1
|
Siering O, Langbein M, Herrmann M, Wittwer K, von Messling V, Sawatsky B, Pfaller CK. Genetic diversity accelerates canine distemper virus adaptation to ferrets. J Virol 2024; 98:e0065724. [PMID: 39007615 PMCID: PMC11334482 DOI: 10.1128/jvi.00657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Mareike Langbein
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kevin Wittwer
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Bevan Sawatsky
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Chu H, Wang L, Wang J, Zhang Y, Jin N, Liu F, Li Y. Genomic profile of eGFP-tagged senecavirus A subjected to serial plaque-to-plaque transfers. Microb Pathog 2024; 191:106661. [PMID: 38657711 DOI: 10.1016/j.micpath.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. This virus possesses a positive-sense, single-stranded RNA genome, approximately 7200 nt in length, composed of a single 5' untranslated region, encoding region and 3' untranslated region. In this study, a recombinant SVA tagged with enhanced green fluorescent protein (eGFP) sequence, rSVA-eGFP, was rescued from its cDNA clone using reverse genetics. The passage-5 (P5) rSVA-eGFP was totally subjected to 55 rounds of consecutive fluorescent plaque-to-fluorescent plaque (FP-FP) transfers, and one extra common passaging in vitro. The P61 viral stock was analyzed by next-generation sequencing. The result showed ten single-nucleotide mutations (SNMs) in the rSVA-eGFP genome, including nine transitions and only one transversion. The P61 progeny still showed a complete eGFP sequence, indicating no occurrence of copy-choice recombination within the eGFP region during serial FP-FP transfers. In other words, this progeny was genetically deficient in the recombination of eGFP sequence (RES), namely, an RES-deficient strain. Out of ten SNMs, three were missense mutations, leading to single-amino acid mutations (SAAMs): F15V in L protein, A74T in VP2, and E53R in 3D protein. The E53R was predicted to be spatially adjacent to the RNA channel of 3D protein, perhaps involved in the emergence of RES-deficient strain. In conclusion, this study uncovered a global landscape of rSVA-eGFP genome after serial FP-FP transfers, and moreover shed light on a putative SAAM possibly related to the RES-deficient mechanism.
Collapse
Affiliation(s)
- Huanhuan Chu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| |
Collapse
|
3
|
Domingo E, García-Crespo C, Soria ME, Perales C. Viral Fitness, Population Complexity, Host Interactions, and Resistance to Antiviral Agents. Curr Top Microbiol Immunol 2023; 439:197-235. [PMID: 36592247 DOI: 10.1007/978-3-031-15640-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fitness of viruses has become a standard parameter to quantify their adaptation to a biological environment. Fitness determinations for RNA viruses (and some highly variable DNA viruses) meet with several uncertainties. Of particular interest are those that arise from mutant spectrum complexity, absence of population equilibrium, and internal interactions among components of a mutant spectrum. Here, concepts, fitness measurements, limitations, and current views on experimental viral fitness landscapes are discussed. The effect of viral fitness on resistance to antiviral agents is covered in some detail since it constitutes a widespread problem in antiviral pharmacology, and a challenge for the design of effective antiviral treatments. Recent evidence with hepatitis C virus suggests the operation of mechanisms of antiviral resistance additional to the standard selection of drug-escape mutants. The possibility that high replicative fitness may be the driver of such alternative mechanisms is considered. New broad-spectrum antiviral designs that target viral fitness may curtail the impact of drug-escape mutants in treatment failures. We consider to what extent fitness-related concepts apply to coronaviruses and how they may affect strategies for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain.,Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
4
|
Lin J, Jiang Y, Zhang H, Zhang F, Zhang Y, Ni B, Liu F. Genomic profile of eGFP-expressing canine distemper virus that undergoes serial plaque-to-plaque transfers. Front Cell Infect Microbiol 2022; 12:1006273. [PMID: 36211954 PMCID: PMC9545482 DOI: 10.3389/fcimb.2022.1006273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Canine distemper virus (CDV) is classified into the genus Morbillivirus in the family Paramyxoviridae. This virus has a single-stranded genomic RNA with negative polarity. The wild-type CDV genome is generally composed of 15 690 nucleotides. We previously rescued an enhanced green fluorescence protein (eGFP)-tagged recombinant CDV (rCDV-eGFP) using reverse genetics. In this study, the rCDV-eGFP at passage-7 was subjected to 38 serial plaque-to-plaque transfers (or bottleneck passages) and two extra common passages in cells. In theory, the effect of Muller’s ratchet may fix deleterious mutations in a single viral population after consecutive plaque-to-plaque transfers. In order to uncover a mutated landscape of the rCDV-eGFP under the circumstances of bottleneck passages, the passage-47 progeny was collected for the in-depth analysis via next-generation sequencing. The result revealed a total of nine single-nucleotide mutations (SNMs) in the viral antigenome. Out of them, SNMs at nt 1832, 5022, 5536, 5580, 5746, 6913 and 8803 were identified as total single-nucleotide substitution, i.e., 100% of mutation frequency. The result suggested no notable formation of viral quasispecies in the rCDV-eGFP population after consecutive plaque-to-plaque transfers.
Collapse
Affiliation(s)
- Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yujia Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hui Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Feng Zhang
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Bo Ni
- Surveillance Laboratory of Livestock Diseases, China Animal Health and Epidemiology Center, Qingdao, China
- *Correspondence: Fuxiao Liu, ; Bo Ni,
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Fuxiao Liu, ; Bo Ni,
| |
Collapse
|
5
|
Allman B, Koelle K, Weissman D. Heterogeneity in viral populations increases the rate of deleterious mutation accumulation. Genetics 2022; 222:6673144. [PMID: 35993909 PMCID: PMC9526070 DOI: 10.1093/genetics/iyac127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
RNA viruses have high mutation rates, with the majority of mutations being deleterious. We examine patterns of deleterious mutation accumulation over multiple rounds of viral replication, with a focus on how cellular coinfection and heterogeneity in viral output affect these patterns. Specifically, using agent-based intercellular simulations we find, in agreement with previous studies, that coinfection of cells by viruses relaxes the strength of purifying selection, and thereby increases the rate of deleterious mutation accumulation. We further find that cellular heterogeneity in viral output exacerbates the rate of deleterious mutation accumulation, regardless of whether this heterogeneity in viral output is stochastic or is due to variation in cellular multiplicity of infection. These results highlight the need to consider the unique life histories of viruses and their population structure to better understand observed patterns of viral evolution.
Collapse
Affiliation(s)
- Brent Allman
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, Georgia 30322, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Daniel Weissman
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.,Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
6
|
Kopanke J, Carpenter M, Lee J, Reed K, Rodgers C, Burton M, Lovett K, Westrich JA, McNulty E, McDermott E, Barbera C, Cavany S, Rohr JR, Perkins TA, Mathiason CK, Stenglein M, Mayo C. Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annu Rev Anim Biosci 2022; 10:303-324. [PMID: 35167317 DOI: 10.1146/annurev-animal-051721-023724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, Washington, USA;
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Justin Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Kierra Lovett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Erin McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Emily McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| |
Collapse
|
7
|
Domingo E, García-Crespo C, Lobo-Vega R, Perales C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021; 13:1882. [PMID: 34578463 PMCID: PMC8473064 DOI: 10.3390/v13091882] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The error rate displayed during template copying to produce viral RNA progeny is a biologically relevant parameter of the replication complexes of viruses. It has consequences for virus-host interactions, and it represents the first step in the diversification of viruses in nature. Measurements during infections and with purified viral polymerases indicate that mutation rates for RNA viruses are in the range of 10-3 to 10-6 copying errors per nucleotide incorporated into the nascent RNA product. Although viruses are thought to exploit high error rates for adaptation to changing environments, some of them possess misincorporation correcting activities. One of them is a proofreading-repair 3' to 5' exonuclease present in coronaviruses that may decrease the error rate during replication. Here we review experimental evidence and models of information maintenance that explain why elevated mutation rates have been preserved during the evolution of RNA (and some DNA) viruses. The models also offer an interpretation of why error correction mechanisms have evolved to maintain the stability of genetic information carried out by large viral RNA genomes such as the coronaviruses.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Heo JI, Yu J, Choi H, Kim KH. The Signatures of Natural Selection and Molecular Evolution in Fusarium graminearum Virus 1. Front Microbiol 2020; 11:600775. [PMID: 33281800 PMCID: PMC7688778 DOI: 10.3389/fmicb.2020.600775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Fusarium graminearum virus 1 (FgV1) is a positive-sense ssRNA virus that confers hypovirulence in its fungal host, Fusarium graminearum. Like most mycoviruses, FgV1 exists in fungal cells, lacks an extracellular life cycle, and is therefore transmitted during sporulation or hyphal anastomosis. To understand FgV1 evolution and/or adaptation, we conducted mutation accumulation (MA) experiments by serial passage of FgV1 alone or with FgV2, 3, or 4 in F. graminearum. We expected that the effects of positive selection would be highly limited because of repeated bottleneck events. To determine whether selection on the virus was positive, negative, or neutral, we assessed both the phenotypic traits of the host fungus and the RNA sequences of FgV1. We inferred that there was positive selection on beneficial mutations in FgV1 based on the ratio of non-synonymous to synonymous substitutions (dN/dS), on the ratio of radical to conservation amino acid replacements (pNR/pNC), and by changes in the predicted protein structures. In support of this inference, we found evidence of positive selection only in the open reading frame 4 (ORF4) protein of DK21/FgV1 (MA line 1); mutations at amino acids 163A and 289H in the ORF4 of MA line 1 affected the entire structure of the protein predicted to be under positive selection. We also found, however, that deleterious mutations were a major driving force in viral evolution during serial passages. Linear relationships between changes in viral fitness and the number of mutations in each MA line demonstrated that some deleterious mutations resulted in fitness decline. Several mutations in MA line 1 were not shared with any of the other four MA lines (PH-1/FgV1, PH-1/FgV1 + 2, PH-1/FgV1 + 3, and PH-1/FgV1 + 4). This suggests that evolutionary pathways of the virus could differ with respect to hosts and also with respect to co-infecting viruses. The data also suggested that the differences among MA lines might also be explained by mutational robustness and other unidentified factors. Additional research is needed to clarify the effects of virus co-infection on the adaptation or evolution of FgV1 to its environments.
Collapse
Affiliation(s)
- Jeong-In Heo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hoseong Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Domingo E, de Ávila AI, Gallego I, Sheldon J, Perales C. Viral fitness: history and relevance for viral pathogenesis and antiviral interventions. Pathog Dis 2020; 77:5454742. [PMID: 30980658 DOI: 10.1093/femspd/ftz021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023] Open
Abstract
The quasispecies dynamics of viral populations (continuous generation of variant genomes and competition among them) has as one of its frequent consequences variations in overall multiplication capacity, a major component of viral fitness. This parameter has multiple implications for viral pathogenesis and viral disease control, some of them unveiled thanks to deep sequencing of viral populations. Darwinian fitness is an old concept whose quantification dates back to the early developments of population genetics. It was later applied to viruses (mainly to RNA viruses) to quantify relative multiplication capacities of individual mutant clones or complex populations. The present article reviews the fitness concept and its relevance for the understanding of the adaptive dynamics of viruses in constant and changing environments. Many studies have addressed the fitness cost of escape mutations (to antibodies, cytotoxic T cells or inhibitors) as an influence on the efficacy of antiviral interventions. Here, we summarize the evidence that the basal fitness level can be a determinant of inhibitor resistance.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana I de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Julie Sheldon
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), D-30625, Hannover, Germany
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain.,Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, Madrid 28040, Spain
| |
Collapse
|
10
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
11
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
12
|
Orton RJ, Wright CF, King DP, Haydon DT. Estimating viral bottleneck sizes for FMDV transmission within and between hosts and implications for the rate of viral evolution. Interface Focus 2019; 10:20190066. [PMID: 31897294 DOI: 10.1098/rsfs.2019.0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
RNA viruses exist as populations of closely related genomes, characterized by a high diversity of low-frequency variants. As viral genomes from one population disperse to establish new sites of replication, the fate of these low-frequency variants depends to a large extent on the size of the founding population. Focusing on foot-and-mouth disease virus (FMDV) we conjecture that variants are more likely to be transmitted through wide bottlenecks, but more likely to approach fixation in new populations following narrow bottlenecks; therefore, the longer-term rate of accumulation of 'nearly neutral' variants at high frequencies is likely to be inversely related to the bottleneck size. We examine this conjecture in vivo by estimating bottleneck sizes relating 'parent' and 'daughter' populations observed at different scales ranging from within host to between host (within the same herd, and in different herds) using a previously established method. Within hosts, we find bottleneck sizes to range from 5 to 20 viral genomes between populations transmitted from the pharynx to the serum, and from 4 to 54 between serum and lesion populations. Between hosts, we find bottleneck sizes to range from 2 to 39, suggesting inter-host bottlenecks are of a similar size to intra-host bottlenecks. We establish a statistically significant negative relationship between the probability of genomic consensus level change and bottleneck size, and present a simple sampling model that captures this empirical relationship. We also present a novel in vitro experiment to investigate the impact of bottleneck size on the frequency of mutations within FMDV populations, demonstrate that variant frequency in a population increases more rapidly during small population passages, and provide evidence for positive selection during the passage of large populations.
Collapse
Affiliation(s)
- Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | | | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Abstract
Viral quasispecies refers to a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra, mutant swarms or mutant clouds. Fueled by high mutation rates, mutants arise continually, and they change in relative frequency as viral replication proceeds. The term quasispecies was adopted from a theory of the origin of life in which primitive replicons) consisted of mutant distributions, as found experimentally with present day RNA viruses. The theory provided a new definition of wild type, and a conceptual framework for the interpretation of the adaptive potential of RNA viruses that contrasted with classical studies based on consensus sequences. Standard clonal analyses and deep sequencing methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in adaptive processes. The quasispecies concept applies to any biological entity, but its impact is more evident when the genome size is limited and the mutation rate is high. This is the case of the RNA viruses, ubiquitous in our biosphere, and that comprise many important pathogens. In virology, quasispecies are defined as complex distributions of closely related variant genomes subjected to genetic variation, competition and selection, and that may act as a unit of selection. Despite being an integral part of their replication, high mutation rates have an upper limit compatible with inheritable information. Crossing such a limit leads to RNA virus extinction, a transition that is the basis of an antiviral design termed lethal mutagenesis.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
14
|
Abstract
Very little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, the Marnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution. RNA viruses, particularly genetically diverse members of the Picornavirales, are widespread and abundant in the ocean. Gene surveys suggest that there are spatial and temporal patterns in the composition of RNA virus assemblages, but data on their diversity and genetic variability in different oceanographic settings are limited. Here, we show that specific RNA virus genomes have widespread geographic distributions and that the dominant genotypes are under purifying selection. Genomes from three previously unknown picorna-like viruses (BC-1, -2, and -3) assembled from a coastal site in British Columbia, Canada, as well as marine RNA viruses JP-A, JP-B, and Heterosigma akashiwo RNA virus exhibited different biogeographical patterns. Thus, biotic factors such as host specificity and viral life cycle, and not just abiotic processes such as dispersal, affect marine RNA virus distribution. Sequence differences relative to reference genomes imply that virus quasispecies are under purifying selection, with synonymous single-nucleotide variations dominating in genomes from geographically distinct regions resulting in conservation of amino acid sequences. Conversely, sequences from coastal South Africa that mapped to marine RNA virus JP-A exhibited more nonsynonymous mutations, probably representing amino acid changes that accumulated over a longer separation. This biogeographical analysis of marine RNA viruses demonstrates that purifying selection is occurring across oceanographic provinces. These data add to the spectrum of known marine RNA virus genomes, show the importance of dispersal and purifying selection for these viruses, and indicate that closely related RNA viruses are pathogens of eukaryotic microbes across oceans. IMPORTANCE Very little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, the Marnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution.
Collapse
|
15
|
Chisholm PJ, Busch JW, Crowder DW. Effects of life history and ecology on virus evolutionary potential. Virus Res 2019; 265:1-9. [PMID: 30831177 DOI: 10.1016/j.virusres.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
The life history traits of viruses pose many consequences for viral population structure. In turn, population structure may influence the evolutionary trajectory of a virus. Here we review factors that affect the evolutionary potential of viruses, including rates of mutation and recombination, bottlenecks, selection pressure, and ecological factors such as the requirement for hosts and vectors. Mutation, while supplying a pool of raw genetic material, also results in the generation of numerous unfit mutants. The infection of multiple host species may expand a virus' ecological niche, although it may come at a cost to genetic diversity. Vector-borne viruses often experience a diminished frequency of positive selection and exhibit little diversity, and resistance against vector-borne viruses may thus be more durable than against non-vectored viruses. Evidence indicates that adaptation to a vector is more evolutionarily difficult than adaptation to a host. Overall, a better understanding of how various factors influence viral dynamics in both plant and animal pathosystems will lead to more effective anti-viral treatments and countermeasures.
Collapse
Affiliation(s)
- Paul J Chisholm
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA.
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| |
Collapse
|
16
|
Gallet R, Michalakis Y, Blanc S. Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 2018; 33:144-150. [DOI: 10.1016/j.coviro.2018.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
|
17
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
18
|
Abubakar M, Manzoor S, Ahmed A. Interplay of foot and mouth disease virus with cell-mediated and humoral immunity of host. Rev Med Virol 2017; 28. [PMID: 29282795 DOI: 10.1002/rmv.1966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Abstract
Foot and mouth disease virus (FMDV) causes a communicable disease of cloven hoofed animals, resulting in major economic losses during disease outbreaks. Like other members of the Picornaviridae FMDV has a relatively short infectious cycle; initiation of infection and dissemination, with production of infectious virions occurs in less than a week. The components of innate immunity as well as cell-mediated and humoral immunity play a crucial role in control of FMDV. However, it has been shown in vitro using a mouse model that FMDV has evolved certain mechanisms to counteract host immune responses ensuring its survival and spread. The viral leader proteinase, L pro, deters interferon beta (IFN-β) mRNA synthesis, thus, inhibiting host cell translation. Another viral proteinase, 3C pro, disrupts host cell transcription by cleaving histone H3. A transient lymphopenia in swine as a consequence of FMDV infection has also been observed, but the mechanism involved and viral protein(s) associated with this process are not clearly understood. In this review, we have covered the interaction of FMDV with different immune cells including lymphocytes and antigen presenting cells and their consequences.
Collapse
Affiliation(s)
| | | | - Afshan Ahmed
- FAO FMD Project (GCP/PAK/123/USA), Islamabad, Pakistan
| |
Collapse
|
19
|
Minicka J, Elena SF, Borodynko-Filas N, Rubiś B, Hasiów-Jaroszewska B. Strain-dependent mutational effects for Pepino mosaic virus in a natural host. BMC Evol Biol 2017; 17:67. [PMID: 28264646 PMCID: PMC5339997 DOI: 10.1186/s12862-017-0920-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Pepino mosaic virus (PepMV) is an emerging plant pathogen that infects tomatoes worldwide. Understanding the factors that influence its evolutionary success is essential for developing new control strategies that may be more robust against the evolution of new viral strains. One of these evolutionary factors is the distribution of mutational fitness effect (DMFE), that is, the fraction of mutations that are lethal, deleterious, neutral, and beneficial on a given viral strain and host species. The goal of this study was to characterize the DMFE of introduced nonsynonymous mutations on a mild isolate of PepMV from the Chilean 2 strain (PepMV-P22). Additionally, we also explored whether the fitness effect of a given mutation depends on the gene where it appears or on epistatic interactions with the genetic background. To address this latter possibility, a subset of mutations were also introduced in a mild isolate of the European strain (PepMV-P11) and the fitness of the resulting clones measured. Results A collection of 25 PepMV clones each containing a single nucleotide nonsynonymous substitution was created by site-directed mutagenesis and the fitness of each mutant was determined. PepMV-P22 genome showed a high degree of robustness against point mutations, with 80% of mutations being either neutral or even beneficial and only 20% being deleterious or lethal. We found that the effect of mutations strongly depended on the gene in which they were introduced. Mutations with the largest average beneficial effects were those affecting the RdRp gene, in contrast to mutations affecting TGB1 and CP genes, for which the average effects were deleterious. Moreover, significant epistatic interactions were observed between nonsynonymous mutations and the genetic background, meaning that the effect of a given nucleotide substitution on a particular genomic context cannot be predicted by knowing its effect in a different one. Conclusions Our results indicated that PepMV genome has a surprisingly high robustness against mutations. We also found that fitness consequences of a given mutation differ between the two strains analyzed. This discovery suggests that the strength of selection, and thus the rates of evolution, vary among PepMV strains.
Collapse
Affiliation(s)
- Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain.,Instituto de Biología Integrativa y de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain.,The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Natasza Borodynko-Filas
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland.
| |
Collapse
|
20
|
Xia H, Beck AS, Gargili A, Forrester N, Barrett ADT, Bente DA. Transstadial Transmission and Long-term Association of Crimean-Congo Hemorrhagic Fever Virus in Ticks Shapes Genome Plasticity. Sci Rep 2016; 6:35819. [PMID: 27775001 PMCID: PMC5075774 DOI: 10.1038/srep35819] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/04/2016] [Indexed: 02/05/2023] Open
Abstract
The trade-off hypothesis, the current paradigm of arbovirus evolution, proposes that cycling between vertebrate and invertebrate hosts presents significant constraints on genetic change of arboviruses. Studying these constraints in mosquito-borne viruses has led to a new understanding of epizootics. The trade-off hypothesis is assumed to be applicable to tick-borne viruses too, although studies are lacking. Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the family Bunyaviridae, is a major cause of severe human disease worldwide and shows an extraordinary amount of genetic diversity compared to other arboviruses, which has been linked to increased virulence and emergence in new environments. Using a transmission model for CCHFV, utilizing the main vector tick species and mice plus next generation sequencing, we detected a substantial number of consensus-level mutations in CCHFV recovered from ticks after only a single transstadial transmission, whereas none were detected in CCHFV obtained from the mammalian host. Furthermore, greater viral intra-host diversity was detected in the tick compared to the vertebrate host. Long-term association of CCHFV with its tick host for 1 year demonstrated mutations in the viral genome become fixed over time. These findings suggest that the trade-off hypothesis may not be accurate for all arboviruses.
Collapse
Affiliation(s)
- Han Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Andrew S Beck
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Naomi Forrester
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA
| |
Collapse
|
21
|
Agudo R, de la Higuera I, Arias A, Grande-Pérez A, Domingo E. Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism. Virology 2016; 494:257-66. [PMID: 27136067 PMCID: PMC7111656 DOI: 10.1016/j.virol.2016.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 02/05/2023]
Abstract
We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis. A replacement in FMDV protein 2C confers reduced sensitivity to the mutagen ribavirin. The effect of the replacement is to prevent a mutational bias evoked by ribavirin. 2C has an effect in nucleotide incorporation by the FMDV polymerase. We describe a new molecular mechanism of escape to ribavirin-mediated extinction.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ignacio de la Higuera
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Armando Arias
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas, (IHSM-UMA-CSIC) Área de Genética, Campus de Teatinos, 29071 Málaga, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
22
|
Cervera H, Elena SF. Genetic variation in fitness within a clonal population of a plant RNA virus. Virus Evol 2016; 2:vew006. [PMID: 27774299 PMCID: PMC4989883 DOI: 10.1093/ve/vew006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
A long-standing observation in evolutionary virology is that RNA virus populations are highly polymorphic, composed by a mixture of genotypes whose abundances in the population depend on complex interaction between fitness differences, mutational coupling and genetic drift. It was shown long ago, though in cell cultures, that most of these genotypes had lower fitness than the population they belong, an observation that explained why single-virion passages turned on Muller’s ratchet while very large population passages resulted in fitness increases in novel environments. Here we report the results of an experiment specifically designed to evaluate in vivo the fitness differences among the subclonal components of a clonal population of the plant RNA virus tobacco etch potyvirus (TEV). Over 100 individual biological subclones from a TEV clonal population well adapted to the natural tobacco host were obtained by infectivity assays on a local lesion host. The replicative fitness of these subclones was then evaluated during infection of tobacco relative to the fitness of large random samples taken from the starting clonal population. Fitness was evaluated at increasing number of days post-inoculation. We found that at early days, the average fitness of subclones was significantly lower than the fitness of the clonal population, thus confirming previous observations that most subclones contained deleterious mutations. However, as the number of days of viral replication increases, population size expands exponentially, more beneficial and compensatory mutations are produced, and selection becomes more effective in optimizing fitness, the differences between subclones and the population disappeared.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain; The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
23
|
Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host-parasite coevolution: why changing population size matters. ZOOLOGY 2016; 119:330-8. [PMID: 27161157 DOI: 10.1016/j.zool.2016.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/30/2016] [Accepted: 02/10/2016] [Indexed: 01/08/2023]
Abstract
Host-parasite coevolution is widely assumed to have a major influence on biological evolution, especially as these interactions impose high selective pressure on the reciprocally interacting antagonists. The exact nature of the underlying dynamics is yet under debate and may be determined by recurrent selective sweeps (i.e., arms race dynamics), negative frequency-dependent selection (i.e., Red Queen dynamics), or a combination thereof. These interactions are often associated with reciprocally induced changes in population size, which, in turn, should have a strong impact on co-adaptation processes, yet are neglected in most current work on the topic. Here, we discuss potential consequences of temporal variations in population size on host-parasite coevolution. The limited empirical data available and the current theoretical literature in this field highlight that the consideration of such interaction-dependent population size changes is likely key for the full understanding of the coevolutionary dynamics, and, thus, a more realistic view on the complex nature of species interactions.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany
| | - Chaitanya S Gokhale
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102904, Auckland 0745, New Zealand
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|
24
|
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimes. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
25
|
Domingo E. Molecular Basis of Genetic Variation of Viruses. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149591 DOI: 10.1016/b978-0-12-800837-9.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation: mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physico-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents, or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate.
Collapse
|
26
|
Wons E, Furmanek-Blaszk B, Sektas M. RNA editing by T7 RNA polymerase bypasses InDel mutations causing unexpected phenotypic changes. Nucleic Acids Res 2015; 43:3950-63. [PMID: 25824942 PMCID: PMC4417176 DOI: 10.1093/nar/gkv269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
DNA-dependent T7 RNA polymerase (T7 RNAP) is the most powerful tool for both gene expression and in vitro transcription. By using a Next Generation Sequencing (NGS) approach we have analyzed the polymorphism of a T7 RNAP-generated mRNA pool of the mboIIM2 gene. We find that the enzyme displays a relatively high level of template-dependent transcriptional infidelity. The nucleotide misincorporations and multiple insertions in A/T-rich tracts of homopolymers in mRNA (0.20 and 0.089%, respectively) cause epigenetic effects with significant impact on gene expression that is disproportionally high to their frequency of appearance. The sequence-dependent rescue of single and even double InDel frameshifting mutants and wild-type phenotype recovery is observed as a result. As a consequence, a heterogeneous pool of functional and non-functional proteins of almost the same molecular mass is produced where the proteins are indistinguishable from each other upon ordinary analysis. We suggest that transcriptional infidelity as a general feature of the most effective RNAPs may serve to repair and/or modify a protein function, thus increasing the repertoire of phenotypic variants, which in turn has a high evolutionary potential.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, University of Gdansk, Gdansk 80-308, Poland
| | | | - Marian Sektas
- Department of Microbiology, University of Gdansk, Gdansk 80-308, Poland
| |
Collapse
|
27
|
Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 2014; 6:3991-4004. [PMID: 25341663 PMCID: PMC4213574 DOI: 10.3390/v6103991] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022] Open
Abstract
The term arbovirus denotes viruses that are transmitted by arthropods, such as ticks, mosquitoes, and other biting arthropods. The infection of these vectors produces a certain set of evolutionary pressures on the virus; involving migration from the midgut, where the blood meal containing the virus is processed, to the salivary glands, in order to transmit the virus to the next host. During this process the virus is subject to numerous bottlenecks, stochastic events that significantly reduce the number of viral particles that are able to infect the next stage. This article reviews the latest research on the bottlenecks that occur in arboviruses and the way in which these affect the evolution and fitness of these viruses. In particular we focus on the latest research on three important arboviruses, West Nile virus, Venezuelan equine encephalitis virus and Chikungunya viruses and compare the differing effects of the mosquito bottlenecks on these viruses as well as other evolutionary pressures that affect their evolution and transmission.
Collapse
|
28
|
Arias A, Isabel de Ávila A, Sanz-Ramos M, Agudo R, Escarmís C, Domingo E. Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load. J Gen Virol 2013; 94:817-830. [DOI: 10.1099/vir.0.049171-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Low fidelity replication and the absence of error-repair activities in RNA viruses result in complex and adaptable ensembles of related genomes in the viral population, termed quasispecies, with important implications for natural infections. Theoretical predictions suggested that elevated replication error rates in RNA viruses might be near to a maximum compatible with viral viability. This fact encouraged the use of mutagenic nucleosides as a new antiviral strategy to induce viral extinction through increased replication error rates. Despite extensive evidence of lethal mutagenesis of RNA viruses by different mutagenic compounds, a detailed picture of the infectivity of individual genomes and its relationship with the mutations accumulated is lacking. Here, we report a molecular analysis of a foot-and-mouth disease virus population previously subjected to heavy mutagenesis to determine whether a correlation between increased mutagenesis and decreased fitness existed. Plaque-purified viruses isolated from a ribavirin-treated quasispecies presented decreases of up to 200-fold in infectivity relative to clones in the reference population, associated with an overall eightfold increase in the mutation frequency. This observation suggests that individual infectious genomes of a quasispecies subjected to increased mutagenesis lose infectivity by their continuous mutagenic ‘poisoning’. These results support the lethal defection model of virus extinction and the practical use of chemical mutagens as antiviral treatment. Even when extinction is not achieved, mutagenesis can decrease the infectivity of surviving virus, and facilitate their clearance by host immune responses or complementing antiviral approaches.
Collapse
Affiliation(s)
- Armando Arias
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Marta Sanz-Ramos
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Rubén Agudo
- Fachbereich Chemie, Philipps Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Cristina Escarmís
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
29
|
Morelli MJ, Wright CF, Knowles NJ, Juleff N, Paton DJ, King DP, Haydon DT. Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission in bovine hosts. Vet Res 2013; 44:12. [PMID: 23452550 PMCID: PMC3630017 DOI: 10.1186/1297-9716-44-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/01/2013] [Indexed: 01/13/2023] Open
Abstract
RNA virus populations within samples are highly heterogeneous, containing a large number of minority sequence variants which can potentially be transmitted to other susceptible hosts. Consequently, consensus genome sequences provide an incomplete picture of the within- and between-host viral evolutionary dynamics during transmission. Foot-and-mouth disease virus (FMDV) is an RNA virus that can spread from primary sites of replication, via the systemic circulation, to found distinct sites of local infection at epithelial surfaces. Viral evolution in these different tissues occurs independently, each of them potentially providing a source of virus to seed subsequent transmission events. This study employed the Illumina Genome Analyzer platform to sequence 18 FMDV samples collected from a chain of sequentially infected cattle. These data generated snap-shots of the evolving viral population structures within different animals and tissues. Analyses of the mutation spectra revealed polymorphisms at frequencies >0.5% at between 21 and 146 sites across the genome for these samples, while 13 sites acquired mutations in excess of consensus frequency (50%). Analysis of polymorphism frequency revealed that a number of minority variants were transmitted during host-to-host infection events, while the size of the intra-host founder populations appeared to be smaller. These data indicate that viral population complexity is influenced by small intra-host bottlenecks and relatively large inter-host bottlenecks. The dynamics of minority variants are consistent with the actions of genetic drift rather than strong selection. These results provide novel insights into the evolution of FMDV that can be applied to reconstruct both intra- and inter-host transmission routes.
Collapse
|
30
|
Congruent evolution of fitness and genetic robustness in vesicular stomatitis virus. J Virol 2013; 87:4923-8. [PMID: 23408631 DOI: 10.1128/jvi.02796-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Quasispecies theory is a case of mutation-selection balance for evolution at high mutation rates, such as those observed in RNA viruses. One of the main predictions of this model is the selection for robustness, defined as the ability of an organism to remain phenotypically unchanged in the face of mutation. We have used a collection of vesicular stomatitis virus strains that had been evolving either under positive selection or under random drift. We had previously shown that the former increase in fitness while the latter have overall fitness decreases (I. S. Novella, J. B. Presloid, T. Zhou, S. D. Smith-Tsurkan, B. E. Ebendick-Corpus, R. N. Dutta, K. L. Lust, and C. O. Wilke, J. Virol. 84:4960-4968, 2010). Here, we determined the robustness of these strains and demonstrated that strains under positive selection not only increase in fitness but also increase in robustness. In contrast, strains under drift not only decreased in fitness but also decreased in robustness. There was a good overall correlation between fitness and robustness. We also tested whether there was a correlation between fitness and thermostability, and we observed that the correlation was imperfect, indicating that the fitness effects of mutations are exerted in part at a level other than changing the resistance of the protein to temperature.
Collapse
|
31
|
Jaramillo N, Domingo E, Muñoz-Egea MC, Tabarés E, Gadea I. Evidence of Muller's ratchet in herpes simplex virus type 1. J Gen Virol 2012; 94:366-375. [PMID: 23100362 DOI: 10.1099/vir.0.044685-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Population bottlenecks can have major effects in the evolution of RNA viruses, but their possible influence in the evolution of DNA viruses is largely unknown. Genetic and biological variation of herpes simplex virus type 1 (HSV-1) has been studied by subjecting 23 biological clones of the virus to 10 plaque-to-plaque transfers. In contrast to large population passages, plaque transfers led to a decrease in replicative capacity of HSV-1. Two out of a total of 23 clones did not survive to the last transfer in 143 TK(-) cells. DNA from three genomic regions (DNA polymerase, glycoprotein gD and thymidine kinase) from the initial and passaged clones was sequenced. Nucleotide substitutions were detected in the TK and gD genes, but not in the DNA polymerase gene. Assuming a uniform distribution of mutations along the genome, the average rate of fixation of mutations was about five mutations per viral genome and plaque transfer. This value is comparable to the range of values calculated for RNA viruses. Four plaque-transferred populations lost neurovirulence for mice, as compared with the corresponding initial clones. LD(50) values obtained with the populations subjected to serial bottlenecks were 4- to 67-fold higher than for their parental clones. These results equate HSV-1 with RNA viruses regarding fitness decrease as a result of plaque-to-plaque transfers, and show that population bottlenecks can modify the pathogenic potential of HSV-1. Implications for the evolution of complex DNA viruses are discussed.
Collapse
Affiliation(s)
- Nacarí Jaramillo
- Departamento de Medicina Preventiva Salud Pública y Microbiología, Facultad de Medicina, UAM, Madrid, Spain
| | - Esteban Domingo
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBER ehd), Barcelona, Spain.,Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid) Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | - Enrique Tabarés
- Departamento de Medicina Preventiva Salud Pública y Microbiología, Facultad de Medicina, UAM, Madrid, Spain
| | | |
Collapse
|
32
|
Forrester NL, Guerbois M, Seymour RL, Spratt H, Weaver SC. Vector-borne transmission imposes a severe bottleneck on an RNA virus population. PLoS Pathog 2012; 8:e1002897. [PMID: 23028310 PMCID: PMC3441635 DOI: 10.1371/journal.ppat.1002897] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/25/2012] [Indexed: 11/28/2022] Open
Abstract
RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller's ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study. The ability of arboviruses to perpetuate in nature given that they must infect two disparate hosts (the mosquito vector and the vertebrate host) remains a mystery. We studied how viral genetic diversity is impacted by the dual host transmission cycle. Our studies of an enzootic cycle using Venezuelan equine encephalitis virus (VEEV) and its natural mosquito, Culex taeniopus, revealed the stages of infection that result in a viral population bottleneck. Using a set of marked VEEV clones and repeated sampling at various time points following C. taeniopus infection, we determined the number of clones in various mosquito tissues culminating in transmission. Bottlenecks were identified but the stage of occurrence was dependent on the dose that initiated infection. Understanding the points at which mosquito-borne viruses are constrained will shed light on the ways in which virus diversity varies, leading to selection of mutants that may result in host range changes or alterations in virulence.
Collapse
Affiliation(s)
- Naomi L. Forrester
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mathilde Guerbois
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert L. Seymour
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi Spratt
- Sealy Center for Preventative Medicine and Preventative Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
34
|
Kenney JL, Adams AP, Gorchakov R, Leal G, Weaver SC. Genetic and anatomic determinants of enzootic Venezuelan equine encephalitis virus infection of Culex (Melanoconion) taeniopus. PLoS Negl Trop Dis 2012; 6:e1606. [PMID: 22509419 PMCID: PMC3317907 DOI: 10.1371/journal.pntd.0001606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells. Venezuelan equine encephalitis virus (VEEV) is transmitted to humans and horses by mosquitoes in Mexico, Central and South America. These infections can lead to fatal encephalitis in humans as well as horses, donkeys and mules, and there are no licensed vaccines or treatments available for humans. VEEV circulates in two distinct transmission cycles (epizootic and enzootic), which are differentiated by the ecological niche that each virus inhabits. Epizootic strains, those that cause major outbreaks in humans and equids, have been studied extensively and have been used primarily to develop and test several vaccine candidates. In this study, we demonstrate some important differences in the roles of different viral genes between enzootic/endemic versus epizootic VEEV strains that affect mosquito infection as well as differences in the way that enzootic VEEV more efficiently infects the mosquito initially. Our findings have important implications for designing vaccines and for understanding the evolution of VEEV-mosquito interactions.
Collapse
Affiliation(s)
| | | | | | | | - Scott C. Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Moreno H, Tejero H, de la Torre JC, Domingo E, Martín V. Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection. PLoS One 2012; 7:e32550. [PMID: 22442668 PMCID: PMC3307711 DOI: 10.1371/journal.pone.0032550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis. RESULTS The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. CONCLUSIONS (i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Héctor Tejero
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Dpto. de Bioquímica y Biología Molecular I. Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Verónica Martín
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA) Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| |
Collapse
|
36
|
Inoculation of swine with foot-and-mouth disease SAP-mutant virus induces early protection against disease. J Virol 2011; 86:1316-27. [PMID: 22114339 DOI: 10.1128/jvi.05941-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader proteinase (L(pro)) cleaves itself from the viral polyprotein and cleaves the translation initiation factor eIF4G. As a result, host cell translation is inhibited, affecting the host innate immune response. We have demonstrated that L(pro) is also associated with degradation of nuclear factor κB (NF-κB), a process that requires L(pro) nuclear localization. Additionally, we reported that disruption of a conserved protein domain within the L(pro) coding sequence, SAP mutation, prevented L(pro) nuclear retention and degradation of NF-κB, resulting in in vitro attenuation. Here we report that inoculation of swine with this SAP-mutant virus does not cause clinical signs of disease, viremia, or virus shedding even when inoculated at doses 100-fold higher than those required to cause disease with wild-type (WT) virus. Remarkably, SAP-mutant virus-inoculated animals developed a strong neutralizing antibody response and were completely protected against challenge with WT FMDV as early as 2 days postinoculation and for at least 21 days postinoculation. Early protection correlated with a distinct pattern in the serum levels of proinflammatory cytokines in comparison to the levels detected in animals inoculated with WT FMDV that developed disease. In addition, animals inoculated with the FMDV SAP mutant displayed a memory T cell response that resembled infection with WT virus. Our results suggest that L(pro) plays a pivotal role in modulating several pathways of the immune response. Furthermore, manipulation of the L(pro) coding region may serve as a viable strategy to derive live attenuated strains with potential for development as effective vaccines against foot-and-mouth disease.
Collapse
|
37
|
Quasispecies as a matter of fact: viruses and beyond. Virus Res 2011; 162:203-15. [PMID: 21945638 PMCID: PMC7172439 DOI: 10.1016/j.virusres.2011.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022]
Abstract
We review the origins of the quasispecies concept and its relevance for RNA virus evolution, viral pathogenesis and antiviral treatment strategies. We emphasize a critical point of quasispecies that refers to genome collectivities as the unit of selection, and establish parallels between RNA viruses and some cellular systems such as bacteria and tumor cells. We refer also to tantalizing new observations that suggest quasispecies behavior in prions, perhaps as a result of the same quantum-mechanical indeterminations that underlie protein conformation and error-prone replication in genetic systems. If substantiated, these observations with prions could lead to new research on the structure-function relationship of non-nucleic acid biological molecules.
Collapse
|
38
|
Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space. J Virol 2011; 85:12227-40. [PMID: 21917974 DOI: 10.1128/jvi.00716-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lethal mutagenesis or virus transition into error catastrophe is an antiviral strategy that aims at extinguishing a virus by increasing the viral mutation rates during replication. The molecular basis of lethal mutagenesis is largely unknown. Previous studies showed that a critical substitution in the foot-and-mouth disease virus (FMDV) polymerase was sufficient to allow the virus to escape extinction through modulation of the transition types induced by the purine nucleoside analogue ribavirin. This substitution was not detected in mutant spectra of FMDV populations that had not replicated in the presence of ribavirin, using standard molecular cloning and nucleotide sequencing. Here we selectively amplify and analyze low-melting-temperature cDNA duplexes copied from FMDV genome populations passaged in the absence or presence of ribovirin Hypermutated genomes with high frequencies of A and U were present in both ribavirin -treated and untreated populations, but the major effect of ribavirin mutagenesis was to accelerate the occurrence of AU-rich mutant clouds during the early replication rounds of the virus. The standard FMDV quasispecies passaged in the absence of ribavirin included the salient transition-modulating, ribavirin resistance mutation, whose frequency increased in populations treated with ribavirin. Thus, even nonmutagenized FMDV quasispecies include a deep, mutationally biased portion of sequence space, in support of the view that the virus replicates close to the error threshold for maintenance of genetic information.
Collapse
|
39
|
Ojosnegros S, García-Arriaza J, Escarmís C, Manrubia SC, Perales C, Arias A, Mateu MG, Domingo E. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLoS Genet 2011; 7:e1001344. [PMID: 21437265 PMCID: PMC3060069 DOI: 10.1371/journal.pgen.1001344] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/16/2011] [Indexed: 01/30/2023] Open
Abstract
The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. Genome segmentation, the splitting of a linear genome into two or more segments, is a major evolutionary transition from independent towards complementing transmission of genetic information. Many viruses with RNA as genetic material have segmented genomes, but the molecular forces behind genome segmentation are unknown. We have used foot-and-mouth disease virus to address this question, because this non-segmented RNA virus became segmented into two RNAs when it was extensively propagated in cell culture. This made possible a comparison of the segmented form (with two shorter RNAs enclosed into separate viral particles) with its exactly matching non-segmented counterpart. The results show that the advantage of the segmented form lies in the higher stability of the particles that enclose the shorter RNA, and not in any difference in the rate of RNA synthesis or expression of the genetic material. Genome segmentation may have arisen as a molecular mechanism to overcome the trade-off between genomic content and particle stability. It allows optimizing the amount of genetic information while relaxing packaging density.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Juan García-Arriaza
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Cristina Escarmís
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Susanna C. Manrubia
- Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC/INTA), Instituto Nacional de Técnica Aeroespacial, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Armando Arias
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
40
|
Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 2011; 8:270-9. [PMID: 21593585 PMCID: PMC3127101 DOI: 10.4161/rna.8.2.15013] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/18/2022] Open
Abstract
In order to survive and propagate, RNA viruses must achieve a balance between the capacity for adaptation to new environmental conditions or host cells with the need to maintain an intact and replication competent genome. Several virus families in the order Nidovirales, such as the coronaviruses (CoVs) must achieve these objectives with the largest and most complex replicating RNA genomes known, up to 32 kb of positive-sense RNA. The CoVs encode sixteen nonstructural proteins (nsp 1-16) with known or predicted RNA synthesis and modification activities, and it has been proposed that they are also responsible for the evolution of large genomes. The CoVs, including murine hepatitis virus (MHV) and SARS-CoV, encode a 3'-to-5' exoribonuclease activity (ExoN) in nsp14. Genetic inactivation of ExoN activity in engineered SARS-CoV and MHV genomes by alanine substitution at conserved DE-D-D active site residues results in viable mutants that demonstrate 15- to 20-fold increases in mutation rates, up to 18 times greater than those tolerated for fidelity mutants of other RNA viruses. Thus nsp14-ExoN is essential for replication fidelity, and likely serves either as a direct mediator or regulator of a more complex RNA proofreading machine, a process previously unprecedented in RNA virus biology. Elucidation of the mechanisms of nsp14-mediated proofreading will have major implications for our understanding of the evolution of RNA viruses, and also will provide a robust model to investigate the balance between fidelity, diversity and pathogenesis. The discovery of a protein distinct from a viral RdRp that regulates replication fidelity also raises the possibility that RNA genome replication fidelity may be adaptable to differing replication environments and selective pressures, rather than being a fixed determinant.
Collapse
Affiliation(s)
- Mark R Denison
- Department of Pediatrics and Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
41
|
Perales C, Agudo R, Manrubia SC, Domingo E. Influence of mutagenesis and viral load on the sustained low-level replication of an RNA virus. J Mol Biol 2011; 407:60-78. [PMID: 21256131 DOI: 10.1016/j.jmb.2011.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
Lethal mutagenesis is an antiviral strategy that aims to extinguish viruses as a consequence of enhanced mutation rates during virus replication. The molecular mechanisms that underlie virus extinction by mutagenic nucleoside analogues are not well understood. When mutagenic agents and antiviral inhibitors are administered sequentially or in combination, interconnected and often conflicting selective constraints can influence the fate of the virus either towards survival through selection of mutagen-escape or inhibitor-escape mutants or towards extinction. Here we report a study involving the mutagenesis of foot-and-mouth disease virus (FMDV) by the nucleoside analogue ribavirin (R) and the effect of R-mediated mutagenesis on the selection of FMDV mutants resistant to the inhibitor of RNA replication, guanidine hydrochloride (GU). The results show that under comparable (and low) viral load, an inhibitory activity by GU could not substitute for an equivalent inhibitory activity by R in driving FMDV to extinction. Both the prior history of R mutagenesis and the viral population size influenced the selection of GU-escape mutants. A sufficiently low viral load allowed continued viral replication without selection of inhibitor-escape mutants, irrespective of the history of mutagenesis. These observations imply that reductions of viral load as a result of a mutagenic treatment may provide an opportunity either for immune-mediated clearing of a virus or for an alternative antiviral intervention, even if extinction is not initially achieved.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Abstract
Viruses are fast evolving pathogens that continuously adapt to the highly variable environments they live and reproduce in. Strategies devoted to inhibit virus replication and to control their spread among hosts need to cope with these extremely heterogeneous populations and with their potential to avoid medical interventions. Computational techniques such as phylogenetic methods have broadened our picture of viral evolution both in time and space, and mathematical modeling has contributed substantially to our progress in unraveling the dynamics of virus replication, fitness, and virulence. Integration of multiple computational and mathematical approaches with experimental data can help to predict the behavior of viral pathogens and to anticipate their escape dynamics. This piece of information plays a critical role in some aspects of vaccine development, such as viral strain selection for vaccinations or rational attenuation of viruses. Here we review several aspects of viral evolution that can be addressed quantitatively, and we discuss computational methods that have the potential to improve vaccine design.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | | |
Collapse
|
43
|
Ali A, Roossinck MJ. Genetic bottlenecks during systemic movement of Cucumber mosaic virus vary in different host plants. Virology 2010; 404:279-83. [PMID: 20542533 DOI: 10.1016/j.virol.2010.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/25/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
Abstract
Genetic bottlenecks are stochastic events that narrow variation in a population. We compared bottlenecks during the systemic infection of Cucumber mosaic virus (CMV) in four host plants. We mechanically inoculated an artificial population of twelve CMV mutants to young leaves of tomato, pepper, Nicotiana benthamiana, and squash. The inoculated leaves and primary and secondary systemically infected leaves were sampled at 2, 10, and 15 days post-inoculation. All twelve mutants were detected in all of the inoculated leaves. The number of mutants recovered from the systemically infected leaves of all host species was reduced significantly, indicating bottlenecks in systemic movement. The recovery frequencies of a few of the mutants were significantly different in each host probably due to host-specific selective forces. These results have implications for the differences in virus population variation that is seen in different host plants.
Collapse
Affiliation(s)
- Akhtar Ali
- Plant Biology Division, The Samuel Roberts Noble Foundation, P.O. Box 2180, Ardmore, OK 73401, USA
| | | |
Collapse
|
44
|
Agudo R, Ferrer-Orta C, Arias A, de la Higuera I, Perales C, Pérez-Luque R, Verdaguer N, Domingo E. A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. PLoS Pathog 2010; 6:e1001072. [PMID: 20865120 PMCID: PMC2928812 DOI: 10.1371/journal.ppat.1001072] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 07/26/2010] [Indexed: 01/18/2023] Open
Abstract
Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin —by avoiding the biased repertoire of transition mutations produced by this purine analogue—and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure. Viruses that have RNA as genetic material include many important human, animal and plant pathogens. A new strategy against RNA viruses consists in using mutagenic nucleotides. The objective is to provoke an excessive number of mutations, to deteriorate the viral functions to the point that the virus can not survive. One of the mutagens used in research on lethal mutagenesis is ribavirin, extensively employed in clinical practice. Unfortunately, viral mutants that are resistant to ribavirin have been selected, thus facilitating escape from lethal mutagenesis. Here we describe a new mechanism by which foot-and-mouth disease virus (FMDV) can become resistant to ribavirin. Amino acid changes in the viral polymerase, selected by ribavirin, are able to modify the types of mutations produced in the presence of ribavirin. Biochemical data indicate that the alteration of the enzyme changes the pairing behavior of ribavirin, avoiding the production of an excess of some types of mutations, supporting the hypothesis that an unbalanced mutation repertoire is detrimental to the virus. Thus, this new mechanism of resistance to ribavirin is based not as much in limiting the number of mutations in the virus genetic material but in ensuring an equilibrium among different types of mutations that favors viral survival.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Armando Arias
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | - Celia Perales
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Rosa Pérez-Luque
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
45
|
Zhou JH, Zhang J, Ding YZ, Chen HT, Ma LN, Liu YS. Characteristics of codon usage bias in two regions downstream of the initiation codons of foot-and-mouth disease virus. Biosystems 2010; 101:20-8. [DOI: 10.1016/j.biosystems.2010.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/30/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
|
46
|
Elena SF, Solé RV, Sardanyés J. Simple genomes, complex interactions: epistasis in RNA virus. CHAOS (WOODBURY, N.Y.) 2010; 20:026106. [PMID: 20590335 DOI: 10.1063/1.3449300] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Owed to their reduced size and low number of proteins encoded, RNA viruses and other subviral pathogens are often considered as being genetically too simple. However, this structural simplicity also creates the necessity for viral RNA sequences to encode for more than one protein and for proteins to carry out multiple functions, all together resulting in complex patterns of genetic interactions. In this work we will first review the experimental studies revealing that the architecture of viral genomes is dominated by antagonistic interactions among loci. Second, we will also review mathematical models and provide a description of computational tools for the study of RNA virus dynamics and evolution. As an application of these tools, we will finish this review article by analyzing a stochastic bit-string model of in silico virus replication. This model analyzes the interplay between epistasis and the mode of replication on determining the population load of deleterious mutations. The model suggests that, for a given mutation rate, the deleterious mutational load is always larger when epistasis is predominantly antagonistic than when synergism is the rule. However, the magnitude of this effect is larger if replication occurs geometrically than if it proceeds linearly.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Ingeniero Fausto Elio s/n, 46022 València, Spain.
| | | | | |
Collapse
|
47
|
Arias A, Perales C, Escarmís C, Domingo E. Deletion mutants of VPg reveal new cytopathology determinants in a picornavirus. PLoS One 2010; 5:e10735. [PMID: 20505767 PMCID: PMC2873979 DOI: 10.1371/journal.pone.0010735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Success of a viral infection requires that each infected cell delivers a sufficient number of infectious particles to allow new rounds of infection. In picornaviruses, viral replication is initiated by the viral polymerase and a viral-coded protein, termed VPg, that primes RNA synthesis. Foot-and-mouth disease virus (FMDV) is exceptional among picornaviruses in that its genome encodes 3 copies of VPg. Why FMDV encodes three VPgs is unknown. Methodology and Principal Findings We have constructed four mutant FMDVs that encode only one VPg: either VPg1, VPg3, or two chimeric versions containing part of VPg1 and VPg3. All mutants, except that encoding only VPg1, were replication-competent. Unexpectedly, despite being replication-competent, the mutants did not form plaques on BHK-21 cell monolayers. The one-VPg mutant FMDVs released lower amounts of encapsidated viral RNA to the extracellular environment than wild type FMDV, suggesting that deficient plaque formation was associated with insufficient release of infectious progeny. Mutant FMDVs subjected to serial passages in BHK-21 cells regained plaque-forming capacity without modification of the number of copies of VPg. Substitutions in non-structural proteins 2C, 3A and VPg were associated with restoration of plaque formation. Specifically, replacement R55W in 2C was repeatedly found in several mutant viruses that had regained competence in plaque development. The effect of R55W in 2C was to mediate an increase in the extracellular viral RNA release without a detectable increase of total viral RNA that correlated with an enhanced capacity to alter and detach BHK-21 cells from the monolayer, the first stage of cell killing. Conclusions The results link the VPg copies in the FMDV genome with the cytopathology capacity of the virus, and have unveiled yet another function of 2C: modulation of picornavirus cell-to-cell transmission. Implications for picornaviruses pathogenesis are discussed.
Collapse
Affiliation(s)
- Armando Arias
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristina Escarmís
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Departamento de Virología y Microbiología, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
48
|
Structure of foot-and-mouth disease virus mutant polymerases with reduced sensitivity to ribavirin. J Virol 2010; 84:6188-99. [PMID: 20392853 DOI: 10.1128/jvi.02420-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Passage of poliovirus (PV) or foot-and-mouth disease virus (FMDV) in the presence of ribavirin selected for viruses with decreased sensitivity to R, which included different mutations in their polymerase (3D): G64S located in the finger subdomain in the case of PV and M296I located within loop beta9-alpha11 at the active site in the case of FMDV. To investigate why disparate substitutions were selected in two closely related 3Ds, we constructed FMDVs with a 3D that included either G62S (the equivalent replacement in FMDV of PV G64S), M296I, or both substitutions. G62S, but not M296I, inflicts upon FMDV a strong selective disadvantage which is partially compensated for by the substitution M296I. The corresponding mutant polymerases, 3D(G62S), 3D(M296I), and 3D(G62S-M296I), were analyzed functionally and structurally. G62S in 3D impairs RNA-binding, polymerization, and R monophosphate incorporation activities. The X-ray structures of the 3D(G62S)-RNA, 3D(M296I)-RNA, and 3D(G62S-M296I)-RNA complexes show that although the two positions are separated by 13.1 A, the loops where the replacements reside are tightly connected through an extensive network of interactions that reach the polymerase active site. In particular, G62S seems to restrict the flexibility of loop beta9-alpha11 and, as a consequence, the flexibility of the active site and its ability to bind the RNA template. Thus, a localized change in the finger subdomain of 3D may affect the catalytic domain. The results provide a structural interpretation of why different amino acid substitutions were selected to confer R resistance in closely related viruses and reveal a complex network of intra-3D interactions that can affect the recognition of both the RNA template and incoming nucleotide.
Collapse
|
49
|
Abstract
During replication, RNA viruses rapidly generate diverse mutant progeny which differ in their ability to kill host cells. We report that the progeny of a single RNA viral genome diversified during hundreds of passages in cell culture and self-organized into two genetically distinct subpopulations that exhibited the competition-colonization dynamics previously recognized in many classical ecological systems. Viral colonizers alone were more efficient in killing cells than competitors in culture. In cells coinfected with both competitors and colonizers, viral interference resulted in reduced cell killing, and competitors replaced colonizers. Mathematical modeling of this coinfection dynamics predicted selection to be density dependent, which was confirmed experimentally. Thus, as is known for other ecological systems, biodiversity and even cell killing of virus populations can be shaped by a tradeoff between competition and colonization. Our results suggest a model for the evolution of virulence in viruses based on internal interactions within mutant spectra of viral quasispecies.
Collapse
|
50
|
Pfeiffer JK. Innate host barriers to viral trafficking and population diversity: lessons learned from poliovirus. Adv Virus Res 2010; 77:85-118. [PMID: 20951871 PMCID: PMC3234684 DOI: 10.1016/b978-0-12-385034-8.00004-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Poliovirus is an error-prone enteric virus spread by the fecal-oral route and rarely invades the central nervous system (CNS). However, in the rare instances when poliovirus invades the CNS, the resulting damage to motor neurons is striking and often permanent. In the prevaccine era, it is likely that most individuals within an epidemic community were infected; however, only 0.5% of infected individuals developed paralytic poliomyelitis. Paralytic poliomyelitis terrified the public and initiated a huge research effort, which was rewarded with two outstanding vaccines. During research to develop the vaccines, many questions were asked: Why did certain people develop paralysis? How does the virus move from the gut to the CNS? What limits viral trafficking to the CNS in the vast majority of infected individuals? Despite over 100 years of poliovirus research, many of these questions remain unanswered. The goal of this chapter is to review our knowledge of how poliovirus moves within and between hosts, how host barriers limit viral movement, how viral population dynamics impact viral fitness and virulence, and to offer hypotheses to explain the rare incidence of paralytic poliovirus disease.
Collapse
Affiliation(s)
- Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|