1
|
Junker S, Singh V, Al-Saadi AGM, Wood NA, Hamilton-Brehm SD, Ouellette SP, Fisher DJ. Distinct impacts of each anti-anti-sigma factor ortholog of the chlamydial Rsb partner switching mechanism on development in Chlamydia trachomatis. Microbiol Spectr 2024:e0184624. [PMID: 39470281 DOI: 10.1128/spectrum.01846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Partner switching mechanisms (PSMs) are signal transduction systems comprised of a sensor phosphatase (RsbU), an anti-sigma factor (RsbW, kinase), an anti-anti-sigma factor (RsbV, the RsbW substrate), and a target sigma factor. Chlamydia spp. are obligate intracellular bacterial pathogens of animals that undergo a developmental cycle transitioning between the infectious elementary body (EB) and replicative reticulate body (RB) within a host cell-derived vacuole (inclusion). Secondary differentiation events (RB to EB) are transcriptionally regulated, in part, by the housekeeping sigma factor (σ66) and two late-gene sigma factors (σ54 and σ28). Prior research supports that the PSM in Chlamydia trachomatis regulates availability of σ66. Pan-genome analysis revealed that PSM components are conserved across the phylum Chlamydiota, with Chlamydia spp. possessing an atypical arrangement of two anti-anti-sigma factors, RsbV1 and RsbV2. Bioinformatic analyses support RsbV2 as the homolog to the pan-genome-conserved RsbV with RsbV1 as an outlier. This, combined with in vitro data, indicates that RsbV1 and RsbV2 are structurally and biochemically distinct. Reduced levels or overexpression of RsbV1/RsbV2 did not significantly impact C. trachomatis growth or development. In contrast, overexpression of a non-phosphorylatable RsbV2 S55A mutant, but not overexpression of an RsbV1 S56A mutant, resulted in a 3 log reduction in infectious EB production without reduction in genomic DNA (total bacteria) or inclusion size, suggesting a block in secondary differentiation. The block was corroborated by reduced production of σ54/28-regulated late proteins and via transmission electron microscopy.IMPORTANCEChlamydia trachomatis is the leading cause of reportable bacterial sexually transmitted infections (STIs) and causes the eye infection trachoma, a neglected tropical disease. Broad-spectrum antibiotics used for treatment can lead to microbiome dysbiosis and increased antibiotic resistance development in other bacteria, and treatment failure for chlamydial STIs is a recognized clinical problem. Here, we show that disruption of a partner switching mechanism (PSM) significantly reduces infectious progeny production via blockage of reticulate body to elementary body differentiation. We also reveal a novel PSM expansion largely restricted to the species infecting animals, suggesting a role in pathogen evolution. Collectively, our results highlight the chlamydial PSM as a key regulator of development that could be a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shiomi Junker
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Vandana Singh
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aamal G M Al-Saadi
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Nicholas A Wood
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scott D Hamilton-Brehm
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Scot P Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Derek J Fisher
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
2
|
Qiu Q, Li H, Sun X, Zhang L, Tian K, Chang M, Li S, Zhou D, Huo H. Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. CHEMOSPHERE 2024; 358:142146. [PMID: 38677604 DOI: 10.1016/j.chemosphere.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Lili Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Bush SR, Sanders S, Frey N, Hamm CW, Toews M, Winburn S, Fayard EJ, Rodriguez A, Boyne NS, Osborne JS, Cabeen MT. Temporal σ B stress-response profiles impact Bacillus subtilis fitness. mSphere 2024; 9:e0071923. [PMID: 38236030 PMCID: PMC10900884 DOI: 10.1128/msphere.00719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
The Gram-positive model organism Bacillus subtilis responds to environmental stressors by activating the alternative sigma factor σB. The sensing apparatus upstream of σB activation is thought to consist of cytoplasmic stressosomes-megadalton-sized protein complexes that include five paralogous proteins known as RsbRs. The RsbRs are presumed to be involved in stress sensing and the subsequent response. Perturbations to the RsbR complement in stressosomes by engineering cells that produce only one of the RsbR paralogs ("single-RsbR strains") lead to altered σB response dynamics with respect to timing and magnitude. Here, we asked whether such changes to σB response dynamics impact the relative fitness of a strain. We competed strain pairs with different RsbR complements under ethanol and sodium chloride stress and found not only differences in relative fitness among wild-type and single-RsbR strains but also different relative fitness values in the two different stressors. We found that the presence of RsbRA, which dominates the wild-type σB response, enhances fitness in ethanol but is detrimental to fitness in NaCl. Meanwhile, RsbRD-only cells were among the most fit in NaCl. Strains producing hybrid RsbR fusion proteins displayed different fitness values that depended on the RsbR proteins from which they were derived. Our results here suggest that σB response dynamics can impact fitness, highlighting the physiological importance of the unusual stressosome-based general stress response system of B. subtilis. IMPORTANCE The model bacterium Bacillus subtilis uses cytoplasmic multiprotein complexes, termed stressosomes, to activate the alternative sigma factor σB when facing environmental stresses. We have previously shown that genetically manipulating the complement of putative sensor proteins in stressosomes can alter the dynamics of the σB response in terms of its magnitude and timing. However, it is unknown whether these response dynamics impact the fitness of cells challenged by environmental stressors. Here, we examine the fitness of strains with different σB responses by competing strain pairs in exponential-phase co-cultures under environmental stress. We find that strains with different response dynamics show different competitive indices that differ by stressor. These results suggest that the dynamics of the σB response can affect the fitness of cells facing environmental stress, highlighting the relevance of different σB dynamics.
Collapse
Affiliation(s)
- Sidney R. Bush
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Shelby Sanders
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nicholas Frey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Christopher W. Hamm
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Madeline Toews
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sarah Winburn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Emily J. Fayard
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - AnaLisa Rodriguez
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nicholas S. Boyne
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jacob S. Osborne
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T. Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Loman TE, Locke JCW. The σB alternative sigma factor circuit modulates noise to generate different types of pulsing dynamics. PLoS Comput Biol 2023; 19:e1011265. [PMID: 37540712 PMCID: PMC10431680 DOI: 10.1371/journal.pcbi.1011265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/16/2023] [Accepted: 06/12/2023] [Indexed: 08/06/2023] Open
Abstract
Single-cell approaches are revealing a high degree of heterogeneity, or noise, in gene expression in isogenic bacteria. How gene circuits modulate this noise in gene expression to generate robust output dynamics is unclear. Here we use the Bacillus subtilis alternative sigma factor σB as a model system for understanding the role of noise in generating circuit output dynamics. σB controls the general stress response in B. subtilis and is activated by a range of energy and environmental stresses. Recent single-cell studies have revealed that the circuit can generate two distinct outputs, stochastic pulsing and a single pulse response, but the conditions under which each response is generated are under debate. We implement a stochastic mathematical model of the σB circuit to investigate this and find that the system's core circuit can generate both response types. This is despite one response (stochastic pulsing) being stochastic in nature, and the other (single response pulse) being deterministic. We demonstrate that the main determinant for whichever response is generated is the degree with which the input pathway activates the core circuit, although the noise properties of the input pathway also biases the system towards one or the other type of output. Thus, our work shows how stochastic modelling can reveal the mechanisms behind non-intuitive gene circuit output dynamics.
Collapse
Affiliation(s)
- Torkel E. Loman
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - James C. W. Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
7
|
Yeak KYC, Boekhorst J, Wels M, Abee T, Wells-Bennik MHJ. Prediction and validation of novel SigB regulon members in Bacillus subtilis and regulon structure comparison to Bacillales members. BMC Microbiol 2023; 23:17. [PMID: 36653740 PMCID: PMC9847131 DOI: 10.1186/s12866-022-02700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Sigma factor B (SigB) is the central regulator of the general stress response in Bacillus subtilis and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence. RESULTS In this study, refined SigB PBMs were derived and different spacer compositions and lengths (N12-N17) were taken into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to > 500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and ΔsigB mutants upon exposure to heat, ethanol, and salt stress. The activity of the PrsbV (I) positive control was induced upon exposure to all three stressors. PytoQ (II) showed SigB-dependent activity only upon exposure to ethanol, whereas PpucI (II) with a N17 spacer and PylaL (III) with a N16 spacer showed mild induction regardless of heat/ethanol/salt stress. PywzA (III) and PyaaI (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved - 10 binding motif. PgtaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved - 10 binding region. The activities of PygaO and PykaA (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific. CONCLUSION The entire SigB regulatory network is sophisticated and not yet fully understood even for the well-characterized organism B. subtilis 168. Knowledge and information gained in this study can be used in further SigB studies to uncover a complete picture of the role of SigB in B. subtilis and other species.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Host Microbe Interactomics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel Wels
- grid.419921.60000 0004 0588 7915NIZO, Ede, The Netherlands ,grid.426040.4Rijk Zwaan Breeding B.V, Fijnaart, The Netherlands
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
8
|
Bacillus subtilis Stressosome Sensor Protein Sequences Govern the Ability To Distinguish among Environmental Stressors and Elicit Different σ B Response Profiles. mBio 2022; 13:e0200122. [PMID: 36409125 PMCID: PMC9765535 DOI: 10.1128/mbio.02001-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria use a variety of systems to sense stress and mount an appropriate response to ensure fitness and survival. Bacillus subtilis uses stressosomes-cytoplasmic multiprotein complexes-to sense environmental stressors and enact the general stress response by activating the alternative sigma factor σB. Each stressosome includes 40 RsbR proteins, representing four paralogous (RsbRA, RsbRB, RsbRC, and RsbRD) putative stress sensors. Population-level analyses suggested that the RsbR paralogs are largely redundant, while our prior work using microfluidics-coupled fluorescence microscopy uncovered differences among the RsbR paralogs' σB response profiles with respect to timing and intensity when facing an identical stressor. Here, we use a similar approach to address the question of whether the σB responses mediated by each paralog differ in the presence of different environmental stressors: can they distinguish among stressors? Wild-type cells (with all four paralogs) and RsbRA-only cells activate σB with characteristic transient response timing irrespective of stressor but show various response magnitudes. However, cells with other individual RsbR paralogs show distinct timing and magnitude in their responses to ethanol, salt, oxidative, and acid stress, implying that RsbR proteins can distinguish among stressors. Experiments with hybrid fusion proteins comprising the N-terminal half of one paralog and the C-terminal half of another argue that the N-terminal identity influences response magnitude and that determinants in both halves of RsbRA are important for its stereotypical transient σB response timing. IMPORTANCE Bacterial survival depends on appropriate responses to diverse stressors. The general stress-response system in the environmental model bacterium Bacillus subtilis is constantly poised for an immediate response and uses unusual stress-sensing protein complexes called stressosomes. Stressosomes typically contain four different types of putative sensing protein. We asked whether each type of sensor has a distinct role in mediating response dynamics to different environmental stressors. We find that one sensor type always mediates a transient response, while the others show distinct response magnitude and timing to different stressors. We also find that a transient response is exceptional, as several engineered hybrid proteins did not show strong transient responses. Our work reveals functional distinctions among subunits of the stressosome complex and represents a step toward understanding how the general stress response of B. subtilis ensures its survival in natural environmental settings.
Collapse
|
9
|
Moy BE, Seshu J. STAS Domain Only Proteins in Bacterial Gene Regulation. Front Cell Infect Microbiol 2021; 11:679982. [PMID: 34235094 PMCID: PMC8256260 DOI: 10.3389/fcimb.2021.679982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023] Open
Abstract
Sulfate Transport Anti-Sigma antagonist domains (Pfam01740) are found in all branches of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent amino acid sequences. These domains are present as part of larger SLC26/SulP anion transporters, where the STAS domain is associated with transmembrane anchoring of the larger multidomain protein. Here, we focus on STAS Domain only Proteins (SDoPs) in eubacteria, initially described as part of the Bacillus subtilis Regulation of Sigma B (RSB) regulatory system. Since their description in B. subtilis, SDoPs have been described to be involved in the regulation of sigma factors, through partner-switching mechanisms in various bacteria such as: Mycobacterium. tuberculosis, Listeria. monocytogenes, Vibrio. fischeri, Bordetella bronchiseptica, among others. In addition to playing a canonical role in partner-switching with an anti-sigma factor to affect the availability of a sigma factor, several eubacterial SDoPs show additional regulatory roles compared to the original RSB system of B. subtilis. This is of great interest as these proteins are highly conserved, and often involved in altering gene expression in response to changes in environmental conditions. For many of the bacteria we will examine in this review, the ability to sense environmental changes and alter gene expression accordingly is critical for survival and colonization of susceptible hosts.
Collapse
Affiliation(s)
- Brian E Moy
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - J Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
10
|
Tran HT, Bonilla CY. SigB-regulated antioxidant functions in gram‐positive bacteria. World J Microbiol Biotechnol 2021; 37:38. [DOI: 10.1007/s11274-021-03004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
|
11
|
Rodriguez Ayala F, Bartolini M, Grau R. The Stress-Responsive Alternative Sigma Factor SigB of Bacillus subtilis and Its Relatives: An Old Friend With New Functions. Front Microbiol 2020; 11:1761. [PMID: 33042030 PMCID: PMC7522486 DOI: 10.3389/fmicb.2020.01761] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.
Collapse
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Micro y Nanotecnología, Instituto de Nanociencia y Nanotecnología - Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco Bartolini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Roberto Grau
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
12
|
Sevcikova B, Rezuchova B, Mingyar E, Homerova D, Novakova R, Feckova L, Kormanec J. Pleiotropic anti-anti-sigma factor BldG is phosphorylated by several anti-sigma factor kinases in the process of activating multiple sigma factors in Streptomyces coelicolor A3(2). Gene 2020; 755:144883. [PMID: 32565321 DOI: 10.1016/j.gene.2020.144883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 02/03/2023]
Abstract
The anti-anti-sigma factor BldG has a pleiotropic function in Streptomyces coelicolor A3(2), regulating both morphological and physiological differentiation. Together with the anti-sigma factor UshX, it participates in a partner-switching activation of the sigma factor σH, which has a dual role in the osmotic stress response and morphological differentiation in S. coelicolor A3(2). In addition to UshX, BldG also interacts with the anti-sigma factor ApgA, although no target sigma factor has yet been identified. However, neither UshX nor ApgA phosphorylates BldG. This phosphorylation is provided by the anti-sigma factor RsfA, which is specific for the late developmental sigma factor σF. However, BldG is phosphorylated in the rsfA mutant, suggesting that some other anti-sigma factors containing HATPase_c kinase domain are capable to phosphorylate BldG in vivo. Bacterial two-hybrid system (BACTH) was therefore used to investigate the interactions of all suitable anti-sigma factors of S. coelicolor A3(2) with BldG. At least 15 anti-sigma factors were found to interact with BldG. These interactions were confirmed by native PAGE. In addition to RsfA, BldG is specifically phosphorylated on the conserved phosphorylation Ser57 residue by at least seven additional anti-sigma factors. However, only one of them, SCO7328, has been shown to interact with three sigma factors, σG, σK and σM. A mutant with deleted SCO7328 gene was prepared in S. coelicolor A3(2), however, no specific function of SCO7328 in growth, differentiation or stress response could be attributed to this anti-sigma factor. These results suggest that BldG is specifically phosphorylated by several anti-sigma factors and it plays a role in the regulation of several sigma factors in S. coelicolor A3(2). This suggests a complex regulation of the stress response and differentiation in S. coelicolor A3(2) through this pleiotropic anti-sigma factor.
Collapse
Affiliation(s)
- Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Erik Mingyar
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Dagmar Homerova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
13
|
Rath H, Sappa PK, Hoffmann T, Gesell Salazar M, Reder A, Steil L, Hecker M, Bremer E, Mäder U, Völker U. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol 2020; 22:3266-3286. [PMID: 32419322 DOI: 10.1111/1462-2920.15087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen K Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michael Hecker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
14
|
Lilge L, Reder A, Tippmann F, Morgenroth F, Grohmann J, Becher D, Riedel K, Völker U, Hecker M, Gerth U. The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in Bacillus subtilis. Front Microbiol 2020; 11:900. [PMID: 32477307 PMCID: PMC7235348 DOI: 10.3389/fmicb.2020.00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
Collapse
Affiliation(s)
- Lars Lilge
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Frank Tippmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Janice Grohmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Rath H, Reder A, Hoffmann T, Hammer E, Seubert A, Bremer E, Völker U, Mäder U. Management of Osmoprotectant Uptake Hierarchy in Bacillus subtilis via a SigB-Dependent Antisense RNA. Front Microbiol 2020; 11:622. [PMID: 32373088 PMCID: PMC7186363 DOI: 10.3389/fmicb.2020.00622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 01/20/2023] Open
Abstract
Under hyperosmotic conditions, bacteria accumulate compatible solutes through synthesis or import. Bacillus subtilis imports a large set of osmostress protectants via five osmotically controlled transport systems (OpuA to OpuE). Biosynthesis of the particularly effective osmoprotectant glycine betaine requires the exogenous supply of choline. While OpuB is rather specific for choline, OpuC imports a broad spectrum of compatible solutes, including choline and glycine betaine. One previously mapped antisense RNA of B. subtilis, S1290, exhibits strong and transient expression in response to a suddenly imposed salt stress. It covers the coding region of the opuB operon and is expressed from a strictly SigB-dependent promoter. By inactivation of this promoter and analysis of opuB and opuC transcript levels, we discovered a time-delayed osmotic induction of opuB that crucially depends on the S1290 antisense RNA and on the degree of the imposed osmotic stress. Time-delayed osmotic induction of opuB is apparently caused by transcriptional interference of RNA-polymerase complexes driving synthesis of the converging opuB and S1290 mRNAs. When our data are viewed in an ecophysiological framework, it appears that during the early adjustment phase of B. subtilis to acute osmotic stress, the cell prefers to initially rely on the transport activity of the promiscuous OpuC system and only subsequently fully induces opuB. Our data also reveal an integration of osmostress-specific adjustment systems with the SigB-controlled general stress response at a deeper level than previously appreciated.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Stochastic pulsing of gene expression enables the generation of spatial patterns in Bacillus subtilis biofilms. Nat Commun 2020; 11:950. [PMID: 32075967 PMCID: PMC7031267 DOI: 10.1038/s41467-020-14431-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells, but it is unclear whether it has a role in the development of multicellular systems. Here, we show how stochastic pulsing of gene expression enables spatial patterns to form in a model multicellular system, Bacillus subtilis bacterial biofilms. We use quantitative microscopy and time-lapse imaging to observe pulses in the activity of the general stress response sigma factor σB in individual cells during biofilm development. Both σB and sporulation activity increase in a gradient, peaking at the top of the biofilm, even though σB represses sporulation. As predicted by a simple mathematical model, increasing σB expression shifts the peak of sporulation to the middle of the biofilm. Our results demonstrate how stochastic pulsing of gene expression can play a key role in pattern formation during biofilm development. Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells. Here, the authors show that stochastic pulsing in the expression of a sigma factor enables the formation of spatial patterns in a multicellular system, Bacillus subtilis bacterial biofilms.
Collapse
|
17
|
Trösch R, Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol Chem 2020; 400:879-893. [PMID: 30653464 DOI: 10.1515/hsz-2018-0436] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Cells are highly adaptive systems that respond and adapt to changing environmental conditions such as temperature fluctuations or altered nutrient availability. Such acclimation processes involve reprogramming of the cellular gene expression profile, tuning of protein synthesis, remodeling of metabolic pathways and morphological changes of the cell shape. Nutrient starvation can lead to limited energy supply and consequently, remodeling of protein synthesis is one of the key steps of regulation since the translation of the genetic code into functional polypeptides may consume up to 40% of a cell's energy during proliferation. In eukaryotic cells, downregulation of protein synthesis during stress is mainly mediated by modification of the translation initiation factors. Prokaryotic cells suppress protein synthesis by the active formation of dimeric so-called 'hibernating' 100S ribosome complexes. Such a transition involves a number of proteins which are found in various forms in prokaryotes but also in chloroplasts of plants. Here, we review the current understanding of these hibernation factors and elaborate conserved principles which are shared between species.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Felix Willmund
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
18
|
The σBsignalling activation pathway in the enteropathogenClostridioides difficile. Environ Microbiol 2019; 21:2852-2870. [DOI: 10.1111/1462-2920.14642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023]
|
19
|
Yan S, Wu G. Proteases HtrA and HtrB for α-amylase secreted from Bacillus subtilis in secretion stress. Cell Stress Chaperones 2019; 24:493-502. [PMID: 31001739 PMCID: PMC6527527 DOI: 10.1007/s12192-019-00985-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023] Open
Abstract
HtrA and HtrB are two important proteases across species. In biotechnological industries, they are related to degradation of secreted heterologous proteins from bacteria, especially in the case of overproduction of α-amylases in Bacillus subtilis. Induction of HtrA and HtrB synthesis follows the overproduction of α-amylases in B. subtilis. This is different from the order usually observed in B. subtilis, i.e., the production of proteases is prior to the secretion of proteins. This discrepancy suggests three possibilities: (i) HtrA and HtrB are constantly synthesized from the end of the exponential phase, and then are synthesized more abundantly due to secretion stress; (ii) There is a hysteresis mechanism that holds HtrA and HtrB back from their large amount of secretion before the overproduction of α-amylases; (iii) Heterologous amylases could be a stress to B. subtilis leading to a general response to stress. In this review, we analyze the literature to explore these three possibilities. The first possibility is attributed to the regulatory pathway of CssR-CssS. The second possibility is because sigma factor σD plays a role in the overproduction of α-amylases and is subpopulation dependent with the switch between "ON" and "OFF" states that is fundamental for a bistable system and a hysteresis mechanism. Thus, sigma factor σD helps to hold HtrA and HtrB back from massive secretion before the overproduction of α-amylases. The third possibility is that several sigma factors promote the secretion of proteases at the end of the exponential phase of growth under the condition that heterologous amylases are considered as a stress.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China
| | - Guang Wu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
20
|
Cabeen MT, Russell JR, Paulsson J, Losick R. Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of Bacillus subtilis. PLoS Genet 2017; 13:e1006901. [PMID: 28727759 PMCID: PMC5542698 DOI: 10.1371/journal.pgen.1006901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/03/2017] [Accepted: 06/29/2017] [Indexed: 11/19/2022] Open
Abstract
Bacteria use a variety of stress-sensing systems to sense and respond to diverse stressors and to ensure their survival under adverse conditions. The gram-positive bacterium Bacillus subtilis responds to energy stress (ATP depletion) and to environmental stressors using two distinct stress-sensing pathways that converge on the alternative sigma factor σB to provoke a general stress response. Past efforts to study the σB stress response in bulk culture and on agarose pads were unable to visualize the responses of individual cells under tightly controlled conditions for extended periods of time. Here we use a microfluidics-based strategy to discern the basic features of σB activation in single cells in response to energy and environmental stress, both immediately upon stressor exposure and for tens of generations thereafter. Upon energy stress at various levels of stressor, cells exhibited fast, transient, and amplitude-modulated responses but not frequency modulation as previously reported. Upon environmental stress, which is mediated by the stressosome complex, wild-type cells primarily exhibited a transient and amplitude-modulated response. However, mutant cells producing only one of the four paralogous RsbR stressosome proteins showed striking and previously unseen differences. Whereas RsbRA-only cells mimicked the wild type, RsbRC-only cells displayed a slower but sustained overall response composed of repeated activation events in single cells.
Collapse
Affiliation(s)
- Matthew T. Cabeen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jonathan R. Russell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
21
|
Abstract
The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.
Collapse
|
22
|
Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks. PLoS Comput Biol 2016; 12:e1005267. [PMID: 27977677 PMCID: PMC5207722 DOI: 10.1371/journal.pcbi.1005267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
Despite the central role of alternative sigma factors in bacterial stress response and virulence their regulation remains incompletely understood. Here we investigate one of the best-studied examples of alternative sigma factors: the σB network that controls the general stress response of Bacillus subtilis to uncover widely relevant general design principles that describe the structure-function relationship of alternative sigma factor regulatory networks. We show that the relative stoichiometry of the synthesis rates of σB, its anti-sigma factor RsbW and the anti-anti-sigma factor RsbV plays a critical role in shaping the network behavior by forcing the σB network to function as an ultrasensitive negative feedback loop. We further demonstrate how this negative feedback regulation insulates alternative sigma factor activity from competition with the housekeeping sigma factor for RNA polymerase and allows multiple stress sigma factors to function simultaneously with little competitive interference. Understanding the regulation of bacterial stress response holds the key to tackling the problems of emerging resistance to anti-bacteria’s and antibiotics. To this end, here we study one of the longest serving model systems of bacterial stress response: the σB pathway of Bacillus subtilis. The sigma factor σB controls the general stress response of Bacillus subtilis to a variety of stress conditions including starvation, antibiotics and harmful environmental perturbations. Recent studies have demonstrated that an increase in stress triggers pulsatile activation of σB. Using mathematical modeling we identify the core structural design feature of the network that are responsible for its pulsatile response. We further demonstrate how the same core design features are common to a variety of stress response pathways. As a result of these features, cells can respond to multiple simultaneous stresses without interference or competition between the different pathways.
Collapse
|
23
|
Mäder U, Nicolas P, Depke M, Pané-Farré J, Debarbouille M, van der Kooi-Pol MM, Guérin C, Dérozier S, Hiron A, Jarmer H, Leduc A, Michalik S, Reilman E, Schaffer M, Schmidt F, Bessières P, Noirot P, Hecker M, Msadek T, Völker U, van Dijl JM. Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions. PLoS Genet 2016; 12:e1005962. [PMID: 27035918 PMCID: PMC4818034 DOI: 10.1371/journal.pgen.1005962] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A+T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and non-coding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria. The major human pathogen Staphylococcus aureus can survive under a wide range of conditions, both inside and outside the human body. The goal of this study was to determine how S. aureus adapts to such different conditions and, additionally, we wanted to identify general factors governing the staphylococcal transcriptome architecture. Therefore, we performed a precise analysis of all RNA transcripts of S. aureus across experimental conditions ranging from in vitro growth in different media to internalization by eukaryotic host cells. We systematically mapped all transcription units, annotated non-coding RNAs, and assigned promoters controlled by particular RNA polymerase sigma factors and transcription factors. By a comparison with data available for the related Gram-positive bacterium Bacillus subtilis, we made key observations concerning the abundance and origin of antisense RNAs. Intriguingly, these findings support the view that many antisense RNAs in a bacterium like B. subtilis could be byproducts of spurious promoter recognition by condition-specific alternative sigma factors. We also report that the transcription termination factor Rho prevents widespread antisense transcription, presumably caused by pervasive transcription initiation in the A+T-rich genome of S. aureus. Altogether our study presents new perspectives on the biological significance of antisense and pervasive transcription in bacteria.
Collapse
Affiliation(s)
- Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Pierre Nicolas
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Michel Debarbouille
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Magdalena M. van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyprien Guérin
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandra Dérozier
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aurelia Hiron
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Hanne Jarmer
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aurélie Leduc
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marc Schaffer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Philippe Noirot
- Institut Micalis, INRA and AgroParisTech, Jouy-en-Josas, France
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Tarek Msadek
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- * E-mail: (UV); (JMvD)
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (UV); (JMvD)
| |
Collapse
|
24
|
To Modulate Survival under Secondary Stress Conditions, Listeria monocytogenes 10403S Employs RsbX To Downregulate σB Activity in the Poststress Recovery Stage or Stationary Phase. Appl Environ Microbiol 2015; 82:1126-1135. [PMID: 26637594 DOI: 10.1128/aem.03218-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/27/2015] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes is a saprophytic bacterium that thrives in diverse environments and causes listeriosis via ingestion of contaminated food. RsbX, a putative sigma B (σ(B)) regulator, is thought to maintain the ready state in the absence of stress and reset the bacterium to the initial state in the poststress stage in Bacillus subtilis. We wondered whether RsbX is functional in L. monocytogenes under different stress scenarios. Genetic deletion and complementation of the rsbX gene were combined with survival tests and transcriptional and translational analyses of σ(B) expression in response to stresses. We found that deletion of rsbX increased survival under secondary stress following recovery of growth after primary stress or following stationary-phase culturing. The ΔrsbX mutant had higher expression of σ(B) than its parent strain in the recovery stage following primary sodium stress and in stationary-phase cultures. Apparently, increased σ(B) expression had contributed to improved survival in the absence of RsbX. There were no significant differences in survival rates or σ(B) expression levels in response to primary stresses between the rsbX mutant and its parent strain during the exponential phase. Therefore, we provide clear evidence that RsbX is a negative regulator of L. monocytogenes σ(B) during the recovery period after a primary stress or in the stationary phase, thus affecting its survival under secondary stress.
Collapse
|
25
|
Chen JC, Liu JH, Hsu DW, Shu JC, Chen CY, Chen CC. Methylatable Signaling Helix Coordinated Inhibitory Receiver Domain in Sensor Kinase Modulates Environmental Stress Response in Bacillus Cereus. PLoS One 2015; 10:e0137952. [PMID: 26379238 PMCID: PMC4574943 DOI: 10.1371/journal.pone.0137952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 02/08/2023] Open
Abstract
σB, an alternative transcription factor, controls the response of the cell to a variety of environmental stresses in Bacillus cereus. Previously, we reported that RsbM negatively regulates σB through the methylation of RsbK, a hybrid sensor kinase, on a signaling helix (S-helix). However, RsbK comprises a C-terminal receiver (REC) domain whose function remains unclear. In this study, deletion of the C-terminal REC domain of RsbK resulted in high constitutive σB expression independent of environmental stimuli. Thus, the REC domain may serve as an inhibitory element. Mutagenic substitution was employed to modify the putative phospho-acceptor residue D827 in the REC domain of RsbK. The expression of RsbKD827N and RsbKD827E exhibited high constitutive σB, indicating that D827, if phosphorylatable, possibly participates in σB regulation. Bacterial two-hybrid analyses demonstrated that RsbK forms a homodimer and the REC domain interacts mainly with the histidine kinase (HK) domain and partly with the S-helix. In particular, co-expression of RsbM strengthens the interaction between the REC domain and the S-helix. Consistently, our structural model predicts a significant interaction between the HK and REC domains of the RsbK intradimer. Here, we demonstrated that coordinated the methylatable S-helix and the REC domain of RsbK is functionally required to modulate σB-mediated stress response in B. cereus and maybe ubiquitous in microorganisms encoded RsbK-type sensor kinases.
Collapse
Affiliation(s)
- Jung-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taichung, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jwu-Ching Shu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Thompson CC, Griffiths C, Nicod SS, Lowden NM, Wigneshweraraj S, Fisher DJ, McClure MO. The Rsb Phosphoregulatory Network Controls Availability of the Primary Sigma Factor in Chlamydia trachomatis and Influences the Kinetics of Growth and Development. PLoS Pathog 2015; 11:e1005125. [PMID: 26313645 PMCID: PMC4552016 DOI: 10.1371/journal.ppat.1005125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen that exhibits stage-specific gene transcription throughout a biphasic developmental cycle. The mechanisms that control modulation in transcription and associated phenotypic changes are poorly understood. This study provides evidence that a switch-protein kinase regulatory network controls availability of σ66, the main sigma subunit for transcription in Chlamydia. In vitro analysis revealed that a putative switch-protein kinase regulator, RsbW, is capable of interacting directly with σ66, as well as phosphorylating its own antagonist, RsbV1, rendering it inactive. Conversely, the putative PP2C-like phosphatase domain of chlamydial RsbU was capable of reverting RsbV1 into its active state. Recent advances in genetic manipulation of Chlamydia were employed to inactivate rsbV1, as well as to increase the expression levels of rsbW or rsbV1, in vivo. Representative σ66-dependent gene transcription was repressed in the absence of rsbV1 or upon increased expression of RsbW, and increased upon elevated expression of RsbV1. These effects on housekeeping transcription were also correlated to several measures of growth and development. A model is proposed where the relative levels of active antagonist (RsbV1) and switch-protein anti-sigma factor (RsbW) control the availability of σ66 and subsequently act as a molecular 'throttle' for Chlamydia growth and development. Chlamydia trachomatis is the leading cause of both bacterial sexually transmitted infection and infection-derived blindness world-wide. No vaccine has proven protective to date in humans. C. trachomatis only replicates from inside a host cell, and has evolved to acquire a variety of nutrients directly from its host. However, a typical human immune response will normally limit the availability of a variety of essential nutrients. Thus, it is thought that the success of C. trachomatis as a human pathogen may lie in its ability to survive these immunological stress situations by slowing growth and development until conditions in the cell have improved. This mode of growth is known as persistence and how C. trachomatis senses stress and responds in this manner is an important area of research. Our report characterizes a complete signaling module, the Rsb network, that is capable of controlling the growth rate or infectivity of Chlamydia. By manipulating the levels of different pathway components, we were able to accelerate and restrict the growth and development of this pathogen. Our results suggest a mechanism by which Chlamydia can tailor its growth rate to the conditions within the host cell. The disruption of this pathway could generate a strain incapable of surviving a typical human immune response and would represent an attractive candidate as an attenuated growth vaccine.
Collapse
Affiliation(s)
- Christopher C. Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary’s Hospital Campus, London, United Kingdom
| | - Cherry Griffiths
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary’s Hospital Campus, London, United Kingdom
| | - Sophie S. Nicod
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Nicole M. Lowden
- Department of Microbiology, Southern Illinois University, Carbondale, Carbondale, Illinois, United States of America
| | - Sivaramesh Wigneshweraraj
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Derek J. Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, Carbondale, Illinois, United States of America
| | - Myra O. McClure
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary’s Hospital Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
van der Steen JB, Hellingwerf KJ. Activation of the General Stress Response of Bacillus subtilis by Visible Light. Photochem Photobiol 2015; 91:1032-45. [PMID: 26189730 DOI: 10.1111/php.12499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
A key challenge for microbiology is to understand how evolution has shaped the wiring of regulatory networks. This is amplified by the paucity of information of power-spectra of physicochemical stimuli to which microorganisms are exposed. Future studies of genome evolution, driven by altered stimulus regimes, will therefore require a versatile signal transduction system that allows accurate signal dosing. Here, we review the general stress response of Bacillus subtilis, and its upstream signal transduction network, as a candidate system. It can be activated by red and blue light, and by many additional stimuli. Signal integration therefore is an intricate function of this system. The blue-light response is elicited via the photoreceptor YtvA, which forms an integral part of stressosomes, to activate expression of the stress regulon of B. subtilis. Signal transfer through this network can be assayed with reporter enzymes, while intermediate steps can be studied with live-cell imaging of fluorescently tagged proteins. Different parts of this system have been studied in vitro, such that its computational modeling has made significant progress. One can directly relate the microscopic characteristics of YtvA with activation of the general stress regulon, making this system a very well-suited system for network evolution studies.
Collapse
Affiliation(s)
- Jeroen B van der Steen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Meyer H, Weidmann H, Mäder U, Hecker M, Völker U, Lalk M. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 10:1812-23. [PMID: 24727859 DOI: 10.1039/c4mb00112e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.
Collapse
Affiliation(s)
- Hanna Meyer
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Microorganisms live in fluctuating environments, requiring stress response pathways to resist environmental insults and stress. These pathways dynamically monitor cellular status, and mediate adaptive changes by remodeling the proteome, largely accomplished by remodeling transcriptional networks and protein degradation. The complementarity of fast, specific proteolytic degradation and slower, broad transcriptomic changes gives cells the mechanistic repertoire to dynamically adjust cellular processes and optimize response behavior. Together, this enables cells to minimize the 'cost' of the response while maximizing the ability to survive environmental stress. Here we highlight recent progress in our understanding of transcriptional networks and proteolysis that illustrates the design principles used by bacteria to generate the complex behaviors required to resist stress.
Collapse
|
30
|
Abstract
My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery.
Collapse
Affiliation(s)
- Richard Losick
- From the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| |
Collapse
|
31
|
Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W. A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell Proteomics 2014; 13:3519-32. [PMID: 25239498 DOI: 10.1074/mcp.m113.035675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To improve ethanol production directly from CO2 in photosynthetic cyanobacterial systems, one key issue that needs to be addressed is the low ethanol tolerance of cyanobacterial cells. Our previous proteomic and transcriptomic analyses found that several regulatory proteins were up-regulated by exogenous ethanol in Synechocystis sp. PCC6803. In this study, through tolerance analysis of the gene disruption mutants of the up-regulated regulatory genes, we uncovered that one transcriptional regulator, Sll0794, was related directly to ethanol tolerance in Synechocystis. Using a quantitative iTRAQ-LC-MS/MS proteomics approach coupled with quantitative real-time reverse transcription-PCR (RT-qPCR), we further determined the possible regulatory network of Sll0794. The proteomic analysis showed that in the Δsll0794 mutant grown under ethanol stress a total of 54 and 87 unique proteins were down- and up-regulated, respectively. In addition, electrophoretic mobility shift assays demonstrated that the Sll0794 transcriptional regulator was able to bind directly to the upstream regions of sll1514, slr1512, and slr1838, which encode a 16.6 kDa small heat shock protein, a putative sodium-dependent bicarbonate transporter and a carbon dioxide concentrating mechanism protein CcmK, respectively. The study provided a proteomic description of the putative ethanol-tolerance network regulated by the sll0794 gene, and revealed new insights on the ethanol-tolerance regulatory mechanism in Synechocystis. As the first regulatory protein discovered related to ethanol tolerance, the gene may serve as a valuable target for transcription machinery engineering to further improve ethanol tolerance in Synechocystis. All MS data have been deposited in the ProteomeXchange with identifier PXD001266 (http://proteomecentral.proteomexchange.org/dataset/PXD001266).
Collapse
Affiliation(s)
- Zhongdi Song
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China
| | - Lei Chen
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China;
| | - Jiangxin Wang
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China
| | - Yinhua Lu
- ‖Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Weihong Jiang
- ‖Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Weiwen Zhang
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China;
| |
Collapse
|
32
|
Pförtner H, Burian MS, Michalik S, Depke M, Hildebrandt P, Dhople VM, Pané-Farré J, Hecker M, Schmidt F, Völker U. Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells – An in vivo proteomics perspective. Int J Med Microbiol 2014; 304:177-87. [DOI: 10.1016/j.ijmm.2013.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Fluoro-phenyl-styrene-sulfonamide, a novel inhibitor of σB activity, prevents the activation of σB by environmental and energy stresses in Bacillus subtilis. J Bacteriol 2013; 195:2509-17. [PMID: 23524614 DOI: 10.1128/jb.00107-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sigma B (σ(B)) is an alternative sigma factor that regulates the general stress response in Bacillus subtilis and in many other Gram-positive organisms. σ(B) activity in B. subtilis is tightly regulated via at least three distinct pathways within a complex signal transduction cascade in response to a variety of stresses, including environmental stress, energy stress, and growth at high or low temperatures. We probed the ability of fluoro-phenyl-styrene-sulfonamide (FPSS), a small-molecule inhibitor of σ(B) activity in Listeria monocytogenes, to inhibit σ(B) activity in B. subtilis through perturbation of signal transduction cascades under various stress conditions. FPSS inhibited the activation of σ(B) in response to multiple categories of stress known to induce σ(B) activity in B. subtilis. Specifically, FPSS prevented the induction of σ(B) activity in response to energy stress, including entry into stationary phase, phosphate limitation, and azide stress. FPSS also inhibited chill induction of σ(B) activity in a ΔrsbV strain, suggesting that FPSS does not exclusively target the RsbU and RsbP phosphatases or the anti-anti-sigma factor RsbV, all of which contribute to posttranslational regulation of σ(B) activity. Genetic and biochemical experiments, including artificial induction of σ(B), analysis of the phosphorylation state of the anti-anti-sigma factor RsbV, and in vitro transcription assays, indicate that while FPSS does not bind directly to σ(B) to inhibit activity, it appears to prevent the release of B. subtilis σ(B) from its anti-sigma factor RsbW.
Collapse
|
34
|
Chen LC, Chen JC, Shu JC, Chen CY, Chen SC, Chen SH, Lin CY, Lu CY, Chen CC. Interplay of RsbM and RsbK controls the σ(B) activity of Bacillus cereus. Environ Microbiol 2012; 14:2788-99. [PMID: 22640257 DOI: 10.1111/j.1462-2920.2012.02788.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alternative transcription factor σ(B) of Bacillus cereus controls the expression of a number of genes that respond to environmental stress. Four proteins encoded in the sigB gene cluster, including RsbV, RsbW, RsbY (RsbU) and RsbK, are known to be essential in the σ(B)-mediated stress response. In the context of stress, the hybrid sensor kinase RsbK is thought to phosphorylate the response regulator RsbY, a PP2C serine phosphatase, leading to the dephosphorylation of the phosphorylated RsbV. The unphosphorylated RsbV then sequesters the σ(B) antagonist, RsbW, ultimately liberating σ(B). The gene arrangement reveals an open reading frame, bc1007, flanked immediately downstream by rsbK within the sigB gene cluster. However, little is known about the function of bc1007. In this study, the deletion of bc1007 resulted in high constitutive σ(B) expression independent of environmental stimuli, indicating that bc1007 plays a role in σ(B) regulation. A bacterial two-hybrid analysis demonstrated that BC1007 interacts directly with RsbK, and autoradiographic studies revealed a specific C(14)-methyl transfer from the radiolabelled S-adenosylmethionine to RsbK when RsbK was incubated with purified BC1007. Our data suggest that BC1007 (RsbM) negatively regulates σ(B) activity by methylating RsbK. Additionally, mutagenic substitution was employed to modify 12 predicted methylation residues in RsbK. Certain RsbK mutants were able to rescue σ(B) activation in a rsbK-deleted bacterial strain, but RsbK(E439A) failed to activate σ(B), and RsbK(E446A) only moderately induced σ(B). These results suggest that Glu439 is the preferred methylation site and that Glu446 is potentially a minor methylation site. Gene arrays of the rsbK orthologues and the neighbouring rsbM orthologues are found in a wide range of bacteria. The regulation of sigma factors through metylation of RsbK-like sensor kinases appears to be widespread in the microbial world.
Collapse
Affiliation(s)
- Lei-Chin Chen
- Department of Nutrition, I-Shou University, Jiaosu Village, Yanchao District, Kaohsiung 82445, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nadezhdin EV, Brody MS, Price CW. An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains. PLoS One 2011; 6:e25418. [PMID: 21980452 PMCID: PMC3183031 DOI: 10.1371/journal.pone.0025418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/02/2011] [Indexed: 11/19/2022] Open
Abstract
The RsbQ α/β hydrolase and RsbP serine phosphatase form a signaling pair required to activate the general stress factor σB of Bacillus subtilis in response to energy limitation. RsbP has a predicted N-terminal Per-ARNT-Sim (PAS) domain, a central coiled-coil, and a C-terminal protein phosphatase M (PPM) domain. Previous studies support a model in which RsbQ provides an activity needed for PAS to regulate the phosphatase domain via the coiled-coil. RsbQ and the PAS domain (RsbP-PAS) therefore appear to form a sensory module. Here we test this hypothesis using bioinformatic and genetic analysis. We found 45 RsbQ and RsbP-PAS homologues encoded by adjacent genes in diverse bacteria, with PAS and a predicted coiled-coil fused to one of three output domains: PPM phosphatase (Gram positive bacteria), histidine protein kinase (Gram negative bacteria), and diguanylate cyclase (both lineages). Multiple alignment of the RsbP-PAS homologues suggested nine residues that distinguish the class. Alanine substitutions at four of these conferred a null phenotype in B. subtilis, indicating their functional importance. The F55A null substitution lay in the Fα helix of an RsbP-PAS model. F55A inhibited interaction of RsbP with RsbQ in yeast two-hybrid and pull-down assays but did not significantly affect interaction of RsbP with itself. We propose that RsbQ directly contacts the PAS domains of an RsbP oligomer to provide the activating signal, which is propagated to the phosphatase domains via the coiled-coil. A similar mechanism would allow the RsbQ-PAS module to convey a common input signal to structurally diverse output domains, controlling a variety of physiological responses.
Collapse
Affiliation(s)
- Eugene V. Nadezhdin
- Department of Microbiology, University of California Davis, Davis, California, United States of America
| | - Margaret S. Brody
- Department of Microbiology, University of California Davis, Davis, California, United States of America
| | - Chester W. Price
- Department of Microbiology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lourenço RF, Kohler C, Gomes SL. A two-component system, an anti-sigma factor and two paralogous ECF sigma factors are involved in the control of general stress response in Caulobacter crescentus. Mol Microbiol 2011; 80:1598-612. [PMID: 21564331 DOI: 10.1111/j.1365-2958.2011.07668.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The extracytoplasmic function sigma factor σ(T) is the master regulator of general stress response in Caulobacter crescentus and controls the expression of its paralogue σ(U). In this work we showed that PhyR and NepR act, respectively, as positive and negative regulators of σ(T) expression and function. Biochemical data also demonstrated that NepR directly binds σ(T) and the phosphorylated form of PhyR. We also described the essential role of the histidine kinase gene CC3474, here denominated phyK, for expression of σ(T)-dependent genes and for resistance to stress conditions. Additionally, in vivo evidence of PhyK-dependent phosphorylation of PhyR is presented. This study also identified a conserved cysteine residue (C95) located in the periplasmic portion of PhyK that is crucial for the function of the protein. Furthermore, we showed that PhyK, PhyR and σ(T) regulate the same set of genes and that σ(T) apparently directly controls most of its regulon. In contrast, σ(U) seems to have a very modest contribution to the expression of a subset of σ(T)-dependent genes. In conclusion, this report describes the molecular mechanism involved in the control of general stress response in C. crescentus.
Collapse
Affiliation(s)
- Rogério F Lourenço
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
37
|
King-Scott J, Konarev PV, Panjikar S, Jordanova R, Svergun DI, Tucker PA. Structural characterization of the multidomain regulatory protein Rv1364c from Mycobacterium tuberculosis. Structure 2011; 19:56-69. [PMID: 21220116 DOI: 10.1016/j.str.2010.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 01/29/2023]
Abstract
The open reading frame rv1364c of Mycobacterium tuberculosis, which regulates the stress-dependent σ factor, σ(F), has been analyzed structurally and functionally. Rv1364c contains domains with sequence similarity to the RsbP/RsbW/RsbV regulatory system of the stress-response σ factor of Bacillus subtilis. Rv1364c contains, sequentially, a PAS domain (which shows sequence similarity to the PAS domain of the B. subtilis RsbP protein), an active phosphatase domain, a kinase (anti-σ(F) like) domain and a C-terminal anti-σ(F) antagonist like domain. The crystal structures of two PAS domain constructs (at 2.3 and 1.6 Å) and a phosphatase/kinase dual domain construct (at 2.6 Å) are described. The PAS domain is shown to bind palmitic acid but to have 100 times greater affinity for palmitoleic acid. The full-length protein can exist in solution as both monomer and dimer. We speculate that a switch between monomer and dimer, possibly resulting from fatty acid binding, affects the accessibility of the serine of the C-terminal, anti-σ(F) antagonist domain for dephosphorylation by the phosphatase domain thus indirectly altering the availability of σ(F).
Collapse
Affiliation(s)
- Jack King-Scott
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D22603, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The stressosome co-ordinates the response of Bacillus subtilis to the imposition of a variety of physical and environmental insults. These stresses include fluctuations in salt concentration, the presence of ethanol, changes in pH and even the level of UV light. Despite the obvious and significant differences between these quite different physicochemical stimuli, the result is the same: the stressosome is phosphorylated by a key kinase to initiate the sigma(B) cascade. The phosphorylation of the stressosome initiates a signal transduction system that up-regulates the expression of stress-responsive genes so that the Bacillus can survive the imposition of stress. Hence the stressosome acts as a hub, receiving manifold different stimuli to effect a single outcome. Using single-particle analysis of cryo-electron micrographs, we have been able to reconstruct a series of molecular envelopes of the stressosome. These maps have been interpreted at near-atomic resolution with crystal structures of the individual components of the stressosome to provide the first visualization of this unique signalling hub. The macromolecular structure adopted by the stressosome provides the signalling cascade with the potential for co-operative behaviour, which we have also measured in live bacteria. These experiments are consistent with the tuning of the response of B. subtilis to stress relative to the magnitude of the insult.
Collapse
|
39
|
Stressosomes formed in Bacillus subtilis from the RsbR protein of Listeria monocytogenes allow σ(B) activation following exposure to either physical or nutritional stress. J Bacteriol 2010; 192:6279-86. [PMID: 20935101 DOI: 10.1128/jb.00467-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The general stress regulon of Bacillus subtilis is controlled by σ(B), a transcription factor that is activated by physical or nutritional stress. In B. subtilis, each of these two stresses is communicated to the primary σ(B) regulators by distinct pathways. Physical stress activation of σ(B) involves a large-molecular-mass (>10(6)-Da) structure (stressosome) formed by one or more homologous proteins (RsbRA, -B, -C, and -D) onto which the pathway's principal regulators are bound. The RsbR proteins are thought to be potential receptors for stress signaling. Listeria monocytogenes encodes orthologs of σ(B) and its principal regulators; however, unlike B. subtilis, L. monocytogenes appears to use the stressosome pathway for both physical and nutritional stress activation of σ(B). In the current work, a B. subtilis strain that expressed L. monocytogenes rsbR (rsbR(Lm)) in lieu of B. subtilis rsbR (rsbR(Bs)) was created and was found to display the Listeria phenotype of σ(B) activation following exposure to either physical or nutritional stress. B. subtilis expressing either the RsbR paralog rsbRC or rsbRD, but not rsbRA or rsbRB, as the sole source of RsbR also allowed σ(B) induction following nutritional stress. It is unclear whether the nutritional stress induction seen in these strains is the result of a direct effect of nutritional stress on stressosome activity or a consequence of the background levels of σ(B) activation in these strains and the effects of diminished ATP on the downstream phosphorylation reaction needed to reinactivate σ(B).
Collapse
|
40
|
The anti-anti-sigma factor BldG is involved in activation of the stress response sigma factor σ(H) in Streptomyces coelicolor A3(2). J Bacteriol 2010; 192:5674-81. [PMID: 20817765 DOI: 10.1128/jb.00828-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative stress response sigma factor σ(H) has a role in regulation of the osmotic stress response and in morphological differentiation in Streptomyces coelicolor A3(2). Its gene, sigH, is located in an operon with the gene that encodes its anti-sigma factor UshX (PrsH). However, no gene with similarity to an anti-anti-sigma factor which may have a role in σ(H) activation by a "partner-switching" mechanism is located in the operon. By using a combination of several approaches, including pull-down and bacterial two-hybrid assays and visualization of the complex by native polyacrylamide electrophoresis, we demonstrated a direct interaction between UshX and the pleiotropic sporulation-specific anti-anti-sigma factor BldG. Osmotic induction of transcription of the sigHp2 promoter that is specifically recognized by RNA polymerase containing σ(H) was absent in an S. coelicolor bldG mutant, indicating a role of BldG in σ(H) activation by a partner-switching-like mechanism.
Collapse
|
41
|
Jurk M, Dorn M, Kikhney A, Svergun D, Gärtner W, Schmieder P. The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by a combined AUC and SAXS study. J Mol Biol 2010; 403:78-87. [PMID: 20800068 DOI: 10.1016/j.jmb.2010.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Photoreceptors play an important role in plants and bacteria by converting extracellular stimuli into intracellular signals. One distinct class are the blue-light-sensitive phototropins harboring a light-oxygen-voltage (LOV) domain coupled to various effector domains. Photon absorption by the chromophore within the LOV domain results in an activation of the output domain via mechanisms that are hitherto not well understood. The photoreceptor YtvA from Bacillus subtilis is a bacterial analog of phototropins, consists of an LOV and a sulfate transporter/anti-sigma factor antagonist domain, and is involved in the response of the bacterium to environmental stress. We present here analytical ultracentrifugation studies and small-angle X-ray scattering experiments, showing that YtvA is a dimer. On the basis of these results, we present a low-resolution model of the dimer in the dark and the lit state of the protein. In addition, we show that YtvA does not change its oligomerization state or its overall shape upon light activation.
Collapse
Affiliation(s)
- Marcel Jurk
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Dorn
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Alexey Kikhney
- European Molecular Biology Laboratory, Notkestraße 85, Geb. 25A, 22603 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Notkestraße 85, Geb. 25A, 22603 Hamburg, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
42
|
Brody MS, Stewart V, Price CW. Bypass suppression analysis maps the signalling pathway within a multidomain protein: the RsbP energy stress phosphatase 2C from Bacillus subtilis. Mol Microbiol 2009; 72:1221-34. [PMID: 19432806 DOI: 10.1111/j.1365-2958.2009.06722.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The network controlling the general stress response in Bacillus subtilis requires both the RsbP phosphatase and the RsbQ alpha/beta hydrolase to convey signals of energy stress. RsbP contains three domains: an N-terminal PAS, a central coiled-coil and a C-terminal PP2C phosphatase. We report here a genetic analysis that established the functional interactions of the domains and their relationship to RsbQ. Random mutagenesis of rsbP yielded 17 independent bypass suppressors that had activity in an rsbQ null strain background. The altered residues clustered in three regions of RsbP: the coiled-coil and two predicted helices of the phosphatase domain. One helix (alpha0) is unique to a subfamily of bacterial PP2C phosphatases that possess N-terminal sensing domains. The other (alpha1) is distinct from the active site in all solved PP2C structures. The phenotypes of the suppressors and directed deletions support a model in which the coiled-coil negatively controls phosphatase activity, perhaps via the alpha0-alpha1 helices, with RsbQ hydrolase activity and the PAS domain jointly comprising a positive sensing module that counters the coiled-coil. We propose that the alpha0 helix characterizes an extended PP2C domain in many bacterial signalling proteins, and suggest it provides a means to communicate information from diverse input domains.
Collapse
Affiliation(s)
- Margaret S Brody
- Department of Microbiology, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
43
|
Pané-Farré J, Jonas B, Hardwick SW, Gronau K, Lewis RJ, Hecker M, Engelmann S. Role of RsbU in controlling SigB activity in Staphylococcus aureus following alkaline stress. J Bacteriol 2009; 191:2561-73. [PMID: 19201800 PMCID: PMC2668408 DOI: 10.1128/jb.01514-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/28/2009] [Indexed: 02/04/2023] Open
Abstract
SigB is an alternative sigma factor that controls a large regulon in Staphylococcus aureus. Activation of SigB requires RsbU, a protein phosphatase 2C (PP2C)-type phosphatase. In a closely related organism, Bacillus subtilis, RsbU activity is stimulated upon interaction with RsbT, a kinase, which following an activating stimulus switches from a 25S high-molecular-weight complex, the stressosome, to the N-terminal domain of RsbU. Active RsbU dephosporylates RsbV and thereby triggers the release of SigB from its inhibitory complex with RsbW. While RsbU, RsbV, RsbW, and SigB are conserved in S. aureus, proteins similar to RsbT and the components of the stressosome are not, raising the question of how RsbU activity and hence SigB activity are controlled in S. aureus. We found that in contrast to the case in B. subtilis, the induced expression of RsbU was sufficient to stimulate SigB-dependent transcription in S. aureus. However, activation of SigB-dependent transcription following alkaline stress did not lead to a clear accumulation of SigB and its regulators RsbV and RsbW or to a change in the RsbV/RsbV-P ratio in S. aureus. When expressed in B. subtilis, the S. aureus RsbU displayed a high activity even in the absence of an inducing stimulus. This high activity could be transferred to the PP2C domain of the B. subtilis RsbU protein by a fusion to the N-terminal domain of the S. aureus RsbU. Collectively, the data suggest that the activity of the S. aureus RsbU and hence SigB may be subjected to different regulation in comparison to that in B. subtilis.
Collapse
Affiliation(s)
- Jan Pané-Farré
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
BldG and SCO3548 interact antagonistically to control key developmental processes in Streptomyces coelicolor. J Bacteriol 2009; 191:2541-50. [PMID: 19201788 DOI: 10.1128/jb.01695-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The similarity of BldG and the downstream coexpressed protein SCO3548 to anti-anti-sigma and anti-sigma factors, respectively, together with the phenotype of a bldG mutant, suggests that BldG and SCO3548 interact as part of a regulatory system to control both antibiotic production and morphological differentiation in Streptomyces coelicolor. A combination of bacterial two-hybrid, affinity purification, and far-Western analyses demonstrated that there was self-interaction of both BldG and SCO3548, as well as a direct interaction between the two proteins. Furthermore, a genetic complementation experiment demonstrated that SCO3548 antagonizes the function of BldG, similar to other anti-anti-sigma/anti-sigma factor pairs. It is therefore proposed that BldG and SCO3548 form a partner-switching pair that regulates the function of one or more sigma factors in S. coelicolor. The conservation of bldG and sco3548 in other streptomycetes demonstrates that this system is likely a key regulatory switch controlling developmental processes throughout the genus Streptomyces.
Collapse
|
45
|
The growth-promoting and stress response activities of the Bacillus subtilis GTP binding protein Obg are separable by mutation. J Bacteriol 2008; 190:6625-35. [PMID: 18689482 DOI: 10.1128/jb.00799-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis Obg is a ribosome-associating GTP binding protein that is needed for growth, sporulation, and induction of the bacterium's general stress regulon (GSR). It is unclear whether the roles of Obg in sporulation and stress responsiveness are direct or a secondary effect of its growth-promoting functions. The present work addresses this question by an analysis of two obg alleles whose phenotypes argue for direct roles for Obg in each process. The first allele [obg(G92D)] encodes a missense change in the protein's highly conserved "obg fold" region. This mutation impairs cell growth and the ability of Obg to associate with ribosomes but fails to block sporulation or the induction of the GSR. The second obg mutation [obg(Delta22)] replaces the 22-amino-acid carboxy-terminal sequence of Obg with an alternative 26-amino-acid sequence. This Obg variant cofractionates with ribosomes and allows normal growth but blocks sporulation and impairs the induction of the GSR. Additional experiments revealed that the block on sporulation occurs early, preventing the activation of the essential sporulation transcription factor Spo0A, while inhibition of the GSR appears to involve a failure of the protein cascade that normally activates the GSR to effectively catalyze the reactions needed to activate the GSR transcription factor (sigma(B)).
Collapse
|
46
|
Hecker M, Pané-Farré J, Uwe V. SigB-Dependent General Stress Response inBacillus subtilisand Related Gram-Positive Bacteria. Annu Rev Microbiol 2007; 61:215-36. [DOI: 10.1146/annurev.micro.61.080706.093445] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Hecker
- Institut für Mikrobiologie, 2Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald 17489, Germany; , ,
| | - Jan Pané-Farré
- Institut für Mikrobiologie, 2Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald 17489, Germany; , ,
| | - Völker Uwe
- Institut für Mikrobiologie, 2Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald 17489, Germany; , ,
| |
Collapse
|
47
|
Gaskell AA, Crack JC, Kelemen GH, Hutchings MI, Le Brun NE. RsmA is an anti-sigma factor that modulates its activity through a [2Fe-2S] cluster cofactor. J Biol Chem 2007; 282:31812-20. [PMID: 17766240 DOI: 10.1074/jbc.m705160200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rsmA gene of Streptomyces coelicolor lies directly upstream of the gene encoding the group 3 sigma factor sigma(M). The RsmA protein is a putative member of the HATPase_c family of anti-sigma factors but is unusual in that it contains seven cysteine residues. Bacterial two-hybrid studies demonstrate that it interacts specifically with sigma(M), and in vitro studies of the purified proteins by native PAGE and transcription assays confirmed that they form a complex. Characterization of RsmA revealed that it binds ATP and that, as isolated, it contains significant quantities of iron and inorganic sulfide, in equal proportion, with spectroscopic properties characteristic of a [2Fe-2S] cluster-containing protein. Importantly, the interaction between RsmA and sigma(M) is dependent on the presence of the iron-sulfur cluster. We propose a model in which RsmA regulates the activity of sigma(M). Loss of the cluster, in response to an as yet unidentified signal, activates sigma(M) by abolishing its interaction with the anti-sigma factor. This represents a major extension of the functional diversity of iron-sulfur cluster proteins.
Collapse
Affiliation(s)
- Alisa A Gaskell
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Igoshin OA, Brody MS, Price CW, Savageau MA. Distinctive topologies of partner-switching signaling networks correlate with their physiological roles. J Mol Biol 2007; 369:1333-52. [PMID: 17498739 PMCID: PMC2727513 DOI: 10.1016/j.jmb.2007.04.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
Regulatory networks controlling bacterial gene expression often evolve from common origins and share homologous proteins and similar network motifs. However, when functioning in different physiological contexts, these motifs may be re-arranged with different topologies that significantly affect network performance. Here we analyze two related signaling networks in the bacterium Bacillus subtilis in order to assess the consequences of their different topologies, with the aim of formulating design principles applicable to other systems. These two networks control the activities of the general stress response factor sigma(B) and the first sporulation-specific factor sigma(F). Both networks have at their core a "partner-switching" mechanism, in which an anti-sigma factor forms alternate complexes either with the sigma factor, holding it inactive, or with an anti-anti-sigma factor, thereby freeing sigma. However, clear differences in network structure are apparent: the anti-sigma factor for sigma(F) forms a long-lived, "dead-end" complex with its anti-anti-sigma factor and ADP, whereas the genes encoding sigma(B) and its network partners lie in a sigma(B)-controlled operon, resulting in positive and negative feedback loops. We constructed mathematical models of both networks and examined which features were critical for the performance of each design. The sigma(F) model predicts that the self-enhancing formation of the dead-end complex transforms the network into a largely irreversible hysteretic switch; the simulations reported here also demonstrate that hysteresis and slow turn off kinetics are the only two system properties associated with this complex formation. By contrast, the sigma(B) model predicts that the positive and negative feedback loops produce graded, reversible behavior with high regulatory capacity and fast response time. Our models demonstrate how alterations in network design result in different system properties that correlate with regulatory demands. These design principles agree with the known or suspected roles of similar networks in diverse bacteria.
Collapse
Affiliation(s)
- Oleg A. Igoshin
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Margaret S. Brody
- Department of Food Science, University of California, Davis, CA, 95616
| | - Chester W. Price
- Department of Food Science, University of California, Davis, CA, 95616
| | - Michael A. Savageau
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Corresponding author: e-mail: ; phone 1(530) 754-8375; fax: 1(530) 7545739
| |
Collapse
|
49
|
Gaidenko TA, Kim TJ, Weigel AL, Brody MS, Price CW. The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J Bacteriol 2006; 188:6387-95. [PMID: 16923906 PMCID: PMC1595380 DOI: 10.1128/jb.00691-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The general stress response of the bacterium Bacillus subtilis is regulated by a partner-switching mechanism in which serine and threonine phosphorylation controls protein interactions in the stress-signaling pathway. The environmental branch of this pathway contains a family of five paralogous proteins that function as negative regulators. Here we present genetic evidence that a sixth paralog, YtvA, acts as a positive regulator in the same environmental signaling branch. We also present biochemical evidence that YtvA and at least three of the negative regulators can be isolated from cell extracts in a large environmental signaling complex. YtvA differs from these associated negative regulators by its flavin mononucleotide (FMN)-containing light-oxygen-voltage domain. Others have shown that this domain has the photochemistry expected for a blue-light sensor, with the covalent linkage of the FMN chromophore to cysteine 62 composing a critical part of the photocycle. Consistent with the view that light intensity modifies the output of the environmental signaling pathway, we found that cysteine 62 is required for YtvA to exert its positive regulatory role in the absence of other stress. Transcriptional analysis of the ytvA structural gene indicated that it provides the entry point for at least one additional environmental input, mediated by the Spx global regulator of disulfide stress. These results support a model in which the large signaling complex serves to integrate multiple environmental signals in order to modulate the general stress response.
Collapse
Affiliation(s)
- Tatiana A Gaidenko
- Department of Food Science and Technology University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
50
|
Delumeau O, Chen CC, Murray JW, Yudkin MD, Lewis RJ. High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of Bacillus subtilis. J Bacteriol 2006; 188:7885-92. [PMID: 16963570 PMCID: PMC1636303 DOI: 10.1128/jb.00892-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis has developed an intricate signal transduction cascade to respond to the imposition of a variety of stresses on the cell. Reversible protein phosphorylation and the formation of alternative protein-protein complexes modulate the activity of sigma(B), the RNA polymerase sigma factor subunit responsible for the transcription of the general stress response genes. Some of the regulators of sigma(B), such as RsbR and RsbS, are known to associate in a 25S complex, called the stressosome, that can bind RsbT until RsbT phosphorylates target residues in RsbR and RsbS. To date, the RsbR-RsbS complex appears to be the most upstream component of the sigma(B) regulatory pathway. This large structure is thought to play an important role in sensing and/or integrating signals from different physical stresses. The roles of the paralogues of RsbR that are found in B. subtilis remain unclear. We describe here how the RsbR paralogues copurify with RsbR from B. subtilis cell lysates, and we demonstrate in vitro that the paralogues form large complexes either with RsbS or with a prepurified RsbR-RsbS binary complex. We conclude from these biochemical studies that stressosomes in B. subtilis cells contain minimally RsbS and all of the RsbT-phosphorylatable RsbR paralogues.
Collapse
Affiliation(s)
- Olivier Delumeau
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | |
Collapse
|