1
|
Bakht MK, Beltran H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat Rev Urol 2025; 22:26-45. [PMID: 38977769 PMCID: PMC11841200 DOI: 10.1038/s41585-024-00900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell-surface imaging biomarker and therapeutic target in prostate cancer. The PSMA-targeted theranostic 177Lu-PSMA-617 was approved in 2022 for men with PSMA-PET-positive metastatic castration-resistant prostate cancer. However, not all patients respond to PSMA-radioligand therapy, in part owing to the heterogeneity of PSMA expression in the tumour. The PSMA regulatory network is composed of a PSMA transcription complex, an upstream enhancer that loops to the FOLH1 (PSMA) gene promoter, intergenic enhancers and differentially methylated regions. Our understanding of the PSMA regulatory network and the mechanisms underlying PSMA suppression is evolving. Clinically, molecular imaging provides a unique window into PSMA dynamics that occur on therapy and with disease progression, although challenges arise owing to the limited resolution of PET. PSMA regulation and heterogeneity - including intertumoural and inter-patient heterogeneity, temporal changes, lineage dynamics and the tumour microenvironment - affect PSMA theranostics. PSMA response and resistance to radioligand therapy are mediated by a number of potential mechanisms, and complementary biomarkers beyond PSMA are under development. Understanding the biological determinants of cell surface target regulation and heterogeneity can inform precision medicine approaches to PSMA theranostics as well as other emerging therapies.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ni X, Wei Y, Li X, Pan J, Fang B, Zhang T, Lu Y, Ye D, Zhu Y. From biology to the clinic - exploring liver metastasis in prostate cancer. Nat Rev Urol 2024; 21:593-614. [PMID: 38671281 DOI: 10.1038/s41585-024-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Liver metastases from prostate cancer are associated with an aggressive disease course and poor prognosis. Results from autopsy studies indicate a liver metastasis prevalence of up to 25% in patients with advanced prostate cancer. Population data estimate that ~3-10% of patients with metastatic castration-resistant prostate cancer harbour liver metastases at the baseline, rising to 20-30% in post-treatment cohorts, suggesting that selective pressure imposed by novel therapies might promote metastatic spread to the liver. Liver metastases are associated with more aggressive tumour biology than lung metastases. Molecular profiling of liver lesions showed an enrichment of low androgen receptor, neuroendocrine phenotypes and high genomic instability. Despite advancements in molecular imaging modalities such as prostate-specific membrane antigen PET-CT, and liquid biopsy markers such as circulating tumour DNA, early detection of liver metastases from prostate cancer remains challenging, as both approaches are hampered by false positive and false negative results, impeding the accurate identification of early liver lesions. Current therapeutic strategies showed limited efficacy in this patient population. Emerging targeted radionuclide therapies, metastasis-directed therapy, and novel systemic agents have shown preliminary activity against liver metastases, but require further validation. Treatment with various novel prostate cancer therapies might lead to an increase in the prevalence of liver metastasis, underscoring the urgent need for coordinated efforts across preclinical and clinical researchers to improve characterization, monitoring, and management of liver metastases from prostate cancer. Elucidating molecular drivers of liver tropism and interactions with the liver microenvironment might ultimately help to identify actionable targets to enhance survival in this high-risk patient group.
Collapse
Affiliation(s)
- Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
| |
Collapse
|
3
|
Maes J, Gesquière S, De Spiegeleer A, Maes A, Van de Wiele C. Prostate-Specific Membrane Antigen Biology and Pathophysiology in Prostate Carcinoma, an Update: Potential Implications for Targeted Imaging and Therapy. Int J Mol Sci 2024; 25:9755. [PMID: 39273701 PMCID: PMC11396261 DOI: 10.3390/ijms25179755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein, was shown to be expressed 100-1000 fold higher in prostate adenocarcinoma as compared to normal prostate epithelium. Given the enzymatic function of PSMA with the presence of an internalization triggering motif, various Glu-urea-Lys-based inhibitors have been developed and, amongst others, radiolabeled with positron emitters for targeted positron emission tomography imaging such as 68Ga-PSMA-HBED-CC Glu-urea-Lys(Ahx) as well as with beta and alpha-emitting radioisotopes for targeted therapy, e.g., 177Lu-PSMA-617. In this paper, we review and discuss the potential implications for targeted imaging and therapy of altered PSMA-glycosylation, of PSMA-driven activation of the P13K/Akt/mTOR, of the evolution over time and the relationship with androgen signaling and changes in DNA methylation of PSMA, and of androgen deprivation therapy (ADT) in prostate carcinoma.
Collapse
Affiliation(s)
| | - Simon Gesquière
- Department of Diagnostic Sciences, University Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | | | - Alex Maes
- AZ Groeninge, 8500 Kortrijk, Belgium
- Department of Morphology and Functional Imaging, University Leuven, 3000 Leuven, Belgium
| | - Christophe Van de Wiele
- AZ Groeninge, 8500 Kortrijk, Belgium
- Department of Diagnostic Sciences, University Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Shirke AA, Wang J, Ramamurthy G, Mahanty A, Walker E, Zhang L, Panigrahi A, Wang X, Basilion JP. Prostate Specific Membrane Antigen Expression in a Syngeneic Breast Cancer Mouse Model. Mol Imaging Biol 2024; 26:714-728. [PMID: 38760621 PMCID: PMC11281974 DOI: 10.1007/s11307-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
PURPOSE Prostate specific membrane antigen (PSMA) has been studied in human breast cancer (BCa) biopsies, however, lack of data on PSMA expression in mouse models impedes development of PSMA-targeted therapies, particularly in improving breast conserving surgery (BCS) margins. This study aimed to validate and characterize the expression of PSMA in murine BCa models, demonstrating that PSMA can be utilized to improve therapies and imaging techniques. METHODS Murine triple negative breast cancer 4T1 cells, and human cell lines, MDA-MB-231, MDA-MB-468, implanted into the mammary fat pads of BALB/c mice, were imaged by our PSMA targeted theranostic agent, PSMA-1-Pc413, and tumor to background ratios (TBR) were calculated to validate selective uptake. Immunohistochemistry was used to correlate PSMA expression in relation to CD31, an endothelial cell biomarker highlighting neovasculature. PSMA expression was also quantified by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). RESULTS Accumulation of PSMA-1-Pc413 was observed in 4T1 primary tumors and associated metastases. Average TBR of 4T1 tumors were calculated to be greater than 1.5-ratio at which tumor tissues can be distinguished from normal structures-at peak accumulation with the signal intensity in 4T1 tumors comparable to that in high PSMA expressing PC3-pip tumors. Extraction of 4T1 tumors and lung metastases followed by RT-PCR analysis and PSMA-CD31 co-staining shows that PSMA is consistently localized on tumor neovasculature with no expression in tumor cells and surrounding normal tissues. CONCLUSION The selective uptake of PSMA-1-Pc413 in these cancer tissues as well as the characterization and validation of PSMA expression on neovasculature in this syngeneic 4T1 model emphasizes their potential for advancements in targeted therapies and imaging techniques for BCa. PSMA holds great promise as an oncogenic target for BCa and its associated metastases.
Collapse
Affiliation(s)
- Aditi A Shirke
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
| | - Jing Wang
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Gopolakrishnan Ramamurthy
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Arpan Mahanty
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Abhiram Panigrahi
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
| | - James P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Wearn Building B-49, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Denmeade SR. Resolute Progress Down a Long and Winding Road Leads to the Promised Land of Prostate-Specific Membrane Antigen-Based Therapies for Prostate Cancer. J Clin Oncol 2024; 42:852-856. [PMID: 38181307 DOI: 10.1200/jco.23.02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 01/07/2024] Open
|
6
|
Corpetti M, Müller C, Beltran H, de Bono J, Theurillat JP. Prostate-Specific Membrane Antigen-Targeted Therapies for Prostate Cancer: Towards Improving Therapeutic Outcomes. Eur Urol 2024; 85:193-204. [PMID: 38104015 DOI: 10.1016/j.eururo.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein overexpressed in most prostate cancers and exploited as a target for PSMA-targeted therapies. Different approaches to target PSMA-expressing cancer cells have been developed, showing promising results in clinical trials. OBJECTIVE To discuss the regulation of PSMA expression and the main PSMA-targeted therapeutic concepts illustrating their clinical development and rationalizing combination approaches with examples. EVIDENCE ACQUISITION We performed a detailed literature search using PubMed and reviewed the American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to September 2023. EVIDENCE SYNTHESIS We present an overarching description of the different strategies to target PSMA. The outcomes of PSMA-targeted therapies strongly rely on surface-bound PSMA expression. However, PSMA heterogeneity at different levels (interpatient and inter/intratumoral) limits the efficacy of PSMA-targeted therapies. We highlight the molecular mechanisms governing PSMA regulation, the understanding of which is crucial to designing therapeutic strategies aimed at upregulating PSMA expression. Thus far, homeobox B13 (HOXB13) and androgen receptor (AR) have emerged as critical transcription factors positively and negatively regulating PSMA expression, respectively. Furthermore, epigenetic regulation of PSMA has been also reported recently. In addition, many established therapeutic approaches harbor the potential to upregulate PSMA levels as well as potentiate DNA damage mediated by current radioligands. CONCLUSIONS PSMA-targeted therapies are rapidly advancing, but their efficacy is strongly limited by the heterogeneous expression of the target. A thorough comprehension of how PSMA is regulated will help improve the outcomes through increasing PSMA expression and will provide the basis for synergistic combination therapies. PATIENT SUMMARY Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancers. PSMA-targeted therapies have shown promising results, but the heterogeneous expression of PSMA limits their efficacy. We propose to better elucidate the regulation of PSMA expression to increase the levels of the target and improve the therapeutic outcomes.
Collapse
Affiliation(s)
- Matteo Corpetti
- Institute of Oncology Research, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Cristina Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Johann de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.
| |
Collapse
|
7
|
Hasani S, Fathabadi F, Saeidi S, Mohajernoei P, Hesari Z. The role of NFATc1 in the progression and metastasis of prostate cancer: A review on the molecular mechanisms and signaling pathways. Cell Biol Int 2023; 47:1895-1904. [PMID: 37814550 DOI: 10.1002/cbin.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A common type of cancer among men is the prostate cancer that kills many people every year. The multistage of this disease and the involvement of the vital organs of the body have reduced the life span and quality of life of the people involved and turned the treatment process into a complex one. NFATc1 biomarker contributes significantly in the diagnosis and treatment of this disease by increasing its expression in prostate cancer and helping the proliferation, differentiation, and invasion of cancer cells through different signaling pathways. NFATc1 is also able to target the metabolism of cancer cells by inserting specific oncogene molecules such as c-myc that it causes cell growth and proliferation. Bone is a common tissue where prostate cancer cells metastasize. In this regard, the activity of NFATc1, through the regulation of different signaling cascades, including the RANKL/RANK signaling pathway, in turn, increases the activity of osteoclasts, and as a result, bone tissue is gradually ruined. Using Silibinin as a medicinal plant extract can inhibit the activity of osteoclasts related to prostate cancer by targeting NFATc. Undoubtedly, NFATc1 is one of the effective oncogenes related to prostate cancer, which has the potential to put this cancer on the path of progression and metastasis. In this review, we will highlight the role of NFATc1 in the progression and metastasis of prostate cancer. Furthermore, we will summarize signaling pathways and molecular mechanism, through which NFATc1 regulates the process of prostate cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Nursing, Faculty of Medical Sciences, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Farshid Fathabadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saman Saeidi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pouya Mohajernoei
- Department of Medicine and Surgery, Università degli Studi di Padova, Padua, Italy
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
8
|
Arbuznikova D, Eder M, Grosu AL, Meyer PT, Gratzke C, Zamboglou C, Eder AC. Towards Improving the Efficacy of PSMA-Targeting Radionuclide Therapy for Late-Stage Prostate Cancer-Combination Strategies. Curr Oncol Rep 2023; 25:1363-1374. [PMID: 37861915 PMCID: PMC10640479 DOI: 10.1007/s11912-023-01458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW [177Lu]Lu-PSMA-617 is a radiopharmaceutical that emits beta-minus radiation and targets prostate-specific membrane antigen (PSMA)-positive prostate cancer. Despite its clinical success, there are still patients not showing sufficient response rates. This review compiles latest studies aiming at therapy improvement in [177Lu]Lu-PSMA-617-naïve and -resistant patients by alternative or combination treatments. RECENT FINDINGS A variety of agents to combine with [177Lu]Lu-PSMA-617 are currently under investigation including alpha radiation-emitting pharmaceuticals, radiosensitizers, taxane chemotherapeutics, androgen receptor pathway inhibitors, immune checkpoint inhibitors, and external beam radiation. Actinium-225 (225Ac)-labeled PSMA-targeting inhibitors are the most studied pharmaceuticals for combination therapy or as an alternative for treatment after progression under [177Lu]Lu-PSMA-617 therapy. Alpha emitters seem to have a potential of achieving a response to PSMA-targeting radionuclide therapy in both initial non-responders or responders to [177Lu]Lu-PSMA-617 later developing treatment resistance. Emerging evidence for immunostimulatory effects of radiopharmaceuticals and first prospective studies support the combination of [177Lu]Lu-PSMA-617 and immune checkpoint inhibition for late-stage prostate cancer.
Collapse
Affiliation(s)
- Daria Arbuznikova
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany.
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
9
|
Kluge K, Haberl D, Einspieler H, Rasul S, Gutschmayer S, Kenner L, Kramer G, Grubmüller B, Shariat S, Haug A, Hacker M. Antihormonal-Treatment Status Affects 68Ga-PSMA-HBED-CC PET Biodistribution in Patients with Prostate Cancer. J Nucl Med 2023; 64:1730-1736. [PMID: 37734840 DOI: 10.2967/jnumed.123.265980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Indexed: 09/23/2023] Open
Abstract
Androgen deprivation therapy (ADT) is known to influence the prostate-specific membrane antigen (PSMA) expression of prostate cancer, potentially complicating the interpretation of PSMA ligand PET findings and affecting PSMA radioligand therapy. However, the impact of ADT on PSMA ligand biodistribution in nontumorous organs is not well understood. Methods: Men (n = 112) with histologically proven prostate cancer who underwent 68Ga-PSMA-HBED-CC (68Ga-PSMA-11) PET/CT between November 2015 and July 2021 at the Medical University Vienna with known ADT status were retrospectively recruited. Fifty-six patients were on gonadotropin-releasing hormone-interfering ADT at the time of imaging (ADT group), whereas 56 patients with no history of ADT served as a control group. Physiologically PSMA-expressing organs (salivary glands, kidneys, liver, and spleen) were delineated, and their uptake was compared according to their data distributions. Multivariate regression analysis assessed the relationship between renal, hepatic, splenic, and salivary gland uptake and the explanatory variables metabolic tumor volume, glomerular filtration rate, and ADT status. Results: ADT was associated with lower levels of PSMA uptake in the kidneys (SUVmean: Δ[ADT - control] = -7.89; 95% CI, -10.73 to -5.04; P < 0.001), liver (SUVpeak: Δ[ADT - control] = -2.3; 95% CI, -5.72 to -0.93; P = 0.003), spleen (SUVpeak: Δ[ADT - control] = -1.27; 95% CI, -3.61 to -0.16; P = 0.033), and salivary glands (SUVmean: Δ[ADT - control] = -1.04; 95% CI, -2.48 to -0.13; P = 0.027). In a multivariate analysis, ADT was found to be associated with lower renal (SUVmean: β = -7.95; 95% CI, -11.06 to -4.84; P < 0.0001), hepatic (SUVpeak: β = -7.85; 95% CI, -11.78 to -3.91; P < 0.0001), splenic (SUVpeak: β = -5.83; 95% CI, -9.95 to -1.7; P = 0.006), and salivary gland (SUVmean: β = -1.47; 95% CI, -2.76 to -0.17; P = 0.027) uptake. A higher glomerular filtration rate was associated with a higher renal SUVmean (β = 0.16; 95% CI, 0.05 to 0.26; P = 0.0034). Conclusion: These findings suggest that ADT systemically modulates PSMA expression, which may have implications for treatment-optimizing and side-effect-minimizing strategies for PSMA radioligand therapies, particularly those using more potent 225Ac-labeled PSMA conjugates.
Collapse
Affiliation(s)
- Kilian Kluge
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - David Haberl
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Holger Einspieler
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Grubmüller
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology and Andrology, University Hospital Krems, Krems, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Shahrokh Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Urology, Department of Special Surgery, University of Jordan, Amman, Jordan
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; and
- Department of Urology, Weill Cornell Medical College, New York, New York
| | - Alexander Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria;
| |
Collapse
|
10
|
Bakht MK, Yamada Y, Ku SY, Venkadakrishnan VB, Korsen JA, Kalidindi TM, Mizuno K, Ahn SH, Seo JH, Garcia MM, Khani F, Elemento O, Long HW, Chaglassian A, Pillarsetty N, Lewis JS, Freedman M, Belanger AP, Nguyen QD, Beltran H. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer. NATURE CANCER 2023; 4:699-715. [PMID: 37038004 PMCID: PMC10867901 DOI: 10.1038/s43018-023-00539-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Teja M Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shin Hye Ahn
- Harvard Medical School, Boston, MA, USA
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, USA
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-De Nguyen
- Harvard Medical School, Boston, MA, USA
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
Runge R, Naumann A, Miederer M, Kotzerke J, Brogsitter C. Up-Regulation of PSMA Expression In Vitro as Potential Application in Prostate Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:ph16040538. [PMID: 37111295 PMCID: PMC10144194 DOI: 10.3390/ph16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Possibilities to improve the therapeutic efficacy of Lu-177-PSMA-617 radionuclide therapy by modulation of target expression are being investigated. Knowledge on regulatory factors that promote prostate cancer (PCa) progression may contribute to targeting prostate cancer more effectively. We aimed at the stimulation of PCa cell lines using the substances 5-aza-2'-deoxycitidine (5-aza-dC) and valproic acid (VPA) to achieve increased prostate-specific membrane antigen (PSMA) expression. PC3, PC3-PSMA, and LNCaP cells were incubated with varying concentrations of 5-aza-dC and VPA to investigate the cell-bound activity of Lu-177-PSMA-617. Stimulation effects on both the genetically modified cell line PC3-PSMA and the endogenously PSMA-expressing LNCaP cells were demonstrated by increased cellular uptake of the radioligand. For PC3-PSMA cells, the fraction of cell-bound radioactivity was enhanced by about 20-fold compared to that of the unstimulated cells. Our study reveals an increased radioligand uptake mediated by stimulation for both PC3-PSMA and LNCaP cell lines. In perspective of an enhanced PSMA expression, the present study might contribute to advanced radionuclide therapy approaches that improve the therapeutic efficacy, as well as combined treatment options.
Collapse
Affiliation(s)
- Roswitha Runge
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Anne Naumann
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Joerg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
13
|
Civan C, Kasper S, Berliner C, Fragoso-Costa P, Grünwald V, Pogorzelski M, Schaarschmidt BM, Lang S, Kersting D, Nader M, Lückerath K, Herrmann K, Fendler WP, Weber M. PSMA-Directed Imaging and Therapy of Salivary Gland Tumors: A Single-Center Retrospective Study. J Nucl Med 2023; 64:372-378. [PMID: 36137757 PMCID: PMC10071793 DOI: 10.2967/jnumed.122.264342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
We analyzed the diagnostic performance of prostate-specific membrane antigen (PSMA) PET/CT and the dosimetry, efficacy, and safety of 177Lu-PSMA-617 radioligand therapy (RLT) in salivary gland malignancies (SGMs). Methods: We identified 28 SGM patients with PSMA PET/CT from our database. CT and PSMA PET/CT images were evaluated separately by 3 masked readers in joint reading sessions. Pathologic findings were grouped into 6 TNM regions, and lesion-based disease extent was classified as no disease (n = 1, 4%), unifocal (n = 2, 7%), oligometastatic (n = 9, 32%), multifocal (n = 3, 11%), or disseminated (n = 13, 47%). For each region, the SUVmax of the lesion with the highest uptake was measured and the visual PSMA expression score was evaluated on a per-patient basis using PROMISE criteria. The association between PSMA expression and clinical and histopathologic markers was tested using the Student t test. Five patients underwent PSMA RLT with intratherapeutic dosimetry. Response was assessed using RECIST 1.1, and adverse events were graded according to version 5.0 of the Common Terminology Criteria for Adverse Events. Results: Compared with CT, PSMA PET/CT demonstrated additional metastatic lesions in 11 of 28 (39%) patients, leading to upstaging of TNM and lesion-based disease extent in 3 (11%) and 6 (21%) patients, respectively. PSMA PET/CT detected CT-occult local tumor, regional lymph nodes, nonregional lymph nodes, and bone metastases in 1 (4%), 4 (14%), 2 (7%), and 4 (14%) patients, respectively; no additional lesions were detected in the other predefined regions. PSMA expression level was higher than liver in 6 patients (25%). A significantly higher SUVmax was observed in male than female patients (15.8 vs. 8.5, P = 0.007) and in bone than lung lesions (14.2 vs. 6.4, P = 0.006). PSMA RLT was discontinued after 1 cycle in 3 of 5 patients because of insufficient tumor doses. No adverse events of grade 4 or higher occurred. Conclusion: In SGMs, PSMA PET/CT demonstrated a superior detection rate and led to upstaging in about one third of patients when compared with CT. The male sex and the presence of bone metastases were associated with significantly higher PSMA expression. PSMA RLT was well tolerated, but most patients did not have more than 1 cycle because of insufficient tumor doses.
Collapse
Affiliation(s)
- Caner Civan
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen, Essen, Germany
| | - Stefan Kasper
- German Cancer Consortium, partner site Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Christoph Berliner
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen, Essen, Germany
| | - Pedro Fragoso-Costa
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen, Essen, Germany
| | - Viktor Grünwald
- German Cancer Consortium, partner site Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Michael Pogorzelski
- German Cancer Consortium, partner site Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Benedikt Michael Schaarschmidt
- German Cancer Consortium, partner site Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany; and
| | - Stephan Lang
- German Cancer Consortium, partner site Essen, Essen, Germany
- Head and Neck Surgery, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Katharina Lückerath
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany;
- German Cancer Consortium, partner site Essen, Essen, Germany
| |
Collapse
|
14
|
Tu W, Zheng H, Li L, Zhou C, Feng M, Chen L, Li D, Chen X, Hao B, Sun H, Cao Y, Gao Y. Secreted phosphoprotein 1 promotes angiogenesis of glioblastoma through upregulating PSMA expression via transcription factor HIF-1α. Acta Biochim Biophys Sin (Shanghai) 2022; 55:417-425. [PMID: 36305723 PMCID: PMC10160226 DOI: 10.3724/abbs.2022157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly vascularized malignant brain tumor. Our previous study showed that prostate-specific membrane antigen (PSMA) promotes angiogenesis of GBM. However, the specific mechanism underlying GBM-induced PSMA upregulation remains unclear. In this study, we demonstrate that the GBM-secreted cytokine phosphoprotein 1 (SPP1) can regulate the expression of PSMA in human umbilical vein endothelial cells (HUVECs). Our mechanistic study further reveals that SPP1 regulates the expression of PSMA through the transcription factor HIF1α. Moreover, SPP1 promotes HUVEC migration and tube formation. In addition, HIF1α knockdown reduces the expression of PSMA in HUVECs and blocks the ability of SPP1 to promote HUVEC migration and tube formation. We further confirm that SPP1 is abundantly expressed in GBM, is associated with poor prognosis, and has high clinical diagnostic value with considerable sensitivity and specificity. Collectively, our findings identify that the GBM-secreted cytokine SPP1 upregulates PSMA expression in endothelial cells via the transcription factor HIF1α, providing insight into the angiogenic process and promising candidates for targeted GBM therapy.
Collapse
|
15
|
Sheehan B, Guo C, Neeb A, Paschalis A, Sandhu S, de Bono JS. Prostate-specific Membrane Antigen Biology in Lethal Prostate Cancer and its Therapeutic Implications. Eur Urol Focus 2022; 8:1157-1168. [PMID: 34167925 DOI: 10.1016/j.euf.2021.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a promising, novel theranostic target in advanced prostate cancer (PCa). Multiple PSMA-targeted therapies are currently in clinical development, with some agents showing impressive antitumour activity, although optimal patient selection and therapeutic resistance remain ongoing challenges. OBJECTIVE To review the biology of PSMA and recent advances in PSMA-targeted therapies in PCa, and to discuss potential strategies for patient selection and further therapeutic development. EVIDENCE ACQUISITION A comprehensive literature search was performed using PubMed and review of American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to April 2021. EVIDENCE SYNTHESIS PSMA is a largely extracellular protein that is frequently, but heterogeneously, expressed by PCa cells. PSMA expression is associated with disease progression, worse clinical outcomes and the presence of tumour defects in DNA damage repair (DDR). PSMA is also expressed by other cancer cell types and is implicated in glutamate and folate metabolism. It may confer a tumour survival advantage in conditions of cellular stress. PSMA regulation is complex, and recent studies have shed light on interactions with androgen receptor, PI3K/Akt, and DDR signalling. A phase 2 clinical trial has shown that 177Lu-PSMA-617 causes tumour shrinkage and delays disease progression in a significant subset of patients with metastatic castration-resistant PCa in comparison to second-line chemotherapy. Numerous novel PSMA-targeting immunotherapies, small molecules, and antibody therapies are currently in clinical development, including in earlier stages of PCa, with emerging evidence of antitumour activity. To date, the regulation and function of PSMA in PCa cells remain poorly understood. CONCLUSIONS There has been rapid recent progress in PSMA-targeted therapies for the management of advanced PCa. Dissection of PSMA biology will help to identify biomarkers for and resistance mechanisms to these therapies and facilitate further therapeutic development to improve PCa patient outcomes. PATIENT SUMMARY There have been major advances in the development of therapies targeting a molecule, PSMA, in PCa. Radioactive molecules targeting PSMA can cause tumour shrinkage and delay progression in some patients with lethal disease. Future studies are needed to determine which patients are most likely to respond, and how other treatments can be combined with therapies targeting PSMA so that more patients may benefit.
Collapse
Affiliation(s)
| | - Christina Guo
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - Alec Paschalis
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
16
|
Sheehan B, Neeb A, Buroni L, Paschalis A, Riisnaes R, Gurel B, Gil V, Miranda S, Crespo M, Guo C, Jiménez Vacas J, Figueiredo I, Ferreira A, Welti J, Yuan W, Carreira S, Sharp A, de Bono J. Prostate-Specific Membrane Antigen Expression and Response to DNA Damaging Agents in Prostate Cancer. Clin Cancer Res 2022; 28:3104-3115. [PMID: 35552383 PMCID: PMC9365343 DOI: 10.1158/1078-0432.ccr-21-4531] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) targeting therapies such as Lutetium-177 (177Lu)-PSMA-617 are affecting outcomes from metastatic castration-resistant prostate cancer (mCRPC). However, a significant subset of patients have prostate cancer cells lacking PSMA expression, raising concerns about treatment resistance attributable at least in part to heterogeneous PSMA expression. We have previously demonstrated an association between high PSMA expression and DNA damage repair defects in mCRPC biopsies and therefore hypothesized that DNA damage upregulates PSMA expression. EXPERIMENTAL DESIGN To test this relationship between PSMA and DNA damage we conducted a screen of 147 anticancer agents (NCI/NIH FDA-approved anticancer "Oncology Set") and treated tumor cells with repeated ionizing irradiation. RESULTS The topoisomerase-2 inhibitors, daunorubicin and mitoxantrone, were identified from the screen to upregulate PSMA protein expression in castration-resistant LNCaP95 cells; this result was validated in vitro in LNCaP, LNCaP95, and 22Rv1 cell lines and in vivo using an mCRPC patient-derived xenograft model CP286 identified to have heterogeneous PSMA expression. As double-strand DNA break induction by topoisomerase-2 inhibitors upregulated PSMA, we next studied the impact of ionizing radiation on PSMA expression; this also upregulated PSMA protein expression in a dose-dependent fashion. CONCLUSIONS The results presented herein are the first, to our knowledge, to demonstrate that PSMA is upregulated in response to double-strand DNA damage by anticancer treatment. These data support the study of rational combinations that maximize the antitumor activity of PSMA-targeted therapeutic strategies by upregulating PSMA.
Collapse
Affiliation(s)
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | | | - Alec Paschalis
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | | | | | - Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | | | | | - Jon Welti
- The Institute of Cancer Research, London, UK
| | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | | | - Adam Sharp
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Johann de Bono
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| |
Collapse
|
17
|
Sun D, Zhang A, Gao B, Zou L, Huang H, Zhao X, Xu D. Identification of Alternative Splicing-Related Genes CYB561 and FOLH1 in the Tumor-Immune Microenvironment for Endometrial Cancer Based on TCGA Data Analysis. Front Genet 2022; 13:770569. [PMID: 35836577 PMCID: PMC9274141 DOI: 10.3389/fgene.2022.770569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Advanced and recurrent endometrial cancer EC remains controversial. Immunotherapy will play a landmark role in cancer treatment, and alternative splicing (AS) of messenger RNA (mRNA) may offer the potential of a broadened target space.Methods: We downloaded the clinical information and mRNA expression profiles from The Cancer Genome Atlas (TCGA) database. Hub genes were extracted from 11 AS-related genes to analyze the correlation between clinical parameters and the tumor-immune microenvironment. We also analyzed the correlations between the copy numbers, gene expressions of hub genes, and immune cells. The correlation between the risk score and the six most important checkpoint genes was also investigated. The ESTIMATE algorithm was finally performed on each EC sample based on the high- and low-risk groups.Results: The risk score was a reliable and stable independent risk predictor in the Uterine Corpus Endometrial Carcinoma (UCEC) cohort. CYB561|42921|AP and FOLH1|15817|ES were extracted. The expression of CYB561 and FOLH1 decreased gradually with the increased grade and International Federation of Gynecology and Obstetrics (FIGO) stage (p < 0.05). Gene copy number changes in CYB561 and FOLH1 led to the deletion number of myeloid DC cells and T cell CD8+. Low expression of both CYB561 and FOLH1 was associated with poor prognosis (p < 0.001). The checkpoint genes, CTLA-4 and PDCD1, exhibited a negative correlation with the risk score of AS in UCEC.Conclusion: AS-related gene signatures were related to the immune-tumor microenvironment and prognosis. These outcomes were significant for studying EC’s immune-related mechanisms and exploring novel prognostic predictors and precise therapy methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dabao Xu
- *Correspondence: Xingping Zhao, ; Dabao Xu,
| |
Collapse
|
18
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
19
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
20
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
21
|
Sommer U, Siciliano T, Ebersbach C, Beier AMK, Stope MB, Jöhrens K, Baretton GB, Borkowetz A, Thomas C, Erb HHH. Impact of Androgen Receptor Activity on Prostate-Specific Membrane Antigen Expression in Prostate Cancer Cells. Int J Mol Sci 2022; 23:1046. [PMID: 35162969 PMCID: PMC8835452 DOI: 10.3390/ijms23031046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an essential molecular regulator of prostate cancer (PCa) progression coded by the FOLH1 gene. The PSMA protein has become an important factor in metastatic PCa diagnosis and radioligand therapy. However, low PSMA expression is suggested to be a resistance mechanism to PSMA-based imaging and therapy. Clinical studies revealed that androgen receptor (AR) inhibition increases PSMA expression. The mechanism has not yet been elucidated. Therefore, this study investigated the effect of activation and inhibition of androgen signaling on PSMA expression levels in vitro and compared these findings with PSMA levels in PCa patients receiving systemic therapy. To this end, LAPC4, LNCaP, and C4-2 PCa cells were treated with various concentrations of the synthetic androgen R1881 and antiandrogens. Changes in FOLH1 mRNA were determined using qPCR. Open access databases were used for ChIP-Seq and tissue expression analysis. Changes in PSMA protein were determined using western blot. For PSMA staining in patients' specimens, immunohistochemistry (IHC) was performed. Results revealed that treatment with the synthetic androgen R1881 led to decreased FOLH1 mRNA and PSMA protein. This effect was partially reversed by antiandrogen treatment. However, AR ChIP-Seq analysis revealed no canonical AR binding sites in the regulatory elements of the FOLH1 gene. IHC analysis indicated that androgen deprivation only resulted in increased PSMA expression in patients with low PSMA levels. The data demonstrate that AR activation and inhibition affects PSMA protein levels via a possible non-canonical mechanism. Moreover, analysis of PCa tissue reveals that low PSMA expression rates may be mandatory to increase PSMA by androgen deprivation.
Collapse
Affiliation(s)
- Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Tiziana Siciliano
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center, 69120 Heidelberg, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden, 01069 Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| |
Collapse
|
22
|
Fu X, Zhang Z, Liu M, Li J, A J, Fu L, Huang C, Dong JT. AR imposes different effects on ZFHX3 transcription depending on androgen status in prostate cancer cells. J Cell Mol Med 2021; 26:800-812. [PMID: 34953044 PMCID: PMC8817138 DOI: 10.1111/jcmm.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Both androgen receptor (AR) and the ZFHX3 transcription factor modulate prostate development. While AR drives prostatic carcinogenesis, ZFHX3 is a tumour suppressor whose loss activates the PI3K/AKT signalling in advanced prostate cancer (PCa). However, it is unknown whether ZFHX3 and AR are functionally related in PCa cells and, if so, how. Here, we report that in AR-positive LNCaP and C4-2B PCa cells, androgen upregulates ZFHX3 transcription via androgen-induced AR binding to the androgen-responsive elements (AREs) of the ZFHX3 promoter. Androgen also upregulated ZFHX3 transcription in vivo, as castration dramatically reduced Zfhx3 mRNA and protein levels in mouse prostates, and ZFHX3 mRNA levels correlated with AR activities in human PCa. Interestingly, the binding of AR to one ARE occurred in the absence of androgen, and the binding repressed ZFHX3 transcription as this repressive binding was interrupted by androgen treatment. The enzalutamide antiandrogen prevented androgen from inducing ZFHX3 transcription and caused excess ZFHX3 protein degradation. In human PCa, ZFHX3 was downregulated and the downregulation correlated with worse patient survival. These findings establish a regulatory relationship between AR and ZFHX3, suggest a role of ZFHX3 in AR function and implicate ZFHX3 loss in the antiandrogen therapies of PCa.
Collapse
Affiliation(s)
- Xing Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.,Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqian Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Juan Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun A
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Liya Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
23
|
Evolving Castration Resistance and Prostate Specific Membrane Antigen Expression: Implications for Patient Management. Cancers (Basel) 2021; 13:cancers13143556. [PMID: 34298770 PMCID: PMC8307676 DOI: 10.3390/cancers13143556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease, despite multiple novel treatment options. The role of prostate-specific membrane antigen (PSMA) in the process of mCRPC development has long been underestimated. During the last years, a new understanding of the underlying molecular mechanisms of rising PSMA expression and its association with disease progression has emerged. Accurate understanding of these complex interactions is indispensable for a precise diagnostic process and ultimately successful treatment of advanced prostate cancer. The combination of different novel therapeutics such as androgen deprivation agents, 177LU-PSMA radioligand therapy and PARP inhibitors promises a new kind of efficacy. In this review, we summarize the current knowledge about the most relevant molecular mechanisms around PSMA in mCRPC development and how they can be implemented in mCRPC management.
Collapse
|
24
|
Hyväkkä A, Virtanen V, Kemppainen J, Grönroos TJ, Minn H, Sundvall M. More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Cancers (Basel) 2021; 13:cancers13092244. [PMID: 34067046 PMCID: PMC8125679 DOI: 10.3390/cancers13092244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is overexpressed in prostate cancer and correlates with the aggressiveness of the disease. PSMA is a promising target for imaging and therapeutics in prostate cancer patients validated in prospective trials. However, the role of PSMA in prostate cancer progression is poorly understood. In this review, we discuss the biology and scientific rationale behind the use of PSMA and other targets in the detection and theranostics of metastatic prostate cancer. Abstract Prostate cancer is the second most common cancer type in men globally. Although the prognosis for localized prostate cancer is good, no curative treatments are available for metastatic disease. Better diagnostic methods could help target therapies and improve the outcome. Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein that is overexpressed on malignant prostate tumor cells and correlates with the aggressiveness of the disease. PSMA is a clinically validated target for positron emission tomography (PET) imaging-based diagnostics in prostate cancer, and during recent years several therapeutics have been developed based on PSMA expression and activity. The expression of PSMA in prostate cancer can be very heterogeneous and some metastases are negative for PSMA. Determinants that dictate clinical responses to PSMA-targeting therapeutics are not well known. Moreover, it is not clear how to manipulate PSMA expression for therapeutic purposes and develop rational treatment combinations. A deeper understanding of the biology behind the use of PSMA would help the development of theranostics with radiolabeled compounds and other PSMA-based therapeutic approaches. Along with PSMA several other targets have also been evaluated or are currently under investigation in preclinical or clinical settings in prostate cancer. Here we critically elaborate the biology and scientific rationale behind the use of PSMA and other targets in the detection and therapeutic targeting of metastatic prostate cancer.
Collapse
Affiliation(s)
- Anniina Hyväkkä
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
| | - Verneri Virtanen
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, FI-20520 Turku, Finland
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Docrates Cancer Center, FI-00180 Helsinki, Finland
| | - Tove J. Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, FI-20520 Turku, Finland;
| | - Heikki Minn
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
| | - Maria Sundvall
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
- Correspondence:
| |
Collapse
|
25
|
Faviana P, Boldrini L, Erba PA, Di Stefano I, Manassero F, Bartoletti R, Galli L, Gentile C, Bardi M. Gastrin-Releasing Peptide Receptor in Low Grade Prostate Cancer: Can It Be a Better Predictor Than Prostate-Specific Membrane Antigen? Front Oncol 2021; 11:650249. [PMID: 33854977 PMCID: PMC8039448 DOI: 10.3389/fonc.2021.650249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to evaluate whether prostate cancer (PC) patients can be accurately classified on the bases of tissue expression of gastrin-releasing peptide receptor (GRPR) and prostate-specific membrane antigen (PSMA). This retrospective study included 28 patients with PC. Formalin-fixed paraffin-embedded samples were used for diagnosis. Immunohistochemistry staining techniques were used to evaluate PSMA and GRPR expression (both number of cells expressed and % of area stained). To assess the independent associations among selected variables, a multi-dimensional scaling (MDS) analysis was used. It was found that the PSMA expression was inversely correlated with GRPR expression. Only the number of cells expressing GRPR was significantly related to the Gleason score. Both the percentage of area expressing GRPR and the number of cells expressing PSMA were close to reaching significance at the 0.05 level. MDS provided a map of the overall, independent association confirming that GRPR and PSMA represent inversely correlated measures of the same dimension. In conclusion, our data showed that GRPR expression should be evaluated in prostate biopsy specimens to improve our ability to detect PC with low grades at the earliest phases of development. Considering that GRPRs appear to be directly involved in the mechanisms of tumor proliferation, advancements in nuclear medicine radiotherapy can focus on this receptor to improve the therapeutic approach to PC. Further studies in our laboratory will investigate the molecular mechanisms of activation based on GRPR.
Collapse
Affiliation(s)
- Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paola Anna Erba
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Iosè Di Stefano
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Manassero
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Riccardo Bartoletti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Galli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carlo Gentile
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Massimo Bardi
- Department of Psychology and Behavioral Neuroscience, Randolph-Macon College, Ashland, VA, United States
| |
Collapse
|
26
|
Hoberück S, Löck S, Winzer R, Zöphel K, Froehner M, Fedders D, Kotzerke J, Hölscher T. [ 68Ga]Ga-PSMA-11 PET before and after initial long-term androgen deprivation in patients with newly diagnosed prostate cancer: a retrospective single-center study. EJNMMI Res 2020; 10:135. [PMID: 33159278 PMCID: PMC7647983 DOI: 10.1186/s13550-020-00723-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose The study aimed to evaluate the effect of androgen deprivation therapy (ADT) on PSMA imaging and its correlation to the PSA concentration by comparing qualitative and quantitative parameters: SUVmax, SUVmean, PSMA-derived tumor volume (PSMA-TV), total lesion PSMA (TL-PSMA) and molecular imaging (mi)PSMA score.
Methods Retrospective analysis of 21 therapy-naïve patients with oligometastatic prostate cancer (median age 70 years) who underwent either [68Ga]Ga-PSMA-11-PET/CT or -PET/MRI before initiation of (T1) as well as during ADT (T2). The median duration of ADT was 155 days (range 61–289 days). All lesions were analyzed using several qualitative and quantitative PET parameters. Results A total of 109 PSMA-positive lesions (24 intraprostatic, 56 lymphonodal and 29 osseous) were visually detected at any of the examinations, while at T2, two new bone lesions were detected in one patient. During ADT, all patients experienced a decrease in their PSA level (median: 29.1 before vs. 0.71 after; p < 0.001). During long-term ADT, a relevant decrease in lesion count occurred, especially in patients with a T2 PSA value < 1 ng/ml (median: 4 vs. 0.9; p = 0.007) and PSMA expression, which resulted in miN- and/or miM-downstaging in 11 patients (52.7%). All analyzed PET parameters correlated strongly with each other. The PSA level at T2 correlated modestly with the decrease in PSMA expression and its derived volumes. Conclusion Post-ADT scans detected, especially in patients with a residual PSA < 1 ng/ml, fewer PSMA-positive lesions with overall lower PSMA expression, regardless of primary tumor site or metastatic sites. None of the PET parameters has proven to be superior, as they all correlated modestly with the PSA value at T2. Thus, the simply acquirable miPSMA score seems to be the most suitable for evaluating the effect of ADT on PSMA expression.
Collapse
Affiliation(s)
- Sebastian Hoberück
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Robert Winzer
- Department of Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Michael Froehner
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Department of Urology, Zeisigwaldkliniken Bethanien Chemnitz, Chemnitz, Germany
| | - Dieter Fedders
- Department of Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
27
|
Peng W, Guo L, Tang R, Liu X, Jin R, Dong JT, Xing CG, Zhou W. Sox7 negatively regulates prostate-specific membrane antigen (PSMA) expression through PSMA-enhancer. Prostate 2019; 79:370-378. [PMID: 30488457 PMCID: PMC6344945 DOI: 10.1002/pros.23743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND PSMA expression in the prostate epithelium is controlled by a cis-element, PSMA enhancer (PSME). PSME contains multiple binding sites for Sox proteins, and in this study, we identified Sox7 protein as a negative regulator of PSMA expression through its interaction with PSME. METHODS The statistical correlation between Sox7 and PSMA mRNA expression was evaluated using five prostate cancer studies from cBioportal. In vitro and in vivo interaction between Sox7 and PSME was evaluated by chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), and luciferase reporter assay. Synthetic oligonucleotides were generated to define the sites in PSME that interact with Sox7 protein. Sox7 mutants were generated to identify the region of this protein required to regulate PSMA expression. Sox7 was also stably expressed in LNCaP/C4-2 and 22Rv1 cells to validate the regulation of PSMA expression by Sox7 in vivo. RESULTS Sox7 mRNA expression negatively correlated with PSMA/FOLH1 and PSMAL/FOLH1B mRNA expression in Broad/Cornell, TCGA and MSKCC studies, but not in two studies containing only metastatic prostate tumors. PC-3 cells mostly expressed the 48.5 KDa isoform 2 of Sox7, and the depletion of this isoform did not restore PSMA expression. Ectopic expression of canonical, wild-type Sox7 in C4-2 and 22Rv1 cells suppressed PSMA protein expression. ChIP assay revealed that canonical Sox7 protein preferentially interacts with PSME in vivo, and EMSA identified the SOX box sites #2 and #4 in PSME as required for its interaction. Sox7 was capable of directly binding to PSME and suppressed PSME-mediated transcription. The NLS regions of Sox7, but not its β-catenin interacting motif, are essential for this suppressing activity. Furthermore, restoration of wild-type Sox7 expression but not Sox7-NLS mutant in Sox7-null prostate cancer cell lines suppressed PSMA expression. CONCLUSIONS The inactivation of canonical Sox7 is responsible for the upregulated expression of PSMA in non-metastatic prostate cancer.
Collapse
Affiliation(s)
- Wei Peng
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital Of Soochow University, Suzhou, Jiangsu Province 215004, P.R. China
| | - Lizheng Guo
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Ruoyi Tang
- Department of Environmental Health, Rollins School of Public Health
| | - Xiuju Liu
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Rui Jin
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Urology, Emory University School of Medicine
| | - Chun-gen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital Of Soochow University, Suzhou, Jiangsu Province 215004, P.R. China
| | - Wei Zhou
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine
| |
Collapse
|
28
|
Ali AA, Halldén G. Development of Oncolytic Adenoviruses for the Management of Prostate Cancer. Prostate Cancer 2018. [DOI: 10.5772/intechopen.73515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
29
|
Akdemir EN, Tuncel M, Akyol F, Bilen CY, Baydar DE, Karabulut E, Ozen H, Caglar M. 68Ga-labelled PSMA ligand HBED-CC PET/CT imaging in patients with recurrent prostate cancer. World J Urol 2018; 37:813-821. [DOI: 10.1007/s00345-018-2460-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/22/2018] [Indexed: 01/12/2023] Open
|
30
|
O'Keefe DS, Bacich DJ, Huang SS, Heston WDW. A Perspective on the Evolving Story of PSMA Biology, PSMA-Based Imaging, and Endoradiotherapeutic Strategies. J Nucl Med 2018; 59:1007-1013. [PMID: 29674422 DOI: 10.2967/jnumed.117.203877] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
In this review, we cover the evolution of knowledge on the biology of prostate-specific membrane antigen (PSMA) and its translation to therapy. The usual key to discovery is a realistic model for experimentation and for testing a hypothesis. A realistic model is especially needed in the case of the human prostate, which differs significantly from the prostate of species often used as research models. We will emphasize the genetic characterization of PSMA, the nature of the PSMA protein, and its role as a carboxypeptidase, with differing important substrates and products in different tissues. We give special prominence to the importance of PSMA as a target for imaging and therapy in prostate cancer and its underdeveloped role for imaging and targeting the neovasculature of tumors other than prostate cancer. Lastly, we bring attention to its importance in other nonprostatic tissues.
Collapse
Affiliation(s)
- Denise S O'Keefe
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Dean J Bacich
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Steve S Huang
- Imaging Institute and Cancer Biology Department, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Warren D W Heston
- Department of Cancer Biology, Lerner Research Institute and Glickman Urologic Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
31
|
Jemaa AB, Bouraoui Y, Rais NB, Nouira Y, Oueslati R. Cytokine profiling identifies an interaction of IL-6 and IL-1α to drive PSMA-PSA prostate clones. Immunobiology 2016; 221:1424-1431. [DOI: 10.1016/j.imbio.2016.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
|
32
|
Evans JC, Malhotra M, Cryan JF, O'Driscoll CM. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br J Pharmacol 2016; 173:3041-3079. [PMID: 27526115 PMCID: PMC5056232 DOI: 10.1111/bph.13576] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) otherwise known as glutamate carboxypeptidase II (GCPII) is a membrane bound protein that is highly expressed in prostate cancer and in the neovasculature of a wide variety of tumours including glioblastomas, breast and bladder cancers. This protein is also involved in a variety of neurological diseases including schizophrenia and ALS. In recent years, there has been a surge in the development of both diagnostics and therapeutics that take advantage of the expression and activity of PSMA/GCPII. These include gene therapy, immunotherapy, chemotherapy and radiotherapy. In this review, we discuss the biological roles that PSMA/GCPII plays, both in normal and diseased tissues, and the current therapies exploiting its activity that are at the preclinical stage. We conclude by giving an expert opinion on the future direction of PSMA/GCPII based therapies and diagnostics and hurdles that need to be overcome to make them effective and viable.
Collapse
Affiliation(s)
- James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
33
|
Influence of Androgen Deprivation Therapy on the Uptake of PSMA-Targeted Agents: Emerging Opportunities and Challenges. Nucl Med Mol Imaging 2016; 51:202-211. [PMID: 28878845 DOI: 10.1007/s13139-016-0439-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/12/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an attractive target for both diagnosis and therapy because of its high expression in the vast majority of prostate cancers. Development of small molecules for targeting PSMA is important for molecular imaging and radionuclide therapy of prostate cancer. Recent evidence implies that androgen-deprivation therapy increase PSMA-ligand uptake in some cases. The reported upregulations in PSMA-ligand uptake after exposure to second-generation antiandrogens such as enzalutamide and abiraterone might disturb PSMA-targeted imaging for staging and response monitoring of patients undergoing treatment with antiandrogen-based drugs. On the other hand, second-generation antiandrogens are emerging as potential endoradio-/chemosensitizers. Therefore, the enhancement of the therapeutic efficiency of PSMA-targeted theranostic methods can be listed as a new capability of antiandrogens. In this manuscript, we will present what is currently known about the mechanism of increasing PSMA uptake following exposure to antiandrogens. In addition, we will discuss whether these above-mentioned antiandrogens could play the role of endoradio-/chemosensitizers in combination with the well-established PSMA-targeted methods for pre-targeting of prostate cancer.
Collapse
|
34
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
35
|
Rivera-Gonzalez GC, Droop AP, Rippon HJ, Tiemann K, Pellacani D, Georgopoulos LJ, Maitland NJ. Retinoic acid and androgen receptors combine to achieve tissue specific control of human prostatic transglutaminase expression: a novel regulatory network with broader significance. Nucleic Acids Res 2012; 40:4825-40. [PMID: 22362749 PMCID: PMC3367184 DOI: 10.1093/nar/gks143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/16/2012] [Accepted: 01/21/2012] [Indexed: 12/01/2022] Open
Abstract
In the human prostate, expression of prostate-specific genes is known to be directly regulated by the androgen-induced stimulation of the androgen receptor (AR). However, less is known about the expression control of the prostate-restricted TGM4 (hTGP) gene. In the present study we demonstrate that the regulation of the hTGP gene depends mainly on retinoic acid (RA). We provide evidence that the retinoic acid receptor gamma (RAR-G) plays a major role in the regulation of the hTGP gene and that presence of the AR, but not its transcriptional transactivation activity, is critical for hTGP transcription. RA and androgen responsive elements (RARE and ARE) were mapped to the hTGP promoter by chromatin immunoprecipitation (ChIP), which also indicated that the active ARE and RARE sites were adjacent, suggesting that the antagonistic effect of androgen and RA is related to the relative position of binding sites. Publicly available AR and RAR ChIP-seq data was used to find gene potentially regulated by AR and RAR. Four of these genes (CDCA7L, CDK6, BTG1 and SAMD3) were tested for RAR and AR binding and two of them (CDCA7L and CDK6) proved to be antagonistically regulated by androgens and RA confirming that this regulation is not particular of hTGP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Norman J. Maitland
- Department of Biology, Yorkshire Cancer Research Unit, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
36
|
Rivera-Gonzalez GC, Swift SL, Dussupt V, Georgopoulos LJ, Maitland NJ. Baculoviruses as gene therapy vectors for human prostate cancer. J Invertebr Pathol 2011; 107 Suppl:S59-70. [PMID: 21784232 DOI: 10.1016/j.jip.2011.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in ageing men in the western world. While the primary cancers can be treated with androgen ablation, radiotherapy and surgery, recurrent castration resistant cancers have an extremely poor prognosis, hence promoting research that could lead to a better treatment. Targeted therapeutic gene therapy may provide an attractive option for these patients. By exploiting the natural ability of viruses to target and transfer their genes into cancer cells, either naturally or after genetic manipulation, new generations of biological control can be developed. In this review we present the advantages and practicalities of using baculovirus as a vector for prostate cancer gene therapy and provide evidence for the potential of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) as a safer alternative vehicle for targeting cancer cells. Strategies to target baculovirus binding specifically to prostate cell surfaces are also presented. The large insertion capacity of baculoviruses also permits restricted, prostate-specific gene expression of therapeutic genes by cloning extended human transcriptional control sequences into the baculovirus genome.
Collapse
|
37
|
Chen Y, Wang G, Kong D, Zhang Z, Yang K, Liu R, Zhao W, Xu Y. Double-targeted and double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for prostate cancer. Mol Carcinog 2011; 52:237-46. [DOI: 10.1002/mc.21850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 01/09/2023]
|
38
|
Vajda A, Marignol L, Foley R, Lynch TH, Lawler M, Hollywood D. Clinical potential of gene-directed enzyme prodrug therapy to improve radiation therapy in prostate cancer patients. Cancer Treat Rev 2011; 37:643-54. [DOI: 10.1016/j.ctrv.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
|
39
|
Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 2010; 30:67-101. [PMID: 19536865 DOI: 10.1002/med.20165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prostate cancer (CaP) is one of the most prevalent malignant diseases among men in Western countries. There is currently no cure for metastatic castrate-resistant CaP, and median survival for these patients is about 18 months; the high mortality rate seen is associated with widespread metastases. Progression of CaP from primary to metastatic disease is associated with several molecular and genetic changes that can affect the expression of specific tumor-associated antigens (TAAs) or receptors on the cell surface. Targeting TAAs is emerging as an area of promise for controlling late-stage and recurrent CaP. Several reviews have summarized the progress made in targeting signaling pathways for CaP but will not be discussed here. We describe some important CaP TAAs. These include prostate stem-cell antigen, prostate-specific membrane antigen, MUC1, epidermal growth factor receptor, platelet-derived growth factor and its receptor, urokinase plasminogen activator and its receptor, and extracellular matrix metalloproteinase inducer. We summarize recent advancements in our understanding of their role in CaP metastasis, as well as potential therapeutic options for targeting CaP TAAs. We also discuss the origin, identification, and characterization of prostate cancer stem cells (CSCs) and the potential benefits of targeting prostate CSCs to overcome chemoresistance and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.
| | | | | |
Collapse
|
40
|
Abstract
It is becoming increasingly clear that angiogenesis plays a crucial role in prostate cancer (CaP) survival, progression, and metastasis. Tumor angiogenesis is a hallmark of advanced cancers and an attractive treatment target in multiple solid tumors. By understanding the molecular basis of resistance to androgen withdrawal and chemotherapy in CaP, the rational design of targeted therapeutics is possible. This review summarizes the recent advancements that have improved our understanding of the role of angiogenesis in CaP metastasis and the potential therapeutic efficacy of inhibiting angiogenesis in this disease. Current therapeutic options for patients with metastatic hormone-refractory CaP are very limited. Targeting vasculature is a developing area, which shows promise for the control of late stage and recurrent CaP disease and for overcoming drug resistance. We discuss angiogenesis and its postulated mechanisms and focus on the regulation of angiogenesis in CaP progression and the therapeutic beneficial effects associated with targeting of the CaP vasculature to overcome the resistance to current treatments and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St George Hospital, Sydney, NSW, Australia.
| | | |
Collapse
|
41
|
Dozmorov MG, Hurst RE, Culkin DJ, Kropp BP, Frank MB, Osban J, Penning TM, Lin HK. Unique patterns of molecular profiling between human prostate cancer LNCaP and PC-3 cells. Prostate 2009; 69:1077-90. [PMID: 19343732 PMCID: PMC2755240 DOI: 10.1002/pros.20960] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Human prostate cancer LNCaP and PC-3 cell lines have been extensively used to study prostate cancer progression and to develop therapeutic agents. Although LNCaP and PC-3 cells are generally assumed to represent early and late stages of prostate cancer, respectively, there is limited information regarding gene expression patterns between these two cell lines and its relationship to prostate cancer. METHODS Comprehensive gene expression analysis was performed. Total RNA was isolated from cultured cells and hybridized to Illumina human BeadChips representing 24,526 transcripts. Bioinformatics analysis was applied to identify cell line specific genes as well as biological mechanisms, pathways, and functions related to the genes. RESULTS A total of 2,198 genes were differentially expressed between LNCaP and PC-3 cells. Using a robust statistical analysis and high significance criteria, 115 and 188 genes were identified to be unique to LNCaP and PC-3 cells, respectively. LNCaP cells maintained various metabolic pathways including a gene cluster that encodes UDP-glucuronosyltransferases. Several transcription factors including Tal alpha/beta, GATA-1, and c-Myc/Max may be responsible for regulating LNCaP cell specific genes. By contrast, PC-3 cells were characterized by their unique expression of cytoskeleton-related genes and other genes including VEGFC, IL8, and TGF beta 2. CONCLUSIONS This study showed that LNCaP and PC-3 cells represent two distinct prostate cancer cell lineages. LNCaP cells retain many prostate cell specific properties, whereas PC-3 cells have acquired a more aggressive phenotype. Future studies for prostate cancer research need to consider similarities and differences between these two cells and their relationship to prostate cancer.
Collapse
Affiliation(s)
- Mikhail G. Dozmorov
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Robert E. Hurst
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Daniel J. Culkin
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- klahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
| | - Bradley P. Kropp
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Mark Barton Frank
- Oklahoma Medical Research Foundation Microarray Research Facility, Oklahoma City, OK 73104
| | - Jeanette Osban
- Oklahoma Medical Research Foundation Microarray Research Facility, Oklahoma City, OK 73104
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Hsueh-Kung Lin
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- klahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
42
|
Abstract
TGF (transforming growth factor)-beta1 is a multifunctional cytokine that influences homoeostatic processes of various tissues. TGF-beta1 expression is inhibited by androgens in the prostate gland, whereas its expression is enhanced by androgens in highly metastatic prostate cancer cells. Here, we examined regulation of human TGF-beta1 promoter activity by androgen in prostate cancer cells. The full-length (-3363 to +110) promoter showed a high level of activity in response to androgen in PC3mm2 cells expressing AR (androgen receptor). Further deletion analysis revealed three distal and three proximal AREs (androgen-response elements) in the promoter. Gel-shift and footprint assays show that these AREs physically interact with the DNA-binding domain of AR. Chromatin immunoprecipitation assays revealed the androgen-dependent recruitment of AR to the ARE-containing regions of the TGF-beta1 gene. More importantly, a negative ARE was detected in the TGF-beta1 promoter. Both positive and negative AREs are functional in the androgen-regulated transcription of the TGF-beta1 promoter. These findings imply that androgen signalling may positively or negatively regulate TGF-beta1 expression in response to various signals or under different environmental conditions.
Collapse
|
43
|
Yang W, Wetterskog D, Matsumoto Y, Funa K. Kinetics of repression by modified p53 on the PDGF β-receptor promoter. Int J Cancer 2008; 123:2020-30. [DOI: 10.1002/ijc.23735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Prodrug cancer gene therapy. Cancer Lett 2008; 270:191-201. [PMID: 18502571 DOI: 10.1016/j.canlet.2008.04.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 12/26/2022]
Abstract
There is no effective treatment for late stage and metastatic cancers of colorectal, prostate, pancreatic, breast, glioblastoma and melanoma cancers. Novel treatment modalities are needed for these late stage patients because cytotoxic chemotherapy offers only palliation, usually accompanied with systemic toxicities and poor quality of life. Gene directed enzyme prodrug therapy (GDEPT), which concentrates the cytotoxic effect in the tumor site may be one alternative. This review provides an explanation of the GDEPT principle, focusing on the development, application and potential of various GDEPTs. Current gene therapy limitations are in efficient expression of the therapeutic gene and in tumor-specific targeting. Therefore, the current status of research related to the enhancement of in situ GDEPT delivery and tumor-specific targeting of vectors is assessed. Finally, GDEPT versions of stem cell based gene therapy as another potential treatment modality for progressed tumors and metastases are discussed. Combinations of traditional, targeted, and stem cell directed gene therapy could significantly advance the treatment of cancer.
Collapse
|
45
|
Serda RE, Bisoffi M, Thompson TA, Ji M, Omdahl JL, Sillerud LO. 1alpha,25-Dihydroxyvitamin D3 down-regulates expression of prostate specific membrane antigen in prostate cancer cells. Prostate 2008; 68:773-83. [PMID: 18247401 DOI: 10.1002/pros.20739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostate specific membrane antigen (PSMA) expression correlates with prostate cancer grade and is increased in hormone-refractory prostate cancer. The increased expression of PSMA following androgen deprivation therapy may be a consequence of the down-regulation of PSMA expression by androgen. Moreover, 1alpha,25-dihydroxyvitamin D3 (1,25-VD) has been shown to suppress prostate cancer progression as well as cell motility and invasion. Since PSMA is positively correlated with both of these characteristics, we hypothesized that 1,25-VD would regulate PSMA expression. METHODS LNCaP prostate cancer cells were treated with 1,25-VD, followed by analysis of cell surface PSMA expression. The PSMA enhancer, located within the third intron of the PSMA gene, was cloned into a reporter vector and regulation by 1,25-VD was investigated. The role of the androgen receptor (AR) in 1,25-VD mediated suppression of PSMA expression was examined using Casodex and AR specific siRNA. RESULTS Surface expression of PSMA was significantly decreased in a dose-dependent manner by 10 nM 1,25-VD or greater. Regulation by 1,25-VD occurred at the level of the PSMA enhancer. Over-expression of the vitamin D receptor (VDR) also decreased expression of PSMA. Additionally, suppression of AR translation using siRNA technology blocked the suppressive effect of 1,25-VD on PSMA expression, however inhibition of PSMA expression by 1,25-VD occurred in the absence of androgens. CONCLUSIONS Suppression of PSMA by 1,25-VD occurs at the level of the PSMA enhancer and is elevated by over-expression of the VDR. This regulation involves the AR, but is not dependent on the presence of androgens.
Collapse
Affiliation(s)
- Rita E Serda
- Brown Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Increased therapeutic efficacy of the prostate-specific oncolytic adenovirus Ad[I/PPT-E1A] by reduction of the insulator size and introduction of the full-length E3 region. Cancer Gene Ther 2008; 15:203-13. [PMID: 18188185 DOI: 10.1038/sj.cgt.7701117] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conditionally replicating adenoviruses are developing as a complement to traditional cancer therapies. Ad[I/PPT-E1A] is an E1B/E3-deleted virus that replicates exclusively in prostate cells, since the expression of E1A is controlled by the recombinant 1.4 kb prostate-specific PPT promoter. The transcriptional integrity of PPT is maintained by the 3.0 kb mouse H19 insulator that was introduced directly upstream of the PPT sequence. In order to increase the cloning capacity to be able to reintroduce E3 sequences in the 35.7 kb Ad[I/PPT-E1A] genome, various shorter insulators were examined in a luciferase reporter gene assay. It was found that the 1.6 kb core H19 insulator (i) improves the activity of PPT, compared to the 3.0 kb full-length insulator, while still maintaining prostate cell specificity and releasing 1.4 kb of space for insertion of additional sequences. To improve the ability of the virus to efficiently lyse infected cells and persist in vivo, we inserted the adenovirus death protein (ADP) or the full-length adenovirus E3 region. The oncolytic activity of PPT-E1A-based viruses was studied using MTS, crystal violet and replication assays. The virus with the reintroduced full-length E3-region (Ad[i/PPT-E1A, E3]) showed the highest cytopathic effects in vitro. Furthermore, this virus suppressed the growth of aggressively growing prostate tumors in vivo. Therefore, we conclude that Ad[i/PPT-E1A, E3] is a prostate-specific oncolytic adenovirus with a high potential for treating localized prostate cancer.
Collapse
|
47
|
Valdespino V, Tsagozis P, Pisa P. Current perspectives in the treatment of advanced prostate cancer. Med Oncol 2008; 24:273-86. [PMID: 17873302 DOI: 10.1007/s12032-007-0017-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/30/1999] [Accepted: 01/09/2007] [Indexed: 01/26/2023]
Abstract
Prostate cancer (PC) continues to be an important world health problem for men. Patients with locally confined PC are treated with either radiotherapy or surgery. However, treatment of more advanced stages of the disease is problematic. Initially, androgen deprivation offers a period of clinical stability, which is however invariably followed by progression to non-responsiveness to hormonal manipulation. Current management of patients with androgen-independent prostate cancer (AIPC) displays modest response rates and achieves only short-term benefit. Recently, knowledge in the complex pathophysiology of advanced PC has led to the identification of mechanisms and target molecules permitting the introduction of new therapies. Consequently, many investigational treatments are ongoing for AIPC in Phase-II and Phase-III trials aiming at the combination of chemotherapeutic regimens along with immunotherapy targeting PC-associated antigens. Other attractive options are gene therapy, as well as the targeting of survival signaling, differentiation, and apoptosis of the malignant PC cells. Further treatment modalities are directed against the tumor microenvironment, bone metastasis, or both. Collectively, the aforementioned efforts introduce a new era in the management of advanced PC. Novel pharmaceutical compounds and innovative approaches, integrated into the concept of individualized therapy will hopefully, during the next decade, improve the outcome and survival for hundreds of thousands of men worldwide.
Collapse
Affiliation(s)
- Victor Valdespino
- Department of Surgery, UMAE de Oncologia del CMN SXXI, Instituto Mexicano del Seguro Social, Universidad Autonoma Metropolitana, Mexico, Mexico
| | | | | |
Collapse
|
48
|
Han L, Wong DL, Tsai G, Jiang Z, Coyle JT. Promoter analysis of human glutamate carboxypeptidase II. Brain Res 2007; 1170:1-12. [PMID: 17689503 PMCID: PMC2706136 DOI: 10.1016/j.brainres.2007.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/04/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
The expression of glutamate carboxypeptidase II (GCP II) is reduced in selective brain regions in schizophrenic patients. To investigate transcriptional mechanisms regulating the human GCP II gene, a 3460 bp DNA fragment comprised of the proximal 3228 bp of 5' untranscribed sequence and first 232 bp of 5' UTR portion of this gene was cloned into the mammalian luciferase reporter gene vector pGL3-Basic. Transfection assays in human astrocyte-derived SVG and human prostate tumor-derived LNCaP cells demonstrated that constructs with 3460, 1590 and 761 bp portions of 5' region of human GCP II gene were able to drive the luciferase reporter gene. Additional deletion constructs showed that in the SVG cell line, constructs with 511 and 411 bp of GCP II gene fragments yielded highest transcriptional activity, with declining activity upon further removal of 5' sequences. 15 bp of the promoter 5' to a 225 bp GCP II fragment were essential for luciferase expression. Thus, in the SVG cells, the proximal 240 bp of the human GCP II promoter (232 bp of the 5' UTR and 8 bp of 5' untranscribed sequences) may represent the core promoter. Further, while a LyF-1 site lies within and overlaps a transcription start site in the 15 bp sequence, site-directed mutagenesis shows that LyF-1 is not the transcription initiator for the "TATA and CAAT" box lacking GCP II gene in the SVG cells. Finally, pattern differences in GCP II gene promoter expression in SVG and LNCaP cells suggest that sequences beyond 240 bp may be important for tissue-specific GCP II expression.
Collapse
Affiliation(s)
- Liqun Han
- Laboratory of Molecular and Psychiatric Neuroscience, Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, USA
| | - Dona Lee Wong
- Laboratory of Molecular and Developmental Neurobiology, Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, USA
| | - Guochuan Tsai
- Department of Psychiatry, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Zhichun Jiang
- Department of Psychiatry, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Joseph T. Coyle
- Laboratory of Molecular and Psychiatric Neuroscience, Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
49
|
Functional characterization of the GDEP promoter and three enhancer elements in retinoblastoma and prostate cell lines. Med Oncol 2007; 25:40-9. [DOI: 10.1007/s12032-007-0038-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
|
50
|
Höti N, Li Y, Chen CL, Chowdhury WH, Johns DC, Xia Q, Kabul A, Hsieh JT, Berg M, Ketner G, Lupold SE, Rodriguez R. Androgen receptor attenuation of Ad5 replication: implications for the development of conditionally replication competent adenoviruses. Mol Ther 2007; 15:1495-503. [PMID: 17565351 DOI: 10.1038/sj.mt.6300223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Conditionally replication competent adenoviruses (CRAds) represent one of the most intensely studied gene therapy strategies for a variety of malignancies, including prostate cancer. These viruses can be generated by placing a tissue or cancer-specific promoter upstream of one or more of the viral genes required for replication (e.g., E1A, E1B). We report here that E1A inhibits androgen receptor (AR) target gene induction and, correspondingly, activated AR inhibits adenoviral replication. This mutual inhibition appears to be an indirect effect, possibly through competition for shared transcriptional co-activators. The net effect is that the oncolytic effect of prostate-specific CRAds is attenuated by these interactions. Fusion of the E1A to AR ameliorates this inhibition, while enhancing specificity. These findings have significant implications in the development of prostate-specific CRAd therapies.
Collapse
Affiliation(s)
- Naseruddin Höti
- James Buchanan Brady Urology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|