1
|
Merta H, Isogai T, Paul B, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577043. [PMID: 38328045 PMCID: PMC10849733 DOI: 10.1101/2024.01.24.577043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knock-in technologies, here we map the proteomic landscape of the human ER and nuclear envelope. Spatial proteomics reveals enrichments of proteins into ER tubules, sheets, and nuclear envelope. We uncover an ER-enriched actin-binding protein, Calmin (CLMN), and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. CLMN depletion perturbs focal adhesion disassembly, actin dynamics, and cell movement. Mechanistically, CLMN-depleted cells also exhibit defects in calcium signaling near ER-actin interfaces, suggesting CLMN promotes calcium signaling near adhesions to facilitate their disassembly. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| |
Collapse
|
2
|
Venditti M, Donizetti A, Aniello F, Minucci S. EH domain binding protein 1-like 1 (EHBP1L1), a protein with calponin homology domain, is expressed in the rat testis. ZYGOTE 2020; 28:441-446. [PMID: 32795384 DOI: 10.1017/s0967199420000301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this paper, with the aim to find new genes involved in mammalian spermatogenesis, we isolated, for the first time in the rat testis, a partial cDNA clone that encoded EH domain binding protein 1-like 1 (Ehbp1l1), a protein that has a single calponin homology domain (CH). Bioinformatic analysis showed that EHBP1l1 contains three domains: the N-terminal C2-like, the CH and the C-terminal bivalent Mical/EHBP Rab binding (bMERB) domains, which are evolutionarily conserved in vertebrates. We found that Ehbp1l1 mRNA was expressed in several rat tissues, including the liver, intestine, kidney and also in the testis during its development, with a higher level in testis from 12-month-old animals. Interestingly, in situ hybridization experiments revealed that Ehbp1l1 is specifically expressed by types I and II spermatocytes, this result was validated by RT-PCR performed on total RNA obtained from enriched fractions of different testicular cell types. As EHBP1l1 has been described as linked to vesicular transport to the actin cytoskeleton and as an effector of the small GTPase Rab8, we hypothesized that it could participate both in cytoskeletal remodelling and in the regulation of vesicle sorting from the trans-Golgi network to the apical plasma membrane. Our findings provide a better understand of the molecular mechanisms of the differentiation process of spermatogenesis; Ehbp1l1 may also be used as a new marker of testicular activity.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate 'F. Bottazzi', Università degli Studi della Campania 'Luigi Vanvitelli' via Costantinopoli, 16-80138 - Napoli, Italy
| | - Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli 'Federico II, via Cinthia', 21-80126 - Napoli, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli 'Federico II, via Cinthia', 21-80126 - Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate 'F. Bottazzi', Università degli Studi della Campania 'Luigi Vanvitelli' via Costantinopoli, 16-80138 - Napoli, Italy
| |
Collapse
|
3
|
Lu Z, Ma Y, Zhang Q, Zhao X, Zhang Y, Zhang L. Proteomic analyses of ram (Ovis aries) testis during different developmental stages. Anim Reprod Sci 2017; 189:93-102. [PMID: 29279200 DOI: 10.1016/j.anireprosci.2017.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Male reproductive capacity is essential for animal breeding and reproduction. In males, the testes produce sperm and secrete androgen, processes which require precise regulation by multiple proteins. The composition of proteins in the ram testes has not yet been studied systematically, thus, the application of proteomics to explore differential protein regulation during ram testes development is of great significance. In the present study, ram testes were studied at five different developmental phases to assess postnatal differences in protein regulation. Two dimensional electrophoresis (2-DE) was used to separate ram testes proteins at each developmental phase, yielding 45 different proteins, 37 of which were identified by Matrix Assisted Laser Desorption Ionization-Time of Flight-Time of Flight-Mass Spectrometry (MALDI-TOF/TOF-MS). Gene Ontology (GO) was used to specifically annotate the biological process, cellular composition, and molecular function of each identified protein. Most of the identified proteins were involved in structural formation, development, reproduction, and apoptosis of the testicular spermatogenic tissue and spermatozoa. Quantitative real time PCR (qRT-PCR), western blot and immunohistochemical methods were used to verify the proteins, and the results were consistent with that of 2-DE. The proteins that were different in abundance that were identified in this study can be used as biomarkers in future studies of ram reproduction.
Collapse
Affiliation(s)
- Zengkui Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China.
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Baker MA, Aitken RJ. Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev Proteomics 2014; 6:691-705. [DOI: 10.1586/epr.09.76] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Abstract
Cardiovascular disease is a leading cause of death worldwide. Many pharmacologic therapies are available that aim to reduce the risk of cardiovascular disease but there is significant inter-individual variation in drug response, including both efficacy and toxicity. Pharmacogenetics aims to personalize medication choice and dosage to ensure that maximum clinical benefit is achieved whilst side effects are minimized. Over the past decade, our knowledge of pharmacogenetics in cardiovascular therapies has increased significantly. The anticoagulant warfarin represents the most advanced application of pharmacogenetics in cardiovascular medicine. Prospective randomized clinical trials are currently underway utilizing dosing algorithms that incorporate genetic polymorphisms in cytochrome P450 (CYP)2C9 and vitamin k epoxide reductase (VKORC1) to determine warfarin dosages. Polymorphisms in CYP2C9 and VKORC1 account for approximately 40 % of the variance in warfarin dose. There is currently significant controversy with regards to pharmacogenetic testing in anti-platelet therapy. Inhibition of platelet aggregation by aspirin in vitro has been associated with polymorphisms in the cyclo-oxygenase (COX)-1 gene. However, COX-1 polymorphisms did not affect clinical outcomes in patients prescribed aspirin therapy. Similarly, CYP2C19 polymorphisms have been associated with clopidogrel resistance in vitro, and have shown an association with stent thrombosis, but not with other cardiovascular outcomes in a consistent manner. Response to statins has been associated with polymorphisms in the cholesterol ester transfer protein (CETP), apolipoprotein E (APOE), 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, calmin (CLMN) and apolipoprotein-CI (APOC1) genes. Although these genes contribute to the variation in lipid levels during statin therapy, their effects on cardiovascular outcomes requires further investigation. Polymorphisms in the solute carrier organic anion transporter 1B1 (SLCO1B1) gene is associated with increased statin exposure and simvastatin-induced myopathy. Angiotensin-converting enzyme (ACE) inhibitors and β-adrenoceptor antagonists (β-blockers) are medications that are important in the management of hypertension and heart failure. Insertion and deletion polymorphisms in the ACE gene are associated with elevated and reduced serum levels of ACE, respectively. No significant association was reported between the polymorphism and blood pressure reduction in patients treated with perindopril. However, a pharmacogenetic score incorporating single nucleotide polymorphisms (SNPs) in the bradykinin type 1 receptor gene and angiotensin-II type I receptor gene predicted those most likely to benefit and suffer harm from perindopril therapy. Pharmacogenetic studies into β-blocker therapy have focused on variations in the β1-adrenoceptor gene and CYP2D6, but results have been inconsistent. Pharmacogenetic testing for ACE inhibitor and β-blocker therapy is not currently used in clinical practice. Despite extensive research, no pharmacogenetic tests are currently in clinical practice for cardiovascular medicines. Much of the research remains in the discovery phase, with researchers struggling to demonstrate clinical utility and validity. This is a problem seen in many areas of therapeutics and is because of many factors, including poor study design, inadequate sample sizes, lack of replication, and heterogeneity amongst patient populations and phenotypes. In order to progress pharmacogenetics in cardiovascular therapies, researchers need to utilize next-generation sequencing technologies, develop clear phenotype definitions and engage in multi-center collaborations, not only to obtain larger sample sizes but to replicate associations and confirm results across different ethnic groups.
Collapse
|
6
|
Delbes G, Yanagiya A, Sonenberg N, Robaire B. PABP interacting protein 2A (PAIP2A) regulates specific key proteins during spermiogenesis in the mouse. Biol Reprod 2012; 86:95. [PMID: 22190698 DOI: 10.1095/biolreprod.111.092619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermiogenesis, expression of the specific proteins needed for proper differentiation of male germ cells is under translational control. We have shown that PAIP2A is a major translational regulator involved in the maturation of male germ cells and male fertility. To identify the proteins controlled by PAIP2A during spermiogenesis, we characterized the proteomic profiles of elongated spermatids from wild-type (WT) mice and mice that were Paip2a/Paip2b double-null mutants (DKO). Elongated spermatid populations were obtained and proteins were extracted and separated on gradient polyacrylamide gels. The gels were digested with trypsin and peptides were identified by mass spectrometry. We identified 632 proteins with at least two unique peptides and a confidence level of 95%. Only 209 proteins were consistently detected in WT or DKO replicates with more than five spectra. Twenty-nine proteins were differentially expressed with at least a 1.5-fold change; 10 and 19 proteins were down- and up-regulated, respectively, in DKO compared to WT mice. We confirmed the significantly different expression levels of three proteins, EIF4G1, AKAP4, and HK1, by Western blot analysis. We have characterized novel proteins that have their expression controlled by PAIP2A; of these, 50% are involved in flagellar structure and sperm motility. Although several proteins affected by abrogation of Paip2a have established roles in reproduction, the roles of many others remain to be determined.
Collapse
Affiliation(s)
- Geraldine Delbes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Marzinke MA, Clagett-Dame M. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells. Exp Cell Res 2011; 318:85-93. [PMID: 22001116 DOI: 10.1016/j.yexcr.2011.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/27/2011] [Accepted: 10/01/2011] [Indexed: 12/22/2022]
Abstract
The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.
Collapse
Affiliation(s)
- Mark A Marzinke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | |
Collapse
|
8
|
Verschuren JJW, Trompet S, Wessels JAM, Guchelaar HJ, de Maat MPM, Simoons ML, Jukema JW. A systematic review on pharmacogenetics in cardiovascular disease: is it ready for clinical application? Eur Heart J 2011; 33:165-75. [PMID: 21804109 DOI: 10.1093/eurheartj/ehr239] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pharmacogenetics is the search for heritable genetic polymorphisms that influence responses to drug therapy. The most important application of pharmacogenetics is to guide choosing agents with the greatest potential of efficacy and smallest risk of adverse drug reactions. Many studies focusing on drug-gene interactions have been published in recent years, some of which led to adaptation of FDA recommendations, indicating that we are on the verge of the clinical application of genetic information in drug therapy. This systematic review provides a comprehensive overview of the current knowledge on pharmacogenetics of all major drug classes currently used in the treatment of cardiovascular diseases.
Collapse
|
9
|
Barber MJ, Mangravite LM, Hyde CL, Chasman DI, Smith JD, McCarty CA, Li X, Wilke RA, Rieder MJ, Williams PT, Ridker PM, Chatterjee A, Rotter JI, Nickerson DA, Stephens M, Krauss RM. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One 2010; 5:e9763. [PMID: 20339536 PMCID: PMC2842298 DOI: 10.1371/journal.pone.0009763] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background Statins effectively lower total and plasma LDL-cholesterol, but the magnitude of decrease varies among individuals. To identify single nucleotide polymorphisms (SNPs) contributing to this variation, we performed a combined analysis of genome-wide association (GWA) results from three trials of statin efficacy. Methods and Principal Findings Bayesian and standard frequentist association analyses were performed on untreated and statin-mediated changes in LDL-cholesterol, total cholesterol, HDL-cholesterol, and triglyceride on a total of 3932 subjects using data from three studies: Cholesterol and Pharmacogenetics (40 mg/day simvastatin, 6 weeks), Pravastatin/Inflammation CRP Evaluation (40 mg/day pravastatin, 24 weeks), and Treating to New Targets (10 mg/day atorvastatin, 8 weeks). Genotype imputation was used to maximize genomic coverage and to combine information across studies. Phenotypes were normalized within each study to account for systematic differences among studies, and fixed-effects combined analysis of the combined sample were performed to detect consistent effects across studies. Two SNP associations were assessed as having posterior probability greater than 50%, indicating that they were more likely than not to be genuinely associated with statin-mediated lipid response. SNP rs8014194, located within the CLMN gene on chromosome 14, was strongly associated with statin-mediated change in total cholesterol with an 84% probability by Bayesian analysis, and a p-value exceeding conventional levels of genome-wide significance by frequentist analysis (P = 1.8×10−8). This SNP was less significantly associated with change in LDL-cholesterol (posterior probability = 0.16, P = 4.0×10−6). Bayesian analysis also assigned a 51% probability that rs4420638, located in APOC1 and near APOE, was associated with change in LDL-cholesterol. Conclusions and Significance Using combined GWA analysis from three clinical trials involving nearly 4,000 individuals treated with simvastatin, pravastatin, or atorvastatin, we have identified SNPs that may be associated with variation in the magnitude of statin-mediated reduction in total and LDL-cholesterol, including one in the CLMN gene for which statistical evidence for association exceeds conventional levels of genome-wide significance. Trial Registration PRINCE and TNT are not registered. CAP is registered at Clinicaltrials.gov NCT00451828
Collapse
Affiliation(s)
- Mathew J. Barber
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Lara M. Mangravite
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Craig L. Hyde
- Statistical Application, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Daniel I. Chasman
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua D. Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Catherine A. McCarty
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Xiaohui Li
- Medical Genetics Institute, Cedars-Sinai Medical Center, West Los Angeles, California, United States of America
| | - Russell A. Wilke
- Department of Pharmacology and Toxicology and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mark J. Rieder
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Paul T. Williams
- Life Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul M. Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aurobindo Chatterjee
- Statistical Application, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, West Los Angeles, California, United States of America
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Ronald M. Krauss
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Marzinke MA, Henderson EM, Yang KS, See AWM, Knutson DC, Clagett-Dame M. Calmin expression in embryos and the adult brain, and its regulation by all-trans retinoic acid. Dev Dyn 2009; 239:610-9. [DOI: 10.1002/dvdy.22171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Patterns of evolutionary conservation in the nesprin genes highlight probable functionally important protein domains and isoforms. Biochem Soc Trans 2009; 36:1359-67. [PMID: 19021556 DOI: 10.1042/bst0361359] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nesprins [also known as SYNEs (synaptic nuclear envelope proteins)] are a family of type II transmembrane proteins implicated in the tethering of membrane-bound organelles and in the genetic aetiology of cerebellar ataxia and Emery-Dreifuss muscular dystrophy. They are characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KLS (klarsicht)/KASH [klarsicht/ANC-1 (anchorage 1)/SYNE homology] domain which interacts with SUN [Sad1p/UNC (uncoordinated)-84] proteins in the nuclear envelope; most nesprins also have N-terminal actin-binding CH (calponin homology) domains. The genes encoding the three vertebrate nesprins (five in bony fish) and the small transmembrane actin-binding protein calmin are related to each other by ancient duplications and rearrangements. In the present paper, we collate sequence data for nesprins and calmins across the vertebrate clade and use these to study evolutionary constraints acting on their genes. We show that the rod domains of the larger nesprins are composed almost entirely of unbroken SR-like structures (74 in nesprin-1 and 56 in nesprin-2) and that these range from poorly conserved purely structural elements to highly conserved regions with a presumed protein-protein interaction function. The analysis suggests several interesting regions for future study. We also assess the evolutionary and EST (expressed sequence tag) expression support for nesprin isoforms, both known and novel; our findings suggest that substantial reassessment is required.
Collapse
|
12
|
Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, Wise C, Miner A, Malloy MJ, Pullinger CR, Kane JP, Saccone S, Worthington J, Bruce I, Kwok P, Menter A, Krueger J, Barton A, Saccone NL, Bowcock AM. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 2008; 4:e1000041. [PMID: 18369459 PMCID: PMC2274885 DOI: 10.1371/journal.pgen.1000041] [Citation(s) in RCA: 515] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/28/2008] [Indexed: 12/11/2022] Open
Abstract
A genome-wide association study was performed to identify genetic factors involved in susceptibility to psoriasis (PS) and psoriatic arthritis (PSA), inflammatory diseases of the skin and joints in humans. 223 PS cases (including 91 with PSA) were genotyped with 311,398 single nucleotide polymorphisms (SNPs), and results were compared with those from 519 Northern European controls. Replications were performed with an independent cohort of 577 PS cases and 737 controls from the U.S., and 576 PSA patients and 480 controls from the U.K.. Strongest associations were with the class I region of the major histocompatibility complex (MHC). The most highly associated SNP was rs10484554, which lies 34.7 kb upstream from HLA-C (P = 7.8x10(-11), GWA scan; P = 1.8x10(-30), replication; P = 1.8x10(-39), combined; U.K. PSA: P = 6.9x10(-11)). However, rs2395029 encoding the G2V polymorphism within the class I gene HCP5 (combined P = 2.13x10(-26) in U.S. cases) yielded the highest ORs with both PS and PSA (4.1 and 3.2 respectively). This variant is associated with low viral set point following HIV infection and its effect is independent of rs10484554. We replicated the previously reported association with interleukin 23 receptor and interleukin 12B (IL12B) polymorphisms in PS and PSA cohorts (IL23R: rs11209026, U.S. PS, P = 1.4x10(-4); U.K. PSA: P = 8.0x10(-4); IL12B:rs6887695, U.S. PS, P = 5x10(-5) and U.K. PSA, P = 1.3x10(-3)) and detected an independent association in the IL23R region with a SNP 4 kb upstream from IL12RB2 (P = 0.001). Novel associations replicated in the U.S. PS cohort included the region harboring lipoma HMGIC fusion partner (LHFP) and conserved oligomeric golgi complex component 6 (COG6) genes on chromosome 13q13 (combined P = 2x10(-6) for rs7993214; OR = 0.71), the late cornified envelope gene cluster (LCE) from the Epidermal Differentiation Complex (PSORS4) (combined P = 6.2x10(-5) for rs6701216; OR 1.45) and a region of LD at 15q21 (combined P = 2.9x10(-5) for rs3803369; OR = 1.43). This region is of interest because it harbors ubiquitin-specific protease-8 whose processed pseudogene lies upstream from HLA-C. This region of 15q21 also harbors the gene for SPPL2A (signal peptide peptidase like 2a) which activates tumor necrosis factor alpha by cleavage, triggering the expression of IL12 in human dendritic cells. We also identified a novel PSA (and potentially PS) locus on chromosome 4q27. This region harbors the interleukin 2 (IL2) and interleukin 21 (IL21) genes and was recently shown to be associated with four autoimmune diseases (Celiac disease, Type 1 diabetes, Grave's disease and Rheumatoid Arthritis).
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/immunology
- Autoimmunity/genetics
- Case-Control Studies
- Child
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 4/genetics
- Cohort Studies
- Female
- Genes, MHC Class I
- Genetic Predisposition to Disease
- Genome, Human
- Humans
- Interleukin-12 Subunit p40/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Psoriasis/genetics
- Psoriasis/immunology
- Receptors, Interleukin/genetics
Collapse
Affiliation(s)
- Ying Liu
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cynthia Helms
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wilson Liao
- Cardiovascular Research Institute and Center for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Lisa C. Zaba
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, United States of America
| | - Shenghui Duan
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer Gardner
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carol Wise
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, United States of America
| | - Andrew Miner
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - M. J. Malloy
- Cardiovascular Research Institute and Center for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Clive R. Pullinger
- Cardiovascular Research Institute and Center for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - John P. Kane
- Cardiovascular Research Institute and Center for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Scott Saccone
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jane Worthington
- Arc Epidemiology Research Unit, University of Manchester, Manchester, United Kingdom
| | - Ian Bruce
- Arc Epidemiology Research Unit, University of Manchester, Manchester, United Kingdom
| | - Pui–Yan Kwok
- Cardiovascular Research Institute and Center for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Alan Menter
- Department of Internal Medicine, Division of Dermatology, Baylor University Medical Center, Dallas, Texas, United States of America
| | - James Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, United States of America
| | - Anne Barton
- Arc Epidemiology Research Unit, University of Manchester, Manchester, United Kingdom
| | - Nancy L. Saccone
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Anne M. Bowcock
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R, Montagna C, Füzesi L, Langer C, Becker H, Liersch T, Ried T. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 2005; 23:1826-38. [PMID: 15774776 PMCID: PMC4721601 DOI: 10.1200/jco.2005.00.406] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE There is a wide spectrum of tumor responsiveness of rectal adenocarcinomas to preoperative chemoradiotherapy ranging from complete response to complete resistance. This study aimed to investigate whether parallel gene expression profiling of the primary tumor can contribute to stratification of patients into groups of responders or nonresponders. PATIENTS AND METHODS Pretherapeutic biopsies from 30 locally advanced rectal carcinomas were analyzed for gene expression signatures using microarrays. All patients were participants of a phase III clinical trial (CAO/ARO/AIO-94, German Rectal Cancer Trial) and were randomized to receive a preoperative combined-modality therapy including fluorouracil and radiation. Class comparison was used to identify a set of genes that were differentially expressed between responders and nonresponders as measured by T level downsizing and histopathologic tumor regression grading. RESULTS In an initial set of 23 patients, responders and nonresponders showed significantly different expression levels for 54 genes (P < .001). The ability to predict response to therapy using gene expression profiles was rigorously evaluated using leave-one-out cross-validation. Tumor behavior was correctly predicted in 83% of patients (P = .02). Sensitivity (correct prediction of response) was 78%, and specificity (correct prediction of nonresponse) was 86%, with a positive and negative predictive value of 78% and 86%, respectively. CONCLUSION Our results suggest that pretherapeutic gene expression profiling may assist in response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. The implementation of gene expression profiles for treatment stratification and clinical management of cancer patients requires validation in large, independent studies, which are now warranted.
Collapse
Affiliation(s)
- B Michael Ghadimi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 50, Rm 1408, 50 South Dr, Bethesda, MD 20892-8010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Takaishi M, Ishisaki Z, Yoshida T, Takata Y, Huh NH. Expression of calmin, a novel developmentally regulated brain protein with calponin-homology domains. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:146-52. [PMID: 12670712 DOI: 10.1016/s0169-328x(03)00061-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the expression in the mouse brain of a recently isolated protein named calmin that has two calponin-homology domains in tandem at the N-terminus and a transmembrane domain at the C-terminus. Calmin mRNA and protein were detected in neurons of the hippocampus, cerebral cortex, and thalamus, Purkinje cells, and also in the choroid plexus and ependymal cells. The protein is present predominantly in dendrites and cell bodies of the neurons, but not in axons. Furthermore, the amounts of calmin mRNA and protein increase during the period of maturation of the mouse brain after birth, in a manner similar to that of PSD95 and synaptophysin. These results indicate that calmin may be involved in the development and/or maintenance of neuronal functions.
Collapse
Affiliation(s)
- Mikiro Takaishi
- Department of Cell Biology, Okayama University Graduate School of Medicine and Dentistry, Shikatachou, Okayama 700-8558, Japan
| | | | | | | | | |
Collapse
|
15
|
Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E. NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 2002; 115:3207-22. [PMID: 12118075 DOI: 10.1242/jcs.115.15.3207] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.
Collapse
Affiliation(s)
- Yen-Yi Zhen
- Institute for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
16
|
Makino T, Takaishi M, Morohashi M, Huh NH. Hornerin, a novel profilaggrin-like protein and differentiation-specific marker isolated from mouse skin. J Biol Chem 2001; 276:47445-52. [PMID: 11572870 DOI: 10.1074/jbc.m107512200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A novel mouse cDNA named hornerin was isolated by RNA differential display applied to developing mouse skin. Hornerin, which has 2,496 amino acids, comprises EF-hand domains at the N terminus followed by a spacer sequence and a large repetitive domain, indicating that hornerin is a novel member of the "fused gene"-type cornified envelope precursor protein family. The repetitive domain of hornerin was found to be rich in glycine, serine, and glutamine. Hornerin was expressed in the tongue, esophagus, forestomach, and skin among the adult mouse tissues examined, all of them cornifying stratified epithelium. In the embryonic mouse skin, hornerin mRNA was first detected on gestational day 15.5 in the epidermis coincidentally with the formation of a granular layer. In accordance with this, hornerin was detected in the granular and cornified layers of the mature epidermis. In the granular cells of the epidermis, the hornerin protein was detected in keratohyalin granules together with profilaggrin. Furthermore, Western blot analysis of the mouse skin showed that the hornerin protein was cleaved during the process of epidermal differentiation, indicating possible posttranslational proteolytic processing as is observed in profilaggrin. Differentiation of primary mouse epidermal keratinocytes with 0.12 mm Ca(2+) resulted in the induction of hornerin. These results indicate that hornerin is structurally as well as functionally most similar to profilaggrin among the family members and possibly plays pleiotropic roles, including a role in cornification.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Western
- Calcium/metabolism
- Calcium-Binding Proteins
- Cell Differentiation
- Cells, Cultured
- DNA, Complementary/metabolism
- EF Hand Motifs
- Electrophoresis, Polyacrylamide Gel
- Epidermis/metabolism
- Esophagus/metabolism
- Filaggrin Proteins
- Gastric Mucosa/metabolism
- Gene Expression Profiling
- Gene Library
- In Situ Hybridization
- Intermediate Filament Proteins/biosynthesis
- Intermediate Filament Proteins/chemistry
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Protein Precursors/chemistry
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Skin/embryology
- Skin/metabolism
- Time Factors
- Tissue Distribution
- Tongue/metabolism
Collapse
Affiliation(s)
- T Makino
- Department of Dermatology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Toyama-shi 930-0194, Japan
| | | | | | | |
Collapse
|