1
|
Estradiol-dependent hypocretinergic/orexinergic behaviors throughout the estrous cycle. Psychopharmacology (Berl) 2023; 240:15-25. [PMID: 36571628 PMCID: PMC9816302 DOI: 10.1007/s00213-022-06296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
RATIONALE The female menstrual or estrous cycle and its associated fluctuations in circulating estradiol (E2), progesterone, and other gonadal hormones alter orexin or hypocretin peptide production and receptor activity. Depending on the estrous cycle phase, the transcription of prepro-orexin mRNA, post-translational modification of orexin peptide, and abundance of orexin receptors change in a brain region-specific manner. The most dramatic changes occur in the hypothalamus, which is considered the starting point of the hypothalamic-pituitary-gonadal axis as well as the hub of orexin-producing neurons. Thus, hypothalamus-regulated behaviors, including arousal, feeding, reward processing, and the stress response depend on coordinated efforts between E2, progesterone, and the orexin system. Given the rise of orexin therapeutics for various neuropsychiatric conditions including insomnia and affective disorders, it is important to delineate the behavioral outcomes of this drug class in both sexes, as well as within different time points of the female reproductive cycle. OBJECTIVES Summarize how the menstrual or estrous cycle affects orexin system functionality in animal models in order to predict how orexin pharmacotherapies exert varying degrees of behavioral effects across the dynamic hormonal milieu.
Collapse
|
2
|
Grigorev IP, Korzhevskii DE. Mast Cells in the Vertebrate Brain:
Localization and Functions. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Flores JA, Ramírez-Ponce MP, Montes MÁ, Balseiro-Gómez S, Acosta J, Álvarez de Toledo G, Alés E. Proteoglycans involved in bidirectional communication between mast cells and hippocampal neurons. J Neuroinflammation 2019; 16:107. [PMID: 31109355 PMCID: PMC6528191 DOI: 10.1186/s12974-019-1504-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mast cells (MCs) in the brain can respond to environmental cues and relay signals to neurons that may directly influence neuronal electrical activity, calcium signaling, and neurotransmission. MCs also express receptors for neurotransmitters and consequently can be activated by them. Here, we developed a coculture model of peritoneal MCs, incubated together with dissociated hippocampal neurons for the study of cellular mechanisms involved in the mast cell-neuron interactions. METHODS Calcium imaging was used to simultaneously record changes in intracellular calcium [Ca2+]i in neurons and MCs. To provide insight into the contribution of MCs on neurotransmitter release in rat hippocampal neurons, we used analysis of FM dye release, evoked by a cocktail of mediators from MCs stimulated by heat. RESULTS Bidirectional communication is set up between MCs and hippocampal neurons. Neuronal depolarization caused intracellular calcium [Ca2+]i oscillations in MCs that produced a quick response in neurons. Furthermore, activation of MCs with antigen or the secretagogue compound 48/80 also resulted in a neuronal [Ca2+]i response. Moreover, local application onto neurons of the MC mediator cocktail elicited Ca2+ transients and a synaptic release associated with FM dye destaining. Neuronal response was partially blocked by D-APV, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and was inhibited when the cocktail was pre-digested with chondroitinase ABC, which induces enzymatic removal of proteoglycans of chondroitin sulfate (CS). CONCLUSIONS MC-hippocampal neuron interaction affects neuronal [Ca2+]i and exocytosis signaling through a NMDAR-dependent mechanism.
Collapse
Affiliation(s)
- Juan Antonio Flores
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | - María Pilar Ramírez-Ponce
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | - María Ángeles Montes
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | - Santiago Balseiro-Gómez
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
- Present Address: Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510 USA
| | - Jorge Acosta
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | - Guillermo Álvarez de Toledo
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | - Eva Alés
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| |
Collapse
|
4
|
Lee H, Jung T, Kim W, Noh J. The link between social context-dependent anxious behavior and habenular mast cells in fear-conditioned rats. Behav Brain Res 2019; 359:239-246. [PMID: 30423389 DOI: 10.1016/j.bbr.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 11/15/2022]
Abstract
Affiliative social behavior relieves the physiological reactivity to stressors, while social inequity, represented by unfairness in the social environment, causes emotional distress in animals. Mast cells are immune cells found in the brain that affect both the nervous system and emotional behavior. To determine the role of neuro-immunity in the programming of emotional behaviors, we observed brain mast cells and anxiety-like behaviors in female rats exposed to electrical foot shocks in different social environments. The following groups of rats were used in this study: control (unshocked) rats, solitarily shock-exposed rats, and shock-exposed rats in the presence of unshocked (unequal) or shocked (equal) conspecifics. An absence of significant difference in body weight or sucrose preference was seen among the different groups. Additionally, fear memory was augmented in rats shocked in the presence of either unshocked or shocked conspecifics than rats in the solitarily shocked group. Furthermore, rats shocked in the presence of unshocked conspecifics showed intensified anxiety-like behaviors after fear conditioning. Finally, we found an increase in the number of habenular mast cells in the intensified anxiogenic group, which had a significant correlation with the decreasing rate of anxiety-like behaviors. This provides evidence that habenular mast cells might be of importance in relieving the amplified biopsychological responses caused by social stress.
Collapse
Affiliation(s)
- Hyunchan Lee
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Taesub Jung
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Woonhee Kim
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea.
| |
Collapse
|
5
|
Fitzpatrick CJ, Morrow JD. Thalamic mast cell activity is associated with sign-tracking behavior in rats. Brain Behav Immun 2017; 65:222-229. [PMID: 28487202 PMCID: PMC5537013 DOI: 10.1016/j.bbi.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Mast cells are resident immune cells in the thalamus that can degranulate and release hundreds of signaling molecules (i.e., monoamines, growth factors, and cytokines) both basally and in response to environmental stimuli. Interestingly, mast cell numbers in the brain show immense individual variation in both rodents and humans. We used a Pavlovian conditioned approach (PCA) procedure to examine whether mast cells are associated with individual variation in the attribution of incentive-motivational value to reward-related cues. During the PCA procedure, a lever response-independently predicts the delivery of a food pellet into a magazine, and over training sessions three conditioned responses (CRs) develop: sign-tracking (lever-directed CRs), goal-tracking (magazine-directed CRs), and an intermediate response (both CRs). In Experiment 1, we measured thalamic mast cell number/activation using toluidine blue and demonstrated that sign-trackers have increased degranulated (activated) but not granulated (inactive) mast cells. In Experiment 2, we infused the mast cell inhibitor, cromolyn (200µg/rat; i.c.v.), immediately before five daily PCA training sessions and demonstrated that mast cell inhibition selectively impairs the acquisition of sign-tracking behavior. Taken together, these results demonstrate that thalamic mast cells contribute to the attribution of incentive-motivational value to reward-related cues and suggest that mast cell inhibition may be a novel target for addiction treatment.
Collapse
Affiliation(s)
| | - Jonathan D Morrow
- Neuroscience Graduate Program, University of Michigan, 204 Washtenaw Ave, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
7
|
Butera PC, Clough SJ, Bungo A. Cyclic estradiol treatment modulates the orexigenic effects of ghrelin in ovariectomized rats. Pharmacol Biochem Behav 2014; 124:356-60. [PMID: 25025182 DOI: 10.1016/j.pbb.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/24/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
Abstract
Data from a wide variety of mammalian species indicate that feeding behavior can be influenced by changes in endogenous estrogens and exogenous estrogenic treatments. Ghrelin is an important physiological signal for the regulation of energy balance, and ghrelin treatment increases eating and body weight in male rodents. The following studies evaluated the hypothesis that the inhibitory effects of estradiol on feeding involve interactions with orexigenic peptides by examining the ability of estradiol to modulate the behavioral effects of ghrelin in female rats. In these experiments, adult rats were ovariectomized and assigned to an estradiol benzoate (EB) or an oil (control) group. Three weeks after ovariectomy, animals received two daily subcutaneous injections of EB or the oil vehicle. Animals then received intraperitoneal (ip) injections of ghrelin (6.0 or 12.0 nmol) or saline during the nocturnal and diurnal periods three days after the first injection of estradiol or oil. Food intake, meal size, and meal number were determined during the 2-hour period following ghrelin or saline treatments. Ghrelin significantly increased food intake during nocturnal tests in oil-treated but not estradiol-treated rats. The hyperphagic effects of ghrelin on nocturnal food intake were also accompanied by an increase in meal size, and this effect of ghrelin on meal size was attenuated in estradiol-treated females. These findings support the hypothesis that the effects of estradiol on feeding behavior involve an attenuation of orexigenic signals, possibly by modulating the effects of the peripheral ghrelin signal on hypothalamic neuropeptides involved in the control of food intake.
Collapse
|
8
|
Silver R, Curley JP. Mast cells on the mind: new insights and opportunities. Trends Neurosci 2013; 36:513-21. [PMID: 23845731 DOI: 10.1016/j.tins.2013.06.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/16/2022]
Abstract
Mast cells (MCs) are both sensors and effectors in communication among nervous, vascular, and immune systems. In the brain, they reside on the brain side of the blood-brain barrier (BBB), and interact with neurons, glia, blood vessels, and other hematopoietic cells via their neuroactive prestored and newly synthesized chemicals. They are first responders, acting as catalysts and recruiters to initiate, amplify, and prolong other immune and nervous responses upon activation. MCs both promote deleterious outcomes in brain function and contribute to normative behavioral functioning, particularly cognition and emotionality. New experimental tools enabling isolation of brain MCs, manipulation of MCs or their products, and measurement of MC products in very small brain volumes present unprecedented opportunities for examining these enigmatic cells.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027, USA; Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
9
|
Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, Silver R. Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 2012; 36:2347-59. [PMID: 22632453 DOI: 10.1111/j.1460-9568.2012.08138.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the central nervous system, serotonin, an important neurotransmitter and trophic factor, is synthesized by both mast cells and neurons. Mast cells, like other immune cells, are born in the bone marrow and migrate to many tissues. We show that they are resident in the mouse brain throughout development and adulthood. Measurements based on capillary electrophoresis with native fluorescence detection indicate that a significant contribution of serotonin to the hippocampal milieu is associated with mast cell activation. Compared with their littermates, mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have profound deficits in hippocampus-dependent spatial learning and memory and in hippocampal neurogenesis. These deficits are associated with a reduction in cell proliferation and in immature neurons in the dentate gyrus, but not in the subventricular zone - a neurogenic niche lacking mast cells. Chronic treatment with fluoxetine, a selective serotonin reuptake inhibitor, reverses the deficit in hippocampal neurogenesis in mast cell-deficient mice. In summary, the present study demonstrates that mast cells are a source of serotonin, that mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have disrupted hippocampus-dependent behavior and neurogenesis, and that elevating serotonin in these mice, by treatment with fluoxetine, reverses these deficits. We conclude that mast cells contribute to behavioral and physiological functions of the hippocampus and note that they play a physiological role in neuroimmune interactions, even in the absence of inflammatory responses.
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Psychology Department, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave., New York, NY 10027, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Nautiyal KM, Liu C, Dong X, Silver R. Blood-borne donor mast cell precursors migrate to mast cell-rich brain regions in the adult mouse. J Neuroimmunol 2011; 240-241:142-6. [PMID: 22018703 DOI: 10.1016/j.jneuroim.2011.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 01/04/2023]
Abstract
Mast cells are hematopoietic immune cells located throughout the body, including within the brain. Reconstitution of mast cell deficient Kit(W-sh/W-sh) mice has proven valuable in determining peripheral mast cell function. Here we study the brain mast cell population using a novel method of blood transfusion for reconstitution. We show that blood transfusion results in mast cells of donor origin in the WT mouse, including in the brain where they are restricted to regions bearing host mast cells. In contrast, in Kit(W-sh/W-sh) mice, transfusion results in mast cells in the pinna of the ear, but not the brain.
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Department of Psychology, Columbia University, New York, NY 10027, United States
| | | | | | | |
Collapse
|
11
|
Larson AA, Thomas MJ, McElhose A, Kovács KJ. Spontaneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: disruptive effect of cocaine. Brain Res 2011; 1395:30-7. [PMID: 21561602 DOI: 10.1016/j.brainres.2011.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for 1h after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity.
Collapse
Affiliation(s)
- Alice A Larson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, Room 295, St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
12
|
Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML. Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 2010; 30:689-702. [PMID: 20087366 PMCID: PMC2949160 DOI: 10.1038/jcbfm.2009.282] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inflammatory response triggered by stroke has been viewed as harmful, focusing on the influx and migration of blood-borne leukocytes, neutrophils, and macrophages. This review hypothesizes that the brain and meninges have their own resident cells that are capable of fast host response, which are well known to mediate immediate reactions such as anaphylaxis, known as mast cells (MCs). We discuss novel research suggesting that by acting rapidly on the cerebral vessels, this cell type has a potentially deleterious role in the very early phase of acute cerebral ischemia and hemorrhage. Mast cells should be recognized as a potent inflammatory cell that, already at the outset of ischemia, is resident within the cerebral microvasculature. By releasing their cytoplasmic granules, which contain a host of vasoactive mediators such as tumor necrosis factor-alpha, histamine, heparin, and proteases, MCs act on the basal membrane, thus promoting blood-brain barrier (BBB) damage, brain edema, prolonged extravasation, and hemorrhage. This makes them a candidate for a new pharmacological target in attempts to even out the inflammatory responses of the neurovascular unit, and to stabilize the BBB after acute stroke.
Collapse
Affiliation(s)
- Perttu Johannes Lindsberg
- Department of Neurology, Helsinki University Central Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | | | | |
Collapse
|
13
|
Estradiol and the control of food intake. Physiol Behav 2009; 99:175-80. [PMID: 19555704 DOI: 10.1016/j.physbeh.2009.06.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 01/19/2023]
Abstract
Gonadal steroids are among the many factors that influence food intake and body weight in mammals. Hormonal effects on these processes are particularly striking in female rats, which show large increases in food intake and body weight after ovariectomy. A key role of estradiol in the control of food intake and energy balance in humans is evidenced by the fact that the incidence of obesity increases greatly after menopause [American College of Obstetricians and Gynecologists. Body mass index and insulin resistance. Obstet Gynecol 2004;104:5s-10]. The actions of estradiol on neural systems that regulate eating may also account in part for sex differences in food intake and eating disorders, which occur much more frequently in young women [Sodersten P, Bergh C. Anorexia nervosa: towards a neurobiologically based therapy. Eur J Pharmacol 2003;480:67-74]. This paper presents a minireview of research examining the changes in feeding that occur during the ovarian cycle, the effects of estradiol withdrawal and replacement on food intake and body weight, and the neurobiological mechanisms by which estradiol influences feeding behavior. A model of hormone action on food intake that emerges from this research views estradiol as an indirect control of eating and meal size, producing changes in feeding behavior by modulating the central processing of both satiating and orexigenic peptides that represent direct controls of eating. Some of the shortcomings of the model and directions for future research are discussed.
Collapse
|
14
|
Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 2009; 31:185-205. [PMID: 19533134 DOI: 10.1007/s00281-009-0165-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/25/2009] [Indexed: 12/16/2022]
Abstract
The normal gastrointestinal (GI) mucosa is equipped with mast cells that account for 2-3% of lamina propria cells under normal conditions. Mast cells are generally associated with allergic disease, and indeed, food allergy that manifests in the GI tract is usually mast cell dependent. On the other hand, mast cells have a number of physiological functions in the GI tract, namely regulatory functions such as control of blood flow and coagulation, smooth muscle contraction and peristalsis, and secretion of acid, electrolytes, and mucus by epithelial cells. One of the most intriguing functions of intestinal mast cells is their role in host defense against microbes like bacteria, viruses, or parasites. Mast cells recognize microbes by antibody-dependent mechanisms and through pattern-recognition receptors. They direct the subsequent immune response by attracting both granulocytes and lymphocytes to the site of challenge via paracrine cytokine release. Moreover, mast cells initiate, by releasing proinflammatory mediators, innate defense mechanisms such as enhanced epithelial secretion, peristalsis, and alarm programs of the enteric nervous This initiation can occur in response to a primary contact to the microbe or other danger signals, but becomes much more effective if the triggering antigen reappears and antibodies of the IgE or IgG type have been generated in the meantime by the specific immune system. Thus, mast cells operate at the interface between innate and adaptive immune responses to enhance the defense against pathogens and, most likely, the commensal flora. In this respect, it is important to note that mast cells are directly involved in controlling the function of the intestinal barrier that turned out to be a crucial site for the development of infectious and immune-mediated diseases. Hence, intestinal mast cells perform regulatory functions to maintain tissue homeostasis, they are involved in host defense mechanisms against pathogens, and they can induce allergy once they are sensitized against foreign antigens. The broad spectrum of functions makes mast cells a fascinating target for future pharmacological or nutritional interventions.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Department of Nutritional Medicine & Immunology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
15
|
Abstract
Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.
Collapse
|
16
|
Jin Y, Silverman AJ, Vannucci SJ. Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 2007; 29:373-84. [PMID: 17762205 DOI: 10.1159/000105478] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/03/2007] [Indexed: 11/19/2022] Open
Abstract
Perinatal hypoxic-ischemic (HI) brain damage is a major cause of mortality and neurological morbidity in infants and children. Using an established model of unilateral hypoxia-ischemia in neonatal rats, the present study focused on mast cells (MCs), important regulators of inflammatory processes, as potential contributors to HI damage. MCs are present in the pia of the neonatal rat, entering the central nervous system (CNS) during cerebral development along penetrating blood vessels. Following hypoxia-ischemia, MC numbers increased dramatically in the ipsilateral (ischemic) hemisphere (p < 0.01). In animals exposed to hypoxia only, the numbers of MCs were elevated in both hemispheres to an extent equal to that observed in the contralateral hemisphere of HI animals (p < 0.05 vs. control). Within damaged areas (ipsilateral only), MCs were observed in regions of activated microglia and astroglia that characterize the ischemic hemisphere. Using a triple-label paradigm, MCs were observed along elongating blood vessels, some of which express the GLUT1 isoform of the glucose transporter protein, indicative of blood-brain barrier vessels. To determine whether MC activation has a role in HI brain damage, rat pups were treated with the MCs stabilizer, disodium cromoglycate (cromolyn), prior to and/or following hypoxia-ischemia. The cromolyn treatment inhibited MC migration into the CNS (p < 0.05) and limited brain damage more than 50% (p < 0.01) vs. saline controls. These data support the hypothesis that MCs are key contributors to the extent of brain damage due to hypoxia-ischemia in the immature animal.
Collapse
Affiliation(s)
- Yuxuan Jin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
17
|
Khalil M, Ronda J, Weintraub M, Jain K, Silver R, Silverman AJ. Brain mast cell relationship to neurovasculature during development. Brain Res 2007; 1171:18-29. [PMID: 17764664 PMCID: PMC2049068 DOI: 10.1016/j.brainres.2007.07.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Mast cells, derived from the hematopoietic stem cell, are present in the brain from birth. During development, mast cells occur in two locations, namely the pia and the brain parenchyma. The current hypothesis regarding their origin states that brain mast cells (or their precursors) enter the pia and access the thalamus by traveling along the abluminal wall of penetrating blood vessels. The population in the pia reaches a maximum at postnatal (PN) day 11, and declines rapidly thereafter. Chromatin fragmentation suggests that this cell loss is due to apoptosis. In contrast, the thalamic population expands from PN8 to reach adult levels at PN30. Stereological analysis demonstrates that mast cells home to blood vessels. More than 96% of mast cells are inside the blood-brain barrier, with ~90% contacting the blood vessel wall or its extracellular matrix. Mast cells express alpha4 integrins -- a potential mechanism for adhesion to the vascular wall. Despite the steady increase in the volume of microvasculature, at all ages studied, mast cells are preferentially located on large diameter vessels (>16 microm; possibly arteries), and contact only those maturing blood vessels that are ensheathed by astroglial processes. Mast cells not only home to large vessels but also maintain a preferential position at branch points, sites of vessel growth. This observation presents the possibility that mast cells participate in and/or regulate vasculature growth or differentiation. The biochemical and molecular signals that induce mast cell homing in the CNS is an area of active investigation.
Collapse
Affiliation(s)
- Mona Khalil
- Columbia University, College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY
| | | | | | - Kim Jain
- Barnard College, Department of Psychology, NY, NY
| | - Rae Silver
- Barnard College, Department of Psychology, NY, NY
- Columbia University, Department of Psychology, NY, NY
- Columbia University, College of Physicians and Surgeons, Department of Pathology and Cell Biology, NY, NY
| | - Ann-Judith Silverman
- Columbia University, College of Physicians and Surgeons, Department of Pathology and Cell Biology, NY, NY
| |
Collapse
|
18
|
Belot MP, Abdennebi-Najar L, Gaudin F, Lieberherr M, Godot V, Taïeb J, Emilie D, Machelon V. Progesterone reduces the migration of mast cells toward the chemokine stromal cell-derived factor-1/CXCL12 with an accompanying decrease in CXCR4 receptors. Am J Physiol Endocrinol Metab 2007; 292:E1410-7. [PMID: 17468394 DOI: 10.1152/ajpendo.00286.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mast cell recruitment is implicated in many physiological functions and several diseases. It depends on microenvironmental factors, including hormones. We have investigated the effect of progesterone on the migration of HMC-1(560) mast cells toward CXCL12, a chemokine that controls the migration of mast cells into tissues. HMC-1(560) mast cells were incubated with 1 nM to 1 microM progesterone for 24 h. Controls were run without progesterone. Cell migration toward CXCL12 was monitored with an in vitro assay, and statistical analysis of repeated experiments revealed that progesterone significantly reduced cell migration without increasing the number of apoptotic cells (P = 0.0084, n = 7). Differences between progesterone-treated and untreated cells were significant at 1 microM (P < 0.01, n = 7). Cells incubated with 1 microM progesterone showed no rearrangment of actin filaments in response to CXCL12. Progesterone also reduced the calcium response to CXCL12 and Akt phosphorylation. Cells incubated with progesterone had one-half the control concentrations of CXCR4 (mRNA, total protein, and membrane-bound protein). Progesterone also inhibited the migration of HMC-1(560) cells transfected with hPR-B-pSG5 plasmid, which contained 2.5 times as much PR-B as the control. These transfected cells responded differently (P < 0.05, n = 5) from untreated cells to 1 nM progesterone. We conclude that progesterone reduces mast cell migration toward CXCL12 and that CXCR4 may be a progesterone target in mast cells.
Collapse
MESH Headings
- Actins/metabolism
- Androstadienes/pharmacology
- Blotting, Western
- Calcium/metabolism
- Cell Movement/drug effects
- Cell Movement/physiology
- Chemokine CXCL12
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Flow Cytometry
- Humans
- Mast Cells/cytology
- Mast Cells/drug effects
- Mast Cells/metabolism
- Oncogene Protein v-akt/metabolism
- Phosphorylation/drug effects
- Progesterone/pharmacology
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Progesterone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Wortmannin
Collapse
Affiliation(s)
- Marie-Pierre Belot
- Institut National de la Santé et de la Recherche Médicale, Univ Paris-Sud 11, Institut Fédératif de Recherche 13, Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Service de Microbiologie-Immunologie Biologique, Clamart, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kovács KJ, Larson AA. Mast cells accumulate in the anogenital region of somatosensory thalamic nuclei during estrus in female mice. Brain Res 2006; 1114:85-97. [PMID: 16949055 DOI: 10.1016/j.brainres.2006.07.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 07/20/2006] [Accepted: 07/20/2006] [Indexed: 11/18/2022]
Abstract
Mast cells are located in the mammalian thalamus where their numbers are sensitive to reproductive hormones. To evaluate whether differences between sexes and over the estrus cycle influence the nuclear distribution of mast cells in mice, we mounted a comprehensive analysis of their distribution in males compared to females and in females over the estrus cycle. Compared to males, mast cells were more numerous in the lateral intralaminar and posterior nuclei of females during estrus and in the ventral posterolateral (VPL) and medial geniculate nuclei during proestrus. During estrus, mast cells were especially concentrated in those regions within the VPL and posterior thalamic nuclei that receive somatosensory information from the anogenital region. Treatment of ovariectomized mice with estrogen increased the number and the percent of mast cells that were degranulated compared to that after ovariectomy alone, an effect that was most apparent in the lateral intralaminar, VPL and posterior nuclei. In estrogen-primed, ovariectomized females, progesterone delivered 5 h before tissue collection counteracted the effects of estrogen. Cromolyn, a mast cell stabilizer, injected centrally 1 h prior to and 24 h after estrogen in ovariectomized mice, prevented the increase in number of mast cells in the whole thalamus and in the intralaminar, VPL and posterior nuclei. This suggests that estrogen induces hyperplasia by a mechanism that involves mast cell degranulation. Based on the discrete anatomical location of mast cells in areas of somatosensory nuclei that receive anogenital input together with the temporal correspondence of these cells with estrus, mast cells are well situated to influence sensory input in females during mating.
Collapse
Affiliation(s)
- Katalin J Kovács
- Department of Veterinary Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, Rm 295, St. Paul, MN 55108, USA
| | | |
Collapse
|
20
|
Hendrix S, Warnke K, Siebenhaar F, Peters EMJ, Nitsch R, Maurer M. The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett 2006; 392:174-7. [PMID: 16219422 DOI: 10.1016/j.neulet.2005.09.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/23/2005] [Accepted: 09/07/2005] [Indexed: 11/24/2022]
Abstract
In the healthy mammalian CNS, mast cells (MCs) are thought to be located mostly in the thalamus. In this study, we have systematically assessed the presence of MCs in the hippocampal formation (HF) and in the thalamus of normal male and female B10.PL mice. Giemsa(+) and Toluidine Blue(+) MCs were detected by histomorphometric analyses at perivascular and intraparenchymal sites of both the hippocampus and the entorhinal cortex. We found a mean number of 4.4 MCs in the HF of female and 3.3 MCs in male B10.PL mice. In contrast to the HF, no MCs were present in the thalamus of these mice. Notably, all HF-MCs showed immunoreactivity for Kit, the receptor for the MC growth and maturation factor SCF, as assessed by FITC-avidin/Kit double labelling. We demonstrate that the majority of brain MCs is found in the hippocampus and entorhinal cortex of B10.PL mice, though the total number of MCs is small compared to other mouse strains or rats. The presence of most brain MCs in the HF of B10.PL mice suggests a potential role of MCs in hippocampal physiology and pathology.
Collapse
Affiliation(s)
- Sven Hendrix
- Center for Anatomy, Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Schumannstr. 20-21, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Kovács P, Hernádi I, Wilhelm M. Mast cells modulate maintained neuronal activity in the thalamus in vivo. J Neuroimmunol 2005; 171:1-7. [PMID: 16300831 DOI: 10.1016/j.jneuroim.2005.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 07/15/2005] [Indexed: 11/24/2022]
Abstract
Single cell unit activity of 187 neurons of 24 rats were analysed to study the possible involvement of intracranial mast cells on modifying thalamic neuronal activity. Mast cells were activated with microiontophoretical application of compound 48/80. This substance did not modify the firing rate of cortical or hippocampal neurons (no mast cells are found here), however it caused excitation (70% in females, 11% in males), or inhibition (7% in females, 33% in males) on thalamic neurons, possibly due to mast cell activation. In consecutive anatomical evaluation many partially or fully degranulated mast cells were found in the recorded thalamic areas.
Collapse
Affiliation(s)
- Péter Kovács
- University of Pécs, Department of Experimental Zoology and Neurobiology, 6 Ifjúság str., H-7624, Pécs, Hungary.
| | | | | |
Collapse
|
22
|
Dubayle D, Malissin I, Menétrey D. Differential effects of two analgesic drugs, morphine chlorhydrate and acetylsalicylic acid, on thalamic mast cell numbers in rat. J Neuroimmunol 2005; 169:106-15. [PMID: 16169091 DOI: 10.1016/j.jneuroim.2005.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/03/2005] [Indexed: 01/31/2023]
Abstract
Thalamic mast cells (TMCs), the only immunocytes known to infiltrate the brain in physiological conditions, respond to pharmacological agents including sumatriptan - a serotonergic anti-migraine agent - that increases their number. We analysed the effects of two other main analgesics: morphine chlorhydrate, a micro opioid agonist, and acetylsalicylic acid (ASA), a non-steroidal anti-inflammatory drug. All three drugs have specific modes of action, and morphine and ASA, unlike sumatriptan, are also known to interact with peripheral mast cells. Only ASA was effective in promoting TMC number decrease. TMCs, unlike other mast cells, do not express cyclooxygenase (COX) - the key enzyme in the production of prostanoids and the main site of action of ASA - thus dismissing a direct local cellular COX-mediated action. Direct TMC COX-independent mechanisms or effects mediated via distant populations of COX-positive cells such as platelets, leptomeningeal, endothelial and peripheral mast cells are thus probable. ASA, morphine and sumatriptan have distinct TMC effects, suggesting that the TMC number variations they induce are more likely to derive from systemic vasoactive actions than from pharmacological mechanisms devoted to pain relief.
Collapse
Affiliation(s)
- D Dubayle
- CNRS UMR 8119 Neurophysique et Physiologie, Université René Descartes, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.
| | | | | |
Collapse
|
23
|
Dubayle D, Servière J, Menétrey D. Evidence for serotonin influencing the thalamic infiltration of mast cells in rat. J Neuroimmunol 2005; 159:20-30. [PMID: 15652399 DOI: 10.1016/j.jneuroim.2004.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/24/2004] [Accepted: 08/30/2004] [Indexed: 11/30/2022]
Abstract
Serotonin (5-HT) is involved in neuroimmunomodulation. We analyzed the effects of sumatriptan, a 5-HT(1B/1D) receptor agonist, and ondansetron, a 5-HT(3) receptor antagonist, on thalamic mast cell (TMC) population, the only immunocytes known to infiltrate the brain in physiological conditions. Only sumatriptan was effective, significantly increasing TMC numbers versus controls, and especially those containing 5-HT. 5-HT(1B) receptors are concentrated in the median eminence on non-serotonergic axonal endings, probably hypothalamic terminal fibers, involved in hypothalamic-pituitary neuroendocrine modulating processes. TMC variations could reflect serotonergic actions on these fibers. TMCs would thus be cellular interfaces mediating immune action in the nervous system in relation with the hormonal status of the organism.
Collapse
Affiliation(s)
- D Dubayle
- CNRS UMR 8119 Neurophysique et physiologie, Université René Descartes, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.
| | | | | |
Collapse
|
24
|
Taiwo OB, Kovács KJ, Sun Y, Larson AA. Unilateral spinal nerve ligation leads to an asymmetrical distribution of mast cells in the thalamus of female but not male mice. Pain 2005; 114:131-40. [PMID: 15733638 DOI: 10.1016/j.pain.2004.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 11/08/2004] [Accepted: 12/02/2004] [Indexed: 01/23/2023]
Abstract
Mast cells are restricted to the leptomeninges and thalamus of healthy mice. These populations are increased by stress and highly sensitive to reproductive hormones. To examine the influence of nociception, a form of stress, on thalamic mast cells, we ligated the left fifth lumbar spinal nerve of male and female mice to induce hyperalgesia. Two, 7 and 14 days later, mice were killed and thalami examined histologically using toluidine blue stain. The total number of thalamic mast cells was not influenced by ligation of the spinal nerve compared to sham-operation in either female or male mice. However, in females, the percent of thalamic mast cells located on the side of the thalamus contralateral to the ligation was greater on days 2 and 7, coincident with mechanical hyperalgesia. At these times, areas in which mast cells were most dense contralateral to nerve-injury included the posterior (Po) and lateral geniculate (LG) nuclei compared to their symmetrical distribution in sham-operated mice. These data suggest that local nociceptive signals to each side of the thalamus rather than stress hormones influence the location of mast cells during the development of allodynia and hyperalgesia. In addition, both hyperalgesia and mast cell distribution induced by nerve-ligation differ in females compared to males, reflecting a novel neuroimmune response to pain within the CNS.
Collapse
Affiliation(s)
- Oludare B Taiwo
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | |
Collapse
|
25
|
Hu W, Xu L, Pan J, Zheng X, Chen Z. Effect of cerebral ischemia on brain mast cells in rats. Brain Res 2004; 1019:275-80. [PMID: 15306264 DOI: 10.1016/j.brainres.2004.05.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the effect of transient cerebral ischemia on brain mast cells in rats. The mast cells decreased significantly at 1 h, 2 h, 4 h and 7 days after ischemia. At 1 day following ischemia, the increase of the number of mast cells in the middle aspect of the thalamus (bregma -2.80 to -3.16 mm) was twice as that of other regions in the thalamus. In addition, histamine contents increased significantly in the thalamus and striatum after ischemia. These results indicate that brain mast cells participate in the pathological process after ischemia.
Collapse
Affiliation(s)
- Weiwei Hu
- Department of Pharmacology, School of Medicine, Zhejiang University, 353, Yan-An Road, Hangzhou, Zhejiang 310031, PR China
| | | | | | | | | |
Collapse
|
26
|
Eckel LA. Estradiol: a rhythmic, inhibitory, indirect control of meal size. Physiol Behav 2004; 82:35-41. [PMID: 15234587 DOI: 10.1016/j.physbeh.2004.04.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 04/02/2004] [Indexed: 11/21/2022]
Abstract
The classic analyses of the inhibitory effects of cholecystokinin (CCK) on meal size, conducted by Professor Gerard P. Smith and his colleagues at the Bourne Laboratory, inspired my initial interest in this field. My current research, which investigates the role of estradiol in the control of meal size, continues to be guided by Gerry's thoughtful, scientific approach to the study of ingestive behavior. In 1996, the year I arrived as a Postdoctoral Fellow at the Bourne Laboratory, Gerry published a new theory of the controls of meal size. In this important paper, Gerry proposed that the controls of meal size can be either direct or indirect. He argued that direct controls of meal size interact with peripheral, preabsorptive receptors that are sensitive to the chemical, mechanical, and colligative properties of ingested food and that indirect controls of meal size function to modulate the activity of direct controls. The purpose of this review is to illustrate how Gerry's theory has guided much of what is known about the mechanism by which estradiol inhibits food intake in female rats. I will provide evidence, primarily from behavioral studies of gonadally intact and ovariectomized rats, that estradiol exerts phasic and tonic inhibitory effects on food intake by acting as a rhythmic, inhibitory, indirect control of meal size.
Collapse
Affiliation(s)
- Lisa A Eckel
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA.
| |
Collapse
|
27
|
Kriegsfeld LJ, Hotchkiss AK, Demas GE, Silverman AJ, Silver R, Nelson RJ. Brain mast cells are influenced by chemosensory cues associated with estrus induction in female prairie voles (Microtus ochrogaster). Horm Behav 2003; 44:377-84. [PMID: 14644631 PMCID: PMC3271857 DOI: 10.1016/j.yhbeh.2003.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Historically, the brain has been viewed as protected from the infiltration of peripheral hematopoietic cells by the blood-brain barrier. However, numerous immune cell types have been found in the central nervous system (CNS). Mast cells, granulocytic immune cells, are found in the CNS of birds and mammals and their numbers and location are influenced by both extrinsic and intrinsic factors, including reproductive behavior and endocrine status. The present study used female prairie voles (Microtus ochrogaster) to investigate the interactions between brain mast cells and stimuli associated with estrus induction. Unlike spontaneous ovulators such as rats and mice, female prairie voles are induced into estrus by chemosensory stimuli present in conspecific male urine. Prior to estrus induction, female voles have undetectable concentrations of estrogen that rise rapidly following exposure to a male or male urine. In the first experiment, we examined whether mast cells may be influenced by estrus induction. Female voles exposed to conspecific male urine had increased numbers of mast cells in the main olfactory bulbs and epithalamus (medial habenula), but not the thalamus or median eminence, relative to control groups. Next, to determine if this mast cell increase was the result of elevated estrogen concentrations, female voles were injected with estradiol or vehicle and brain mast cell numbers analyzed. No differences in brain mast cell numbers were observed between estradiol-injected and control females in any brain area investigated. Together, these results lend further support to the contention that mast cell numbers and/or distribution can be influenced by reproductively relevant stimuli and underscore the utility of this vole model for delineating the function of brain mast cells.
Collapse
Affiliation(s)
| | - Andrew K. Hotchkiss
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory E. Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ann-Judith Silverman
- Departments of Anatomy and Cell Biology, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Rae Silver
- Department of Psychology, Columbia University, New York, NY 10027, USA
- Departments of Anatomy and Cell Biology, College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Psychology, Barnard College, New York, NY 10027, USA
| | - Randy J. Nelson
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Khalil MH, Silverman AJ, Silver R. Mast cells in the rat brain synthesize gonadotropin-releasing hormone. JOURNAL OF NEUROBIOLOGY 2003; 56:113-24. [PMID: 12838577 PMCID: PMC3275351 DOI: 10.1002/neu.10220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mast cells occur in the brain and their number changes with reproductive status. While it has been suggested that brain mast cells contain the mammalian hypothalamic form of gonadotropin-releasing hormone (GnRH-I), it is not known whether mast cells synthesize GnRH-I de novo. In the present study, mast cells in the rat thalamus were immunoreactive to antisera generated against GnRH-I and the GnRH-I associated peptide (GAP); mast cell identity was confirmed by the presence of heparin, a molecule specific to mast cells, or serotonin. To test whether mast cells synthesize GnRH-I mRNA, in situ hybridization was performed using a GnRH-I cRNA probe, and the signal was identified as being within mast cells by the binding of avidin to heparin. GnRH-I mRNA was also found, using RT-PCR, in mast cells isolated from the peritoneal cavity. Given the function of GnRH-I in the regulation of reproduction, changes in the population of brain GnRH-I mast cells were investigated. While housing males with sexually receptive females for 2 h or 5 days resulted in a significant increase in the number of brain mast cells, the proportion of mast cells positive for GnRH-I was similar to that in males housed with a familiar male. These findings represent the first report showing that mast cells synthesize GnRH-I and that the mast cell increase seen in a reproductive context is the result of a parallel increase in GnRH-I positive and non-GnRH-I positive mast cells.
Collapse
Affiliation(s)
- Mona H Khalil
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
29
|
Silverman AJ, Asarian L, Khalil M, Silver R. GnRH, brain mast cells and behavior. PROGRESS IN BRAIN RESEARCH 2003; 141:315-25. [PMID: 12508578 DOI: 10.1016/s0079-6123(02)41102-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ann-Judith Silverman
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|