output of the genome. In pursuing this aim, several key technologies have been developed to generate large numbers and highly diverse sets of full-length cDNAs and their variants. However, the search has identified another hidden transcriptional universe comprising a wide variety of non-protein coding RNA transcripts. Despite initial scepticism, various experiments and complementary technologies have demonstrated that these RNAs are dynamically transcribed and a subset of them can act as sense-antisense RNAs, which influence the transcriptional output of the genome. Recent experimental evidence suggests that the list of non-protein coding RNAs is still largely incomplete and that transcription is substantially more complex even than currently thought.
Collapse
Affiliation(s)
- Piero Carninci
- Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Institute, Wako, Saitama, Japan.
| |
Collapse
|
5
|
Roma G, Cobellis G, Claudiani P, Maione F, Cruz P, Tripoli G, Sardiello M, Peluso I, Stupka E. A novel view of the transcriptome revealed from gene trapping in mouse embryonic stem cells. Genome Res 2007; 17:1051-60. [PMID: 17540781 PMCID: PMC1899116 DOI: 10.1101/gr.5720807] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cell lines with the capacity of self-renewal and the ability to differentiate into specific cell types. We performed the first genome-wide analysis of the mouse ES cell transcriptome using approximately 250,000 gene trap sequence tags deposited in public databases. We unveiled >8000 novel transcripts, mostly non-coding, and >1000 novel alternative and often tissue-specific exons of known genes. Experimental verification of the expression of these genes and exons by RT-PCR yielded a 70% validation rate. A novel non-coding transcript within the set studied showed a highly specific pattern of expression by in situ hybridization. Our analysis also shows that the genome presents gene trapping hotspots, which correspond to 383 known and 87 novel genes. These "hypertrapped" genes show minimal overlap with previously published expression profiles of ES cells; however, we prove by real-time PCR that they are highly expressed in this cell type, thus potentially contributing to the phenotype of ES cells. Although gene trapping was initially devised as an insertional mutagenesis technique, our study demonstrates its impact on the discovery of a substantial and unprecedented portion of the transcriptome.
Collapse
Affiliation(s)
- Guglielmo Roma
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Gilda Cobellis
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
- Dipartimento di Patologia Generale, Seconda Universita’ di Napoli, 80100 Napoli, Italy
| | - Pamela Claudiani
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Francesco Maione
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Pedro Cruz
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Gaetano Tripoli
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Marco Sardiello
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Elia Stupka
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
- CBM S.c.r.l., Area Science Park, Basovizza- SS14, Km 163,5 Trieste, 34012 Italy
- Corresponding author.E-mail ; fax 39-040-3757710
| |
Collapse
|
6
|
Ko MSH. Molecular biology of preimplantation embryos: primer for philosophical discussions. Reprod Biomed Online 2005; 10 Suppl 1:80-7. [PMID: 15820015 DOI: 10.1016/s1472-6483(10)62212-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article is based on a presentation at the First International Conference on Ethics, Science and Moral Philosophy of Assisted Human Reproduction. The goal is to provide scientific background for the discussion of philosophic issues. Recent advances in the systematic molecular analysis of preimplantation embryos are summarized, including the molecular identification of nearly all genes involved in preimplantation development and their detailed expression patterns. Notwithstanding a quantum leap in molecular understanding of preimplantation embryos, molecular evidence seems to provide no decisive definition of a threshold for the beginning of human life during preimplantation development.
Collapse
Affiliation(s)
- Minoru S H Ko
- Developmental Genomics and Ageing Section, Laboratory of Genetics, National Institute on Ageing, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Evsikov AV, de Vries WN, Peaston AE, Radford EE, Fancher KS, Chen FH, Blake JA, Bult CJ, Latham KE, Solter D, Knowles BB. Systems biology of the 2-cell mouse embryo. Cytogenet Genome Res 2005; 105:240-50. [PMID: 15237213 DOI: 10.1159/000078195] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 12/05/2003] [Indexed: 11/19/2022] Open
Abstract
The transcriptome of the 2-cell mouse embryo was analyzed to provide insight into the molecular networks at play during nuclear reprogramming and embryonic genome activation. Analysis of ESTs from a 2-cell cDNA library identified nearly 4,000 genes, over half of which have not been previously studied. Transcripts of mobile elements, especially those of LTR retrotransposons, are abundantly represented in 2-cell embryos, suggesting their possible role in introducing genomic variation, and epigenetic restructuring of the embryonic genome. Analysis of Gene Ontology of the 2-cell-stage expressed genes outlines the major biological processes that guide the oocyte-to-embryo transition. These results provide a foundation for understanding molecular control at the onset of mammalian development.
Collapse
Affiliation(s)
- A V Evsikov
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Adjaye J. Whole-genome approaches for large-scale gene identification and expression analysis in mammalian preimplantation embryos. Reprod Fertil Dev 2005; 17:37-45. [PMID: 15745630 DOI: 10.1071/rd04075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/01/2004] [Indexed: 11/23/2022] Open
Abstract
The elucidation, unravelling and understanding of the molecular basis of transcriptional control during preimplantion development is of utmost importance if we are to intervene and eliminate or reduce abnormalities associated with growth, disease and infertility by applying assisted reproduction. Importantly, these studies should enhance our knowledge of basic reproductive biology and its application to regenerative medicine and livestock production. A major obstacle impeding progress in these areas is the ability to successfully generate molecular portraits of preimplantation embryos from their minute amounts of RNA. The present review describes the various approaches whereby classical embryology fuses with molecular biology, high-throughput genomics and systems biology to address and solve questions related to early development in mammals.
Collapse
Affiliation(s)
- James Adjaye
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 73, D-14195 Berlin, Germany.
| |
Collapse
|
9
|
Hamatani T, Carter MG, Sharov AA, Ko MSH. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004; 6:117-31. [PMID: 14723852 DOI: 10.1016/s1534-5807(03)00373-3] [Citation(s) in RCA: 668] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding preimplantation development is important both for basic reproductive biology and for practical applications including regenerative medicine and livestock breeding. Global expression profiles revealed and characterized the distinctive patterns of maternal RNA degradation and zygotic gene activation, including two major transient waves of de novo transcription. The first wave corresponds to zygotic genome activation (ZGA); the second wave, named mid-preimplantation gene activation (MGA), precedes the dynamic morphological and functional changes from the morula to blastocyst stage. Further expression profiling of embryos treated with inhibitors of transcription, translation, and DNA replication revealed that the translation of maternal RNAs is required for the initiation of ZGA. We propose a cascade of gene activation from maternal RNA/protein sets to ZGA gene sets and thence to MGA gene sets. The large number of genes identified as involved in each phase is a first step toward analysis of the complex gene regulatory networks.
Collapse
Affiliation(s)
- Toshio Hamatani
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 333 Cassell Drive, Suite 3000, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
10
|
Ko MSH. Embryogenomics of pre-implantation mammalian development: current status. Reprod Fertil Dev 2004. [DOI: 10.1071/rd03080] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pre-implantation development is marked by many critical molecular events, including the maternal to zygotic transition and the first differentiation of cells. Understanding such events is important, for both basic reproductive biology and practical applications, including regenerative medicine and livestock production. Scarcity of materials has hampered the progress of the field, but systematic genomics approaches are beginning to be applied to the study of pre-implantation development, resulting in unprecedented amounts of data about the pre-implantation process. The first step in embryogenomics is to collect and sequence cDNAs (expressed sequence tags (ESTs)) for genes that are expressed and function in these early embryos. Mouse work is the most advanced, with 140111 ESTs derived from all stages of pre-implantation development currently available in the public sequence database. For other mammals, at present only approximately 1000 ESTs can be found in the public database, but efforts by several groups are generating cDNA libraries and ESTs. In the present review, the current status of the implementation of these investigative tools for mammalian pre-implantation embryos is discussed.
Collapse
|
11
|
Sharov AA, Piao Y, Matoba R, Dudekula DB, Qian Y, VanBuren V, Falco G, Martin PR, Stagg CA, Bassey UC, Wang Y, Carter MG, Hamatani T, Aiba K, Akutsu H, Sharova L, Tanaka TS, Kimber WL, Yoshikawa T, Jaradat SA, Pantano S, Nagaraja R, Boheler KR, Taub D, Hodes RJ, Longo DL, Schlessinger D, Keller J, Klotz E, Kelsoe G, Umezawa A, Vescovi AL, Rossant J, Kunath T, Hogan BLM, Curci A, D'Urso M, Kelso J, Hide W, Ko MSH. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol 2003; 1:E74. [PMID: 14691545 PMCID: PMC300684 DOI: 10.1371/journal.pbio.0000074] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 10/13/2003] [Indexed: 12/26/2022] Open
Abstract
Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. 250,000 EST sequences from oocytes, blastocysts, and embryonic and adult stem cells contribute to the annotation of the mouse genome and suggest genes that contribute to the unique features of these developmental stages and cell types
Collapse
Affiliation(s)
- Alexei A Sharov
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Yulan Piao
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Ryo Matoba
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Dawood B Dudekula
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Yong Qian
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Vincent VanBuren
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Geppino Falco
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Patrick R Martin
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Carole A Stagg
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Uwem C Bassey
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Yuxia Wang
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Mark G Carter
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Toshio Hamatani
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Kazuhiro Aiba
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Hidenori Akutsu
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Lioudmila Sharova
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Tetsuya S Tanaka
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Wendy L Kimber
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | | | - Saied A Jaradat
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Serafino Pantano
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Ramaiah Nagaraja
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Kenneth R Boheler
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Dennis Taub
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Richard J Hodes
- 1National Institute on AgingBaltimore, MarylandUnited States of America
- 2National Cancer InstituteBethesda, MarylandUnited States of America
| | - Dan L Longo
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | | | - Jonathan Keller
- 3Basic Research Program, SAIC–Frederick, National Cancer Institute at FrederickFrederick, MarylandUnited States of America
| | - Emily Klotz
- 2National Cancer InstituteBethesda, MarylandUnited States of America
| | - Garnett Kelsoe
- 4Duke University Medical CenterDurham, North CarolinaUnited States of America
| | - Akihiro Umezawa
- 5National Research Institute for Child Health and DevelopmentTokyoJapan
| | - Angelo L Vescovi
- 6Institute for Stem Cell Research, Ospedale San RaffaeleMilanItaly
| | | | | | - Brigid L. M Hogan
- 4Duke University Medical CenterDurham, North CarolinaUnited States of America
| | - Anna Curci
- 8Institute of Genetics and Biophysics, Consiglio Nazionale delle RicercheNaplesItaly
| | - Michele D'Urso
- 8Institute of Genetics and Biophysics, Consiglio Nazionale delle RicercheNaplesItaly
| | - Janet Kelso
- 9South African National Bioinformatics Institute, University of the Western CapeBellvilleSouth Africa
| | - Winston Hide
- 9South African National Bioinformatics Institute, University of the Western CapeBellvilleSouth Africa
| | - Minoru S. H Ko
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| |
Collapse
|
12
|
Knowles BB, Evsikov AV, de Vries WN, Peaston AE, Solter D. Molecular control of the oocyte to embryo transition. Philos Trans R Soc Lond B Biol Sci 2003; 358:1381-7. [PMID: 14511485 PMCID: PMC1693239 DOI: 10.1098/rstb.2003.1330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elucidation of the molecular control of the initiation of mammalian embryogenesis is possible now that the transcriptomes of the full-grown oocyte and two-cell stage embryo have been prepared and analysed. Functional annotation of the transcriptomes using gene ontology vocabularies, allows comparison of the oocyte and two-cell stage embryo between themselves, and with all known mouse genes in the Mouse Genome Database. Using this methodology one can outline the general distinguishing features of the oocyte and the two-cell stage embryo. This, when combined with oocyte-specific targeted deletion of genes, allows us to dissect the molecular networks at play as the differentiated oocyte and sperm transit into blastomeres with unlimited developmental potential.
Collapse
Affiliation(s)
- Barbara B Knowles
- The Jackson Laboratory, 600 East Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | | | |
Collapse
|
13
|
Yamanaka I, Kiyosawa H, Kondo S, Saito T, Carninci P, Shinagawa A, Aizawa K, Fukuda S, Hara A, Itoh M, Kawai J, Shibata K, Arakawa T, Ishii Y, Hayashizaki Y. Mapping of 19032 mouse cDNAs on mouse chromosomes. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:23-8. [PMID: 12836671 DOI: 10.1023/a:1013203019444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Finding genes by the positional candidate approach requires abundant cDNAs mapped to chromosomes. To provide such important information, we computationally mapped 19032 of our mouse cDNAs to mouse chromosomes by using data from public databases. We used 2 approaches. In the first, we integrated the mapping data of cDNAs on the human genome, known gene-related data, and comparative mapping data. From this, we calculated map positions on the mouse chromosomes. For this first approach, we developed a simple and powerful criterion to choose the correct map position from candidate positions in sequence homology searches. In the second approach, we related cDNAs to expressed sequence tags (EST) previously mapped in radiation hybrid experiments. We discuss improving the mapping by combining the 2 methods.
Collapse
Affiliation(s)
- Itaru Yamanaka
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Carninci P, Waki K, Shiraki T, Konno H, Shibata K, Itoh M, Aizawa K, Arakawa T, Ishii Y, Sasaki D, Bono H, Kondo S, Sugahara Y, Saito R, Osato N, Fukuda S, Sato K, Watahiki A, Hirozane-Kishikawa T, Nakamura M, Shibata Y, Yasunishi A, Kikuchi N, Yoshiki A, Kusakabe M, Gustincich S, Beisel K, Pavan W, Aidinis V, Nakagawara A, Held WA, Iwata H, Kono T, Nakauchi H, Lyons P, Wells C, Hume DA, Fagiolini M, Hensch TK, Brinkmeier M, Camper S, Hirota J, Mombaerts P, Muramatsu M, Okazaki Y, Kawai J, Hayashizaki Y. Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia. Genome Res 2003; 13:1273-89. [PMID: 12819125 PMCID: PMC403712 DOI: 10.1101/gr.1119703] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report the construction of the mouse full-length cDNA encyclopedia,the most extensive view of a complex transcriptome,on the basis of preparing and sequencing 246 libraries. Before cloning,cDNAs were enriched in full-length by Cap-Trapper,and in most cases,aggressively subtracted/normalized. We have produced 1,442,236 successful 3'-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5' end reads,which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU),which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC),which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large numbers of clusters (and TUs) of this project,which also include non-protein-coding RNAs,and the lower gene number estimation of genome annotations. Altogether,5'-end clusters identify regions that are potential promoters for 8637 known genes and 5'-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete.
Collapse
Affiliation(s)
- Piero Carninci
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Goto T, Jones GM, Lolatgis N, Pera MF, Trounson AO, Monk M. Identification and characterisation of known and novel transcripts expressed during the final stages of human oocyte maturation. Mol Reprod Dev 2002; 62:13-28. [PMID: 11933157 DOI: 10.1002/mrd.10118] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The final stages of oocyte maturation, from the germinal vesicle (GV) stage to metaphase II (MII) oocytes, are characterised by a series of dynamic events. These include germinal vesicle break down (GVBD), resumption of meiosis, and nuclear and cytoplasmic maturation to produce MII oocytes ready for fertilisation. To investigate the specific genes transcribed during these stages of oogenesis, we have prepared and analysed amplified cDNA representing the transcribed genes in a series of GV and MII oocytes. Differential display analysis disclosed that the overall gene expression profiles between different samples of GV oocytes are very similar, regardless of their source, while those between the MII oocytes are markedly variable. A comparison of expression profiles in oocytes and somatic (cumulus) cells identified several known genes preferentially-expressed in oocytes (e.g., a zona pellucida gene), as well as five novel sequences. Two of the five novel sequences are homologous to retrotransposon sequences, long terminal repeat (LTR) and long interspersed nuclear element (LINE) 1, and two other sequences show partial homology to known ESTs and genomic sequences. The remaining sequence, which is identical to shorter ESTs isolated from germ cell tumor cDNA libraries, was extended towards its 5' end by PCR, using the original cDNA preparation from which it was isolated as a template. Expression of the resultant 1.1-kb transcript is restricted to the testis and ovary, and its expression correlates with cell pluripotency in that it is expressed in embryonal carcinoma cells, but not in their differentiated derivative cells.
Collapse
Affiliation(s)
- Tetsuya Goto
- Centre for Early Human Development, Institute of Reproduction and Development, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 2001; 294:1731-5. [PMID: 11721059 DOI: 10.1126/science.1062960] [Citation(s) in RCA: 674] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis is a demyelinating disease, characterized by inflammation in the brain and spinal cord, possibly due to autoimmunity. Large-scale sequencing of cDNA libraries, derived from plaques dissected from brains of patients with multiple sclerosis (MS), indicated an abundance of transcripts for osteopontin (OPN). Microarray analysis of spinal cords from rats paralyzed by experimental autoimmune encephalomyelitis (EAE), a model of MS, also revealed increased OPN transcripts. Osteopontin-deficient mice were resistant to progressive EAE and had frequent remissions, and myelin-reactive T cells in OPN-/- mice produced more interleukin 10 and less interferon-gamma than in OPN+/+ mice. Osteopontin thus appears to regulate T helper cell-1 (TH1)-mediated demyelinating disease, and it may offer a potential target in blocking development of progressive MS.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Expressed Sequence Tags
- Gene Deletion
- Gene Expression Profiling
- Gene Library
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Oligonucleotide Array Sequence Analysis
- Osteopontin
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Sialoglycoproteins/deficiency
- Sialoglycoproteins/genetics
- Sialoglycoproteins/metabolism
- Spinal Cord/metabolism
- Th1 Cells/immunology
Collapse
Affiliation(s)
- D Chabas
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, B002, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Loh ED, Broussard SR, Kolakowski LF. Molecular characterization of a novel glycoprotein hormone G-protein-coupled receptor. Biochem Biophys Res Commun 2001; 282:757-64. [PMID: 11401528 DOI: 10.1006/bbrc.2001.4625] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the molecular characterization of a novel G-protein-coupled receptor, GPR48, that resembles proteins in the glycoprotein hormone receptor family. The full-length human GPR48 cDNA is comprised of 951 amino acids. The large extracellular amino terminus of 538 residues is composed of seventeen leucine-rich repeats (LRR). The genomic structure of GPR48 has several features in common with genes in the glycoprotein hormone receptor family. Analogous to these receptors, most of the LRR are encoded on single small exons, and the last exon encodes the seven transmembrane segments. The complete gene spans more than 60 kb with 18 exons and 17 introns. Northern blot analysis demonstrated high expression of GPR48 in the adult human pancreas, with moderate levels of expression in placenta, kidney, brain, and heart. Additionally, this receptor is expressed as early as 7 days post coitus in the mouse, indicating its potential involvement in development.
Collapse
Affiliation(s)
- E D Loh
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284, USA.
| | | | | |
Collapse
|
18
|
Abstract
In the continuing search for a full-length cDNA cloning method, there is no clear winner. Perfecting these techniques may require the re-engineering of reverse transcriptase. There now exist two reasonably linear methods for deriving expression signatures from small amounts of biological material, but advances in serial analysis of gene expression provide a quantitative, if expensive, alternative to these methods.
Collapse
Affiliation(s)
- S Bashiardes
- Department of Genetics, Washington University School of Medicine, Campus Box 8232, 4566 Scott Avenue, St Louis, Missouri 63110-1093, USA
| | | |
Collapse
|
19
|
Konno H, Fukunishi Y, Shibata K, Itoh M, Carninci P, Sugahara Y, Hayashizaki Y. Computer-Based Methods for the Mouse Full-Length cDNA Encyclopedia: Real-Time Sequence Clustering for Construction of a Nonredundant cDNA Library. Genome Res 2001. [DOI: 10.1101/gr.145701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We developed computer-based methods for constructing a nonredundant mouse full-length cDNA library. Our cDNA library construction process comprises assessment of library quality, sequencing the 3′ ends of inserts and clustering, and completing a re-array to generate a nonredundant library from a redundant one. After the cDNA libraries are generated, we sequence the 5′ ends of the inserts to check the quality of the library; then we determine the sequencing priority of each library. Selected libraries undergo large-scale sequencing of the 3′ ends of the inserts and clustering of the tag sequences. After clustering, the nonredundant library is constructed from the original libraries, which have redundant clones. All libraries, plates, clones, sequences, and clusters are uniquely identified, and all information is saved in the database according to this identifier. At press time, our system has been in place for the past two years; we have clustered 939,725 3′ end sequences into 127,385 groups from 227 cDNA libraries/sublibraries (seehttp://genome.gse.riken.go.jp/).[The sequence data described in this paper have been submitted to the DDBJ data library under accession nos. AV00011–AV175734, AV204013–AV382295, andBB561685–BB609425.]
Collapse
|
20
|
Sugahara Y, Carninci P, Itoh M, Shibata K, Konno H, Endo T, Muramatsu M, Hayashizaki Y. Comparative evaluation of 5'-end-sequence quality of clones in CAP trapper and other full-length-cDNA libraries. Gene 2001; 263:93-102. [PMID: 11223247 DOI: 10.1016/s0378-1119(00)00557-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To enhance the usefulness of the laboratory mouse and to facilitate the rapid assay of gene functions we have been collecting the entire set of mouse full-length cDNA by one-pass sequencing. To collect full-length cDNA clones efficiently, it is critical to construct high-quality cDNA libraries. In recent years, we have been developing a way to construct full-length cDNA libraries by using biotinylation of the cap structure (the 'CAP-trapper' method) coupled with treatment to increase reverse transcriptase efficiency at high temperature by the addition of trehalose. In this paper we report our evaluation of the quality of CAP trapper and a number of other full-length cDNA libraries, including the results of 5' end analysis of clones in CAP trapper and the other libraries. We used a procedure that compared the 5'-ends of cDNA clones with those of genes in the public databases. Our analysis showed that 63% of cDNA clones in CAP trapper libraries had sequences that were either the same length as those of equivalent genes in the public database or 5'-extended, and that 90% of these clones maintained their coding sequences. These results indicate that the CAP trapper library is a promising tool for collecting full-length cDNA in large-scale projects. Comparison of the quality of CAP trapper with that of other full-length-cDNA libraries confirmed the value of these libraries.
Collapse
Affiliation(s)
- Y Sugahara
- Laboratory for Genome Exploration Research Project, Genomic Sciences Center and Genome Science Laboratory, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Voiblet C, Duplessis S, Encelot N, Martin F. Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001. [PMID: 11169194 DOI: 10.1111/j.1365-313x.2001.00953.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ectomycorrhiza development alters gene expression in the fungal and plant symbionts. The identification of a large number of genes expressed exclusively or predominantly in the symbiosis will contribute greatly to the understanding of the development of the ectomycorrhizal symbiosis. We have constructed a cDNA library of 4-day-old Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza and sequenced 850 cDNAs cloned randomly or obtained through suppression subtractive hybridization (SSH). Based on the absence of a database match, 43% of the ectomycorrhiza ESTs are coding for novel genes. At the developmental stage analysed (fungal sheath formation), the majority of the identified sequences represented 'housekeeping' proteins, i.e. proteins involved in gene/protein expression, cell-wall proteins, metabolic enzymes, and components of signalling systems. We screened arrayed cDNAs to identify symbiosis-regulated genes by using differential hybridization. Comparisons of signals from free-living partners and symbiotic tissues revealed significant differences in expression levels (differential expression ratio >2.5) for 17% of the genes analysed. No ectomycorrhiza-specific gene was detected. The results successfully demonstrate the use of the cDNA array and SSH systems as general approaches for dissecting symbiosis development, and provide the first global picture of the cellular functions operating in ectomycorrhiza.
Collapse
Affiliation(s)
- C Voiblet
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| | | | | | | |
Collapse
|
22
|
Sakamoto S, Miyazaki K, Fukui H, Oishi K, Hayasaka N, Okada M, Kamakura M, Taniguchi T, Nagai K, Ishida N. Molecular characterization and nuclear localization of rat timeless-like gene product. Biochem Biophys Res Commun 2000; 279:131-8. [PMID: 11112428 DOI: 10.1006/bbrc.2000.3927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among three period genes (per1, per2, per3) in mammals, only per2 gene was shown to be involved in the core clock mechanism. To elucidate the molecular function of rat PERIOD2 (rPER2), we searched for binding proteins to the PAS domain of rPER2. We isolated a binding protein to this domain and identified it as a TIMELESS-like protein (TLP) on the basis of mass analyses. Then, we isolated a rat TLP cDNA from the rat hypothalamus library. RNA blot analysis and in situ hybridization indicates that rTLP mRNA was expressed in all rat tissues from whole brain, the suprachiasmatic nucleus, eye, lung, heart, liver, kidney, placenta, and testis. When rTLP gene product was expressed in COS-1 cells, nuclear localization of rTLP was detected in 99.6% of transfected cells. These results suggest that the interaction of rPER2 with rTLP may influence the regulation of circadian clock components in nucleus after rPER2 is translocated into the nucleus.
Collapse
Affiliation(s)
- S Sakamoto
- Laboratory of Molecular Biology, Medical Research Center, Kochi Medical School, Okoh, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Goh SH, Park JH, Lee YJ, Lee HG, Yoo HS, Lee IC, Park JH, Kim YS, Lee CC. Gene expression profile and identification of differentially expressed transcripts during human intrathymic T-cell development by cDNA sequencing analysis. Genomics 2000; 70:1-18. [PMID: 11087656 DOI: 10.1006/geno.2000.6342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of immature thymocytes to mature T-lymphocytes is a central process for establishing a functional immune system. The gene regulatory events involved in this process are of outstanding interest in understanding the generation of the T-cell repertoire as well as the differentiation of lineage-specific cells, such as CD4(+) helper T-cells or CD8(+) cytotoxic T-lymphocytes. While some essential genes involved in lineage decision and thymocyte differentiation have been already identified, the exact regulatory mechanisms and differential gene expressions are still unknown. The present study was performed to analyze the gene expression profile during T-cell development, in particular, during the differentiation of immature thymocytes into CD4(+) mature T-cells by analyses of expressed sequence tags (ESTs), and to elucidate novel human genes involved in this process. Based on distinct developmental stages, three PCR-based cDNA libraries from immature CD3(-),4(-),8(-) triple-negative, CD4(+),8(+) double-positive, and mature CD4(+),8(-) single-positive thymocytes were constructed. A total of 1477 randomly selected clones were analyzed by automated single-pass sequencing, and the assembly of ESTs resulted in 1027 different species of contig sequences. Among them, 392 contig sequences were matched to known genes, and several novel transcripts were discovered. The matched clones were classified into seven categories according to their functional aspects, and the gene expression profiles of the three thymocyte subsets were compared. The information obtained in current study will serve as a valuable resource for elucidating the molecular mechanism of intrathymic T-cell development.
Collapse
Affiliation(s)
- S H Goh
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-333, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sleeman MA, Murison JG, Strachan L, Kumble K, Glenn MP, McGrath A, Grierson A, Havukkala I, Tan PL, Watson JD. Gene expression in rat dermal papilla cells: analysis of 2529 ESTs. Genomics 2000; 69:214-24. [PMID: 11031104 DOI: 10.1006/geno.2000.6300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dermal papilla (DEPA) cells are resident at the base of hair follicles and are fundamental to hair growth and development. Cultured DEPA cells, in contrast to normal fibroblast cells, are capable of inducing de novo hair follicle growth in vivo. By differential screening of a DEPA cDNA library, we have demonstrated that dermal papilla cells are different from fibroblasts at the molecular level. We further studied these cells by random sequencing of 5130 clones from the DEPA cDNA library. Fifty percent had a BLASTX E value < or =1 x 10(-25). Twenty-one percent had similarity to proteins involved in cell structure/motility with 4 of the top 10 most abundant clones encoding extracellular matrix proteins. Clones encoding growth factor molecules were also abundant. The remaining 50.7% of clones had low similarity scores, demonstrating many novel molecules. For example, we identified a new CTGF family member, the rat homologue of Elm1.
Collapse
Affiliation(s)
- M A Sleeman
- Genesis Research and Development Corporation Limited, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Konno H, Okazaki Y, Muramatsu M, Hayashizaki Y. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res 2000; 10:1617-30. [PMID: 11042159 PMCID: PMC310980 DOI: 10.1101/gr.145100] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the effort to prepare the mouse full-length cDNA encyclopedia, we previously developed several techniques to prepare and select full-length cDNAs. To increase the number of different cDNAs, we introduce here a strategy to prepare normalized and subtracted cDNA libraries in a single step. The method is based on hybridization of the first-strand, full-length cDNA with several RNA drivers, including starting mRNA as the normalizing driver and run-off transcripts from minilibraries containing highly expressed genes, rearrayed clones, and previously sequenced cDNAs as subtracting drivers. Our method keeps the proportion of full-length cDNAs in the subtracted/normalized library high. Moreover, our method dramatically enhances the discovery of new genes as compared to results obtained by using standard, full-length cDNA libraries. This procedure can be extended to the preparation of full-length cDNA encyclopedias from other organisms.
Collapse
Affiliation(s)
- P Carninci
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Automation for genomics has enabled a 43-fold increase in the total finished human genomic sequence in the world in the past four years. This is the second half of a two-part, noncomprehensive review that presents an overview of different types of automation equipment used in genome sequencing. The first part of the review, published in the previous issue, focused on automated procedures used to prepare DNA for sequencing or analysis. This second part of the review presents a look at available DNA sequencers and array technology and concludes with a look at future technologies. Alternate sequencing technologies including mass spectrometry, biochips, and single molecule analysis are included in this review.
Collapse
Affiliation(s)
- D Meldrum
- Department of Electrical Engineering, Genomation Laboratory, University of Washington, Seattle, Washington 98195-2500, USA.
| |
Collapse
|
27
|
Abstract
In the past four years, automation for genomics has enabled a 43-fold increase in the total finished human genomic sequence in the world. This two-part noncomprehensive review will provide an overview of different types of automation equipment used in genome sequencing. Part One focuses on equipment involved in DNA preparation, DNA sequencing reactions, and other automated procedures for preparing DNA for running on sequencers or subsequent analysis; it also includes information on the development of these machines at various genome centers. Part Two, to be published in the next issue, will cover sequencing machinery and array technology, and conclude with a look at the future technologies that will revolutionize molecular biology. "Alternate" sequencing technologies (including mass spectrometry, biochips, and single-molecule analysis) will also be examined.
Collapse
Affiliation(s)
- D Meldrum
- Department of Electrical Engineering, Genomation Laboratory, University of Washington, Seattle, Washington 98195-2500, USA.
| |
Collapse
|
28
|
Ko MS, Kitchen JR, Wang X, Threat TA, Wang X, Hasegawa A, Sun T, Grahovac MJ, Kargul GJ, Lim MK, Cui Y, Sano Y, Tanaka T, Liang Y, Mason S, Paonessa PD, Sauls AD, DePalma GE, Sharara R, Rowe LB, Eppig J, Morrell C, Doi H. Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 2000; 127:1737-49. [PMID: 10725249 DOI: 10.1242/dev.127.8.1737] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about gene action in the preimplantation events that initiate mammalian development. Based on cDNA collections made from each stage from egg to blastocyst, 25438 3′-ESTs were derived, and represent 9718 genes, half of them novel. Thus, a considerable fraction of mammalian genes is dedicated to embryonic expression. This study reveals profound changes in gene expression that include the transient induction of transcripts at each stage. These results raise the possibility that development is driven by the action of a series of stage-specific expressed genes. The new genes, 798 of them placed on the mouse genetic map, provide entry points for analyses of human and mouse developmental disorders.
Collapse
Affiliation(s)
- M S Ko
- ERATO Doi Bioasymmetry Project, JST, Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fukunishi Y, Suzuki H, Yoshino M, Konno H, Hayashizaki Y. Prediction of human cDNA from its homologous mouse full-length cDNA and human shotgun database. FEBS Lett 1999; 464:129-32. [PMID: 10618491 DOI: 10.1016/s0014-5793(99)01696-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We propose a prediction method for human full-length cDNA by comparing sequence data between human genome shotgun sequence and mouse full-length cDNA. The human genome which is homologous to the mouse full-length cDNA is selected by a homology search program, and the predicted exons are connected at the exon-intron junction which gives the best homology score to the mouse full-length cDNA. The accuracy of the predicted human full-length coding region is 83.3%, and the false positive rate is 16.7%. Five human full-length proteins out of 20 proteins are correctly predicted.
Collapse
Affiliation(s)
- Y Fukunishi
- Genome Science Laboratory, Tsukuba Lifescience Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
30
|
Adjaye J, Bolton V, Monk M. Developmental expression of specific genes detected in high-quality cDNA libraries from single human preimplantation embryos. Gene 1999; 237:373-83. [PMID: 10521661 DOI: 10.1016/s0378-1119(99)00329-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe an improved highly sensitive method for generating cDNA libraries containing a high proportion of cDNAs enriched with 5'-coding sequences from single human preimplantation embryos and a 10 week old whole foetus. The embryonic mRNA was isolated using oligo-(dT) linked to magnetic beads. First-strand cDNA synthesis was carried out directly on the bound mRNA, followed by PCR designed to amplify the cDNA molecules synthesized in their entirety. The complexities of the libraries are between 10(5) and 10(6) independent clones. The average cDNA size is 1.0 kb, and the size range is 0.5-3.0 kb. PCR analysis of the embryonic libraries for specific genes has revealed transcripts for genes known to be transcribed in preimplantation stages, such as the imprinted gene SNRPN, developmental genes WNT11, HOX, OCT-1 and the embryonic OCT-4, cytoskeletal genes keratin-18 and beta-actin, the cell cycle gene C-MOS, and housekeeping genes GAPDH and HPRT. Sequencing of random clones showed the presence of a variety of sequences, such as human chorionic gonadotrophin, ubiquitin, TFIIA, guanine nucleotide-binding protein (beta-subunit), annexin I, a gene encoding a kinesin-like protein, and TWIST, which encodes a basic helix-loop-helix (bHLH) transcription factor implicated in Saethre-Chotzen syndrome (characterized by craniofacial and limb anomalies). Approximately 40% of these randomly analysed clones were full length. In addition to cDNAs matching known ESTs (Expressed Sequence Tags) in the GenBank and dbEST databases, novel sequences were detected at a frequency of 16% of randomly picked clones. The libraries are a valuable resource, providing longer cDNAs representing genes expressed during human preimplantation development.
Collapse
Affiliation(s)
- J Adjaye
- Molecular Embryology Unit, Institute of Child Health, 30 Guilford Street, London, UK.
| | | | | |
Collapse
|
31
|
Morozov G, Verlinsky O, Rechitsky S, Ivakhnenko V, Goltsman E, Gindilis V, Strom C, Kuliev A, Verlinsky Y. Construction and sequence analysis of subtraction complementary DNA libraries from human preimplantation embryos. J Assist Reprod Genet 1999; 16:212-5. [PMID: 10224565 PMCID: PMC3455757 DOI: 10.1023/a:1020368908134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Because stage-specific genetic expression in human preimplantation development is not sufficiently studied, we have undertaken the construction of a subtraction complementary DNA (cDNA) library enriched for transcripts specific for human blastocysts. METHODS For this purpose individual pools of cDNAs synthesized from four hatched blastocysts and three cleaving 8- to 10-cell embryos were exposed to suppression subtractive hybridization to minimize the presence of transcripts of housekeeping genes and other genes of maternal origin known to be expressed earlier in preimplantation development. Random clones of this library were sequenced and analyzed using the BLAST algorithm. RESULTS The resulting subtraction library had a complexity of 3 x 10(5) and an average size of inserts of about 0.8 kb. Sequencing of random library clones revealed the following human genes: CD9 antigen, fatty acid binding protein, ferritin heavy chain, amyloid precursor, MAP kinase messenger RNAs, DNA clone 127H14, messenger RNA for diacylglycerol kinase, a sequence homologous to C1 inhibitor, messenger RNA for the KIAA0145 gene, and others. CONCLUSIONS The presence of these genes in human preimplantation development suggests expression specific to the blastocyst stage.
Collapse
Affiliation(s)
- G Morozov
- Reproductive Genetics Institute, Chicago, Illinois 60614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaiser C, von Stein O, Laux G, Hoffmann M. Functional genomics in cancer research: identification of target genes of the Epstein-Barr virus nuclear antigen 2 by subtractive cDNA cloning and high-throughput differential screening using high-density agarose gels. Electrophoresis 1999; 20:261-8. [PMID: 10197432 DOI: 10.1002/(sici)1522-2683(19990201)20:2<261::aid-elps261>3.0.co;2-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the past, the identification and isolation of phenotype-associated genes was a difficult and time-consuming task. However, recent improvements of methods that are designed to isolate differentially expressed genes have remarkably speeded up the process of target gene isolation. The ultimate goal of functional genomics is to apply these technologies to clone phenotype-associated genes irrespective of the availability of probes (e.g., antibodies) and an intimate knowledge of biological background. We demonstrate the use of a novel subtractive cDNA cloning approach for the isolation and characterization of target genes of the Epstein-Barr virus nuclear antigen 2 (EBNA2). Two different subtractive cDNA libraries specific for two different time periods following activation of a conditional estrogen receptor/EBNA2 (ER/EBNA2) fusion protein were generated. Comparison of the two libraries by cross-hybridization experiments allowed the differentiation between direct and indirect target genes of EBNA2 and led to the identification of a novel direct target gene of EBNA2.
Collapse
Affiliation(s)
- C Kaiser
- GSF Forschungszentrum für Umwelt und Gesundheit, Institute of Clinical Molecular Biology and Tumor Genetics, München, Germany
| | | | | | | |
Collapse
|
33
|
Marra M, Hillier L, Kucaba T, Allen M, Barstead R, Beck C, Blistain A, Bonaldo M, Bowers Y, Bowles L, Cardenas M, Chamberlain A, Chappell J, Clifton S, Favello A, Geisel S, Gibbons M, Harvey N, Hill F, Jackson Y, Kohn S, Lennon G, Mardis E, Martin J, Mila L, McCann R, Morales R, Pape D, Person B, Prange C, Ritter E, Soares M, Schurk R, Shin T, Steptoe M, Swaller T, Theising B, Underwood K, Wylie T, Yount T, Wilson R, Waterston R. An encyclopedia of mouse genes. Nat Genet 1999; 21:191-4. [PMID: 9988271 DOI: 10.1038/5976] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The laboratory mouse is the premier model system for studies of mammalian development due to the powerful classical genetic analysis possible (see also the Jackson Laboratory web site, http://www.jax.org/) and the ever-expanding collection of molecular tools. To enhance the utility of the mouse system, we initiated a program to generate a large database of expressed sequence tags (ESTs) that can provide rapid access to genes. Of particular significance was the possibility that cDNA libraries could be prepared from very early stages of development, a situation unrealized in human EST projects. We report here the development of a comprehensive database of ESTs for the mouse. The project, initiated in March 1996, has focused on 5' end sequences from directionally cloned, oligo-dT primed cDNA libraries. As of 23 October 1998, 352,040 sequences had been generated, annotated and deposited in dbEST, where they comprised 93% of the total ESTs available for mouse. EST data are versatile and have been applied to gene identification, comparative sequence analysis, comparative gene mapping and candidate disease gene identification, genome sequence annotation, microarray development and the development of gene-based map resources.
Collapse
Affiliation(s)
- M Marra
- Washington University Genome Sequencing Center, St. Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|