1
|
Parker HG, Gilbert SF. From caveman companion to medical innovator: genomic insights into the origin and evolution of domestic dogs. ACTA ACUST UNITED AC 2015; 5:239-255. [PMID: 28490917 DOI: 10.2147/agg.s57678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phenotypic and behavioral diversity of the domestic dog has yet to be matched by any other mammalian species. In their current form, which comprises more than 350 populations known as breeds, there is a size range of two orders of magnitude and morphological features reminiscent of not only different species but also different phylogenetic families. The range of both appearance and behavior found in the dog is the product of millennia of human interference, and though humans created the diversity it remains a point of fascination to both lay and scientific communities. In this review we summarize the current understanding of the history of dog domestication based on molecular data. We will examine the ways that canine genetic and genomic studies have evolved and look at examples of dog genetics in the light of human disease.
Collapse
Affiliation(s)
- Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| | - Samuel F Gilbert
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| |
Collapse
|
2
|
Lee MO, Yang E, Morisson M, Vignal A, Huang YZ, Cheng HH, Muir WM, Lamont SJ, Lillehoj HS, Lee SH, Womack JE. Mapping and genotypic analysis of the NK-lysin gene in chicken. Genet Sel Evol 2014; 46:43. [PMID: 25001618 PMCID: PMC4120735 DOI: 10.1186/1297-9686-46-43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Antimicrobial peptides (AMP) are important elements of the first line of defence against pathogens in animals. NK-lysin is a cationic AMP that plays a critical role in innate immunity. The chicken NK-lysin gene has been cloned and its antimicrobial and anticancer activity has been described but its location in the chicken genome remains unknown. Here, we mapped the NK-lysin gene and examined the distribution of a functionally significant single nucleotide polymorphism (SNP) among different chicken inbred lines and heritage breeds. Results A 6000 rad radiation hybrid panel (ChickRH6) was used to map the NK-lysin gene to the distal end of chromosome 22. Two additional genes, the adipocyte enhancer-binding protein 1-like gene (AEBP1) and the DNA polymerase delta subunit 2-like (POLD2) gene, are located in the same NW_003779909 contig as NK-lysin, and were thus indirectly mapped to chromosome 22 as well. Previously, we reported a functionally significant SNP at position 271 of the NK-lysin coding sequence in two different chicken breeds. Here, we examined this SNP and found that the A allele appears to be more common than the G allele in these heritage breeds and inbred lines. Conclusions The chicken NK-lysin gene mapped to the distal end of chromosome 22. Two additional genes, AEBP1 and POLD2, were indirectly mapped to chromosome 22 also. SNP analyses revealed that the A allele, which encodes a peptide with a higher antimicrobial activity, is more common than the G allele in our tested inbred lines and heritage breeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - James E Womack
- Department of Veterinary Pathobiology, Texas A & M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Aoki JY, Kai W, Kawabata Y, Ozaki A, Yoshida K, Tsuzaki T, Fuji K, Koyama T, Sakamoto T, Araki K. Construction of a radiation hybrid panel and the first yellowtail (Seriola quinqueradiata) radiation hybrid map using a nanofluidic dynamic array. BMC Genomics 2014; 15:165. [PMID: 24571093 PMCID: PMC3943507 DOI: 10.1186/1471-2164-15-165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Yellowtail (Seriola quinqueradiata) are an economically important species in Japan. However, there are currently no methods for captive breeding and early rearing for yellowtail. Thus, the commercial cultivation of this species is reliant upon the capture of wild immature fish. Given this, there is a need to develop captive breeding techniques to reduce pressure on wild stocks and facilitate the sustainable development of yellowtail aquaculture. We constructed a whole genome radiation hybrid (RH) panel for yellowtail gene mapping and developed a framework physical map using a nanofluidic dynamic array to use SNPs (single nucleotide polymorphisms) in ESTs (expressed sequence tags) for the DNA-assisted breeding of yellowtail. Results Clonal RH cell lines were obtained after ionizing radiation; specifically, 78, 64, 129, 55, 42, and 53 clones were isolated after treatment with 3,000, 4,000, 5,000, 6,000, 8,000, or 10,000 rads, respectively. A total of 421 hybrid cell lines were obtained by fusion with mouse B78 cells. Ninety-four microsatellite markers used in the genetic linkage map were genotyped using the 421 hybrid cell lines. Based upon marker retention and genome coverage, we selected 93 hybrid cell lines to form an RH panel. Importantly, we performed the first genotyping of yellowtail markers in an RH panel using a nanofluidic dynamic array (Fluidigm, CA, USA). Then, 580 markers containing ESTs and SNPs were mapped in the first yellowtail RH map. Conclusions We successfully developed a yellowtail RH panel to facilitate the localization of markers. Using this, a framework RH map was constructed with 580 markers. This high-density physical map will serve as a useful tool for the identification of genes related to important breeding traits using genetic structural information, such as conserved synteny. Moreover, in a comparison of 30 sequences in the RH group 1 (SQ1), yellowtail appeared to be evolutionarily closer to medaka and the green-spotted pufferfish than to zebrafish. We suggest that synteny analysis may be potentially useful as a tool to investigate chromosomal evolution by comparison with model fish.
Collapse
Affiliation(s)
- Jun-ya Aoki
- National Research Institute of Aquaculture, Fisheries Research Agency, 224-1 Hiruta, Tamaki-cho, Watarai-gun, Mie 519-0423, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bach LH, Gandolfi B, Grahn JC, Millon LV, Kent MS, Narfstrom K, Cole SA, Mullikin JC, Grahn RA, Lyons LA. A high-resolution 15,000(Rad) radiation hybrid panel for the domestic cat. Cytogenet Genome Res 2012; 137:7-14. [PMID: 22777158 DOI: 10.1159/000339416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
The current genetic and recombination maps of the cat have fewer than 3,000 markers and a resolution limit greater than 1 Mb. To complement the first-generation domestic cat maps, support higher resolution mapping studies, and aid genome assembly in specific areas as well as in the whole genome, a 15,000(Rad) radiation hybrid (RH) panel for the domestic cat was generated. Fibroblasts from the female Abyssinian cat that was used to generate the cat genomic sequence were fused to a Chinese hamster cell line (A23), producing 150 hybrid lines. The clones were initially characterized using 39 short tandem repeats (STRs) and 1,536 SNP markers. The utility of whole-genome amplification in preserving and extending RH panel DNA was also tested using 10 STR markers; no significant difference in retention was observed. The resolution of the 15,000(Rad) RH panel was established by constructing framework maps across 10 different 1-Mb regions on different feline chromosomes. In these regions, 2-point analysis was used to estimate RH distances, which compared favorably with the estimation of physical distances. The study demonstrates that the 15,000(Rad) RH panel constitutes a powerful tool for constructing high-resolution maps, having an average resolution of 40.1 kb per marker across the ten 1-Mb regions. In addition, the RH panel will complement existing genomic resources for the domestic cat, aid in the accurate re-assemblies of the forthcoming cat genomic sequence, and support cross-species genomic comparisons.
Collapse
Affiliation(s)
- L H Bach
- Population Health and Reproduction,, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Miyadera K, Acland GM, Aguirre GD. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mamm Genome 2012; 23:40-61. [PMID: 22065099 PMCID: PMC3942498 DOI: 10.1007/s00335-011-9361-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/26/2011] [Indexed: 12/31/2022]
Abstract
Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.
Collapse
Affiliation(s)
- Keiko Miyadera
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA 19104, USA
| | - Gregory M. Acland
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Gustavo D. Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Abstract
There are currently about 80 different DNA tests available for mutations that are associated with inherited disease in the domestic dog, and as the tools available with which to dissect the canine genome become increasingly sophisticated, this number can be expected to rise dramatically over the next few years. With unrelenting media pressure focused firmly on the health of the purebred domestic dog, veterinarians and dog breeders are turning increasingly to DNA tests to ensure the health of their dogs. It is ultimately the responsibility of the scientists who identify disease-associated genetic variants to make sensible choices about which discoveries are appropriate to develop into commercially available DNA tests for the lay dog breeder, who needs to balance the need to improve the genetic health of their breed with the need to maintain genetic diversity. This review discusses some of the factors that should be considered along the route from mutation discovery to DNA test and some representative examples of DNA tests currently available.
Collapse
Affiliation(s)
- Cathryn Mellersh
- Canine Genetics, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
7
|
Wu CH, Jin W, Nomura K, Goldammer T, Hadfield T, Dalrymple BP, McWilliam S, Maddox JF, Cockett NE. A radiation hybrid comparative map of ovine chromosome 1 aligned to the virtual sheep genome. Anim Genet 2009; 40:435-55. [DOI: 10.1111/j.1365-2052.2009.01857.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Kukekova AV, Vorobieva NV, Beklemisheva VR, Johnson JL, Temnykh SV, Yudkin DV, Trut LN, Andre C, Galibert F, Aguirre GD, Acland GM, Graphodatsky AS. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes. ACTA ACUST UNITED AC 2009; 100 Suppl 1:S42-53. [PMID: 19546120 DOI: 10.1093/jhered/esp037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.
Collapse
Affiliation(s)
- Anna V Kukekova
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Amaral MEJ, Grant JR, Riggs PK, Stafuzza NB, Filho EAR, Goldammer T, Weikard R, Brunner RM, Kochan KJ, Greco AJ, Jeong J, Cai Z, Lin G, Prasad A, Kumar S, Saradhi GP, Mathew B, Kumar MA, Miziara MN, Mariani P, Caetano AR, Galvão SR, Tantia MS, Vijh RK, Mishra B, Kumar STB, Pelai VA, Santana AM, Fornitano LC, Jones BC, Tonhati H, Moore S, Stothard P, Womack JE. A first generation whole genome RH map of the river buffalo with comparison to domestic cattle. BMC Genomics 2008; 9:631. [PMID: 19108729 PMCID: PMC2625372 DOI: 10.1186/1471-2164-9-631] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/24/2008] [Indexed: 01/28/2023] Open
Abstract
Background The recently constructed river buffalo whole-genome radiation hybrid panel (BBURH5000) has already been used to generate preliminary radiation hybrid (RH) maps for several chromosomes, and buffalo-bovine comparative chromosome maps have been constructed. Here, we present the first-generation whole genome RH map (WG-RH) of the river buffalo generated from cattle-derived markers. The RH maps aligned to bovine genome sequence assembly Btau_4.0, providing valuable comparative mapping information for both species. Results A total of 3990 markers were typed on the BBURH5000 panel, of which 3072 were cattle derived SNPs. The remaining 918 were classified as cattle sequence tagged site (STS), including coding genes, ESTs, and microsatellites. Average retention frequency per chromosome was 27.3% calculated with 3093 scorable markers distributed in 43 linkage groups covering all autosomes (24) and the X chromosomes at a LOD ≥ 8. The estimated total length of the WG-RH map is 36,933 cR5000. Fewer than 15% of the markers (472) could not be placed within any linkage group at a LOD score ≥ 8. Linkage group order for each chromosome was determined by incorporation of markers previously assigned by FISH and by alignment with the bovine genome sequence assembly (Btau_4.0). Conclusion We obtained radiation hybrid chromosome maps for the entire river buffalo genome based on cattle-derived markers. The alignments of our RH maps to the current bovine genome sequence assembly (Btau_4.0) indicate regions of possible rearrangements between the chromosomes of both species. The river buffalo represents an important agricultural species whose genetic improvement has lagged behind other species due to limited prior genomic characterization. We present the first-generation RH map which provides a more extensive resource for positional candidate cloning of genes associated with complex traits and also for large-scale physical mapping of the river buffalo genome.
Collapse
|
10
|
Lingaas F, Aarskaug T, Gerlach JA, Juneja RK, Fredholm M, Sampson J, Suter N, Holmes NG, Binns MM, Ryder EJ, Van Haeringen WA, Venta PJ, Brouillette JA, Yuzbasiyan-Gurkan V, Wilton AN, Bredbacka P, Koskinen M, Dunner S, Parra D, Schmutz S, Schelling C, Schläpfer J, Dolf G. A canine linkage map: 39 linkage groups. J Anim Breed Genet 2008. [DOI: 10.1111/j.1439-0388.2001.00270.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ajmone Marsan P, Gorni C, Milanesi E, Mazza R, van Eijk MJT, Peleman JD, Williams JL. Assessment of AFLP marker behaviour in enriching STS radiation hybrid maps. Anim Genet 2008; 39:383-94. [PMID: 18573125 DOI: 10.1111/j.1365-2052.2008.01747.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radiation hybrid (RH) mapping provides a powerful tool to build high-resolution maps of genomes. Here, we demonstrate the use of the AFLP technique for high-throughput typing of RH cell lines. Cattle were used as the model species because an RH panel was available to investigate the behaviour of AFLP markers within the microsatellite- and STS-based maps of this species. A total of 747 AFLP markers were typed on the TM112 RH radiation panel and 651 of these were assigned by two-point analysis to the 29 bovine autosomes and sex chromosomes. AFLP markers were added to the 1222 microsatellite and STS markers that were included in earlier RH maps. Multipoint maps were constructed for seven example chromosomes, which retained 248 microsatellite and STS markers, and added 123 AFLP markers at LOD 4. The addition of the AFLP markers increased the number of markers by 42.1% and the map length by 10.4%. The AFLP markers showed lower retention frequency (RF) values than the STS markers. The comparison of RF values in AFLP markers and their corresponding AFLP-derived STSs demonstrated that the lower RF values were due to the lower detection sensitivity of the AFLP technique. Despite these differences, AFLP and AFLP-derived STS markers mapped to identical or similar positions. These results demonstrate that it is possible to merge AFLP and microsatellite markers in the same map. The application of AFLP technology could permit the rapid construction of RH maps in species for which extensive genome information and large numbers of SNP and microsatellite markers are not available.
Collapse
Affiliation(s)
- P Ajmone Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, 29100 Piacenza, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hitte C, Kirkness EF, Ostrander EA, Galibert F. Survey sequencing and radiation hybrid mapping to construct comparative maps. Methods Mol Biol 2008; 422:65-77. [PMID: 18629661 PMCID: PMC2661178 DOI: 10.1007/978-1-59745-581-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radiation hybrid (RH) mapping has become one of the most well-established techniques for economically and efficiently navigating genomes of interest. The success of the technique relies on random chromosome breakage of a target genome, which is then captured by recipient cells missing a preselected marker. Selection for hybrid cells that have DNA fragments bearing the marker of choice, plus a random set of DNA fragments from the initial irradiation, generates a set of cell lines that recapitulates the genome of the target organism several-fold. Markers or genes of interest are analyzed by PCR using DNA isolated from each cell line. Statistical tools are applied to determine both the linear order of markers on each chromosome, and the confidence of each placement. The resolution of the resulting map relies on many factors, most notably the degree of breakage from the initial radiation as well as the number of hybrid clones and mean retention value.A high-resolution RH map of a genome derived from low pass or survey sequencing (coverage from 1 to 2 times) can provide essentially the same comparative data on gene order that is derived from high-coverage (greater than x7) genome sequencing. When combined with fluorescence in situ hybridization, RH maps are complete and ordered blueprints for each chromosome. They give information about the relative order and spacing of genes and markers, and allow investigators to move between target and reference genomes, such as those of mouse or human, with ease although the approach is not limited to mammal genomes.
Collapse
Affiliation(s)
- Christophe Hitte
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université Rennes IIFR140Faculté de Médecine - CS 34317
2 Av du Professeur Léon Bernard
35043 RENNES CEDEX,FR
| | - Ewen F. Kirkness
- TIGR, The Institute for Genomic Research
JCVI J. Craig Venter InstituteRockville, MD,FR
| | | | - Francis Galibert
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université Rennes IIFR140Faculté de Médecine - CS 34317
2 Av du Professeur Léon Bernard
35043 RENNES CEDEX,FR
| |
Collapse
|
13
|
Su F, Osada Y, Ekker M, Chevrette M, Shimizu A, Asakawa S, Shiohama A, Sasaki T, Shimizu N, Yamanaka T, Sasado T, Mitani H, Geisler R, Kondoh H, Furutani-Seiki M. Radiation hybrid maps of Medaka chromosomes LG 12, 17, and 22. DNA Res 2007; 14:135-40. [PMID: 17591665 PMCID: PMC2779899 DOI: 10.1093/dnares/dsm012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Medaka is an excellent genetic system for studies of vertebrate development and disease and environmental and evolutionary biology studies. To facilitate the mapping of markers or the cloning of affected genes in Medaka mutants identified by forward-genetic screens, we have established a panel of whole-genome radiation hybrids (RHs) and RH maps for three Medaka chromosomes. RH mapping is useful, since markers to be mapped need not be polymorphic and one can establish the order of markers that are difficult to resolve by genetic mapping owing to low genetic recombination rates. RHs were generated by fusing the irradiated donor, OLF-136 Medaka cell line, with the host B78 mouse melanoma cells. Of 290 initial RH clones, we selected 93 on the basis of high retention of fragments of the Medaka genome to establish a panel that allows genotyping in the 96-well format. RH maps for linkage groups 12, 17, and 22 were generated using 159 markers. The average retention for the three chromosomes was 19% and the average break point frequency was ∼33 kb/cR. We estimate the potential resolution of the RH panel to be ∼186 kb, which is high enough for integrating RH data with bacterial artificial chromosome clones. Thus, this first RH panel will be a useful tool for mapping mutated genes in Medaka.
Collapse
Affiliation(s)
- Feng Su
- The Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Osada
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Marc Ekker
- Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, 20, Marie Curie, Ottawa, ON, CanadaK1N 6N5
| | - Mario Chevrette
- The Research Institute of the McGill University Health Centre and Department of Surgery, McGill University, Montreal, QC, CanadaH3G 1A4
| | - Atsushi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shuichi Asakawa
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Aiko Shiohama
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiyuki Yamanaka
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Takao Sasado
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Hiroshi Mitani
- Department of Integrated Bioscience, Graduate School of Frontier Science, The University of Tokyo, Bioscience Building, 102, Kashiwa, Chiba 277-8562, Japan
| | - Robert Geisler
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung III–Genetik, Spemannstrasse 35, Tübingen D-72076, Germany
| | - Hisato Kondoh
- The Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka 565-0871, Japan
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | - Makoto Furutani-Seiki
- SORST Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
- To whom correspondence should be addressed. Tel. +44 (0) 1225 38 5046. Fax. +44 (0) 1225 38 6779. E-mail:
| |
Collapse
|
14
|
Galibert F, André C. The dog: A powerful model for studying genotype-phenotype relationships. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 3:67-77. [PMID: 20483208 DOI: 10.1016/j.cbd.2007.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 12/11/2022]
Abstract
Within the last two years, series of studies have focused on the structure of the dog genome (Canis familiaris) and the characteristics of the dog population as it evolved since being domesticated from wolves about 14,000 years ago. In this review, we explain why the dog is a unique and promising model for determining genotype/phenotype relationships and why it should be easier with this model to identify the genes responsible for many genetic diseases. We also revisit the last ten years of developments in canine molecular genetics that culminated in the release of the entire genome sequence.
Collapse
Affiliation(s)
- Francis Galibert
- Laboratoire de Génétique et Développement, UMR 6061, CNRS/Université de Rennes 1, IFR 140 Génomique Fonctionnelle et Santé, 2 avenue Léon Bernard, Rennes Cedex 35043, France
| | | |
Collapse
|
15
|
Parker HG, Meurs KM, Ostrander EA. Finding cardiovascular disease genes in the dog. J Vet Cardiol 2006; 8:115-27. [PMID: 19083345 PMCID: PMC3559124 DOI: 10.1016/j.jvc.2006.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/10/2006] [Accepted: 04/13/2006] [Indexed: 11/20/2022]
Abstract
Recent advances in canine genomics are changing the landscape of veterinary biology, and by default, veterinary medicine. No longer are clinicians locked into traditional methods of diagnoses and therapy. Rather, major advances in canine genetics and genomics from the past five years are now changing the way the veterinarian of the 21st century practices medicine. First, the availability of a dense genome map gives canine genetics a much-needed foothold in comparative medicine, allowing advances made in human and mouse genetics to be applied to companion animals. Second, the recently released 7.5x whole genome sequence of the dog is facilitating the identification of hereditary disease genes. Finally, development of genetic tools for rapid screening of families and populations at risk for inherited disease means that the cost of identifying and testing for disease loci will significantly decrease in coming years. Out of these advances will come major changes in companion animal diagnostics and therapy. Clinicians will be able to offer their clients genetic testing and counseling for a myriad of disorders. In this review we summarize recent findings in canine genomics and discuss their application to the study of canine cardiac health.
Collapse
Affiliation(s)
- Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, MSC 8000, Building 50, Room 5334, Bethesda MD 20892-8000, Phone: 301-594-5284; FAX: 301-480-0472
| | - Kathryn M. Meurs
- Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman WA 99164-7010, Phone: 509-335-0711 Fax: 509-335-0880
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, MSC 8000, Building 50, Room 5334, Bethesda MD 20892-8000, Phone: 301-594-5284; FAX: 301-480-0472
| |
Collapse
|
16
|
Senger F, Cadieu E, Evanno G, Hitte C, Berkova N, Priat C, André C, Galibert F. Construction and characterization of a high-resolution, 9000-rad canine radiation hybrid panel. Anim Genet 2006; 37:527. [PMID: 16978193 DOI: 10.1111/j.1365-2052.2006.01513.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F Senger
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, 2 Av du Pr Léon Bernard, CS 34317, 35043 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kalavacharla V, Hossain K, Gu Y, Riera-Lizarazu O, Vales MI, Bhamidimarri S, Gonzalez-Hernandez JL, Maan SS, Kianian SF. High-resolution radiation hybrid map of wheat chromosome 1D. Genetics 2006; 173:1089-99. [PMID: 16624903 PMCID: PMC1526521 DOI: 10.1534/genetics.106.056481] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 04/05/2006] [Indexed: 11/18/2022] Open
Abstract
Physical mapping methods that do not rely on meiotic recombination are necessary for complex polyploid genomes such as wheat (Triticum aestivum L.). This need is due to the uneven distribution of recombination and significant variation in genetic to physical distance ratios. One method that has proven valuable in a number of nonplant and plant systems is radiation hybrid (RH) mapping. This work presents, for the first time, a high-resolution radiation hybrid map of wheat chromosome 1D (D genome) in a tetraploid durum wheat (T. turgidum L., AB genomes) background. An RH panel of 87 lines was used to map 378 molecular markers, which detected 2312 chromosome breaks. The total map distance ranged from approximately 3,341 cR(35,000) for five major linkage groups to 11,773 cR(35,000) for a comprehensive map. The mapping resolution was estimated to be approximately 199 kb/break and provided the starting point for BAC contig alignment. To date, this is the highest resolution that has been obtained by plant RH mapping and serves as a first step for the development of RH resources in wheat.
Collapse
Affiliation(s)
- Venu Kalavacharla
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, Pennsylvania 19141, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The dog has emerged as a premier species for the study of morphology, behavior, and disease. The recent availability of a high-quality draft sequence lifts the dog system to a new threshold. We provide a primer to use the dog genome by first focusing on its evolutionary history. We overview the relationship of dogs to wild canids and discuss their origin and domestication. Dogs clearly originated from a substantial number of gray wolves and dog breeds define distinct genetic units that can be divided into at least four hierarchical groupings. We review evidence showing that dogs have high levels of linkage disequilibrium. Consequently, given that dog breeds express specific phenotypic traits and vary in behavior and the incidence of genetic disease, genomic-wide scans for linkage disequilibrium may allow the discovery of genes influencing breed-specific characteristics. Finally, we review studies that have utilized the dog to understand the genetic underpinning of several traits, and we summarize genomic resources that can be used to advance such studies. We suggest that given these resources and the unique characteristics of breeds, that the dog is a uniquely valuable resource for studying the genetic basis of complex traits.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
19
|
Hitte C, Madeoy J, Kirkness EF, Priat C, Lorentzen TD, Senger F, Thomas D, Derrien T, Ramirez C, Scott C, Evanno G, Pullar B, Cadieu E, Oza V, Lourgant K, Jaffe DB, Tacher S, Dréano S, Berkova N, André C, Deloukas P, Fraser C, Lindblad-Toh K, Ostrander EA, Galibert F. Facilitating genome navigation: survey sequencing and dense radiation-hybrid gene mapping. Nat Rev Genet 2005; 6:643-8. [PMID: 16012527 DOI: 10.1038/nrg1658] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Accurate and comprehensive sequence coverage for large genomes has been restricted to only a few species of specific interest. Lower sequence coverage (survey sequencing) of related species can yield a wealth of information about gene content and putative regulatory elements. But survey sequences lack long-range continuity and provide only a fragmented view of a genome. Here we show the usefulness of combining survey sequencing with dense radiation-hybrid (RH) maps for extracting maximum comparative genome information from model organisms. Based on results from the canine system, we propose that from now on all low-pass sequencing projects should be accompanied by a dense, gene-based RH map-construction effort to extract maximum information from the genome with a marginal extra cost.
Collapse
Affiliation(s)
- Christophe Hitte
- CNRS, UMR 6061, Génétique et développement, Faculte de Médecine, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kreutzer R, Leeb T, Müller G, Moritz A, Baumgärtner W. A duplication in the canine beta-galactosidase gene GLB1 causes exon skipping and GM1-gangliosidosis in Alaskan huskies. Genetics 2005; 170:1857-61. [PMID: 15944348 PMCID: PMC1449761 DOI: 10.1534/genetics.105.042580] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GM(1)-gangliosidosis is a lysosomal storage disease that is inherited as an autosomal recessive disorder, predominantly caused by structural defects in the beta-galactosidase gene (GLB1). The molecular cause of GM(1)-gangliosidosis in Alaskan huskies was investigated and a novel 19-bp duplication in exon 15 of the GLB1 gene was identified. The duplication comprised positions +1688-+1706 of the GLB1 cDNA. It partially disrupted a potential exon splicing enhancer (ESE), leading to exon skipping in a fraction of the transcripts. Thus, the mutation caused the expression of two different mRNAs from the mutant allele. One transcript contained the complete exon 15 with the 19-bp duplication, while the other transcript lacked exon 15. In the transcript containing exon 15 with the 19-bp duplication a premature termination codon (PTC) appeared, but due to its localization in the last exon of canine GLB1, nonsense-mediated RNA decay (NMD) did not occur. As a consequence of these molecular events two different truncated GLB1 proteins are predicted to be expressed from the mutant GLB1 allele. In heterozygous carrier animals the wild-type allele produces sufficient amounts of the active enzyme to prevent clinical signs of disease. In affected homozygous dogs no functional GLB1 is synthesized and G(M1)-gangliosidosis occurs.
Collapse
Affiliation(s)
- Robert Kreutzer
- Department for Pathology, University of Veterinary Medicine, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
21
|
Green SL, Westendorf JM, Jaffe H, Pant HC, Cork LC, Ostrander EA, Vignaux F, Ferrell JE. Allelic variants of the canine heavy neurofilament (NFH) subunit and extensive phosphorylation in dogs with motor neuron disease. J Comp Pathol 2005; 132:33-50. [PMID: 15629478 DOI: 10.1016/j.jcpa.2004.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 06/15/2004] [Indexed: 11/24/2022]
Abstract
Aberrant accumulation of extensively phosphorylated heavy (high molecular weight) neurofilament (NFH) and neurodegeneration are features of hereditary canine spinal muscular atrophy (HCSMA), an animal model of human motor neuron disease. In this study, the canine NFH gene was mapped, cloned, and sequenced, and electrospray/mass spectrometry was used to evaluate the phosphorylation state of NFH protein from normal dogs and dogs with HCSMA. The canine NFH gene was localized to a region on canine chromosome 26 that corresponds to human NFH on chromosome 22q. The predicted length of the canine NFH protein is 1135 amino acids, and it shares an 80.3% identity with human NFH and >74.6% with murine NFH proteins. Direct sequencing of NFH cDNA from HCSMA dogs revealed no mutations, although cDNA sequence and restriction fragment length polymorphism (RFLP) analysis indicates that there are at least three canine NFH alleles, differing in the position and number (61 or 62) of Lys-Ser-Proline (KSP) motifs. The two longest alleles (L1 and L2), each with 62 KSP repeats, contain an additional 24-base insert and were observed in both normal and HCSMA dogs. However, the shorter allele (the C allele), with 61 KSP sites and lacking the 24-base insertion, was absent in dogs with HCSMA. Mass spectrometry data indicated that almost all of the NFH KSP phosphorylation sites were occupied. No new or extra sites were identified in native NFH purified from the HCSMA dogs. The predominance of the two longest NFH alleles and the additional KSP phosphorylation sites they confer probably account for the presence of extensively phosphorylated NFs detected immunohistochemically in dogs with HCSMA.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromatography, High Pressure Liquid/veterinary
- Chromosome Mapping/veterinary
- Cloning, Molecular
- Dog Diseases/genetics
- Dog Diseases/metabolism
- Dog Diseases/pathology
- Dogs
- Humans
- Mice
- Molecular Sequence Data
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/veterinary
- Neurofilament Proteins/chemistry
- Neurofilament Proteins/genetics
- Neurofilament Proteins/metabolism
- Phosphorylation
- Polymorphism, Restriction Fragment Length
- Sequence Analysis, DNA/veterinary
- Spectrometry, Mass, Electrospray Ionization/veterinary
Collapse
Affiliation(s)
- S L Green
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Purebred dogs are providing invaluable information about morphology, behaviour and complex diseases, both of themselves and humans, by supplying tractable populations in which to map genes that control those processes. The diversification of dog breeds has led to the development of breeds enriched for particular genetic disorders, the mapping and cloning of which have been facilitated by the availability of the canine genome map and sequence. These tools have aided our understanding of canine population genetics, linkage disequilibrium and haplotype sharing in the dog, and have informed ongoing efforts of the need to identify quantitative trait loci that are important in complex traits.
Collapse
Affiliation(s)
- Nathan B Sutter
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, MSC8002, Building 50, Room 5222, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
23
|
Gorni C, Williams JL, Heuven HCM, Negrini R, Valentini A, van Eijk MJT, Waddington D, Zevenbergen M, Marsan PA, Peleman JD. Application of AFLP technology to radiation hybrid mapping. Chromosome Res 2004; 12:285-97. [PMID: 15125642 DOI: 10.1023/b:chro.0000021912.22552.ff] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have investigated the use of AFLP technology as a tool for the high throughput enrichment of Radiation Hybrid (RH) maps. The 3000 rad TM112 bovine RH panel was assayed with 37 EcoRI/TaqI AFLP primer combinations. The number of selective nucleotides used during PCR was increased to seven, to reduce the complexity of the AFLP profile and minimise the overlap between hamster and bovine bands co-amplified from hybrid cell clones. Seven-hundred-forty-seven bovine AFLP bands were amplified that could be distinguished following electrophoresis. Repeatability was tested within and between laboratories on independent template preparations and an error rate of 1.3% found. Two-point linkage analysis clustered 428 AFLP fragments in 39 linkage groups of at least 4 markers. Multi-point maps were constructed for 5 sample linkage groups. The study demonstrated that the AFLP approach could be used to rapidly screen for the most informative clones during panel construction and to increase the number of markers on RH maps, which could be useful for joining linkage groups formed by other markers. The use of AFLP markers as anchor points between existing RH maps and other physical maps, such as BAC contigs, is also discussed.
Collapse
Affiliation(s)
- C Gorni
- Institute of Zootechnics, Catholic University of Sacred Heart, via E. Parmense, 84, 29100 Piacenza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Breen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, Sabacan L, Scott A, Evanno G, Parker HG, Kirkness EF, Hudson R, Guyon R, Mahairas GG, Gelfenbeyn B, Fraser CM, André C, Galibert F, Ostrander EA. An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 2004; 5:65. [PMID: 15363096 PMCID: PMC520820 DOI: 10.1186/1471-2164-5-65] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 09/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 156 breeds of dog recognized by the American Kennel Club offer a unique opportunity to map genes important in genetic variation. Each breed features a defining constellation of morphological and behavioral traits, often generated by deliberate crossing of closely related individuals, leading to a high rate of genetic disease in many breeds. Understanding the genetic basis of both phenotypic variation and disease susceptibility in the dog provides new ways in which to dissect the genetics of human health and biology. RESULTS To facilitate both genetic mapping and cloning efforts, we have constructed an integrated canine genome map that is both dense and accurate. The resulting resource encompasses 4249 markers, and was constructed using the RHDF5000-2 whole genome radiation hybrid panel. The radiation hybrid (RH) map features a density of one marker every 900 Kb and contains 1760 bacterial artificial chromosome clones (BACs) localized to 1423 unique positions, 851 of which have also been mapped by fluorescence in situ hybridization (FISH). The two data sets show excellent concordance. Excluding the Y chromosome, the map features an RH/FISH mapped BAC every 3.5 Mb and an RH mapped BAC-end, on average, every 2 Mb. For 2233 markers, the orthologous human genes have been established, allowing the identification of 79 conserved segments (CS) between the dog and human genomes, dramatically extending the length of most previously described CS. CONCLUSIONS These results provide a necessary resource for the canine genome mapping community to undertake positional cloning experiments and provide new insights into the comparative canine-human genome maps.
Collapse
Affiliation(s)
- Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Up to recently, studies on dog genetics were rather scare notwithstanding the enormous potential that the canine model can offer in the study of the genotype/phenotype relationship and the analysis of the causes of many genetic diseases, with simple or complex inheritance, that affect dogs but also the human population. This potentiality is essentially due to the natural history of dogs whose domestication from wolves dated back 15,000 years, at least. All modern dogs originated from a limited number of female wolves from Eastern Asia. By applying a combination of selections and strong inbreeding practices, humans have created over 350 breeds, each of them corresponding to a genetic isolate and altogether offering a unique panel of polymorphism never encountered in any other mammals. In this review we summarized what makes dogs an unavoidable model. Contrary to the classical models like the two yeasts, nematode, fish, fly, mouse, or rat mainly used to understand the function of genes, dog with the creation across the centuries of numerous breeds offers a unique opportunity to study the role of their alleles. We report recent data on the construction of genomic maps and on the sequencing program of the dog genome launched by the National Institute of Health (NIH). To take fully advantage of the canine model, we advocate for the systematic construction of a rich canine single nucleotide polymorphisms (SNP) ressource to perform linkage desiquilibrium studies of normal or pathological traits as well as to get insight into the genetic diversity of the canine species.
Collapse
Affiliation(s)
- Francis Galibert
- UMR 6061 Génétique et développement, CNRS- Université de Rennes 1, Faculté de Médecine, 2, avenue Léon Bernard, 35043 Rennes Cedex, France.
| | | | | |
Collapse
|
26
|
De Donato M, Brenneman R, Stelly D, Womack J, Taylor J. A methodological approach for the construction of a radiation hybrid map of bovine chromosome 5. Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- M. De Donato
- Texas A&M University, USA; Universidad de Oriente, Venezuela
| | - R.A. Brenneman
- Texas A&M University, USA; Omaha's Henry Doorly Zoo, USA
| | | | | | - J.F. Taylor
- Texas A&M University, USA; University of Missouri, USA
| |
Collapse
|
27
|
Abstract
This is an exciting time for biological scientists as the "omics" era continues to evolve and shape the way science is understood and conducted. As genome sequencing of the human comes to a close, other mammals are in line to be sequenced. Along with pigs and cows, dogs are now on the high priority list for sequencing, and cats may soon follow suit. Until sequence data are available, genetic maps may be used to reveal important physical characteristics of a genome. Genome mapping is important in identifying gene placement, but gives little information regarding function. Therefore, functional genomics, including the global analysis of RNA and protein expression, protein localization and protein-protein interactions will emerge as important areas of study. The major use of the dog and cat genome maps hitherto has been for the study of human and veterinary medicine. These powerful resources also can be applied to the field of nutritional genomics and proteomics, enhancing our understanding of metabolism and optimizing companion animal nutritional and health status. Genomics has begun to be applied to nutritional research, but issues specifically relevant to companion animals have not been elucidated thus far. The study of genomics and proteomics will be crucial in areas such as nutrient requirement determination, disease prevention and treatment, functional ingredient testing and others. Nutritional genomics and proteomics will definitely play a vital role in the future of pet foods.
Collapse
Affiliation(s)
- Kelly S Swanson
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
28
|
Quignon P, Kirkness E, Cadieu E, Touleimat N, Guyon R, Renier C, Hitte C, André C, Fraser C, Galibert F. Comparison of the canine and human olfactory receptor gene repertoires. Genome Biol 2003; 4:R80. [PMID: 14659017 PMCID: PMC329419 DOI: 10.1186/gb-2003-4-12-r80] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/01/2003] [Accepted: 11/03/2003] [Indexed: 11/25/2022] Open
Abstract
In this study, 817 novel canine olfactory receptor (OR) sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Background Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a much keener olfactory potential than humans, only 21 canine OR genes have been described to date. Results In this study, 817 novel canine OR sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Phylogenetic analysis of 403 canine OR sequences identified 51 families, and radiation-hybrid mapping of 562 showed that they are distributed on 24 dog chromosomes, in 37 distinct regions. Most of these regions constitute clusters of 2 to 124 closely linked genes. The two largest clusters (124 and 109 OR genes) are located on canine chromosomes 18 and 21. They are orthologous to human clusters located on human chromosomes 11q11-q13 and HSA11p15, containing 174 and 115 ORs respectively. Conclusions This study shows a strongly conserved genomic distribution of OR genes between dog and human, suggesting that OR genes evolved from a common mammalian ancestral repertoire by successive duplications. In addition, the dog repertoire appears to have expanded relative to that of humans, leading to the emergence of specific canine OR genes.
Collapse
Affiliation(s)
- Pascale Quignon
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Ewen Kirkness
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Edouard Cadieu
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Nizar Touleimat
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Richard Guyon
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Corinne Renier
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
- Current address: Stanford University School of Medicine, Center for Narcolepsy, 701B Welch Road, Palo Alto, CA 94305-5742, USA
| | - Christophe Hitte
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Catherine André
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Claire Fraser
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Francis Galibert
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| |
Collapse
|
29
|
Tiret L, Blot S, Kessler JL, Gaillot H, Breen M, Panthier JJ. The cnm locus, a canine homologue of human autosomal forms of centronuclear myopathy, maps to chromosome 2. Hum Genet 2003; 113:297-306. [PMID: 12884002 DOI: 10.1007/s00439-003-0984-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 06/06/2003] [Indexed: 10/26/2022]
Abstract
Myotubular/centronuclear myopathies are a nosological group of hereditary disorders characterised by severe architectural and metabolic remodelling of skeletal muscle fibres. In most myofibres, nuclei are found at an abnormal central position within a halo devoid of myofibrillar proteins. The X-linked form (myotubular myopathy) is the most prevalent and severe form in human, leading to death during early postnatal life. Maturation of fibres is not completed and fibres resemble myotubes. Linkage analysis in human has helped to identify MTM1 as the morbid gene. MTM1 encodes myotubularin, a dual protein phosphatase. In families in which myotubular myopathy segregates, detected mutations in MTM1 abolish the specific phosphatase activity targeting the second messenger phosphatidylinositol 3-phosphate. Autosomal forms (centronuclear) have a later onset and are often compatible with life. At birth, fibres are normally constituted but progressively follow remodelling with a secondary centralisation of nuclei. Their prevalence is low; hence, no linkage data can be performed and no molecular aetiology is known. In the Labrador Retriever, a spontaneous disorder strikingly mimics the clinical evolution of the human centronuclear myopathy. We have established a canine pedigree and show that the disorder segregates as an autosomal recessive trait in that pedigree. We have further mapped the dog locus to a region on chromosome 2 that is orthologous to human chromosome 10p. To date, no human MTM1 gene member has been mapped to this genetic region. This report thus describes the first spontaneous mammalian model of centronuclear myopathy and defines a new locus for this group of diseases.
Collapse
Affiliation(s)
- Laurent Tiret
- UMR 955 INRA-ENVA de Génétique Moléculaire et Cellulaire, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | | | | | | | | |
Collapse
|
30
|
Lowe JK, Kukekova AV, Kirkness EF, Langlois MC, Aguirre GD, Acland GM, Ostrander EA. Linkage mapping of the primary disease locus for collie eye anomaly. Genomics 2003; 82:86-95. [PMID: 12809679 DOI: 10.1016/s0888-7543(03)00078-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collie eye anomaly (cea) is a hereditary ocular disorder affecting development of the choroid and sclera segregating in several breeds of dog, including rough, smooth, and Border collies and Australian shepherds. The disease is reminiscent of the choroidal hypoplasia phenotype observed in humans in conjunction with craniofacial or renal abnormalities. In dogs, however, the clinical phenotype can vary significantly; many dogs exhibit no obvious clinical consequences and retain apparently normal vision throughout life, while severely affected animals develop secondary retinal detachment, intraocular hemorrhage, and blindness. We report genetic studies establishing that the primary cea phenotype, choroidal hypoplasia, segregates as an autosomal recessive trait with nearly 100% penetrance. We further report linkage mapping of the primary cea locus to a 3.9-cM region of canine chromosome 37 (LOD = 22.17 at theta = 0.076), in a region corresponding to human chromosome 2q35. These results suggest the presence of a developmental regulatory gene important in ocular embryogenesis, with potential implications for other disorders of ocular vascularization.
Collapse
Affiliation(s)
- Jennifer K Lowe
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-100, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Guyon R, Lorentzen TD, Hitte C, Kim L, Cadieu E, Parker HG, Quignon P, Lowe JK, Renier C, Gelfenbeyn B, Vignaux F, DeFrance HB, Gloux S, Mahairas GG, André C, Galibert F, Ostrander EA. A 1-Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci U S A 2003; 100:5296-301. [PMID: 12700351 PMCID: PMC154339 DOI: 10.1073/pnas.0831002100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 02/19/2003] [Indexed: 11/18/2022] Open
Abstract
The purebred dog population consists of >300 partially inbred genetic isolates or breeds. Restriction of gene flow between breeds, together with strong selection for traits, has led to the establishment of a unique resource for dissecting the genetic basis of simple and complex mammalian traits. Toward this end, we present a comprehensive radiation hybrid map of the canine genome composed of 3,270 markers including 1,596 microsatellite-based markers, 900 cloned gene sequences and ESTs, 668 canine-specific bacterial artificial chromosome (BAC) ends, and 106 sequence-tagged sites. The map was constructed by using the RHDF5000-2 whole-genome radiation hybrid panel and computed by using MULTIMAP and TSP/CONCORDE. The 3,270 markers map to 3,021 unique positions and define an average intermarker distance corresponding to 1 Mb. We also define a minimal screening set of 325 highly informative well spaced markers, to be used in the initiation of genome-wide scans. The well defined synteny between the dog and human genomes, established in part as a function of this work by the identification of 85 conserved fragments, will allow follow-up of initial findings of linkage by selection of candidate genes from the human genome sequence. This work continues to define the canine system as the method of choice in the pursuit of the genes causing mammalian variation and disease.
Collapse
Affiliation(s)
- Richard Guyon
- Unité Mixte de Recherche 6061, Centre National de la Recherche Scientifique, Génétique et Développement, Faculté de Médecine, 35043 Rennes Cédex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chowdhary BP, Raudsepp T, Kata SR, Goh G, Millon LV, Allan V, Piumi F, Guérin G, Swinburne J, Binns M, Lear TL, Mickelson J, Murray J, Antczak DF, Womack JE, Skow LC. The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes. Genome Res 2003; 13:742-51. [PMID: 12671008 PMCID: PMC430160 DOI: 10.1101/gr.917503] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A first-generation radiation hybrid (RH) map of the equine (Equus caballus) genome was assembled using 92 horse x hamster hybrid cell lines and 730 equine markers. The map is the first comprehensive framework map of the horse that (1) incorporates type I as well as type II markers, (2) integrates synteny, cytogenetic, and meiotic maps into a consensus map, and (3) provides the most detailed genome-wide information to date on the organization and comparative status of the equine genome. The 730 loci (258 type I and 472 type II) included in the final map are clustered in 101 RH groups distributed over all equine autosomes and the X chromosome. The overall marker retention frequency in the panel is approximately 21%, and the possibility of adding any new marker to the map is approximately 90%. On average, the mapped markers are distributed every 19 cR (4 Mb) of the equine genome--a significant improvement in resolution over previous maps. With 69 new FISH assignments, a total of 253 cytogenetically mapped loci physically anchor the RH map to various chromosomal segments. Synteny assignments of 39 gene loci complemented the RH mapping of 27 genes. The results added 12 new loci to the horse gene map. Lastly, comparison of the assembly of 447 equine genes (256 linearly ordered RH-mapped and additional 191 FISH-mapped) with the location of draft sequences of their human and mouse orthologs provides the most extensive horse-human and horse-mouse comparative map to date. We expect that the foundation established through this map will significantly facilitate rapid targeted expansion of the horse gene map and consequently, mapping and positional cloning of genes governing traits significant to the equine industry.
Collapse
Affiliation(s)
- Bhanu P Chowdhary
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sidjanin DJ, Miller B, Kijas J, McElwee J, Pillardy J, Malek J, Pai G, Feldblyum T, Fraser C, Acland G, Aguirre G. Radiation hybrid map, physical map, and low-pass genomic sequence of the canine prcd region on CFA9 and comparative mapping with the syntenic region on human chromosome 17. Genomics 2003; 81:138-48. [PMID: 12620391 DOI: 10.1016/s0888-7543(02)00028-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Progressive rod-cone degeneration (prcd) is a canine retinal disease that maps to the centromeric end of CFA9 in a region of synteny with the distal part of HSA17q. As such, prcd has been postulated as the only animal model of RP17, a human retinitis pigmentosa locus that maps to 17q22. In an effort to establish more detailed regions of synteny between dog CFA9 and the HSA17q-ter region, we created a robust gene-enriched CFA9-RH08(3000) map with 34 gene-based markers and 12 microsatellites, with the highest resolution and number of markers for the centromeric end of CFA9. Furthermore, we built an approximately 1.5-Mb physical map containing both GRB2 and GALK1, genes so far identified by meiotic linkage analysis as being closest to the prcd locus, and generated about 1.2 Mb low-pass (3.2x) canine sequence. Canine to human comparative sequence analysis identified 49 transcripts that had been previously mapped to the HSA17q25 region. The generated low-pass canine sequence was annotated with a working draft of human sequence from HSA17q25, and we used this scaffold to order and orient the canine sequence against human. This order and orientation are preliminary, as high-throughput genomic sequencing of HSA17q-ter has not been fully completed.
Collapse
Affiliation(s)
- D J Sidjanin
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guyon R, Kirkness EF, Lorentzen TD, Hitte C, Comstock KE, Quignon P, Derrien T, André C, Fraser CM, Galibert F, Ostrander EA. Building comparative maps using 1.5x sequence coverage: human chromosome 1p and the canine genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 68:171-7. [PMID: 15338615 DOI: 10.1101/sqb.2003.68.171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- R Guyon
- UMR 6061 CNRS, Génétique et Développement, Faculté de Médecine, 35043 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eggleston ML, Irion DN, Schaffer AL, Hughes SS, Draper JE, Robertson KR, Millon LV, Pedersen NC. PCR multiplexed microsatellite panels to expedite canine genetic disease linkage analysis. Anim Biotechnol 2002; 13:223-35. [PMID: 12517076 DOI: 10.1081/abio-120016191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Modern dog breeds possess large numbers of genetic diseases for which there are currently few candidate genes or diagnostic tests. Linkage of a microsatellite marker to a disease phenotype is often the only available tool to aid in the development of screening tests for disease carriers. Detection of linkage to a specific disease phenotype requires screening of large numbers of markers across known affected and unaffected animals. To establish high throughput genome scanning this study placed 100 canine microsatellite markers, arranged by fragment size and fluorescent dye label, into 12 PCR multiplexed panels. The highest degree of multiplexing was 11 markers per panel while the lowest was five markers per panel; each panel was run in one gel lane on automated DNA sequencers. Selection of the markers was based upon chromosomal or linkage group locations, degree of polymorphism, PCR multiplex compatibility and ease of interpretation. The marker set has an average spacing of 22.25 centiMorgan (cM). Marker polymorphism was evaluated across 28 American Kennel Club (AKC) recognized breeds. The utility of buccal swab vs. blood samples was also validated in this study as all template DNA was derived from swabs obtained and submitted by participating dog breeders and owners. The PCR multiplexed microsatellite panels and sampling method described in this report will provide investigators with a cost effective and expedient means of pursuing linkage studies of specific canine genetic diseases.
Collapse
Affiliation(s)
- M L Eggleston
- The Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rak SG, Drögemüller C, Kuiper H, Leeb T, Quignon P, André C, Distl O. Comparative mapping of the canine diaphanous homologue 1 (Drosophila) gene (DIAPH1 ) to CFA2q23-q24.2. Anim Genet 2002; 33:389-90. [PMID: 12354155 DOI: 10.1046/j.1365-2052.2002.00896_9.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Simone G Rak
- Institute of Animal Breeding and Genetics, School of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Cargill EJ, Clark LA, Steiner JM, Murphy KE. Multiplexing of canine microsatellite markers for whole-genome screens. Genomics 2002; 80:250-3. [PMID: 12213193 DOI: 10.1006/geno.2002.6827] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A set of 172 canine microsatellite markers, termed minimal screening set 1 (MSS1), was recently characterized for use in whole-genome screens. We report here the multiplexing of 155 MSS1 markers into 48 multiplex sets. Amplification of the multiplex sets is achieved using a single thermal cycling program. The markers are labeled with fluorescent dyes and optimized for resolution on an ABI 310 Genetic Analyzer or ABI 377 Sequencer. The multiplexing strategy involves amplifying combinations of markers so that no two markers with the same dye and product size overlap. Multiplexing the MSS1 provides an efficient tool for the collection of genotypes and streamlines whole-genome screens. Screening the canine genome for linkage of markers with various hereditary diseases facilitates identification of affected and carrier individuals, thereby providing researchers and clinicians with an additional diagnostic tool.
Collapse
Affiliation(s)
- Edward J Cargill
- Program in Genetics, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | |
Collapse
|
38
|
Rak SG, Drögemüller C, Leeb T, Quignon P, André C, Distl O. Assignment of the canine potassium voltage-gated channel, KQT-like subfamily, member 3 (KCNQ3) gene to CFA 13 by radiation hybrid mapping. Anim Genet 2002; 33:320-1. [PMID: 12139519 DOI: 10.1046/j.1365-2052.2002.t01-6-00886.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S G Rak
- Institute of Animal Breeding and Genetics, School of Veterinary Medicine Hannover, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Altet L, Francino O, Solano-Gallego L, Renier C, Sánchez A. Mapping and sequencing of the canine NRAMP1 gene and identification of mutations in leishmaniasis-susceptible dogs. Infect Immun 2002; 70:2763-71. [PMID: 12010961 PMCID: PMC127965 DOI: 10.1128/iai.70.6.2763-2771.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2001] [Revised: 11/15/2001] [Accepted: 01/28/2002] [Indexed: 11/20/2022] Open
Abstract
The NRAMP1 gene (Slc11a1) encodes an ion transporter protein involved in the control of intraphagosomal replication of parasites and in macrophage activation. It has been described in mice as the determinant of natural resistance or susceptibility to infection with antigenically unrelated pathogens, including Leishmania. Our aims were to sequence and map the canine Slc11a1 gene and to identify mutations that may be associated with resistance or susceptibility to Leishmania infection. The canine Slc11a1 gene has been mapped to dog chromosome CFA37 and covers 9 kb, including a 700-bp promoter region, 15 exons, and a polymorphic microsatellite in intron 1. It encodes a 547-amino-acid protein that has over 87% identity with the Slc11a1 proteins of different mammalian species. A case-control study with 33 resistant and 84 susceptible dogs showed an association between allele 145 of the microsatellite and susceptible dogs. Sequence variant analysis was performed by direct sequencing of the cDNA and the promoter region of four unrelated beagles experimentally infected with Leishmania infantum to search for possible functional mutations. Two of the dogs were classified as susceptible and the other two were classified as resistant based on their immune responses. Two important mutations were found in susceptible dogs: a G-rich region in the promoter that was common to both animals and a complete deletion of exon 11, which encodes the consensus transport motif of the protein, in the unique susceptible dog that needed an additional and prolonged treatment to avoid continuous relapses. A study with a larger dog population would be required to prove the association of these sequence variants with disease susceptibility.
Collapse
Affiliation(s)
- Laura Altet
- Departament de Ciència Animal i dels Aliments. Departament de Farmacologia, Terapèutica i Toxicologia, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
40
|
Sidjanin DJ, Zangerl B, Johnson JL, Xue F, Mellersh C, Ostrander EA, Acland G, Aguirre GD. Cloning of the canine delta tubulin cDNA (TUBD) and mapping to CFA9. Anim Genet 2002; 33:161-2. [PMID: 12047234 DOI: 10.1046/j.1365-2052.2002.0831d.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D J Sidjanin
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Raudsepp T, Kata SR, Piumi F, Swinburne J, Womack JE, Skow LC, Chowdhary BP. Conservation of gene order between horse and human X chromosomes as evidenced through radiation hybrid mapping. Genomics 2002; 79:451-7. [PMID: 11863376 DOI: 10.1006/geno.2002.6723] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A radiation hybrid (RH) map of the equine X chromosome (ECAX) was obtained using the recently produced 5000(rad) horse x hamster hybrid panel. The map comprises 34 markers (16 genes and 18 microsatellites) and spans a total of 676 cR(5000), covering almost the entire length of ECAX. Cytogenetic alignment of the RH map was improved by fluorescent in situ hybridization mapping of six of the markers. The map integrates and refines the currently available genetic linkage, syntenic, and cytogenetic maps, and adds new loci. Comparison of the physical location of the 16 genes mapped in this study with the human genome reveals similarity in the order of the genes along the entire length of the two X chromosomes. This degree of gene order conservation across evolutionarily distantly related species has up to now been reported only between human and cat. The ECAX RH map provides a framework for the generation of a high-density map for this chromosome. The map will serve as an important tool for positional cloning of X-linked diseases/conditions in the horse.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Jiang Z, He H, Hamasima N, Suzuki H, Verrinder G. Comparative mapping of Homo sapiens chromosome 4 (HSA4) and Sus scrofa chromosome 8 (SSC8) using orthologous genes representing different cytogenetic bands as landmarks. Genome 2002; 45:147-56. [PMID: 11908657 DOI: 10.1139/g01-116] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recently published draft sequence of the human genome will provide a basic reference for the comparative mapping of genomes among mammals. In this study, we selected 214 genes with complete coding sequences on Homo sapiens chromosome 4 (HSA4) to search for orthologs and expressed sequence tag (EST) sequences in eight other mammalian species (cattle, pig, sheep, goat, horse, dog, cat, and rabbit). In particular, 46 of these genes were used as landmarks for comparative mapping of HSA4 and Sus scrofa chromosome 8 (SSC8); most of HSA4 is homologous to SSC8, which is of particular interest because of its association with genes affecting the reproductive performance of pigs. As a reference framework, the 46 genes were selected to represent different cytogenetic bands on HSA4. Polymerase chain reaction (PCR) products amplified from pig DNA were directly sequenced and their orthologous status was confirmed by a BLAST search. These 46 genes, plus 11 microsatellite markers for SSC8, were typed against DNA from a pig-mouse radiation hybrid (RH) panel with 110 lines. RHMAP analysis assigned these 57 markers to 3 linkage groups in the porcine genome, 52 to SSC8, 4 to SSC15, and 1 to SSC17. By comparing the order and orientation of orthologous landmark genes on the porcine RH maps with those on the human sequence map, HSA4 was recognized as being split into nine conserved segments with respect to the porcine genome, seven with SSC8, one with SSC15, and one with SSC17. With 41 orthologous gene loci mapped, this report provides the largest functional gene map of SSC8, with 30 of these loci representing new single-gene assignments to SSC8.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal and Poultry Science, University of Guelph, ON, Canada.
| | | | | | | | | |
Collapse
|
43
|
Breen M, Jouquand S, Renier C, Mellersh CS, Hitte C, Holmes NG, Chéron A, Suter N, Vignaux F, Bristow AE, Priat C, McCann E, André C, Boundy S, Gitsham P, Thomas R, Bridge WL, Spriggs HF, Ryder EJ, Curson A, Sampson J, Ostrander EA, Binns MM, Galibert F. Chromosome-specific single-locus FISH probes allow anchorage of an 1800-marker integrated radiation-hybrid/linkage map of the domestic dog genome to all chromosomes. Genome Res 2001; 11:1784-95. [PMID: 11591656 PMCID: PMC311147 DOI: 10.1101/gr.189401] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We present here the first fully integrated, comprehensive map of the canine genome, incorporating detailed cytogenetic, radiation hybrid (RH), and meiotic information. We have mapped a collection of 266 chromosome-specific cosmid clones, each containing a microsatellite marker, to all 38 canine autosomes by fluorescence in situ hybridization (FISH). A 1500-marker RH map, comprising 1078 microsatellites, 320 dog gene markers, and 102 chromosome-specific markers, has been constructed using the RHDF5000-2 whole-genome radiation hybrid panel. Meiotic linkage analysis was performed, with at least one microsatellite marker from each dog autosome on a panel of reference families, allowing one meiotic linkage group to be anchored to all 38 dog autosomes. We present a karyotype in which each chromosome is identified by one meiotic linkage group and one or more RH groups. This updated integrated map, containing a total of 1800 markers, covers >90% of the dog genome. Positional selection of anchor clones enabled us, for the first time, to orientate nearly all of the integrated groups on each chromosome and to evaluate the extent of individual chromosome coverage in the integrated genome map. Finally, the inclusion of 320 dog genes into this integrated map enhances existing comparative mapping data between human and dog, and the 1000 mapped microsatellite markers constitute an invaluable tool with which to perform genome scanning studies on pedigrees of interest.
Collapse
Affiliation(s)
- M Breen
- Genetics Section, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sidjanin DJ, Xue F, McElwee J, Johnson JL, Holmgren C, Mellersh C, Ostrander E, Acland G, Aguirre GD. Cloning of canine gamma-tubulin (TUBG1) cDNA and mapping to CFA9. Anim Genet 2001; 32:328-9. [PMID: 11683730 DOI: 10.1046/j.1365-2052.2001.0730j.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D J Sidjanin
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- G Aguirre
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
46
|
Li R, Faraco JH, Lin L, Lin X, Hinton L, Rogers W, Lowe JK, Ostrander EA, Mignot E. Physical and radiation hybrid mapping of canine chromosome 12, in a region corresponding to human chromosome 6p12-q12. Genomics 2001; 73:299-315. [PMID: 11350122 DOI: 10.1006/geno.2000.6487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The positional cloning of the hypocretin receptor 2, the gene for autosomal recessive canine narcolepsy, has led to the development of a physical map spanning a large portion of canine chromosome 12 (CFA12), in a region corresponding to human chromosome 6p12-q13. More than 40 expressed sequence tags (ESTs) were used in homology search experiments, together with chromosome walking, to build both physical and radiation hybrid maps of the CFA12 13-21 region. The resulting map of bacterial artificial chromosome ends, ESTs, and microsatellite markers represents the longest continuous high-density map of the dog genome reported to date. These data further establish the dog as a system for studying disease genes of interest to human populations and highlight feasible approaches for positional cloning of disease genes in organisms where genomic resources are limited.
Collapse
Affiliation(s)
- R Li
- Room P-114, Stanford Center for Narcolepsy Research, 1201 Welch Road, Stanford, California 94305-5485, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lingaas F, Aarskaug T, Gerlach JA, Juneja RK, Fredholm M, Sampson J, Suter N, Holmes NG, Binns MM, Ryder EJ, Van Haeringen WA, Venta PJ, Brouillette JA, Yuzbasiyan-Gurkan V, Wilton AN, Bredbacka P, Koskinen M, Dunner S, Parra D, Schmutz S, Schelling C, Schlapfer J, Dolf G. A canine linkage map: 39 linkage groups. J Anim Breed Genet 2001. [DOI: 10.1046/j.1439-0388.2001.00270.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Richman M, Mellersh CS, André C, Galibert F, Ostrander EA. Characterization of a minimal screening set of 172 microsatellite markers for genome-wide screens of the canine genome. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 47:137-49. [PMID: 11179770 DOI: 10.1016/s0165-022x(00)00160-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have characterized a subset of 172 microsatellite markers from the canine map, termed 'Minimal Screening Set 1' (Canine MSS-1), which we propose be used for initial genome-wide genetic linkage studies. Three hierarchical criteria were used to select markers from the current meiotic linkage and radiation hybrid maps for MSS-1. Markers were selected that (1) provided as complete coverage as possible of the canine genome, (2) were highly informative, and (3) have been ordered in linkage groups with a high degree of statistical support. This resulting screening set spans all reported meiotic linkage and RH groups, leaving only 10 known gaps > or = 20 cM. The average polymorphic information content (PIC) value of markers tested is 0.74. Coverage estimates suggest 42% of the genome is within 5 cM of at least one marker in the minimal screening set, 77% of the genome is within 10 cM. This minimal mapping set therefore provides an efficient and cost effective way to begin screening pedigrees of interest for genetic linkage.
Collapse
Affiliation(s)
- M Richman
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
49
|
Das M, Sakul H, Kong J, Acland GM, Pelletier J. A set of canine interrepeat sequence PCR markers for high-throughput genotyping. Physiol Genomics 2000; 4:13-24. [PMID: 11074009 DOI: 10.1152/physiolgenomics.2000.4.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One hundred and sixteen interspersed repetitive DNA sequence (IRS)-PCR markers have been developed and characterized from Canis familiaris for high-throughput filter-based genotyping. We present a detailed analysis of markers produced by amplification using primers directed to the conserved regions of the C. familiaris short interspersed nuclear element (Can-SINE). The majority of IRS-PCR markers developed were moderately to highly polymorphic with mean heterozygosity (HET) and polymorphism information content (PIC) values of approximately 0.6. The HET value for 22.3% of the markers exceeded 0.7. We also demonstrate that sequence variation of Can-SINEs between breeds is significant and also represents a rich source of polymorphisms. Mapping of 73 of the markers to the existing integrated linkage-radiation hybrid map enriches the map as well as establishes the utility of the markers. The significance and utility of this new class of IRS-PCR Can-SINE-based markers for high-throughput genotyping is discussed. This method can also be extended to other species that are currently map-poor but have a sufficiently high density of SINEs to allow IRS-PCR.
Collapse
Affiliation(s)
- M Das
- Department of Biochemistry, Department of Oncology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
50
|
Sargan DR, Yang F, Squire M, Milne BS, O'Brien PC, Ferguson-Smith MA. Use of flow-sorted canine chromosomes in the assignment of canine linkage, radiation hybrid, and syntenic groups to chromosomes: refinement and verification of the comparative chromosome map for dog and human. Genomics 2000; 69:182-95. [PMID: 11031101 DOI: 10.1006/geno.2000.6334] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mapping of the canine genome has recently been accelerated by the availability of chromosome-specific reagents and publication of radiation hybrid (RH), genetic linkage, and dog/human comparative maps, but the assignment of mapping groups to chromosomes is incomplete. To assign published radiation hybrid, linkage, and "syntenic" groups to chromosomes, individual markers found within each group have been amplified from canine and vulpine flow-sorted, chromosome-specific DNAs as templates. Here a further 102 type I genetic markers (previously mapped in human) and 21 further type II markers are assigned to canine chromosomes using marker-specific PCR. We have assigned all linkage, RH, and syntenic groups in the two most recently published canine genome maps to chromosomes. This demonstrates directly that there is at least one published mapping group for each of the 38 canine autosomes and thus that the coverage of the canine chromosome map is approaching completion. The dog/human comparative map is one of the most complex so far described, with 90 separate segments of chromosomal homology previously seen in dog-on-human cross-species chromosome-painting studies. The total of 142 type I markers now placed on canine chromosomes using this method of marker mapping has allowed us to confirm the placement of the great majority (83) of the 90 homologous segments. The positions of the remaining homologous segments were confirmed in new cross-species chromosome-painting experiments (dog-on-human, fox-on-human).
Collapse
Affiliation(s)
- D R Sargan
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, England.
| | | | | | | | | | | |
Collapse
|