1
|
Koga A, Nishihara H, Tanabe H, Tanaka R, Kayano R, Matsumoto S, Endo T, Srikulnath K, O'Neill RJ. Kangaroo endogenous retrovirus (KERV) forms megasatellite DNA with a simple repetition pattern in which the provirus structure is retained. Virology 2023; 586:56-66. [PMID: 37487326 DOI: 10.1016/j.virol.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
The kangaroo endogenous retrovirus (KERV) was previously reported to have undergone a rapid copy number increase in the red-necked wallaby; however, the mode of amplification was left to be clarified. The present study revealed that the long terminal repeat (LTR) (0.6 kb) and internal region (2.0 kb) of a provirus are repeated alternately, forming megasatellite DNA which we named kervRep. This repetition pattern was the same as that observed for walbRep, megasatellite DNA originating from another endogenous retrovirus. Their formation process can be explained using a simple model: pairing slippage followed by homologous recombination. This model features that the initial step is triggered by the presence of two identical sequences within a short distance; the possession of LTRs by endogenous retroviruses fulfills this condition. The discovery of two cases suggests that formation of this type of satellite DNA is one of non-negligible effects of endogenous retroviruses on their host genomes.
Collapse
Affiliation(s)
- Akihiko Koga
- Center for Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan; Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan
| | - Rieko Tanaka
- Saitama Children's Zoo, Higashimatsuyama 355-0065, Japan
| | - Rika Kayano
- Saitama Children's Zoo, Higashimatsuyama 355-0065, Japan
| | | | | | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Laine A, Wang X, Ni K, Smith SEB, Najjar R, Whitmore LS, Yacoub M, Bays A, Gale M, Mustelin T. Expression of Envelope Protein Encoded by Endogenous Retrovirus K102 in Rheumatoid Arthritis Neutrophils. Microorganisms 2023; 11:1310. [PMID: 37317284 PMCID: PMC10223813 DOI: 10.3390/microorganisms11051310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
Many patients suffering from autoimmune diseases have autoantibodies against proteins encoded by genomic retroelements, suggesting that normal epigenetic silencing is insufficient to prevent the production of the encoded proteins for which immune tolerance appears to be limited. One such protein is the transmembrane envelope (Env) protein encoded by human endogenous retrovirus K (HERV-K). We reported recently that patients with rheumatoid arthritis (RA) have IgG autoantibodies that recognize Env. Here, we use RNA sequencing of RA neutrophils to analyze HERV-K expression and find that only two loci with an intact open-reading frame for Env, HERV-K102, and K108 are expressed, but only the former is increased in RA. In contrast, other immune cells express more K108 than K102. Patient autoantibodies recognized endogenously expressed Env in breast cancer cells and in RA neutrophils but not healthy controls. A monoclonal anti-Env antibody also detected Env on the surface of RA neutrophils but very little on the surface of other immune cells. We conclude that HERV-K102 is the locus that produces Env detectable on the surface of neutrophils in RA. The low levels of HERV-K108 transcripts may contribute only marginally to cell surface Env on neutrophils or other immune cells in some patients.
Collapse
Affiliation(s)
- Amanda Laine
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kathryn Ni
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah E. B. Smith
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Leanne S. Whitmore
- Center for Innate Immunity and Infectious Disease, Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Michael Yacoub
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Gale
- Center for Innate Immunity and Infectious Disease, Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Innate Immunity and Infectious Disease, Department of Immunology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Koga A, Hashimoto K, Honda Y, Nishihara H. Marsupial genome analysis suggests that satellite DNA formation from walb endogenous retrovirus is an event specific to the red-necked wallaby. Genes Cells 2023; 28:149-155. [PMID: 36527312 DOI: 10.1111/gtc.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
We recently identified walbRep, a satellite DNA residing in the genome of the red-necked wallaby Notamacropus rufogriseus. It originates from the walb endogenous retrovirus and is organized in a manner in which the provirus structure is retained. The walbRep repeat units feature an average pairwise nucleotide identity as high as 99.5%, raising the possibility of a recent origin. The tammar wallaby N. eugenii is a species estimated to have diverged from the red-necked wallaby 2-3 million years ago. In PCR analyses of these two and other related species, walbRep-specific fragment amplification was observed only in the red-necked wallaby. Sequence database searches for the tammar wallaby resulted in sequence alignment lists that were sufficiently powerful to exclude the possibility of walbRep existence. These results suggested that the walbRep formation occurred in the red-necked wallaby lineage after its divergence from the tammar wallaby lineage, thus in a time span of maximum 3 million years.
Collapse
Affiliation(s)
- Akihiko Koga
- Center for Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | | | - Yusuke Honda
- Noichi Zoological Park of Kochi Prefecture, Konan, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Zhang T, Zheng R, Li M, Yan C, Lan X, Tong B, Lu P, Jiang W. Active endogenous retroviral elements in human pluripotent stem cells play a role in regulating host gene expression. Nucleic Acids Res 2022; 50:4959-4973. [PMID: 35451484 PMCID: PMC9122532 DOI: 10.1093/nar/gkac265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses, also called LTR elements, can be bound by transcription factors and marked by different histone modifications in different biological contexts. Recently, individual LTR or certain subclasses of LTRs such as LTR7/HERVH and LTR5_Hs/HERVK families have been identified as cis-regulatory elements. However, there are still many LTR elements with unknown functions. Here, we dissected the landscape of histone modifications and regulatory map of LTRs by integrating 98 ChIP-seq data in human embryonic stem cells (ESCs), and annotated the active LTRs enriching enhancer/promoter-related histone marks. Notably, we found that MER57E3 functionally acted as proximal regulatory element to activate respective ZNF gene. Additionally, HERVK transcript could mainly function in nucleus to activate the adjacent genes. Since LTR5_Hs/LTR5 was bound by many early embryo-specific transcription factors, we further investigated the expression dynamics in different pluripotent states. LTR5_Hs/LTR5/HERVK exhibited higher expression level in naïve ESCs and extended pluripotent stem cells (EPSCs). Functionally, the LTR5_Hs/LTR5 with high activity could serve as a distal enhancer to regulate the host genes. Ultimately, our study not only provides a comprehensive regulatory map of LTRs in human ESCs, but also explores the regulatory models of MER57E3 and LTR5_Hs/LTR5 in host genome.
Collapse
Affiliation(s)
- Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ran Zheng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mao Li
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xianchun Lan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bei Tong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Pei Lu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
5
|
Mucke HAM. Drug Repurposing Patent Applications July-September 2020. Assay Drug Dev Technol 2021; 19:204-208. [PMID: 33606552 DOI: 10.1089/adt.2020.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Human Endogenous Retrovirus K Rec forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage. Viruses 2020; 12:v12111303. [PMID: 33202765 PMCID: PMC7696977 DOI: 10.3390/v12111303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
The HML2 subfamily of HERV-K (henceforth HERV-K) represents the most recently endogenized retrovirus in the human genome. While the products of certain HERV-K genomic copies are expressed in normal tissues, they are upregulated in several pathological conditions, including various tumors. It remains unclear whether HERV-K(HML2)-encoded products overexpressed in cancer contribute to disease progression or are merely by-products of tumorigenesis. Here, we focus on the regulatory activities of the Long Terminal Repeats (LTR5_Hs) of HERV-K and the potential role of the HERV-K-encoded Rec in melanoma. Our regulatory genomics analysis of LTR5_Hs loci indicates that Melanocyte Inducing Transcription Factor (MITF) (also known as binds to a canonical E-box motif (CA(C/T)GTG) within these elements in proliferative type of melanoma, and that depletion of MITF results in reduced HERV-K expression. In turn, experimentally depleting Rec in a proliferative melanoma cell line leads to lower mRNA levels of MITF and its predicted target genes. Furthermore, Rec knockdown leads to an upregulation of epithelial-to-mesenchymal associated genes and an enhanced invasion phenotype of proliferative melanoma cells. Together these results suggest the existence of a regulatory loop between MITF and Rec that may modulate the transition from proliferative to invasive stages of melanoma. Because HERV-K(HML2) elements are restricted to hominoid primates, these findings might explain certain species-specific features of melanoma progression and point to some limitations of animal models in melanoma studies.
Collapse
|
7
|
Kaplan MH, Contreras-Galindo R, Jiagge E, Merajver SD, Newman L, Bigman G, Dosik MH, Palapattu GS, Siddiqui J, Chinnaiyan AM, Adebamowo S, Adebamowo C. Is the HERV-K HML-2 Xq21.33, an endogenous retrovirus mutated by gene conversion of chromosome X in a subset of African populations, associated with human breast cancer? Infect Agent Cancer 2020; 15:19. [PMID: 32165916 PMCID: PMC7060579 DOI: 10.1186/s13027-020-00284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
The human endogenous retroviruses HERV-K HML-2 have been considered a possible cause of human breast cancer (BrC). A HERV-K HML-2 fully intact provirus Xq21.33 was recently identified in some West African people. We used PCR technology to search for the Xq21.33 provirus in DNA from Nigerian women with BrC and controls. to see if Xq21.33 plays any role in predisposing to BrC. This provirus was detected in 27 of 216 (12.5%) women with BrC and in 22 of 219 (10.0%) controls. These results were not statistically significant. The prevalence of provirus in premenopausal control women 44 years or younger [18/157 (11.46%)} vs women with BrC [12/117 (10.26%)] showed no statistical difference. The prevalence of virus in postmenopausal control women > 45 yrs. was 7.4% (4/54) vs 15.31% (15/98) in postmenopausal women with BrC. These changes were not statistically significant at <.05, but the actual p value of <.0.079, suggests that Xq21.33 might play some role in predisposing to BrC in postmenopausal women. Provirus was present in Ghanaian women (6/87), in 1/6 Pygmy populations and in African American men (4/45) and women (6/68), but not in any Caucasian women (0/109). Two BrC cell lines (HCC 70 and DT22) from African American women had Xq21.33. Env regions of the virus which differed by 2-3 SNPs did not alter the protein sequence of the virus. SNP at 5730 and 8529 were seen in all persons with provirus, while 54% had an additional SNP at 7596.Two Nigerian women and 2 Ghanaian women had additional unusual SNPs. Homozygosity was seen in (5/27) BrC and (2/22) control women. The genetic variation and homozygosity patterns suggested that there was gene conversion of this X chromosome associated virus. The suggestive finding in this preliminary data of possible increased prevalence of Xq21.33 provirus in post-menopausal Nigerian women with BrC should be clarified by a more statistically powered study sample to see if postmenopausal African and/or African American women carriers of Xq21.33 might show increased risk of BrC. The implication of finding such a link would be the development of antiretroviral drugs that might aid in preventing BrC in Xq21.33+ women.
Collapse
Affiliation(s)
- Mark H. Kaplan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Evelyn Jiagge
- Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Mi USA
| | - Sofia D. Merajver
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109 USA
| | - Lisa Newman
- Weill Cornell Medicine, New York, NY 10021 USA
| | - Galya Bigman
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Michael H. Dosik
- Department of Internal Medicine, Renaissance School of Medicine at Stony Brook Medical, Stony Brook, NY 11794 USA
| | | | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Sally Adebamowo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Clement Adebamowo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
8
|
Kaplan MH, Kaminski M, Estes JM, Gitlin SD, Zahn J, Elder JT, Tejasvi T, Gensterblum E, Sawalha AH, McGowan JP, Dosik MH, Direskeneli H, Direskeneli GS, Adebamowo SN, Adebamowo CA, Sajadi M, Contreras-Galindo R. Structural variation of centromeric endogenous retroviruses in human populations and their impact on cutaneous T-cell lymphoma, Sézary syndrome, and HIV infection. BMC Med Genomics 2019; 12:58. [PMID: 31046767 PMCID: PMC6498702 DOI: 10.1186/s12920-019-0505-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Human Endogenous Retroviruses type K HML-2 (HK2) are integrated into 117 or more areas of human chromosomal arms while two newly discovered HK2 proviruses, K111 and K222, spread extensively in pericentromeric regions, are the first retroviruses discovered in these areas of our genome. Methods We use PCR and sequencing analysis to characterize pericentromeric K111 proviruses in DNA from individuals of diverse ethnicities and patients with different diseases. Results We found that the 5′ LTR-gag region of K111 proviruses is missing in certain individuals, creating pericentromeric instability. K111 deletion (−/− K111) is seen in about 15% of Caucasian, Asian, and Middle Eastern populations; it is missing in 2.36% of African individuals, suggesting that the −/− K111 genotype originated out of Africa. As we identified the −/−K111 genotype in Cutaneous T-cell lymphoma (CTCL) cell lines, we studied whether the −/−K111 genotype is associated with CTCL. We found a significant increase in the frequency of detection of the −/−K111 genotype in Caucasian patients with severe CTCL and/or Sézary syndrome (n = 35, 37.14%), compared to healthy controls (n = 160, 15.6%) [p = 0.011]. The −/−K111 genotype was also found to vary in HIV-1 infection. Although Caucasian healthy individuals have a similar frequency of detection of the −/− K111 genotype, Caucasian HIV Long-Term Non-Progressors (LTNPs) and/or elite controllers, have significantly higher detection of the −/−K111 genotype (30.55%; n = 36) than patients who rapidly progress to AIDS (8.5%; n = 47) [p = 0.0097]. Conclusion Our data indicate that pericentromeric instability is associated with more severe CTCL and/or Sézary syndrome in Caucasians, and appears to allow T-cells to survive lysis by HIV infection. These findings also provide new understanding of human evolution, as the −/−K111 genotype appears to have arisen out of Africa and is distributed unevenly throughout the world, possibly affecting the severity of HIV in different geographic areas. Electronic supplementary material The online version of this article (10.1186/s12920-019-0505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark H Kaplan
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark Kaminski
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Judith M Estes
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Gitlin
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, 48105, USA
| | - Joseph Zahn
- Division of Dermatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James T Elder
- Division of Dermatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, 48105, USA
| | - Trilokraj Tejasvi
- Division of Dermatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, 48105, USA
| | - Elizabeth Gensterblum
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph Patrick McGowan
- Division of Infectious Diseases, The Feinstein Institute for Medical research, Manhasset, NY, 11030, USA
| | | | - Haner Direskeneli
- Division of Rheumatology, School of Medicine, Marmara University, Istanbul, Turkey
| | | | - Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mohammad Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rafael Contreras-Galindo
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA. .,Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
9
|
Garcia-Montojo M, Doucet-O'Hare T, Henderson L, Nath A. Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 2018; 44:715-738. [PMID: 30318978 DOI: 10.1080/1040841x.2018.1501345] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human genome contains a large number of retroviral elements acquired over the process of evolution, some of which are specific to primates. However, as many of these are defective or silenced through epigenetic changes, they were historically considered "junk DNA" and their potential role in human physiology or pathological circumstances have been poorly studied. The most recently acquired, human endogenous retrovirus-K (HERV-K), has multiple copies in the human genome and some of them have complete open reading frames that are transcribed and translated, especially in early embryogenesis. Phylogenetically, HERV-K is considered a supergroup of viruses. One of the subtypes, termed HML-2, seems to be the most active and hence, it is the best studied. Aberrant expression of HML-2 in adult tissues has been associated with certain types of cancer and with neurodegenerative diseases. This review discusses the discovery of these viruses, their classification, structure, regulation and potential for replication, physiological roles, and their involvement in disease pathogenesis. Finally, it presents different therapeutic approaches being considered to target these viruses.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Tara Doucet-O'Hare
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Lisa Henderson
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Avindra Nath
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
10
|
Susceptibility of Human Endogenous Retrovirus Type K to Reverse Transcriptase Inhibitors. J Virol 2017; 91:JVI.01309-17. [PMID: 28931682 DOI: 10.1128/jvi.01309-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) make up 8% of the human genome. The HERV type K (HERV-K) HML-2 (HK2) family contains proviruses that are the most recent entrants into the human germ line and are transcriptionally active. In HIV-1 infection and cancer, HK2 genes produce retroviral particles that appear to be infectious, yet the replication capacity of these viruses and potential pathogenicity has been difficult to ascertain. In this report, we screened the efficacy of commercially available reverse transcriptase inhibitors (RTIs) at inhibiting the enzymatic activity of HK2 RT and HK2 genomic replication. Interestingly, only one provirus, K103, was found to encode a functional RT among those examined. Several nucleoside analogue RTIs (NRTIs) blocked K103 RT activity and consistently inhibited the replication of HK2 genomes. The NRTIs zidovudine (AZT), stavudine (d4T), didanosine (ddI), and lamivudine (3TC), and the nucleotide RTI inhibitor tenofovir (TDF), show efficacy in blocking K103 RT. HIV-1-specific nonnucleoside RTIs (NNRTIs), protease inhibitors (PIs), and integrase inhibitors (IIs) did not affect HK2, except for the NNRTI etravirine (ETV). The inhibition of HK2 infectivity by NRTIs appears to take place at either the reverse transcription step of the viral genome prior to HK2 viral particle formation and/or in the infected cells. Inhibition of HK2 by these drugs will be useful in suppressing HK2 infectivity if these viruses prove to be pathogenic in cancer, neurological disorders, or other diseases associated with HK2. The present studies also elucidate a key aspect of the life cycle of HK2, specifically addressing how they do, and/or did, replicate.IMPORTANCE Endogenous retroviruses are relics of ancestral virus infections in the human genome. The most recent of these infections was caused by HK2. While HK2 often remains silent in the genome, this group of viruses is activated in HIV-1-infected and cancer cells. Recent evidence suggests that these viruses are infectious, and the potential exists for HK2 to contribute to disease. We show that HK2, and specifically the enzyme that mediates virus replication, can be inhibited by a panel of drugs that are commercially available. We show that several drugs block HK2 with different efficacies. The inhibition of HK2 replication by antiretroviral drugs appears to occur in the virus itself as well as after infection of cells. Therefore, these drugs might prove to be an effective treatment by suppressing HK2 infectivity in diseases where these viruses have been implicated, such as cancer and neurological syndromes.
Collapse
|
11
|
Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci U S A 2016; 113:E2326-34. [PMID: 27001843 DOI: 10.1073/pnas.1602336113] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) have contributed to more than 8% of the human genome. The majority of these elements lack function due to accumulated mutations or internal recombination resulting in a solitary (solo) LTR, although members of one group of human ERVs (HERVs), HERV-K, were recently active with members that remain nearly intact, a subset of which is present as insertionally polymorphic loci that include approximately full-length (2-LTR) and solo-LTR alleles in addition to the unoccupied site. Several 2-LTR insertions have intact reading frames in some or all genes that are expressed as functional proteins. These properties reflect the activity of HERV-K and suggest the existence of additional unique loci within humans. We sought to determine the extent to which other polymorphic insertions are present in humans, using sequenced genomes from the 1000 Genomes Project and a subset of the Human Genome Diversity Project panel. We report analysis of a total of 36 nonreference polymorphic HERV-K proviruses, including 19 newly reported loci, with insertion frequencies ranging from <0.0005 to >0.75 that varied by population. Targeted screening of individual loci identified three new unfixed 2-LTR proviruses within our set, including an intact provirus present at Xq21.33 in some individuals, with the potential for retained infectivity.
Collapse
|
12
|
Weber S, Jung S, Doerfler W. DNA methylation and transcription in HERV (K, W, E) and LINE sequences remain unchanged upon foreign DNA insertions. Epigenomics 2016; 8:157-65. [DOI: 10.2217/epi.15.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aim: DNA methylation and transcriptional profiles were determined in the regulatory sequences of the human endogenous retroviral (HERV-K, -W, -E) and LINE-1.2 elements and were compared between non-transgenomic and plasmid-transgenomic cells. Methods: DNA methylation profiles in the HERV (K, W, E) and LINE sequences were determined by bisulfite genomic sequencing. The transcription of these genome segments was assessed by quantitative real-time PCR. Results: In HERV-K, HERV-W and LINE-1.2 the levels of DNA methylation ranged between 75 and 98%, while in HERV-E they were around 60%. Nevertheless, the HERV and LINE-1.2 sequences were actively transcribed. No differences were found in comparisons of HERV and LINE-1.2 CpG methylation and transcription patterns between non-transgenomic and plasmid-transgenomic HCT116 cells. Conclusion: The insertion of a 5.6 kbp plasmid into the HCT116 genome had no effect on the HERV and LINE-1.2 methylation and transcription profiles, although other parts of the HCT116 genome had shown marked changes. These repetitive sequences are transcribed, probably because the large number of HERV and LINE-1.2 elements harbor copies with non- or hypo-methylated long terminal repeat sequences.
Collapse
Affiliation(s)
- Stefanie Weber
- Institute of Clinical & Molecular Virology, University Erlangen-Nürnberg Medical School, 91054 Erlangen, Germany
| | - Susan Jung
- Pediatric Research Center, University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Walter Doerfler
- Institute of Clinical & Molecular Virology, University Erlangen-Nürnberg Medical School, 91054 Erlangen, Germany
- Institute of Genetics, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
13
|
Macfarlane CM, Badge RM. Genome-wide amplification of proviral sequences reveals new polymorphic HERV-K(HML-2) proviruses in humans and chimpanzees that are absent from genome assemblies. Retrovirology 2015; 12:35. [PMID: 25927962 PMCID: PMC4422153 DOI: 10.1186/s12977-015-0162-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, the human population census of proviruses of the Betaretrovirus-like human endogenous retroviral (HERV-K) (HML-2) family has been compiled from a limited number of complete genomes, making it certain that rare polymorphic loci are under-represented and are yet to be described. RESULTS Here we describe a suppression PCR-based method called genome-wide amplification of proviral sequences (GAPS) that selectively amplifies DNA fragments containing the termini of HERV-K(HML-2) proviral sequences and their flanking genomic sequences. We analysed the HERV-K(HML-2) proviral content of 101 unrelated humans, 4 common chimpanzees and three centre d'etude du polymorphisme humain (CEPH) pedigrees (44 individuals). The technique isolated HERV-K(HML-2) proviruses that had integrated in the genomes of the great apes throughout their divergence and included evolutionarily young elements still unfixed for presence/absence. CONCLUSIONS By examining the HERV-K(HML-2) proviral content of 145 humans we detected a new insertionally polymorphic Type I HERV-K(HML-2) provirus. We also observed provirus versus solo long terminal repeat (LTR) polymorphism within humans at a previously unreported, but ancient, locus. Finally, we report two novel chimpanzee specific proviruses, one of which is dimorphic for a provirus versus solo LTR. Thus GAPS enables the isolation of uncharacterised HERV-K(HML-2) proviral sequences and provides a direct means to assess inter-individual genetic variation associated with HERV-K(HML-2) proviruses.
Collapse
Affiliation(s)
- Catriona M Macfarlane
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Richard M Badge
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
14
|
Zahn J, Kaplan MH, Fischer S, Dai M, Meng F, Saha AK, Cervantes P, Chan SM, Dube D, Omenn GS, Markovitz DM, Contreras-Galindo R. Expansion of a novel endogenous retrovirus throughout the pericentromeres of modern humans. Genome Biol 2015; 16:74. [PMID: 25886262 PMCID: PMC4425911 DOI: 10.1186/s13059-015-0641-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/23/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Approximately 8% of the human genome consists of sequences of retroviral origin, a result of ancestral infections of the germ line over millions of years of evolution. The most recent of these infections is attributed to members of the human endogenous retrovirus type-K (HERV-K) (HML-2) family. We recently reported that a previously undetected, large group of HERV-K (HML-2) proviruses, which are descendants of the ancestral K111 infection, are spread throughout human centromeres. RESULTS Studying the genomes of certain cell lines and the DNA of healthy individuals that seemingly lack K111, we discover new HERV-K (HML-2) members hidden in pericentromeres of several human chromosomes. All are related through a common ancestor, termed K222, which is a virus that infected the germ line approximately 25 million years ago. K222 exists as a single copy in the genomes of baboons and high order primates, but not New World monkeys, suggesting that progenitor K222 infected the primate germ line after the split between New and Old World monkeys. K222 exists in modern humans at multiple loci spread across the pericentromeres of nine chromosomes, indicating it was amplified during the evolution of modern humans. CONCLUSIONS Copying of K222 may have occurred through recombination of the pericentromeres of different chromosomes during human evolution. Evidence of recombination between K111 and K222 suggests that these retroviral sequences have been templates for frequent cross-over events during the process of centromere recombination in humans.
Collapse
Affiliation(s)
- Joseph Zahn
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mark H Kaplan
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Sabrina Fischer
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Manhong Dai
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Anjan Kumar Saha
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Patrick Cervantes
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Susana M Chan
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Derek Dube
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Gilbert S Omenn
- Departments of Computational Medicine and Bioinformatics, Internal Medicine, and Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - David M Markovitz
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, 48109-5640, USA.
| | - Rafael Contreras-Galindo
- Department of Internal Medicine, Division of Infectious Diseases and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, 48109-5640, USA.
| |
Collapse
|
15
|
Wildschutte JH, Ram D, Subramanian R, Stevens VL, Coffin JM. The distribution of insertionally polymorphic endogenous retroviruses in breast cancer patients and cancer-free controls. Retrovirology 2014; 11:62. [PMID: 25112280 PMCID: PMC4149278 DOI: 10.1186/s12977-014-0062-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/18/2014] [Indexed: 12/31/2022] Open
Abstract
Background Integration of retroviral DNA into a germ cell can result in a provirus that is transmitted vertically to the host’s offspring. In humans, such endogenous retroviruses (HERVs) comprise >8% of the genome. The HERV-K(HML-2) proviruses consist of ~90 elements related to mouse mammary tumor virus, which causes breast cancer in mice. A subset of HERV-K(HML-2) proviruses has some or all genes intact, and even encodes functional proteins, though a replication competent copy has yet to be observed. More than 10% of HML-2 proviruses are human-specific, having integrated subsequent to the Homo-Pan divergence, and, of these, 11 are currently known to be polymorphic in integration site with variable frequencies among individuals. Increased expression of the most recent HML-2 proviruses has been observed in tissues and cell lines from several types of cancer, including breast cancer, for which expression may provide a meaningful marker of the disease. Results In this study, we performed a case–control analysis to investigate the possible relationship between the genome-wide presence of individual polymorphic HML-2 proviruses with the occurrence of breast cancer. For this purpose, we screened 50 genomic DNA samples from individuals diagnosed with breast cancer or without history of the disease (n = 25 per group) utilizing a combination of locus-specific PCR screening, in silico analysis of HML-2 content within the reference human genome sequence, and high-resolution genomic hybridization in semi-dried agarose. By implementing this strategy, we were able to analyze the distribution of both annotated and previously undescribed polymorphic HML-2 proviruses within our sample set, and to assess their possible association with disease outcome. Conclusions In a case–control analysis of 50 humans with regard to breast cancer diagnosis, we found no significant difference in the prevalence of proviruses between groups, suggesting common polymorphic HML-2 proviruses are not associated with breast cancer. Our findings indicate a higher level of putatively novel HML-2 sites within the population, providing support for additional recent insertion events, implying ongoing, yet rare, activities. These findings do not rule out either the possibility of involvement of such proviruses in a subset of breast cancers, or their possible utility as tissue-specific markers of disease.
Collapse
Affiliation(s)
| | | | | | | | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston 02111, MA, USA.
| |
Collapse
|
16
|
Cherkasova E, Weisman Q, Childs RW. Endogenous retroviruses as targets for antitumor immunity in renal cell cancer and other tumors. Front Oncol 2013; 3:243. [PMID: 24062992 PMCID: PMC3775266 DOI: 10.3389/fonc.2013.00243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs), remnants of ancient germ-line infections with exogenous retroviruses, are estimated to comprise up to 8% of human genome. Most HERVs have accumulated mutations and deletions that prevent their expression as an infectious virus. Nevertheless, a growing number of HERV genes and proteins have been found to be expressed in different cancers, raising the possibility that HERV-derived antigens might represent excellent targets for tumor immunotherapy. Here, we review data showing HERV-encoded antigens are capable of eliciting humoral and T-cells specific antitumor immunity. We also describe a novel HERV-E that was recently found to be selectively expressed in over 80% of clear cell kidney cancer but not in normal tissues. Remarkably, the restricted expression of HERV-E in kidney tumors was found to occur as a consequence of inactivation of the von Hippel-Lindau tumor suppressor. Importantly, antigens derived from this provirus are immunogenic, stimulating cytotoxic T-cells that kill kidney cancer cells in vitro and in vivo. Taken altogether, these data suggest efforts aimed at boosting human immunity against HERV-derived antigens could be used as a strategy to treat advanced tumors including kidney cancer.
Collapse
Affiliation(s)
- Elena Cherkasova
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, MD , USA
| | | | | |
Collapse
|
17
|
Schmitt K, Reichrath J, Roesch A, Meese E, Mayer J. Transcriptional profiling of human endogenous retrovirus group HERV-K(HML-2) loci in melanoma. Genome Biol Evol 2013; 5:307-28. [PMID: 23338945 PMCID: PMC3590776 DOI: 10.1093/gbe/evt010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease.
Collapse
Affiliation(s)
- Katja Schmitt
- Institute of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
18
|
Contreras-Galindo R, Kaplan MH, He S, Contreras-Galindo AC, Gonzalez-Hernandez MJ, Kappes F, Dube D, Chan SM, Robinson D, Meng F, Dai M, Gitlin SD, Chinnaiyan AM, Omenn GS, Markovitz DM. HIV infection reveals widespread expansion of novel centromeric human endogenous retroviruses. Genome Res 2013; 23:1505-13. [PMID: 23657884 PMCID: PMC3759726 DOI: 10.1101/gr.144303.112] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 04/30/2013] [Indexed: 12/17/2022]
Abstract
Human endogenous retroviruses (HERVs) make up 8% of the human genome. The HERV-K (HML-2) family is the most recent group of these viruses to have inserted into the genome, and we have detected the activation of HERV-K (HML-2) proviruses in the blood of patients with HIV-1 infection. We report that HIV-1 infection activates expression of a novel HERV-K (HML-2) provirus, termed K111, present in multiple copies in the centromeres of chromosomes throughout the human genome yet not annotated in the most recent human genome assembly. Infection with HIV-1 or stimulation with the HIV-1 Tat protein leads to the activation of K111 proviruses. K111 is present as a single copy in the genome of the chimpanzee, yet K111 is not found in the genomes of other primates. Remarkably, K111 proviruses appear in the genomes of the extinct Neanderthal and Denisovan, while modern humans have at least 100 K111 proviruses spread across the centromeres of 15 chromosomes. Our studies suggest that the progenitor K111 integrated before the Homo-Pan divergence and expanded in copy number during the evolution of hominins, perhaps by recombination. The expansion of K111 provides sequence evidence suggesting that recombination between the centromeres of various chromosomes took place during the evolution of humans. K111 proviruses show significant sequence variations in each individual centromere, which may serve as markers in future efforts to annotate human centromere sequences. Further, this work is an example of the potential to discover previously unknown genomic sequences through the analysis of nucleic acids found in the blood of patients.
Collapse
Affiliation(s)
- Rafael Contreras-Galindo
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mark H. Kaplan
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shirley He
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Angie C. Contreras-Galindo
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Marta J. Gonzalez-Hernandez
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Derek Dube
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Susana M. Chan
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dan Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Manhong Dai
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Scott D. Gitlin
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Veteran Affairs Health System, Ann Arbor, Michigan 48105, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Howard Hughes Medical Institute
| | - Gilbert S. Omenn
- Departments of Computational Medicine and Bioinformatics, Internal Medicine, and Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David M. Markovitz
- Department of Internal Medicine, and Programs in Immunology, Cancer Biology, and Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
19
|
Betaretroviral envelope subunits are noncovalently associated and restricted to the mammalian class. J Virol 2012; 87:1937-46. [PMID: 23221553 DOI: 10.1128/jvi.01442-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The structure of the transmembrane subunit (TM) of the retroviral envelope glycoprotein (Env) is highly conserved among most retrovirus genera and includes a pair of cysteines that forms an intramolecular disulfide loop within the ectodomain. Alpha-, gamma-, and deltaretroviruses have a third cysteine, adjacent to the loop, which forms a disulfide bond between TM and the surface subunit (SU) of Env, while lentiviruses, which have noncovalently associated subunits, lack this third cysteine. The Betaretrovirus genus includes Jaagsiekte sheep retrovirus (JSRV) and mouse mammary tumor virus (MMTV), as well as many endogenous retroviruses. Envelope subunit association had not been characterized in the betaretroviruses, but lack of a third cysteine in the TM ectodomain suggested noncovalently associated subunits. We tested the Env proteins of JSRV and MMTV, as well as human endogenous retrovirus K (HERV-K)108--a betaretrovirus-like human endogenous retrovirus--for intersubunit bonding and found that, as in the lentiviruses, the Env subunits lack an intersubunit disulfide bond. Since these results suggest that the number of cysteines in the TM loop region readily distinguishes between covalent and noncovalent structure, we surveyed endogenous retroviral TM sequences in the genomes of vertebrates represented in public databases and found that (i) retroviruses with noncovalently associated subunits have been present during all of anthropoid evolution and (ii) the noncovalent env motif is limited to mammals, while the covalent type is found among five vertebrate classes. We discuss implications of these findings for retroviral evolution, cross-species transmissions, and recombination events involving the env gene.
Collapse
|
20
|
Jones RB, Garrison KE, Mujib S, Mihajlovic V, Aidarus N, Hunter DV, Martin E, John VM, Zhan W, Faruk NF, Gyenes G, Sheppard NC, Priumboom-Brees IM, Goodwin DA, Chen L, Rieger M, Muscat-King S, Loudon PT, Stanley C, Holditch SJ, Wong JC, Clayton K, Duan E, Song H, Xu Y, SenGupta D, Tandon R, Sacha JB, Brockman MA, Benko E, Kovacs C, Nixon DF, Ostrowski MA. HERV-K-specific T cells eliminate diverse HIV-1/2 and SIV primary isolates. J Clin Invest 2012; 122:4473-89. [PMID: 23143309 DOI: 10.1172/jci64560] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022] Open
Abstract
The genetic diversity of HIV-1 represents a major challenge in vaccine development. In this study, we establish a rationale for eliminating HIV-1-infected cells by targeting cellular immune responses against stable human endogenous retroviral (HERV) antigens. HERV DNA sequences in the human genome represent the remnants of ancient infectious retroviruses. We show that the infection of CD4+ T cells with HIV-1 resulted in transcription of the HML-2 lineage of HERV type K [HERV-K(HML-2)] and the expression of Gag and Env proteins. HERV-K(HML-2)-specific CD8+ T cells obtained from HIV-1-infected human subjects responded to HIV-1-infected cells in a Vif-dependent manner in vitro. Consistent with the proposed mode of action, a HERV-K(HML-2)-specific CD8+ T cell clone exhibited comprehensive elimination of cells infected with a panel of globally diverse HIV-1, HIV-2, and SIV isolates in vitro. We identified a second T cell response that exhibited cross-reactivity between homologous HIV-1-Pol and HERV-K(HML-2)-Pol determinants, raising the possibility that homology between HIV-1 and HERVs plays a role in shaping, and perhaps enhancing, the T cell response to HIV-1. This justifies the consideration of HERV-K(HML-2)-specific and cross-reactive T cell responses in the natural control of HIV-1 infection and for exploring HERV-K(HML-2)-targeted HIV-1 vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- R Brad Jones
- Department of Immunology, University of Toronto, and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia 2012; 13:1081-92. [PMID: 22131883 DOI: 10.1593/neo.11794] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 12/20/2022] Open
Abstract
The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV)-K with 5'LTR-gag-pro-pol-env-rec/np9-3'LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and teratocarcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR) remains obscure. We studied chromosomal HERV-K expression in MeWo melanoma cells in comparison with the basal expression in human embryonic kidney 293 (HEK293) cells. Cloned LTR of HERV-K (HML-2.HOM) was also characterized by mutation and transactivation experiments. We detected multiple transcriptional initiator (Inr) sites in the LTR by rapid amplification of complementary DNA ends (5' RACE). HEK293 and MeWo showed different Inr usage. The most potent Inr was associated with a TATA box and three binding motifs of microphthalmia-associated transcription factor (MITF). Both chromosomal HERV-K expression and the cloned LTR function were strongly activated in HEK293 by transfection with MITF-M, a melanocyte/melanoma-specific isoform of MITF. Coexpression of MITF and the HERV-K core antigen was detected in retinal pigmented epithelium by an immunofluorescence analysis. Although malignant melanoma lines MeWo, G361, and SK-MEL-28 showed enhanced HERV-K transcription compared with normal melanocytes, the level of MITF-M messenger RNA persisted from normal to transformed melanocytes. Thus, MITF-M may be a prerequisite for the pigmented cell lineage-specific function of HERV-K LTR, leading to the high-level expression in malignant melanomas.
Collapse
|
22
|
Jones RB, John VM, Hunter DV, Martin E, Mujib S, Mihajlovic V, Burgers PC, Luider TM, Gyenes G, Sheppard NC, Sengupta D, Tandon R, Yue FY, Benko E, Kovacs C, Nixon DF, Ostrowski MA. Human endogenous retrovirus K(HML-2) Gag- and Env-specific T-cell responses are infrequently detected in HIV-1-infected subjects using standard peptide matrix-based screening. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:288-92. [PMID: 22205657 PMCID: PMC3272926 DOI: 10.1128/cvi.05583-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/16/2011] [Indexed: 11/20/2022]
Abstract
T-cell responses to human endogenous retrovirus (HERV) K(HML-2) Gag and Env were mapped in HIV-1-infected subjects using 15 mer peptides. Small peptide pools and high concentrations were used to maximize sensitivity. In the 23 subjects studied, only three bona fide HERV-K(HML-2)-specific responses were detected. At these high peptide concentrations, we detected false-positive responses, three of which were mapped to an HIV-1 Gag peptide contaminant. Thus, HERV-K(HML-2) Gag- and Env-specific T-cell responses are infrequently detected by 15 mer peptide mapping.
Collapse
Affiliation(s)
- R Brad Jones
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Blomberg J, Benachenhou F, Blikstad V, Sperber G, Mayer J. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 2009; 448:115-23. [PMID: 19540319 DOI: 10.1016/j.gene.2009.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 06/09/2009] [Accepted: 06/12/2009] [Indexed: 01/27/2023]
Abstract
The genomes of many species are crowded with repetitive mobile sequences. In the case of endogenous retroviruses (ERVs) there is, for various reasons, considerable confusion regarding names assigned to families/groups of ERVs as well as individual ERV loci. Human ERVs have been studied in greater detail, and naming of HERVs in the scientific literature is somewhat confusing not just to the outsider. Without guidelines, confusion for ERVs in other species will also probably increase if those ERVs are studied in greater detail. Based on previous experience, this review highlights some of the problems when naming and classifying ERVs, and provides some guidance for detecting and characterizing ERV sequences. Because of the close relationship between ERVs and exogenous retroviruses (XRVs) it is reasonable to reconcile their classification with that of XRVs. We here argue that classification should be based on a combination of similarity, structural features, (inferred) function, and previous nomenclature. Because the RepBase system is widely employed in genome annotation, RepBase designations should be considered in further taxonomic efforts. To lay a foundation for a phylogenetically based taxonomy, further analyses of ERVs in many hosts are needed. A dedicated, permanent, international consortium would best be suited to integrate and communicate our current and future knowledge on repetitive, mobile elements in general to the scientific community.
Collapse
Affiliation(s)
- Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Academic Hospital, 75185 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Ruggieri A, Maldener E, Sauter M, Mueller-Lantzsch N, Meese E, Fackler OT, Mayer J. Human endogenous retrovirus HERV-K(HML-2) encodes a stable signal peptide with biological properties distinct from Rec. Retrovirology 2009; 6:17. [PMID: 19220907 PMCID: PMC2649029 DOI: 10.1186/1742-4690-6-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/16/2009] [Indexed: 11/26/2022] Open
Abstract
Background The human endogenous retrovirus HERV-K(HML-2) family is associated with testicular germ cell tumors (GCT). Various HML-2 proviruses encode viral proteins such as Env and Rec. Results We describe here that HML-2 Env gives rise to a 13 kDa signal peptide (SP) that harbors a different C-terminus compared to Rec. Subsequent to guiding Env to the endoplasmatic reticulum (ER), HML-2 SP is released into the cytosol. Biochemical analysis and confocal microscopy demonstrated that similar to Rec, SP efficiently translocates to the granular component of nucleoli. Unlike Rec, SP does not shuttle between nucleus and cytoplasm. SP is less stable than Rec as it is subjected to proteasomal degradation. Moreover, SP lacks export activity towards HML-2 genomic RNA, the main function of Rec in the original viral context, and SP does not interfere with Rec's RNA export activity. Conclusion SP is a previously unrecognized HML-2 protein that, besides targeting and translocation of Env into the ER lumen, may exert biological functions distinct from Rec. HML-2 SP represents another functional similarity with the closely related Mouse Mammary Tumor Virus that encodes an Env-derived SP named p14. Our findings furthermore support the emerging concept of bioactive SPs as a conserved retroviral strategy to modulate their host cell environment, evidenced here by a "retroviral fossil". While the specific role of HML-2 SP remains to be elucidated in the context of human biology, we speculate that it may be involved in immune evasion of GCT cells or tumorigenesis.
Collapse
Affiliation(s)
- Alessia Ruggieri
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The capacity to integrate into the chromosomal DNA of germ-line cells has endowed retroviruses with the potential to be vertically transmitted from generation to generation and eventually become fixed in the genomes of the entire population. This has been independently accomplished by several ancient retroviruses that invaded the genomes of our early and more recent primate and hominoid ancestors. Some of the inherited elements then proliferated in the genome, resulting in a number of lineages with complex phylogenetic patterns. Although the vast majority of chromosomally integrated retroelements have suffered inactivating mutations and deletions, a significant impact on various aspects of human biology has been recently revealed and evidence for the present activity of at least one human endogenous retrovirus family continues to accumulate.
Collapse
|
26
|
Voisset C, Weiss RA, Griffiths DJ. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 2008; 72:157-96, table of contents. [PMID: 18322038 PMCID: PMC2268285 DOI: 10.1128/mmbr.00033-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.
Collapse
Affiliation(s)
- Cécile Voisset
- CNRS-UMR8161, Institut de Biologie de Lille et Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
27
|
Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genes Dev 2006; 16:1548-56. [PMID: 17077319 PMCID: PMC1665638 DOI: 10.1101/gr.5565706] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Accepted: 08/30/2006] [Indexed: 12/25/2022]
Abstract
Human Endogenous Retroviruses are expected to be the remnants of ancestral infections of primates by active retroviruses that have thereafter been transmitted in a Mendelian fashion. Here, we derived in silico the sequence of the putative ancestral "progenitor" element of one of the most recently amplified family - the HERV-K family - and constructed it. This element, Phoenix, produces viral particles that disclose all of the structural and functional properties of a bona-fide retrovirus, can infect mammalian, including human, cells, and integrate with the exact signature of the presently found endogenous HERV-K progeny. We also show that this element amplifies via an extracellular pathway involving reinfection, at variance with the non-LTR-retrotransposons (LINEs, SINEs) or LTR-retrotransposons, thus recapitulating ex vivo the molecular events responsible for its dissemination in the host genomes. We also show that in vitro recombinations among present-day human HERV-K (also known as ERVK) loci can similarly generate functional HERV-K elements, indicating that human cells still have the potential to produce infectious retroviruses.
Collapse
Affiliation(s)
- Marie Dewannieux
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Francis Harper
- Laboratoire de Réplication de l’ADN et Ultrastructure du Noyau, UPR1983 Institut André Lwoff, 94801 Villejuif Cedex, France
| | - Aurélien Richaud
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Claire Letzelter
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - David Ribet
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Gérard Pierron
- Laboratoire de Réplication de l’ADN et Ultrastructure du Noyau, UPR1983 Institut André Lwoff, 94801 Villejuif Cedex, France
| | - Thierry Heidmann
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| |
Collapse
|
28
|
Mayer J, Meese E. Human endogenous retroviruses in the primate lineage and their influence on host genomes. Cytogenet Genome Res 2005; 110:448-56. [PMID: 16093697 DOI: 10.1159/000084977] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 01/30/2004] [Indexed: 10/25/2022] Open
Abstract
Primates emerged about 60 million years ago. Since that time various primate-targeting retroviruses have integrated in the germ line of primate species, and some drifted to fixation. After germ line fixation, continued activity of proviruses resulted in intragenomic spread of so-called endogenous retroviruses (ERVs). Variant ERVs emerged, amplified in the genome and profoundly altered genome structures and potentially functionality. Importantly, ERVs are genome modifiers of exogenous origin. The human genome contains about 8% of sequences of retroviral origin. The human ERVs (HERVs) comprise many distinct families that amplified to copy numbers of up to several thousand. We review here the evolution of several well-characterized HERV families in the human lineage since initial germ line fixation. It is apparent that endogenous retroviruses profoundly affected the genomes of species in the evolutionary lineage leading to Homo sapiens.
Collapse
Affiliation(s)
- J Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany.
| | | |
Collapse
|
29
|
Mayer J, Stuhr T, Reus K, Maldener E, Kitova M, Asmus F, Meese E. Haplotype analysis of the human endogenous retrovirus locus HERV-K(HML-2.HOM) and its evolutionary implications. J Mol Evol 2005; 61:706-15. [PMID: 16211423 DOI: 10.1007/s00239-005-0066-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
We and others recently identified an almost-intact human endogenous retrovirus (HERV), termed HERV-K(HML-2.HOM), that is usually organized as a tandem provirus. Studies on HERV proviral loci commonly rely on the analysis of single alleles being taken as representative for a locus. We investigated the frequency of HERV-K(HML-2.HOM) single and tandem alleles in various human populations. Our analysis revealed that another HERV-K(HML-2) locus, the so-called HERV-K(II) provirus, is also present as a tandem provirus allele in the human population. Proviral tandem formations were identified in various nonhuman primate species. We furthermore examined single nucleotide polymorphisms (SNPs) within the HERV-K(HML-2.HOM) proviral gag, prt, and pol genes, which all result in nonsense mutations. We identified four proviral haplotypes displaying different combinations of gag, prt, and pol SNPs. Haplotypes harboring completely intact proviral genes were not found. For the left provirus of the tandem arrangement a haplotype displaying intact gag and prt genes and a mutated pol was found in about two-thirds of individuals from different ethnogeographic origins. The same haplotype was always found in the right provirus. The various haplotypes point toward multiple recombination events between HERV-K(HML-2.HOM) proviruses. Based on these findings we derive a model for the evolution of the proviral locus since germ line integration.
Collapse
Affiliation(s)
- Jens Mayer
- Department of Human Genetics, Bulding 60, Medical Faculty, University of Saarland, 66421 Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Macfarlane C, Simmonds P. Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J Mol Evol 2005; 59:642-56. [PMID: 15693620 DOI: 10.1007/s00239-004-2656-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient germ cell infection by exogenous retroviruses and occupy up to 8% of the human genome. It has been suggested that HERV sequences have contributed to primate evolution by regulating the expression of cellular genes and mediating chromosome rearrangements. After integration approximately 28 million years ago, members of the HERV-K (HML-2) family have continued to amplify and recombine. To investigate the utility of HML-2 polymorphisms as markers for the study of more recent human evolution, we compiled a list of the structure and integration sites of sequences that are unique to humans and screened each insertion for polymorphism within the human genome databases. Of the total of 74 HML-2 sequences, 18 corresponded to complete or near-complete proviruses, 49 were solitary long terminal repeats (LTRs), 6 were incomplete LTRs, and 1 was a SVA retrotransposon. A number of different allelic configurations were identified including the alternation of a provirus and solitary LTR. We developed polymerase chain reaction-based assays for seven HML-2 loci and screened 109 human DNA samples from Africa, Europe, Asia, and Southeast Asia. Our results indicate that the diversity of HML-2 elements is higher in African than non-African populations, with population differentiation values ranging from 0.6 to 9.8%. These findings denote a recent expansion from Africa. We compare the phylogenetic relationships of HML-2 sequences that are unique to humans and consider whether these elements have played a role in the remodeling of the hominid genome.
Collapse
Affiliation(s)
- Catriona Macfarlane
- Center for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, Scotland EH9 1QH, UK.
| | | |
Collapse
|
31
|
Lavie L, Kitova M, Maldener E, Meese E, Mayer J. CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 2005; 79:876-83. [PMID: 15613316 PMCID: PMC538560 DOI: 10.1128/jvi.79.2.876-883.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A significant proportion of the human genome consists of stably inherited retroviral sequences. Most human endogenous retroviruses (HERVs) became defective over time. The HERV-K(HML-2) family is exceptional because of its coding capacity and the possible involvement in germ cell tumor (GCT) development. HERV-K(HML-2) transcription is strongly upregulated in GCTs. However, regulation of HERV-K(HML-2) transcription remains poorly understood. We investigated in detail the role of CpG methylation on the transcriptional activity of HERV-K(HML-2) long terminal repeats (LTRs). We find that CpG sites in various HERV-K(HML-2) proviral 5' LTRs are methylated at different levels in the cell line Tera-1. Methylation levels correlate with previously observed transcriptional activities of these proviruses. CpG-mediated silencing of HERV-K(HML-2) LTRs is further corroborated by transcriptional inactivity of in vitro-methylated 5' LTR reporter plasmids. However, CpG methylation levels do not solely regulate HERV-K(HML-2) 5' LTR activity, as evidenced by different LTR activities in the cell line T47D. A significant number of mutated CpG sites in evolutionary old HERV-K(HML-2) 5' LTRs suggests that CpG methylation had already silenced HERV-K(HML-2) proviruses millions of years ago. Direct silencing of HERV-K(HML-2) expression by CpG methylation enlightens upregulated HERV-K(HML-2) expression in usually hypomethylated GCT tissue.
Collapse
Affiliation(s)
- Laurence Lavie
- Department of Human Genetics, Building 60, University of Saarland, Medical Faculty, 66421 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Ribet D, Dewannieux M, Heidmann T. An active murine transposon family pair: retrotransposition of "master" MusD copies and ETn trans-mobilization. Genome Res 2004; 14:2261-7. [PMID: 15479948 PMCID: PMC525684 DOI: 10.1101/gr.2924904] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ETn (Early Transposon) elements are among the most active murine mobile sequences, being responsible for a series of mutations by insertion in vivo. Yet they are noncoding, and it had long been suspected that ETn are mobilized in trans by coding-competent elements, most probably from the closely related MusD family of LTR-retrotransposons. A genome-wide in silico search for coding-competent MusD elements identified a total of nine such copies, which we cloned and marked to test their transpositional activity, using an ex vivo assay in heterologous cells. Three copies were found to be autonomous for transposition, with each gag, pro, and pol MusD gene absolutely required for mobility. These active MusD copies specifically trigger retrotransposition of marked ETn elements with high efficiency, by complementation in trans. Characterization of the structures of de novo transposed MusD and ETn marked elements, as well as of their integration sites, disclosed canonical retroviral-like retrotransposition, with 6-bp target site duplications common to both elements. These results highlight the parasitic molecular strategies that are used by the ETn elements for their mobility, and unambiguously identify their "master genes."
Collapse
Affiliation(s)
- David Ribet
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | |
Collapse
|
33
|
Villesen P, Aagaard L, Wiuf C, Pedersen FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology 2004; 1:32. [PMID: 15476554 PMCID: PMC524368 DOI: 10.1186/1742-4690-1-32] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/11/2004] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. RESULTS By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs) and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV) while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD). CONCLUSIONS This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at http://www.retrosearch.dk.
Collapse
Affiliation(s)
- Palle Villesen
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Lars Aagaard
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Carsten Wiuf
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus, Denmark
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus, Denmark
| |
Collapse
|
34
|
Mayer J, Ehlhardt S, Seifert M, Sauter M, Müller-Lantzsch N, Mehraein Y, Zang KD, Meese E. Human endogenous retrovirus HERV-K(HML-2) proviruses with Rec protein coding capacity and transcriptional activity. Virology 2004; 322:190-8. [PMID: 15063128 DOI: 10.1016/j.virol.2004.01.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/09/2004] [Accepted: 01/26/2004] [Indexed: 11/17/2022]
Abstract
The human endogenous retrovirus family HERV-K(HML-2) encodes the so-called Rec protein that displays functional similarities to the HIV(REV) protein. The number of proviruses producing Rec protein was hitherto unknown. We therefore analyzed the human genome sequence data and determined seven HERV-K(HML-2) proviruses potentially capable of producing Rec both on the mRNA and the protein level. We analyzed Rec mRNA expression in the Tera-1 cell line and in synovial tissue, and in the expressed sequence tag (EST) database. Diagnostic nucleotides assigned transcriptionally active and Rec-encoding proviruses to human chromosomes 6, 7, 11, and 12. Differently spliced mRNAs were also identified. The various active proviruses encode almost identical Rec proteins. Our study contributes to the understanding of the biology of HERV-K(HML-2) Rec protein. Our study further demonstrates that minor sequence differences among proviruses allow assigning HERV transcripts to particular proviral loci. Extended studies will eventually yield a more complete image of HERV transcription, regulation, and biological significance in diverse human tissues.
Collapse
Affiliation(s)
- Jens Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hughes JF, Coffin JM. Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Natl Acad Sci U S A 2004; 101:1668-72. [PMID: 14757818 PMCID: PMC341815 DOI: 10.1073/pnas.0307885100] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are a potential source of genetic diversity in the human genome. Although many of these elements have been inactivated over time by the accumulation of deleterious mutations or internal recombination leading to solo-LTR formation, several members of the HERV-K family have been identified that remain nearly intact and probably represent recent integration events. To determine whether HERV-K elements have caused recent changes in the human genome, we have undertaken a study of the level of HERV-K polymorphism that exists in the human population. By using a high-resolution unblotting technique, we analyzed 13 human-specific HERV-K elements in 18 individuals. We found that solo LTRs have formed at five of these loci. These results enable the estimation of HERV solo-LTR formation in the human genome and indicate that these events occur much more frequently than described in inbred mice. Detailed sequence analysis of one provirus shows that solo-LTR formation occurred at least three separate times in recent history. An unoccupied preintegration site also was present at this locus in two individuals, indicating that although the age of this provirus is estimated to be approximately 1.2 million years, it has not yet become fixed in the human population.
Collapse
Affiliation(s)
- Jennifer F Hughes
- Department of Molecular Biology and Microbiology and Program in Genetics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
36
|
de Parseval N, Lazar V, Casella JF, Benit L, Heidmann T. Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 2003; 77:10414-22. [PMID: 12970426 PMCID: PMC228468 DOI: 10.1128/jvi.77.19.10414-10422.2003] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sequences of retroviral origin occupy approximately 8% of the human genome. Most of these "retroviral" genes have lost their coding capacities since their entry into our ancestral genome millions of years ago, but some reading frames have remained open, suggesting positive selection. The complete sequencing of the human genome allowed a systematic search for retroviral envelope genes containing an open reading frame and resulted in the identification of 16 genes that we have characterized. We further showed, by quantitative reverse transcriptase PCR using specifically devised primers which discriminate between coding and noncoding elements, that all 16 genes are expressed in at least some healthy human tissues, albeit at highly different levels. All envelope genes disclose significant expression in the testis, three of them have a very high level of expression in the placenta, and a fourth is expressed in the thyroid. Besides their primary role as key molecules for viral entry, the envelope genes of retroviruses can induce cell-cell fusion, elicit immunosuppressive effects, and even protect against infection, and as such, endogenous retroviral envelope proteins have been tentatively identified in several reports as being involved in both normal and pathological processes. The present study provides a comprehensive survey of candidate genes and tools for a precise evaluation of their involvement in these processes.
Collapse
Affiliation(s)
- Nathalie de Parseval
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, France
| | | | | | | | | |
Collapse
|
37
|
Carlson J, Lyon M, Bishop J, Vaiman A, Cribiu E, Mornex JF, Brown S, Knudson D, DeMartini J, Leroux C. Chromosomal distribution of endogenous Jaagsiekte sheep retrovirus proviral sequences in the sheep genome. J Virol 2003; 77:9662-8. [PMID: 12915578 PMCID: PMC187430 DOI: 10.1128/jvi.77.17.9662-9668.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A family of endogenous retroviruses (enJSRV) closely related to Jaagsiekte sheep retrovirus (JSRV) is ubiquitous in domestic and wild sheep and goats. Southern blot hybridization studies indicate that there is little active replication or movement of the enJSRV proviruses in these species. Two approaches were used to investigate the distribution of proviral loci in the sheep genome. Fluorescence in situ hybridization (FISH) to metaphase chromosome spreads using viral DNA probes was used to detect loci on chromosomes. Hybridization signals were reproducibly detected on seven sheep chromosomes and eight goat chromosomes in seven cell lines. In addition, a panel of 30 sheep-hamster hybrid cell lines, each of which carries one or more sheep chromosomes and which collectively contain the whole sheep genome, was examined for enJSRV sequences. DNA from each of the lines was used as a template for PCR with JSRV gag-specific primers. A PCR product was amplified from 27 of the hybrid lines, indicating that JSRV gag sequences are found on at least 15 of the 28 sheep chromosomes, including those identified by FISH. Thus, enJSRV proviruses are essentially randomly distributed among the chromosomes of sheep and goats. FISH and/or Southern blot hybridization on DNA from several of the sheep-hamster hybrid cell lines suggests that loci containing multiple copies of enJSRV are present on chromosomes 6 and 9. The origin and functional significance of these arrays is not known.
Collapse
Affiliation(s)
- Jonathan Carlson
- Department of Microbiology, Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The retroviral capacity for integration into the host genome can give rise to endogenous retroviruses (ERVs): retroviral sequences that are transmitted vertically as part of the host germ line, within which they may continue to replicate and evolve. ERVs represent both a unique archive of ancient viral sequence information and a dynamic component of host genomes. As such they hold great potential as informative markers for studies of both virus evolution and host genome evolution. Numerous novel ERVs have been described in recent years, particularly as genome sequencing projects have advanced. This review discusses the evolution of ERV lineages, considering the processes by which ERV distribution and diversity is generated. The diversity of ERVs isolated so far is summarised in terms of both their distribution across host taxa, and their relationships to recognised retroviral genera. Finally the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered, and recent findings discussed.
Collapse
Affiliation(s)
- Robert Gifford
- Department of Biological Sciences, Imperial College, Silwood Park, Buckhurst Road, Ascot Berkshire, SL5 7PY, UK
| | | |
Collapse
|
39
|
Abstract
Embedded in the genomes of all vertebrates are the proviral remnants of previous retroviral infections. Although the overwhelming majority has suffered inactivating mutations, current research suggests that members of one family of human retroelements may still be capable of movement.
Collapse
Affiliation(s)
- J P Stoye
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
40
|
Reus K, Mayer J, Sauter M, Zischler H, Müller-Lantzsch N, Meese E. HERV-K(OLD): ancestor sequences of the human endogenous retrovirus family HERV-K(HML-2). J Virol 2001; 75:8917-26. [PMID: 11533155 PMCID: PMC114460 DOI: 10.1128/jvi.75.19.8917-8926.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences homologous to the human endogenous retrovirus (HERV) family HERV-K(HML-2) are present in all Old World primate species. A previous study showed that a central region of the HERV-K(HML-2) gag genes in Hominoidea species displays a 96-bp deletion compared to the gag genes in lower Old World primates. The more ancient HERV-K(HML-2) sequences present in lower Old World primates were apparently not conserved during hominoid evolution, as opposed to the deletion variants. To further clarify the evolutionary origin of the HERV-K(HML-2) family, we screened GenBank with the 96-bp gag-sequence characteristic of lower Old World primates and identified, to date, 10 human sequence entries harboring either full-length or partially deleted proviral structures, probably representing remnants of a more ancient HERV-K(HML-2) variant. The high degree of mutations demonstrates the long-time presence of these HERV-K(OLD) proviruses in the genome. Nevertheless, they still belong to the HML-2 family as deduced from dot matrix and phylogenetic analyses. We estimate, based on the family ages of integrated Alu elements and on long terminal repeat (LTR) divergence data, that the average age of HERV-K(OLD) proviruses is ca. 28 million years, supporting an integration time before the evolutionary split of Hominoidea from lower Old World primates. Analysis of HERV-K(OLD) LTR sequences led to the distinction of two subgroups, both of which cluster with LTRs belonging to an evolutionarily older cluster. Taken together, our data give further insight into the evolutionary history of the HERV-K(HML-2) family during primate evolution.
Collapse
Affiliation(s)
- K Reus
- Institut für Humangenetik, Universitätskliniken des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|