1
|
Kowluru A, Gleason NF. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem Pharmacol 2022; 197:114886. [PMID: 34968495 PMCID: PMC8858860 DOI: 10.1016/j.bcp.2021.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic β-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and β-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIβ and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet β-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional β-cell mass under the duress of metabolic stress are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
2
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
He S, Qin Q, Huang P, Zhang S, Yi S, Lin L, Zuo Y, Chen Q, Deng J, Zheng C, Chen B. Characterization of a Large Novel α-Globin Gene Cluster Deletion Causing α 0-Thalassemia in a Chinese Family. Hemoglobin 2017; 41:297-299. [PMID: 29161910 DOI: 10.1080/03630269.2017.1366919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report a large novel α-globin cluster deletion that we named - -PG (NG_000006.1: g.93628_542759del450131), in a Chinese family. This large deletion is approximately 450 kb long, spanning from upstream of the PolR3k gene at the 5' end to the RAB11FIP3 gene at the 3' end of chromosome 16p13.3. This deletion removes all the globin distal regulatory elements as well as the whole α-globin gene cluster. Patients with heterozygous - -PG/αα had red blood cell (RBC) indices consistent with α-thalassemia (α-thal) trait, but no apparent increase in a cancer tendency or mental disability, microcephaly, relative hypertelorism, unusual facies or genital anomalies.
Collapse
Affiliation(s)
- Sheng He
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Qian Qin
- b Prenatal Diagnostic Center , Baise Women and Children Care Hospital , Baise , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Peng Huang
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Shujie Zhang
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Shang Yi
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Li Lin
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Yangjin Zuo
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Qiuli Chen
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Jianping Deng
- b Prenatal Diagnostic Center , Baise Women and Children Care Hospital , Baise , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Chenguang Zheng
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| | - Biyan Chen
- a Prenatal Diagnostic Center , Guangxi Zhuang Autonomous Region Women and Children Care Hospital , Nanning , Guangxi Zhuang Autonomous Region , People's Republic of China
| |
Collapse
|
4
|
Zhu J, Li Y, Chen C, Ma J, Sun W, Tian Z, Li J, Xu J, Liu CS, Zhang D, Huang C, Huang H. NF-κB p65 Overexpression Promotes Bladder Cancer Cell Migration via FBW7-Mediated Degradation of RhoGDIα Protein. Neoplasia 2017; 19:672-683. [PMID: 28772241 PMCID: PMC5540704 DOI: 10.1016/j.neo.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Since invasive bladder cancer (BC) is one of the most lethal urological malignant tumors worldwide, understanding the molecular mechanisms that trigger the migration, invasion, and metastasis of BC has great significance in reducing the mortality of this disease. Although RelA/p65, a member of the NF-kappa B transcription factor family, has been reported to be upregulated in human BCs, its regulation of BC motility and mechanisms have not been explored yet. METHODS NF-κBp65 expression was evaluated in N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced high invasive BCs by immunohistochemistry staining and in human BC cell lines demonstrated by Western Blot. The effects of NF-κBp65 knockdown on BC cell migration and invasion, as well as its regulated RhoGDIα and FBW7, were also evaluated in T24T cells by using loss- and gain-function approaches. Moreover, the interaction of FBW7 with RhoGDIα was determined with immunoprecipitation assay, while critical role of ubiquitination of RhoGDIα by FBW7 was also demonstrated in the studies. RESULTS p65 protein was remarkably upregulated in the BBN-induced high invasive BCs and in human BC cell lines. We also observed that p65 overexpression promoted BC cell migration by inhibiting RhoGDIα expression. The regulatory effect of p65 on RhoGDIα expression is mediated by its upregulation of FBW7, which specifically interacted with RhoGDIα and promoted RhoGDIα ubiquitination and degradation. Mechanistic studies revealed that p65 stabilizing the E3 ligase FBW7 protein was mediated by its attenuating pten mRNA transcription. CONCLUSIONS We demonstrate that p65 overexpression inhibits pten mRNA transcription, which stabilizes the protein expression of ubiquitin E3 ligase FBW7, in turn increasing the ubiquitination and degradation of RhoGDIα protein and finally promoting human BC migration. The novel identification of p65/PTEN/FBW7/RhoGDIα axis provides a significant insight into understanding the nature of BC migration, further offering a new theoretical support for cancer therapy.
Collapse
Key Words
- bc, bladder cancer
- bbn, n-butyl-n-(4-hydroxybutyl)-nitrosamine
- chx, cycloheximide
- rt-pcr, reverse transcription-polymerase chain reaction
- nf-κb, transcription factors of the nuclear factor kappa b
- rhogdi, rho guanosine diphosphate dissociation inhibitors
- fbw7, f-box and wd repeat domain-containing 7
- pten, phosphatase and tensin homolog
- gfp, green fluorescent protein
- mef, murine embryonic fibroblasts
Collapse
Affiliation(s)
- Junlan Zhu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yang Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Caiyi Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Jiugao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Wenrui Sun
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jiheng Xu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Claire S Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Chuanshu Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| |
Collapse
|
5
|
de León-Bautista MP, Cardenas-Aguayo MDC, Casique-Aguirre D, Almaraz-Salinas M, Parraguirre-Martinez S, Olivo-Diaz A, Thompson-Bonilla MDR, Vargas M. Immunological and Functional Characterization of RhoGDI3 and Its Molecular Targets RhoG and RhoB in Human Pancreatic Cancerous and Normal Cells. PLoS One 2016; 11:e0166370. [PMID: 27832197 PMCID: PMC5104321 DOI: 10.1371/journal.pone.0166370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
RhoGDI proteins have been implicated in several human cancers; changes in their expression levels have shown pro- or anti-tumorigenic effects. Pancreatic Ductal Adenocarcinoma (PDAC) is a complex pathology, with poor prognosis, and most patients die shortly after diagnosis. Efforts have been focused on understanding the role of RhoGDI's in PDAC, specially, RhoGDI1 and RhoGDI2. However, the role of RhoGDI3 has not been studied in relation to cancer or to PDAC. Here, we characterized the expression and functionality of RhoGDI3 and its target GTPases, RhoG and RhoB in pancreatic cell lines from both normal pancreatic tissue and tissue in late stages of PDAC, and compared them to human biopsies. Through immunofluorescences, pulldown assays and subcellular fractionation, we found a reduction in RhoGDI3 expression in the late stages of PDAC, and this reduction correlates with tumor progression and aggressiveness. Despite the reduction in the expression of RhoGDI3 in PDAC, we found that RhoB was underexpressed while RhoG was overexpressed, suggesting that cancerous cells preserve their capacity to activate this pathway, thus these cells may be more eager to response to the stimuli needed to proliferate and become invasive unlike normal cells. Surprisingly, we found nuclear localization of RhoGDI3 in non-cancerous pancreatic cell line and normal pancreatic tissue biopsies, which could open the possibility of novel nuclear functions for this protein, impacting gene expression regulation and cellular homeostasis.
Collapse
Affiliation(s)
- Mercedes Piedad de León-Bautista
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, col. San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Maria del Carmen Cardenas-Aguayo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Col. Copilco Universidad, Delegación Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Diana Casique-Aguirre
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, col. San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Manuel Almaraz-Salinas
- Facultad de Bioquímica, Instituto Tecnológico de Milpa Alta, Independencia Sur 36, San Salvador Cuauhtenco, Milpa Alta, 12300, Mexico City, Mexico
| | - Sara Parraguirre-Martinez
- Departamento de Anatomía Patológica, Hospital General Doctor Manuel Gea González, Av. Calzada de Tlalpan 4800, Tlalpan, Sección XVI, 14080, Mexico City, Mexico
| | - Angelica Olivo-Diaz
- Departamento de Biología Molecular e Histocompatibilidad, Hospital Doctor Manuel Gea González, Av. Calzada de Tlalpan 4800, Tlalpan, Sección XVI, 14080, Mexico City, Mexico
| | - María del Rocío Thompson-Bonilla
- Investigación Biomédica y Traslacional, Laboratorio de Medicina Genómica, Hospital 1° de Octubre, ISSSTE, Av. Instituto Politécnico Nacional No. 1669, Colonia: Magdalena de las Salinas, Delegación: Gustavo A Madero, 07760, Mexico City, Mexico
| | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, col. San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
6
|
Wang J, Lu W, Wen T. Silencing of Rho-GDIgamma by RNAi promotes the differentiation of neural stem cells. Methods Mol Biol 2010; 650:111-20. [PMID: 20686947 DOI: 10.1007/978-1-60761-769-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RNA interference (RNAi) technology is one of the main means in the study of stem cell differentiation. This study describes Rho-GDIgamma function during the differentiation of neural stem cells by using RNAi. Rho-GDIgamma belongs to the Rho-GDI protein family, which is expressed at high level throughout the brain. Although it exists in neuronal population, its physiological function is poorly understood. By using RNAi technology to downregulate expression of Rho-GDIgamma, we found distinct morphological changes in neural stem cell line C17.2. More important, RT-PCR confirmed that RNAi-mediated downregulation of Rho-GDIgamma decreased expression of Rho-GDIgamma-regulated genes RhoA and slightly increased expression of Rac1. Further, immunochemical staining indicated that downregulation of Rho-GDIgamma increased the tendency of C17.2 cells to differentiate. These data strongly suggest that Rho-GDIgamma plays a key role in the differentiation of neural stem cells.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai, China
| | | | | |
Collapse
|
7
|
Abstract
Glucose-stimulated insulin secretion from the islet beta-cell involves a sequence of metabolic events and an interplay between a wide range of signaling pathways leading to the generation of second messengers (e.g., cyclic nucleotides, adenine and guanine nucleotides, soluble lipid messengers) and mobilization of calcium ions. Consequent to the generation of necessary signals, the insulin-laden secretory granules are transported from distal sites to the plasma membrane for fusion and release of their cargo into the circulation. The secretory granule transport underlies precise changes in cytoskeletal architecture involving a well-coordinated cross-talk between various signaling proteins, including small molecular mass GTP-binding proteins (G proteins) and their respective effector proteins. The purpose of this article is to provide an overview of current understanding of the identity of small G proteins (e.g., Cdc42, Rac1, and ARF-6) and their corresponding regulatory factors (e.g., GDP/GTP-exchange factors, GDP-dissociation inhibitors) in the pancreatic beta-cell. Plausible mechanisms underlying regulation of these signaling proteins by insulin secretagogues are also discussed. In addition to their positive modulatory roles, certain small G proteins also contribute to the metabolic dysfunction and demise of the islet beta-cell seen in in vitro and in vivo models of impaired insulin secretion and diabetes. Emerging evidence also suggests significant insulin secretory abnormalities in small G protein knockout animals, further emphasizing vital roles for these proteins in normal health and function of the islet beta-cell. Potential significance of these experimental observations from multiple laboratories and possible avenues for future research in this area of islet research are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48202-3489, USA.
| |
Collapse
|
8
|
Lu W, Wang J, Wen T. Downregulation of Rho-GDI gamma promotes differentiation of neural stem cells. Mol Cell Biochem 2008; 311:233-40. [PMID: 18273563 DOI: 10.1007/s11010-008-9713-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 01/29/2008] [Indexed: 11/28/2022]
Abstract
Rho-GDIgamma belongs to the Rho-GDI protein family, which was observed to have high level expression in the entire brain. Although it exists in neuronal population, its physiological function is poorly understood. This study shows that Rho-GDIgamma is a key factor in the G13 signaling pathway based on an analysis of global gene expression. By using RNAi technology to downregulate expression of Rho-GDIgamma we found distinct morphological changes in neural stem cell line C17.2. More important, RT-PCR confirmed that RNAi-mediated downregulation of Rho-GDIgamma decreased expression of Rho-GDIgamma-regulated genes RhoA, Cdc42, Limk2, and N-WASP and slightly increased expression of Rac1. Further, immunochemical staining indicated that downregulation of Rho-GDIgamma increased the tendency of C17.2 cells to differentiate. These data strongly suggest that Rho-GDIgamma plays a key role in the differentiation of neural stem cells.
Collapse
Affiliation(s)
- Wei Lu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai 200444, China
| | | | | |
Collapse
|
9
|
Abstract
Small GTP-binding proteins of the Rho/Rac/Cdc42 family combine their GDP/GTP cycle, regulated by guanine nucleotide-exchange factors and GTPase-activating proteins, to a cytosol/membrane cycle, regulated by guanine nucleotide dissociation inhibitors (rhoGDIs). RhoGDIs are endowed with dual functions in the cytosol where they form soluble complexes with geranylgeranylated GDP-bound Rho proteins and at membrane interfaces where they monitor the delivery and extraction of Rho proteins to/from their site of action. They have little diversity compared with other Rho protein regulators and therefore have been regarded mostly as housekeeping regulators that distribute Rho proteins equally to any membranes. Recently, acquired data show that rhoGDIs, by interacting with candidate receptors/displacement factors or by phosphorylation, may in fact have active contributions to targeting Rho proteins to specific subcellular membranes and signaling pathways. In addition, the GDP/GTP and membrane/cytosol cycles can be uncoupled in certain cases, with Rho proteins either escaping the membrane/cytosol cycle or being regulated by rhoGDIs in their GTP-bound form. Here, we survey recent structure-function relationships and cellular studies on rhoGDIs and revisit their classical housekeeping role into novel and more specific functions. We also review their involvement in diseases.
Collapse
Affiliation(s)
- Estelle Dransart
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
10
|
Adra CN, Donato JL, Badovinac R, Syed F, Kheraj R, Cai H, Moran C, Kolker MT, Turner H, Weremowicz S, Shirakawa T, Morton CC, Schnipper LE, Drews R. SMARCAD1, a novel human helicase family-defining member associated with genetic instability: cloning, expression, and mapping to 4q22-q23, a band rich in breakpoints and deletion mutants involved in several human diseases. Genomics 2000; 69:162-73. [PMID: 11031099 DOI: 10.1006/geno.2000.6281] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the DEAD/H box-containing helicase superfamily include proteins essential to genome replication, repair, and expression. We report here the cloning and initial characterization of a novel human member of this protein family, designated hHel1 (human helicase 1), now designated SMARCAD1 by HUGO. This DEAD/H box-containing molecule has seven highly conserved sequence regions that allow us to place it in the SNF2 family of the helicase superfamily. Uniquely, though, hHel1 contains two DEAD/H box motifs, a property not reported to be shared by any other SNF2 family members. This defines a new subfamily consisting of hHel1 and its homologues. In addition to these DEAD/H box/ATP-binding motifs, hHel1 has a putative nuclear localization signal and several regions that may mediate protein-protein interactions. Expression analysis indicates that hHel1 transcripts are ubiquitous, with particularly high levels in endocrine tissue. We have mapped the gene for hHel1 to human chromosome 4q22-q23; this region is rich in breakpoints and deletion mutants of genes involved in several human diseases, notably soft tissue leiomyosarcoma, hepatocellular carcinoma, and hematologic malignancies. Our observation that human Hel1 gene overexpression is present in an E1A-expressing cell line with increased capacity for gene reactivation events by genomic rearrangement suggests that human Hel1 may play a role in genetic instability development.
Collapse
Affiliation(s)
- C N Adra
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|