1
|
Valenzuela B, Solís-Cornejo F, Araya R, Zamorano P. Isolation and Characterization of Thermus thermophilus Strain ET-1: An Extremely Thermophilic Bacterium with Extracellular Thermostable Proteolytic Activity Isolated from El Tatio Geothermal Field, Antofagasta, Chile. Int J Mol Sci 2023; 24:14512. [PMID: 37833960 PMCID: PMC10572604 DOI: 10.3390/ijms241914512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
The present study describes the isolation of an extremely thermophilic bacterium from El Tatio, a geyser field in the high planes of Northern Chile. The thermophile bacterium named Thermus thermophilus strain ET-1 showed 99% identity with T. thermophilus SGO.5JP 17-16 (GenBank accession No. CP002777) by 16S rDNA gene analysis. Morphologically, the cells were non-sporeforming Gram-negative rods that formed colonies with yellow pigmentation. This strain is able to proliferate between 55 and 80 °C with a pH range of 6-10, presenting an optimum growth rate at 80 °C and pH 8. The bacterium produces an extracellular protease activity. Characterization of this activity in a concentrated enzyme preparation revealed that extracellular protease had an optimal enzymatic activity at 80 °C at pH 10, a high thermostability with a half-life at 80 °C of 10 h, indicating that this enzyme can be classified as an alkaline protease. The proteolytic enzyme exhibits great stability towards chelators, divalent ions, organic solvents, and detergents. The enzyme was inhibited by phenylmethylsulfonyl fluoride (PMSF), implying that it was a serine protease. The high thermal and pH stability and the resistance to chelators/detergents suggest that the protease activity from this T. thermophilus. strain could be of interest in biotechnological applications.
Collapse
Affiliation(s)
- Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile;
| | - Francisco Solís-Cornejo
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile;
| | - Rubén Araya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile;
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile;
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta; Antofagasta 1240000, Chile
| |
Collapse
|
2
|
Bögeholz LA, Mercier E, Wintermeyer W, Rodnina MV. Deformylation of nascent peptide chains on the ribosome. Methods Enzymol 2023; 684:39-70. [DOI: 10.1016/bs.mie.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
3
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
4
|
Rodriguez A, Wright G, Emrich S, Clark PL. %MinMax: A versatile tool for calculating and comparing synonymous codon usage and its impact on protein folding. Protein Sci 2017; 27:356-362. [PMID: 29090506 DOI: 10.1002/pro.3336] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022]
Abstract
Most amino acids can be encoded by more than one synonymous codon, but these are rarely used with equal frequency. In many coding sequences the usage patterns of rare versus common synonymous codons is nonrandom and under selection. Moreover, synonymous substitutions that alter these patterns can have a substantial impact on the folding efficiency of the encoded protein. This has ignited broad interest in exploring synonymous codon usage patterns. For many protein chemists, biophysicists and structural biologists, the primary motivation for codon analysis is identifying and preserving usage patterns most likely to impact high-yield production of functional proteins. Here we describe the core functions and new features of %MinMax, a codon usage calculator freely available as a web-based portal and downloadable script (http://www.codons.org). %MinMax evaluates the relative usage frequencies of the synonymous codons used to encode a protein sequence of interest and compares these results to a rigorous null model. Crucially, for analyzing codon usage in common host organisms %MinMax requires only the coding sequence as input; with a user-input codon frequency table, %MinMax can be used to evaluate synonymous codon usage patterns for any coding sequence from any fully sequenced genome. %MinMax makes no assumptions regarding the impact of transfer ribonucleic acid concentrations or other molecular-level interactions on translation rates, yet its output is sufficient to predict the effects of synonymous codon substitutions on cotranslational folding mechanisms. A simple calculation included within %MinMax can be used to harmonize codon usage frequencies for heterologous gene expression.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Gabriel Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556.,Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, 46556
| |
Collapse
|
5
|
Ngo HPT, Ho TH, Lee I, Tran HT, Sur B, Kim S, Kim JG, Ahn YJ, Cha SS, Kang LW. Crystal Structures of Peptide Deformylase from Rice Pathogen Xanthomonas oryzae pv. oryzae in Complex with Substrate Peptides, Actinonin, and Fragment Chemical Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7307-7314. [PMID: 27616570 DOI: 10.1021/acs.jafc.6b02976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight on rice; this species is one of the most destructive pathogenic bacteria in rice cultivation worldwide. Peptide deformylase (PDF) catalyzes the removal of the N-formyl group from the N-terminus of newly synthesized polypeptides in bacterial cells and is an important target to develop antibacterial agents. We determined crystal structures of Xoo PDF (XoPDF) at up to 1.9 Å resolution, which include apo, two substrate-bound (methionine-alanine or methionine-alanine-serine), an inhibitor-bound (actinonin), and six fragment chemical-bound structures. Six fragment chemical compounds were bound in the substrate-binding pocket. The fragment chemical-bound structures were compared to the natural PDF inhibitor actinonin-bound structure. The fragment chemical molecules will be useful to design an inhibitor specific to XoPDF and a potential pesticide against Xoo.
Collapse
Affiliation(s)
- Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Inho Lee
- Department of Biological Sciences, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Huyen-Thi Tran
- Department of Biological Sciences, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Bookyo Sur
- Department of Biological Sciences, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Seunghwan Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA) , Jeonju 54874, Korea
| | - Jeong-Gu Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA) , Jeonju 54874, Korea
| | - Yeh-Jin Ahn
- Department of Life Science, Sangmyung University , 7 Hongji-dong, Jongno-gu, Seoul 03016, Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nano Science, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
6
|
Frequency of Spontaneous Resistance to Peptide Deformylase Inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. Antimicrob Agents Chemother 2015; 59:4644-52. [PMID: 26014938 DOI: 10.1128/aac.00484-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
The continuous emergence of multidrug-resistant pathogenic bacteria is compromising the successful treatment of serious microbial infections. GSK1322322, a novel peptide deformylase (PDF) inhibitor, shows good in vitro antibacterial activity and has demonstrated safety and efficacy in human proof-of-concept clinical studies. In vitro studies were performed to determine the frequency of resistance (FoR) to this antimicrobial agent in major pathogens that cause respiratory tract and skin infections. Resistance to GSK1322322 occurred at high frequency through loss-of-function mutations in the formyl-methionyl transferase (FMT) protein in Staphylococcus aureus (4/4 strains) and Streptococcus pyogenes (4/4 strains) and via missense mutations in Streptococcus pneumoniae (6/21 strains), but the mutations were associated with severe in vitro and/or in vivo fitness costs. The overall FoR to GSK1322322 was very low in Haemophilus influenzae, with only one PDF mutant being identified in one of four strains. No target-based mutants were identified from S. pyogenes, and only one or no PDF mutants were isolated in three of the four S. aureus strains studied. In S. pneumoniae, PDF mutants were isolated from only six of 21 strains tested; an additional 10 strains did not yield colonies on GSK1322322-containing plates. Most of the PDF mutants characterized from those three organisms (35/37 mutants) carried mutations in residues at or in close proximity to one of three highly conserved motifs that are part of the active site of the PDF protein, with 30 of the 35 mutations occurring at position V71 (using the S. pneumoniae numbering system).
Collapse
|
7
|
Fieulaine S, Desmadril M, Meinnel T, Giglione C. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart. ACTA ACUST UNITED AC 2014; 70:242-52. [DOI: 10.1107/s1399004713026461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/24/2013] [Indexed: 11/11/2022]
Abstract
Peptide deformylases (PDFs), which are essential and ubiquitous enzymes involved in the removal of theN-formyl group from nascent chains, are classified into four subtypes based on the structural and sequence similarity of specific conserved domains. All PDFs share a similar three-dimensional structure, are functionally interchangeablein vivoand display similar propertiesin vitro, indicating that their molecular mechanism has been conserved during evolution. The human mitochondrial PDF is the only exception as despite its conserved fold it reveals a unique substrate-binding pocket together with an unusual kinetic behaviour. Unlike human PDF, the closely related mitochondrial PDF1As from plants have catalytic efficiencies and enzymatic parameters that are similar to those of other classes of PDFs. Here, the aim was to identify the structural basis underlying the properties of human PDF compared with all other PDFs by focusing on plant mitochondrial PDF1A. The construction of a chimaera composed of plant PDF1A with the nonrandom substitutions found in a conserved motif of its human homologue converted it into an enzyme with properties similar to the human enzyme, indicating the crucial role of these positions. The crystal structure of this human-like plant PDF revealed that substitution of two residues leads to a reduction in the volume of the ligand-binding site together with the introduction of negative charges, unravelling the origin of the weak affinity of human PDF for its substrate. In addition, the substitution of the two residues of human PDF modifies the transition state of the reaction through alteration of the network of interactions between the catalytic residues and the substrate, leading to an overall reduced reaction rate.
Collapse
|
8
|
Identification of crucial amino acids of bacterial Peptide deformylases affecting enzymatic activity in response to oxidative stress. J Bacteriol 2013; 196:90-9. [PMID: 24142250 DOI: 10.1128/jb.00916-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide deformylase (PDF) is an essential bacterial metalloprotease involved in deformylation of N-formyl group from nascent polypeptide chains during protein synthesis. Iron-containing variants of this enzyme from Salmonella enterica serovar Typhimurium (sPDF) and Mycobacterium tuberculosis (mPDF), although inhibited by oxidizing agents like H2O2, exhibited strikingly different 50% inhibitory concentrations (IC50s) that ranged from nanomolar (sPDF) to millimolar (mPDF) levels. Furthermore, the metal dissociation rate was higher in sPDF than mPDF. We hypothesized that a restriction in entry of environmental oxygen or oxidizing agents into the active site of mPDF might be the cause for such discrepancies between two enzymes. Since the active-site residues of the two proteins are similar, we evaluated the role of the oxidation-prone noncatalytic residue(s) in the process. Amino acid sequence analysis revealed that Cys-130 of sPDF corresponds to Met-145 of mPDF and that they are away from the active sites. Swapping methionine with cysteine in mPDF, the M145C protein displayed a drastic decrease in the IC50 for H2O2 and an increased metal dissociation rate compared to the wild type. Matrix-assisted laser desorption ionization (MALDI) analysis of a trypsin-digested fragment containing Cys-145 of the M145C protein also indicated its increased susceptibility to oxidation. To incorporate residues identical to those of mPDF, we created a double mutant of sPDF (C130M-V63C) that showed increased IC50 for H2O2 compared to the wild type. Interestingly, the oxidation state of cysteines in C130M-V63C was unaffected during H2O2 treatment. Taken together, our results unambiguously established the critical role of noncatalytic cysteine/methionine for enzymatic sensitivity to H2O2 and, thus, for conferring behavioral distinction of bacterial PDFs under oxidative stress conditions.
Collapse
|
9
|
Narayanan SS, Sokkar P, Ramachandran M, Nampoothiri KM. Glycine in the conserved motif III modulates the thermostability and oxidative stress resistance of peptide deformylase in Mycobacterium tuberculosis. FEMS Microbiol Lett 2011; 320:40-7. [DOI: 10.1111/j.1574-6968.2011.02289.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Yu L, Zhou W, Wang Z. Synthesis and in vitro antibacterial activity of oxazolidine LBM-415 analogs as peptide deformylase inhibitors. Bioorg Med Chem Lett 2010; 21:1541-4. [PMID: 21288715 DOI: 10.1016/j.bmcl.2010.12.097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
The drug resistant bacteria pose a severe threat to human health. The increasing resistance of those pathogens to traditional antibacterial therapy renders the identification of new antibacterial agents with novel antibacterial mechanisms an urgent need. In this study, a series of (2S)-N-substituted-1-[(formyhydroxyamino)methyl]-1-oxohexyl]-2-oxazolidinecarboxamides were designed, synthesized and evaluated for in vitro antibacterial activity. Most of these compounds displayed good activities against Gram-positive organisms comparable to reference agent LBM-415.
Collapse
Affiliation(s)
- Linliang Yu
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, PR China.
| | | | | |
Collapse
|
11
|
Lin P, Hu T, Hu J, Yu W, Han C, Zhang J, Qin G, Yu K, Götz F, Shen X, Jiang H, Qu D. Characterization of peptide deformylase homologues from Staphylococcus epidermidis. MICROBIOLOGY-SGM 2010; 156:3194-3202. [PMID: 20656778 DOI: 10.1099/mic.0.038174-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence of multi-drug-resistant strains of Staphylococcus epidermidis emphasizes the need to develop new antibiotics. The unique and essential role of the peptide deformylase (PDF) in catalysing the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria makes it an attractive antibacterial drug target. In the present study, both deformylase homologues from S. epidermidis (SePDF-1 and SePDF-2) were cloned and expressed, and their enzymic activities were characterized. Co(2+)-substituted SePDF-1 exhibited much higher enzymic activity (k(cat)/K(m) 6.3 × 10(4) M(-1) s(-1)) than those of Ni(2+)- and Zn(2+)-substituted SePDF-1, and SePDF-1 showed much weaker binding ability towards Ni(2+) than towards Co(2+) and Zn(2+), which is different from PDF in Staphylococcus aureus (SaPDF), although they share 80 % amino-acid sequence identity. The determined crystal structure of SePDF-1 was similar to that of (SaPDF), except for differences in the metal-binding sites. The other deformylase homologue, SePDF-2, was shown to have no peptide deformylase activity; the function of SePDF-2 needs to be further investigated.
Collapse
Affiliation(s)
- Penghui Lin
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Tiancen Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Hu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wenqi Yu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Cong Han
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Guangrong Qin
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Friedrich Götz
- Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Xu Shen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Amero CD, Byerly DW, McElroy CA, Simmons A, Foster MP. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase. Biochemistry 2009; 48:7595-607. [PMID: 19627112 DOI: 10.1021/bi900600b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide deformylase (PDF) is an enzyme that is responsible for removing the formyl group from nascently synthesized polypeptides in bacteria, attracting much attention as a potential target for novel antibacterial agents. Efforts to develop potent inhibitors of the enzyme have progressed on the basis of classical medicinal chemistry, combinatorial chemistry, and structural approaches, yet the validity of PDF as an antibacterial target hangs, in part, on the ability of inhibitors to selectively target this enzyme in favor of structurally related metallohydrolases. We have used (15)N NMR spectroscopy and isothermal titration calorimetry to investigate the high-affinity interaction of EcPDF with actinonin, a naturally occurring potent EcPDF inhibitor. Backbone amide chemical shifts, residual dipolar couplings, hydrogen-deuterium exchange, and (15)N relaxation reveal structural and dynamic effects of ligand binding in the immediate vicinity of the ligand-binding site as well as at remote sites. A comparison of the crystal structures of free and actinonin-bound EcPDF with the solution data suggests that most of the consequences of the ligand binding to the protein are lost or obscured during crystallization. The results of these studies improve our understanding of the thermodynamic global minimum and have important implications for structure-based drug design.
Collapse
Affiliation(s)
- Carlos D Amero
- Biophysics Program, The Ohio StateUniversity, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
13
|
Sharma A, Khuller GK, Sharma S. Peptide deformylase--a promising therapeutic target for tuberculosis and antibacterial drug discovery. Expert Opin Ther Targets 2009; 13:753-65. [PMID: 19530983 DOI: 10.1517/14728220903005590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains the most important infectious disease causing morbidity and death, due to the human pathogen Mycobacterium tuberculosis. The emergence of multi-drug-resistant and extensively-drug-resistant forms of TB have resulted in an increase in the number of TB cases. Thus, there is an urgent need to identify new drugs with novel targets to ensure future therapeutic success. Studies have indicated that peptide deformylase is an interesting potential candidate for discovering antimicrobial agents. OBJECTIVE To explore the role of peptide deformylase, a highly conserved metalloprotease and an essential enzyme in bacterial life cycle, as a target for antibacterial as well as antimycobacterial drug development. METHODS This review is based on recent published literature and online resources related to peptide deformylase inhibitors and their antibacterial potential. RESULTS/CONCLUSION Peptide deformylase is an emerging therapeutic target for the treatment of tuberculosis and peptide deformylase inhibitors can act as potential future antibacterial agents.
Collapse
Affiliation(s)
- Anshika Sharma
- University of Notre Dame, Department of Biological Sciences, Notre Dame, IN-46556, USA
| | | | | |
Collapse
|
14
|
Giglione C, Fieulaine S, Meinnel T. Cotranslational processing mechanisms: towards a dynamic 3D model. Trends Biochem Sci 2009; 34:417-26. [PMID: 19647435 DOI: 10.1016/j.tibs.2009.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/14/2009] [Accepted: 04/29/2009] [Indexed: 11/19/2022]
Abstract
Recent major advances have been made in understanding how cotranslational events are achieved in the course of protein biosynthesis. Specifically, several studies have shed light into the dynamic process of how nascent chains emerging from the ribosome are supported by protein biogenesis factors to ensure both processing and folding mechanisms. To take into account the awareness that coordination is needed, a new 'concerted model' recently proposed simultaneous action of both processes on the ribosome. In the model, any emerging nascent chain is first encountered by the chaperone trigger factor (TF), which forms an open cradle underneath the ribosomal exit tunnel. This cradle serves as a passive router that channels the nascent chains to the first cotranslational event, the proteolysis event performed by the N-terminal methionine excision machinery. Although fascinating, this model clearly raises more questions than it answers. Does the data used to develop this model stand up to scrutiny and, if not, what are the alternative mechanisms that the data suggest?
Collapse
Affiliation(s)
- Carmela Giglione
- Centre National de la Recherche Scientifique, Protein Maturation and Cell Fate, Institut des Sciences du Végétal, Bât.23A, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex, France.
| | | | | |
Collapse
|
15
|
Nam KH, Kim KH, Kim EEK, Hwang KY. Crystal structure of an EfPDF complex with Met-Ala-Ser based on crystallographic packing. Biochem Biophys Res Commun 2009; 381:630-3. [PMID: 19249287 DOI: 10.1016/j.bbrc.2009.02.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
PDF (peptide deformylase) plays a critical role in the production of mature proteins by removing the N-formyl polypeptide of nascent proteins in the prokaryote cell system. This protein is essential for bacterial growth, making it an attractive target for the design of new antibiotics. Accordingly, PDF has been evaluated as a drug target; however, architectural mechanism studies of PDF have not yet fully elucidated its molecular function. We recently reported the crystal structure of PDF produced by Enterococcus faecium [K.H. Nam, J.I. Ham, A. Priyadarshi, E.E. Kim, N. Chung, K.Y. Hwang, "Insight into the antibacterial drug design and architectural mechanism of peptide recognition from the E. faecium peptide deformylase structure", Proteins 74 (2009) 261-265]. Here, we present the crystal structure of the EfPDF complex with MAS (Met-Ser-Ala), thereby not only delineating the architectural mechanism for the recognition of mimic-peptides by N-terminal cleaved expression peptide, but also suggesting possible targets for rational design of antibacterial drugs. In addition to their implications for drug design, these structural studies will facilitate elucidation of the architectural mechanism responsible for the peptide recognition of PDF.
Collapse
|
16
|
Bouzaidi-Tiali N, Giglione C, Bulliard Y, Pusnik M, Meinnel T, Schneider A. Type 3 peptide deformylases are required for oxidative phosphorylation in Trypanosoma brucei. Mol Microbiol 2007; 65:1218-28. [PMID: 17651388 DOI: 10.1111/j.1365-2958.2007.05867.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide deformylase (PDF) catalyses the removal of the formyl group from the first methionine of nascent proteins. Type 1 PDFs are found in bacteria and have orthologues in most eukaryotes. Type 2 PDFs are restricted to bacteria. Type 3 enzymes are found in Archaea and trypanosomatids and have not been studied experimentally yet. Thus, TbPDF1 and TbPDF2, the two PDF orthologues of the parasitic protozoa Trypanosoma brucei, are of type 3. An experimental analysis of these enzymes shows that both are mitochondrially localized, but that only TbPDF1 is essential for normal growth. Recombinant TbPDF1 exhibits PDF activity with a substrate specificity identical to that of bacterial enzymes. Consistent with these results, TbPDF1 is required for oxidative but not for mitochondrial substrate-level phosphorylation. Ablation of TbPDF2, in contrast, does neither affect growth on standard medium nor oxidative phosphorylation. However, a reduced level of TbPDF2 slows down growth in a medium that selects for highly efficient oxidative phosphorylation. Furthermore, combined ablation of TbPDF1 and TbPDF2 results in an earlier growth arrest than is observed by downregulation of TbPDF1 alone. These results suggest that TbPDF2 is functionally linked to TbPDF1, and that it can influence the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Nabile Bouzaidi-Tiali
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Xiao C, Zhang Y. Catalytic mechanism and metal specificity of bacterial peptide deformylase: a density functional theory QM/MM study. J Phys Chem B 2007; 111:6229-35. [PMID: 17503802 DOI: 10.1021/jp068657f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial peptide deformylase (PDF) represents a novel class of mononuclear iron peptidase, and has an intriguing metal preference different from most other metalloproteases. Using a hybrid density functional theory (B3LYP) QM/MM method, we have theoretically investigated its catalytic mechanism and metal specificity by studying both Fe2+-PDF and Zn2+-PDF. In both forms of PDF, the conserved Glu133 residue is protonated in the reactant complex, and acts as a general acid during the reaction. The initial reaction step is the nucleophilic attack of the metal-bound hydroxide on the carbonyl carbon of the substrate. Our calculations indicate that the metal ion in Fe2+-PDF is always pentacoordinated during the reaction process, while that in Zn2+-PDF is only tetrahedrally coordinated and not bound to the substrate in the reactant complex. This difference in their metal coordination is suggested to account for the lower activity of Zn2+-PDF in comparison with Fe2+-PDF.
Collapse
Affiliation(s)
- Chuanyun Xiao
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
18
|
Kosowska-Shick K, Credito KL, Pankuch GA, DeWasse B, McGhee P, Appelbaum PC. Multistep resistance selection and postantibiotic-effect studies of the antipneumococcal activity of LBM415 compared to other agents. Antimicrob Agents Chemother 2006; 51:770-3. [PMID: 17116666 PMCID: PMC1797776 DOI: 10.1128/aac.01150-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LBM415 is a peptide deformylase inhibitor active against gram-positive bacterial species and some gram-negative species. In multiselection studies, LBM415 had low MICs against all Streptococcus pneumoniae strains tested, regardless of their genotype, and selected resistant clones after 14 to 50 days. MIC increases correlated with changes mostly in the 70GXGXAAXQ77 motif in peptide deformylase. The postantibiotic effect of LBM415 ranged from 0.3 to 1.4 h.
Collapse
|
19
|
Teo JWP, Thayalan P, Beer D, Yap ASL, Nanjundappa M, Ngew X, Duraiswamy J, Liung S, Dartois V, Schreiber M, Hasan S, Cynamon M, Ryder NS, Yang X, Weidmann B, Bracken K, Dick T, Mukherjee K. Peptide deformylase inhibitors as potent antimycobacterial agents. Antimicrob Agents Chemother 2006; 50:3665-73. [PMID: 16966397 PMCID: PMC1635232 DOI: 10.1128/aac.00555-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 microM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of < or =5 x 10(-7) in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents.
Collapse
Affiliation(s)
- Jeanette W P Teo
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, 05-01 Chromos, Singapore 138670, Republic of Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang J, Van Aller GS, Taylor AN, Kerrigan JJ, Liu WS, Trulli JM, Lai Z, Holmes D, Aubart KM, Brown JR, Zalacain M. Phylogenomic and biochemical characterization of three Legionella pneumophila polypeptide deformylases. J Bacteriol 2006; 188:5249-57. [PMID: 16816197 PMCID: PMC1539947 DOI: 10.1128/jb.00866-05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a gram-negative facultative intracellular human pathogen that can cause fatal Legionnaires' disease. Polypeptide deformylase (PDF) is a novel broad-spectrum antibacterial target, and reports of inhibitors of PDF with potent activities against L. pneumophila have been published previously. Here, we report the identification of not one but three putative pdf genes, pdfA, pdfB, and pdfC, in the complete genome sequences of three strains of L. pneumophila. Phylogenetic analysis showed that L. pneumophila PdfA is most closely related to the commonly known gamma-proteobacterial PDFs encoded by the gene def. PdfB and PdfC are more divergent and do not cluster with any specific bacterial or eukaryotic PDF. All three putative pdf genes from L. pneumophila strain Philadelphia 1 have been cloned, and their encoded products have been overexpressed in Escherichia coli and purified. Enzymatic characterization shows that the purified PDFs with Ni2+ substituted are catalytically active and able to remove the N-formyl group from several synthetic polypeptides, although they appear to have different substrate specificities. Surprisingly, while PdfA and PdfB with Zn2+ substituted are much less active than the Ni2+ forms of each enzyme, PdfC with Zn2+ substituted was as active as the Ni2+ form for the fMA substrate and exhibited substrate specificity different from that of Ni2+ PdfC. Furthermore, the catalytic activities of these enzymes are potently inhibited by a known small-molecule PDF inhibitor, BB-3497, which also inhibits the extracellular growth of L. pneumophila. These results indicate that even though L. pneumophila has three PDFs, they can be effectively inhibited by PDF inhibitors which can, therefore, have potent anti-L. pneumophila activity.
Collapse
Affiliation(s)
- Jianzhong Huang
- Microbiology Department, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Namuswe F, Goldberg DP. A combinatorial approach to minimal peptide models of a metalloprotein active site. Chem Commun (Camb) 2006:2326-8. [PMID: 16733568 DOI: 10.1039/b601407k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Screening of a "one-bead-one-compound" peptide library containing biomimetic His/Cys ligands has led to the discovery of sequences that hydrolyze ester substrates in combination with Zn2+.
Collapse
Affiliation(s)
- Frances Namuswe
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
22
|
Saxena R, Chakraborti PK. Identification of regions involved in enzymatic stability of peptide deformylase of Mycobacterium tuberculosis. J Bacteriol 2005; 187:8216-20. [PMID: 16291698 PMCID: PMC1291256 DOI: 10.1128/jb.187.23.8216-8220.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of peptide deformylase of Mycobacterium tuberculosis revealed the presence of insertions (residues 74 to 85) and an unusually long carboxy-terminal end (residues 182 to 197). Our results with deletion mutants indicated the contribution of these regions in maintaining enzymatic stability. Furthermore, we showed that the region spanning the insertions was responsible for maintaining resistance to oxidizing agents, like H(2)O(2).
Collapse
Affiliation(s)
- Rahul Saxena
- Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
23
|
Leopoldini M, Russo N, Toscano M. Role of the Metal Ion in Formyl−Peptide Bond Hydrolysis by a Peptide Deformylase Active Site Model. J Phys Chem B 2005; 110:1063-72. [PMID: 16471643 DOI: 10.1021/jp054923y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic mechanism of peptide deformylase enzymes containing zinc, iron, cobalt, and nickel dications was explored in the gas phase and in the protein environment. The study was performed at the density functional level using three model systems to simulate the active site. The work had the aim to evaluate the effect of metal substitution on the hydrolytic properties and the possible different performances of the various catalysts. Results indicated that all of the metallic forms are active to hydrolyze the formyl-peptide bond and that the reaction pathways do not show significant peculiarities on going from a particular metal ion to another. No significant modification of the reaction paths occurs in solvent.
Collapse
Affiliation(s)
- Monica Leopoldini
- Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni per Elaborazioni Parallele e Distribuite-Centro d'Eccellenza MIUR, Universita' della Calabria, I-87030 Arcavacata di Rende, Italy
| | | | | |
Collapse
|
24
|
Yuan Z, White RJ. The evolution of peptide deformylase as a target: contribution of biochemistry, genetics and genomics. Biochem Pharmacol 2005; 71:1042-7. [PMID: 16289392 DOI: 10.1016/j.bcp.2005.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 11/15/2022]
Abstract
Although peptide deformylase (PDF, EC 3.5.1.27) was first described in 1968, the instability of enzyme preparations prevented it from being seriously considered as a target until this problem was finally solved in 1998. PDFs essentiality was first demonstrated in Escherichia coli in 1994. Genomic analyses have shown this enzyme to be present in all eubacteria. PDF homologs have also been found in eukaryotes including Homo sapiens. The function and relevance of the human chromosomal homolog to the safety of PDF inhibitors as therapeutic agents is not clear at this stage. Although there is considerable sequence variation between the different bacterial PDFs, there are three strongly conserved motifs that together constitute a critical metal binding site. The observation that PDF is a metalloenzyme has led to the design of inhibitors containing metal chelating pharmacophores. The most potent of these synthetic inhibitors are active against a range of clinically relevant respiratory tract pathogens in vitro and in vivo, including those resistant to current antibiotics. Mutants resistant to PDF inhibitors have been obtained in the laboratory; these resulted from mutations in the genes for transformylase (EC 2.1.2.9) or PDF. The mechanism involved and its frequency were pathogen-dependent. The two most advanced PDF inhibitor leads, which are both reverse hydroxamates, have progressed to phase 1 clinical trials and were well tolerated.
Collapse
Affiliation(s)
- Zhengyu Yuan
- Vicuron Pharmaceuticals Inc., 34790 Ardentech Court, Fremont, CA 94555, USA
| | | |
Collapse
|
25
|
Fieulaine S, Juillan-Binard C, Serero A, Dardel F, Giglione C, Meinnel T, Ferrer JL. The crystal structure of mitochondrial (Type 1A) peptide deformylase provides clear guidelines for the design of inhibitors specific for the bacterial forms. J Biol Chem 2005; 280:42315-24. [PMID: 16192279 DOI: 10.1074/jbc.m507155200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptide deformylase (PDF) inhibitors have a strong potential to be used as a new class of antibiotics. However, recent studies have shown that the mitochondria of most eukaryotes, including humans, contain an essential PDF, PDF1A. The crystal structure of the Arabidopsis thaliana PDF1A (AtPDF1A), considered representative of PDF1As in general, has been determined. This structure displays several similarities to that of known bacterial PDFs. AtPDF1A behaves as a dimer, with the C-terminal residues responsible for linking the two subunits. This arrangement is similar to that of Leptospira interrogans PDF, the only other dimeric PDF identified to date. AtPDF1A is the first PDF for which zinc has been identified as the catalytic ion. However, the zinc binding pocket does not differ from the binding pockets of PDFs with iron rather than zinc. The crystal structure of AtPDF1A in complex with a substrate analog revealed that the substrate binding pocket of PDF1A displays strong modifications. The S1' binding pocket is significantly narrower, due to the creation of a floor from residues present in all PDF1As but not in bacterial PDFs. A true S3' pocket is created by the residues of a helical CD-loop, which is very long in PDF1As. Finally, these modified substrate binding pockets modify the position of the substrate in the active site. These differences provide guidelines for the design of bacterial PDF inhibitors that will not target mitochondrial PDFs.
Collapse
Affiliation(s)
- Sonia Fieulaine
- Institut de Biologie Structurale J-P. Ebel CEA-CNRS-UJF, UMR5075, Laboratoire de Cristallographie et Cristallogenèse des Protéines (LCCP/GSY), 41 Rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Saxena R, Chakraborti PK. The carboxy-terminal end of the peptide deformylase from Mycobacterium tuberculosis is indispensable for its enzymatic activity. Biochem Biophys Res Commun 2005; 332:418-25. [PMID: 15896710 DOI: 10.1016/j.bbrc.2005.04.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The peptide deformylase in bacteria is involved in removal of N-formyl group from newly synthesized proteins. The gene encoding this enzyme from Mycobacterium tuberculosis was cloned and expressed in Escherichia coli. The enzyme activity of the recombinant protein (mPDF) was insensitive to modulation by common monovalent/divalent cations. Kinetic analysis, using N-formylmethionine-alanine as the substrate, yielded K(cat)/K(m) of approximately 1220 M(-1)s(-1). Actinonin, a naturally occurring antibiotic, and 1,10-ortho-phenanthroline strongly inhibited the enzyme activity. The mPDF was very stable at 30 degrees C with a half-life of approximately 4h and exhibited resistance to oxidizing agents, like H(2)O(2). Thus, the mPDF achieved distinction in its behavior among any reported iron-containing peptide deformylases. Furthermore, amino acid sequence analysis of mPDF revealed the presence of an unusually long carboxy-terminal end (residues 182-197), which is atypical for any gram-positive bacteria. Our results, through deletion analysis, for the first time established the role of this region in mPDF enzyme activity.
Collapse
Affiliation(s)
- Rahul Saxena
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | |
Collapse
|
27
|
Giglione C, Meinnel T. Peptide deformylase as an emerging target for antiparasitic agents. Expert Opin Ther Targets 2005; 5:41-57. [PMID: 15992167 DOI: 10.1517/14728222.5.1.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptide deformylases (PDFs) constitute a growing family of hydrolytic enzymes previously believed to be unique to Eubacteria. Recent data from our laboratory have demonstrated that PDF orthologues are present in many eukaryotes, including several parasites. In this report we aim to explain why PDF could be considered to be a potent target for human and veterinary antiparasitic treatments.
Collapse
Affiliation(s)
- C Giglione
- Institut des Sciences Végétales, UPR2355, Centre National de la Recherche Scientifique, Bâtiment 23, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
28
|
Abstract
Peptide deformylase (PDF) catalyses the hydrolytic removal of the N-terminal formyl group from nascent ribosome-synthesised polypeptides. Its activity is essential and it is present in all eubacteria. It is also present in the organelles of some eukaryotes. PDF represents a novel class of mononuclear iron protein, utilising an Fe(2+) ion to catalyse the hydrolysis of an amide bond. Due to its extreme lability, isolation and characterisation of PDF was not possible until very recently. This review will discuss the recent progress in the elucidation of the the structure and function of PDF, evaluating its suitability as a target for antibiotic design and summarising the current approaches to designing drugs that target PDF.
Collapse
Affiliation(s)
- D Pei
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio StateUniversity, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Han C, Wang Q, Dong L, Sun H, Peng S, Chen J, Yang Y, Yue J, Shen X, Jiang H. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori. Biochem Biophys Res Commun 2004; 319:1292-8. [PMID: 15194508 DOI: 10.1016/j.bbrc.2004.05.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.
Collapse
Affiliation(s)
- Cong Han
- Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sonke T, Kaptein B, Wagner A, Quaedflieg PJ, Schultz S, Ernste S, Schepers A, Mommers JH, Broxterman QB. Peptide deformylase as biocatalyst for the synthesis of enantiomerically pure amino acid derivatives. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2004.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Chen FC, Shen LF, Chak KF. A facile analytical method for the identification of protease gene profiles from Bacillus thuringiensis strains. J Microbiol Methods 2004; 56:125-32. [PMID: 14706757 DOI: 10.1016/j.mimet.2003.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Five pairs of degenerate universal primers have been designed to identify the general protease gene profiles from some distinct Bacillus thuringiensis strains. Based on the PCR amplification patterns and DNA sequences of the cloned fragments, it was noted that the protease gene profiles of the three distinct strains of B. thuringiensis subsp. kurstaki HD73, tenebrionis and israelensis T14001 are varied. Seven protease genes, neutral protease B (nprB), intracellular serine protease A (ispA), extracellular serine protease (vpr), envelope-associated protease (prtH), neutral protease F (nprF), thermostable alkaline serine protease and alkaline serine protease (aprS), with known functions were identified from three distinct B. thuringiensis strains. In addition, five DNA sequences with unknown functions were also identified by this facile analytical method. However, based on the alignment of the derived protein sequences with the protein domain database, it suggested that at least one of these unknown genes, yunA, might be highly protease-related. Thus, the proposed PCR-mediated amplification design could be a facile method for identifying the protease gene profiles as well as for detecting novel protease genes of the B. thuringiensis strains.
Collapse
Affiliation(s)
- Fu-Chu Chen
- Institute of Biochemistry, National Yang Ming University, No. 155, Li-Nong St., Sec. 2, Peitou, Taipei 11221, Taiwan, ROC
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
33
|
Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T. An Unusual Peptide Deformylase Features in the Human Mitochondrial N-terminal Methionine Excision Pathway. J Biol Chem 2003; 278:52953-63. [PMID: 14532271 DOI: 10.1074/jbc.m309770200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dedicated machinery for N-terminal methionine excision (NME) was recently identified in plant organelles and shown to be essential in plastids. We report here the existence of mitochondrial NME in mammals, as shown by the identification of cDNAs encoding specific peptide deformylases (PDFs) and new methionine aminopeptidases (MAP1D). We cloned the two full-length human cDNAs and showed that the N-terminal domains of the encoded enzymes were specifically involved in targeting to mitochondria. In contrast to mitochondrial MAP1D, the human PDF sequence differed from that of known PDFs in several key features. We characterized the human PDF fully in vivo and in vitro. Comparison of the processed human enzyme with the plant mitochondrial PDF1A, to which it is phylogenetically related, showed that the human enzyme had an extra N-terminal domain involved in both mitochondrial targeting and enzyme stability. Mammalian PDFs also display non-random substitutions in the conserved motifs important for activity. Human PDF site-directed mutagenesis variants were studied and compared with the corresponding plant PDF1A variants. We found that amino acid substitutions in human PDF specifically altered its catalytic site, resulting in an enzyme intermediate between bacterial PDF1Bs and plant PDF1As. Because (i) human PDF was found to be active both in vitro and in vivo, (ii) the entire machinery is conserved and expressed in most animals, (iii) the mitochondrial genome expresses substrates for these enzymes, and (iv) mRNA synthesis is regulated, we conclude that animal mitochondria have a functional NME machinery that can be regulated.
Collapse
Affiliation(s)
- Alexandre Serero
- Protein Maturation Group, Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | |
Collapse
|
34
|
Takayama W, Shirasaki Y, Sakai Y, Nakajima E, Fujita S, Sakamoto-Mizutani K, Inoue J. Synthesis and PDF inhibitory activities of novel benzothiazolylidenehydroxamic acid derivatives. Bioorg Med Chem Lett 2003; 13:3273-6. [PMID: 12951107 DOI: 10.1016/s0960-894x(03)00675-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel series of benzothiazolylidenehydroxamic acid derivatives has been designed and synthesized as PDF inhibitors. Some of this novel class of PDF inhibitors exhibited micromolar order enzyme inhibitory activity and antibacterial activity.
Collapse
Affiliation(s)
- Wataru Takayama
- Research Laboratories, Senju Pharmaceutical Co., Ltd., 1-5-4 Murotani, Nishi-Ku, Kobe, Hyogo 651-2241, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kreusch A, Spraggon G, Lee CC, Klock H, McMullan D, Ng K, Shin T, Vincent J, Warner I, Ericson C, Lesley SA. Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase. J Mol Biol 2003; 330:309-21. [PMID: 12823970 DOI: 10.1016/s0022-2836(03)00596-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peptide deformylase (PDF) has received considerable attention during the last few years as a potential target for a new type of antibiotics. It is an essential enzyme in eubacteria for the removal of the formyl group from the N terminus of the nascent polypeptide chain. We have solved the X-ray structures of four members of this enzyme family, two from the Gram-positive pathogens Streptococcus pneumoniae and Staphylococcus aureus, and two from the Gram-negative bacteria Thermotoga maritima and Pseudomonas aeruginosa. Combined with the known structures from the Escherichia coli enzyme and the recently solved structure of the eukaryotic deformylase from Plasmodium falciparum, a complete picture of the peptide deformylase structure and function relationship is emerging. This understanding could help guide a more rational design of inhibitors. A structure-based comparison between PDFs reveals some conserved differences between type I and type II enzymes. Moreover, our structures provide insights into the known instability of PDF caused by oxidation of the metal-ligating cysteine residue.
Collapse
Affiliation(s)
- Andreas Kreusch
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Smith KJ, Petit CM, Aubart K, Smyth M, McManus E, Jones J, Fosberry A, Lewis C, Lonetto M, Christensen SB. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. Protein Sci 2003; 12:349-60. [PMID: 12538898 PMCID: PMC2312423 DOI: 10.1110/ps.0229303] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.
Collapse
|
37
|
Hackbarth CJ, Chen DZ, Lewis JG, Clark K, Mangold JB, Cramer JA, Margolis PS, Wang W, Koehn J, Wu C, Lopez S, Withers G, Gu H, Dunn E, Kulathila R, Pan SH, Porter WL, Jacobs J, Trias J, Patel DV, Weidmann B, White RJ, Yuan Z. N-alkyl urea hydroxamic acids as a new class of peptide deformylase inhibitors with antibacterial activity. Antimicrob Agents Chemother 2002; 46:2752-64. [PMID: 12183225 PMCID: PMC127453 DOI: 10.1128/aac.46.9.2752-2764.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Revised: 03/16/2002] [Accepted: 06/05/2002] [Indexed: 11/20/2022] Open
Abstract
Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth and is a new target for the development of antibacterial agents. All previously reported PDF inhibitors with sufficient antibacterial activity share the structural feature of a 2-substituted alkanoyl at the P(1)' site. Using a combination of iterative parallel synthesis and traditional medicinal chemistry, we have identified a new class of PDF inhibitors with N-alkyl urea at the P(1)' site. Compounds with MICs of 200 micro M for matrilysin and other mammalian metalloproteases. Structure-activity relationship analysis identified preferred substitutions resulting in improved potency and decreased cytotoxity. One of the compounds (VRC4307) was cocrystallized with PDF, and the enzyme-inhibitor structure was determined at a resolution of 1.7 A. This structural information indicated that the urea compounds adopt a binding position similar to that previously determined for succinate hydroxamates. Two compounds, VRC4232 and VRC4307, displayed in vivo efficacy in a mouse protection assay, with 50% protective doses of 30.8 and 17.9 mg/kg of body weight, respectively. These N-alkyl urea hydroxamic acids provide a starting point for identifying new PDF inhibitors that can serve as antimicrobial agents.
Collapse
|
38
|
Baldwin ET, Harris MS, Yem AW, Wolfe CL, Vosters AF, Curry KA, Murray RW, Bock JH, Marshall VP, Cialdella JI, Merchant MH, Choi G, Deibel MR. Crystal structure of type II peptide deformylase from Staphylococcus aureus. J Biol Chem 2002; 277:31163-71. [PMID: 12048187 DOI: 10.1074/jbc.m202750200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first crystal structure of Class II peptide deformylase has been determined. The enzyme from Staphylococcus aureus has been overexpressed and purified in Escherichia coli and the structure determined by x-ray crystallography to 1.9 A resolution. The purified iron-enriched form of S. aureus peptide deformylase enzyme retained high activity over many months. In contrast, the iron-enriched form of the E. coli enzyme is very labile. Comparison of the two structures details many differences; however, there is no structural explanation for the dramatic activity differences we observed. The protein structure of the S. aureus enzyme reveals a fold similar, but not identical to, the well characterized E. coli enzyme. The most striking deviation of the S. aureus from the E. coli structure is the unique conformation of the C-terminal amino acids. The distinctive C-terminal helix of the latter is replaced by a strand in S. aureus which wraps around the enzyme, terminating near the active site. Although there are no differences at the amino acid level near the active site metal ion, significant changes are noted in the peptide binding cleft which may play a role in the design of general peptide deformylase inhibitors.
Collapse
Affiliation(s)
- Eric T Baldwin
- Department of Structural Analytical and Medicinal Chemistry, Pharmacia, 301 Henrietta Street, Kalamazoo, MI 49007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ramesh V, Köhrer C, RajBhandary UL. Expression of Escherichia coli methionyl-tRNA formyltransferase in Saccharomyces cerevisiae leads to formylation of the cytoplasmic initiator tRNA and possibly to initiation of protein synthesis with formylmethionine. Mol Cell Biol 2002; 22:5434-42. [PMID: 12101237 PMCID: PMC133937 DOI: 10.1128/mcb.22.15.5434-5442.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein synthesis in eukaryotic cytoplasm and in archaebacteria is initiated with methionine, whereas, that in eubacteria and in eukaryotic organelles, such as mitochondria and chloroplasts, is initiated with formylmethionine. In view of this clear distinction, we have investigated whether protein synthesis in the eukaryotic cytoplasm can be initiated with formylmethionine, and, if so, what the consequences are to the cell. For this purpose, we have expressed in an inducible manner the Escherichia coli methionyl-tRNA formyltransferase (MTF) in the cytoplasm of the yeast Saccharomyces cerevisiae. Expression of active MTF, but not of an inactive mutant, leads to formylation of methionine attached to the yeast cytoplasmic initiator tRNA to the extent of about 70%. As a consequence, the yeast strain grows slowly. Coexpression of the E. coli polypeptide deformylase (DEF), which removes the formyl group from the N-terminal formylmethionine in a polypeptide, rescues the slow-growth phenotype, whereas, coexpression of an inactive mutant of DEF does not. These results suggest that the cytoplasmic protein-synthesizing system of yeast, like that of eubacteria, can at least to some extent utilize formylated initiator Met-tRNA to initiate protein synthesis and that initiation of proteins with formylmethionine leads to the slow-growth phenotype. Removal of the formyl group in these proteins by DEF would explain the rescue of the slow-growth phenotype.
Collapse
Affiliation(s)
- Vaidyanathan Ramesh
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
40
|
Li Y, Chen Z, Gong W. Enzymatic properties of a new peptide deformylase from pathogenic bacterium Leptospira interrogans. Biochem Biophys Res Commun 2002; 295:884-9. [PMID: 12127977 DOI: 10.1016/s0006-291x(02)00777-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptide deformylase (LiPDF), a target protein for antibacterial agents from pathogenic bacteria Leptospira interrogans was identified and purified. Enzymatic studies including kinetics and inhibition revealed new inspiring highlights. The purified active enzyme was a dimer and showed a hyperbolic progress plot when the substrate was low but an excess substrate inhibition effect in higher substrate concentration. Variants on the metal-binding ligand-Cys102 were constructed to verify the indispensable attribute. Also the variant, LiPDF with the insertion residues (R(70)Y(71)P(72)G(73)T(74) P(75)D(76)V(77)) between the conserved motif 1 and motif 2 excised, was constructed and displayed no marked changes on enzymatic features. The results of atom absorbance proved that it contains a tightly bound Zn2+ rather than Fe2+ in E. coliPDF that is an essential cofactor for its high catalytic activity.
Collapse
Affiliation(s)
- Yikun Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | |
Collapse
|
41
|
Guilloteau JP, Mathieu M, Giglione C, Blanc V, Dupuy A, Chevrier M, Gil P, Famechon A, Meinnel T, Mikol V. The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J Mol Biol 2002; 320:951-62. [PMID: 12126617 DOI: 10.1016/s0022-2836(02)00549-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial peptide deformylase (PDF) belongs to a sub-family of metalloproteases that catalyse the removal of the N-terminal formyl group from newly synthesised proteins. PDF is essential in prokaryotes and conserved throughout the eubacteria. It is therefore considered an attractive target for developing new antibacterial agents. Here, we report the crystal structures of four bacterial deformylases, free or bound to the naturally occurring antibiotic actinonin, including two from the major bacterial pathogens Pseudomonas aeruginosa and Staphylococcus aureus. The overall tertiary structure is essentially conserved but shows significant differences, namely at the C terminus, which are directly related to the deformylase type (i.e. I or II) they belong to. The geometry around the catalytic metal ion exhibits a high level of similarity within the different enzymes, as does the binding mode of actinonin to the various deformylases. However, some significant structural differences are found in the vicinity of the active site, highlighting the structural and molecular requirements for the design of a deformylase inhibitor active against a broad spectrum of bacterial strains.
Collapse
Affiliation(s)
- Jean-Pierre Guilloteau
- Drug Innovation & Approval, Aventis Pharma, 13 Quai Jules Guesde, BP.14, F-94403, Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Bacterial genomics has revealed a plethora of previously unknown targets of potential use in the discovery of novel antibacterial drugs. However, so far little has emerged from this approach. Peptide deformylase is an interesting target that was discovered more than 30 years ago, but was not exploited until recently. The reawakening of interest in this target resulted from an improved understanding of the enzyme, making it a more tractable and attractive target. Information on the properties of the enzyme, such as its three-dimensional structure, the activity of inhibitors, its resistance and suitability as a target are discussed.
Collapse
Affiliation(s)
- Z Yuan
- Versicor, 34790 Ardentech Court, 93455, tel: +1 510 739 3001 fax: +1 510 739 3050, Fremont, CA, USA
| | | | | |
Collapse
|
43
|
Margolis P, Hackbarth C, Lopez S, Maniar M, Wang W, Yuan Z, White R, Trias J. Resistance of Streptococcus pneumoniae to deformylase inhibitors is due to mutations in defB. Antimicrob Agents Chemother 2001; 45:2432-5. [PMID: 11502510 PMCID: PMC90673 DOI: 10.1128/aac.45.9.2432-2435.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to peptide deformylase inhibitors in Escherichia coli or Staphylococcus aureus is due to inactivation of transformylase activity. Knockout experiments in Streptococcus pneumoniae R6x indicate that the transformylase (fmt) and deformylase (defB) genes are essential and that a def paralog (defA) is not. Actinonin-resistant mutants of S. pneumoniae ATCC 49619 harbor mutations in defB but not in fmt. Reintroduction of the mutated defB gene into wild-type S. pneumoniae R6x recreates the resistance phenotype. The altered enzyme displays decreased sensitivity to actinonin.
Collapse
Affiliation(s)
- P Margolis
- Versicor, Inc., Fremont, California 94555, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Grant SK, Green BG, Kozarich JW. Inhibition and Structure-Activity Studies of Methionine Hydroxamic Acid Derivatives with Bacterial Peptide Deformylase. Bioorg Chem 2001; 29:211-22. [PMID: 16256693 DOI: 10.1006/bioo.2001.1214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Indexed: 11/22/2022]
Abstract
The posttranslational deformylation of N-formyl-Met-polypeptides by the metalloenzyme, peptide deformylase, is essential for bacterial growth. Methionine hydroxamic acid derivatives were found to inhibit recombinant Escherichia coli peptide deformylase activity containing either zinc or cobalt. The binding of methionine hydroxamate and hydrazide inhibitors to cobalt-substituted deformylase caused spectral changes consistent with the formation of a pentacoordinate metal complex similar to that of actinonin, a psuedopeptide hydroxamate inhibitor. The spectral and kinetic data support the binding of these N-substituted L-methionine derivatives in a reverse orientation with respect to N-formyl-Met-peptide substrates within the active site. Based on this hypothesis a second generation of N-substituted methionyl hydroxamic acids were evaluated and found to possess greater inhibitory potency. These results may provide the basis for the design of more potent and selective deformylase inhibitors as potential antibacterial agents.
Collapse
Affiliation(s)
- S K Grant
- Department of HTS and Automation, Merck & Co., Rahway, New Jersey 07065, USA.
| | | | | |
Collapse
|
45
|
Haas M, Beyer D, Gahlmann R, Freiberg C. YkrB is the main peptide deformylase in Bacillus subtilis, a eubacterium containing two functional peptide deformylases. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1783-1791. [PMID: 11429456 DOI: 10.1099/00221287-147-7-1783] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptide deformylation is an essential process in eubacteria. The peptide deformylase Def has been suggested to be an attractive target for antibacterial drug discovery. Some eubacteria including medically important pathogens possess two def-like genes. Until now, the functionality of both genes has been tested only in Staphylococcus aureus with the result that one gene copy was functional. Here, expression of two functional def-like gene products in Bacillus subtilis is demonstrated. Besides the def gene, which is chromosomally located close to the formyltransferase gene fmt and which was overexpressed and biochemically tested previously, B. subtilis possesses a second def-like gene, called ykrB. The encoded protein is 32% identical to the def gene product. It was shown that either def or ykrB had to be present for growth of B. subtilis in rich medium (each was individually dispensable). Studies with a def/ykrB double deletion strain with xylose-inducible ykrB copy demonstrated that, besides def, the gene ykrB is a second cellular target of deformylase inhibitors such as the antibiotic actinonin. The gene products exhibited similar enzymic properties, exemplified by similar inhibition efficacy of actinonin in biochemical assays. Antibiotic susceptibility tests with different deletion strains and Northern analyses indicated that YkrB is probably the predominant deformylase in B. subtilis. It was shown that duplication of the deformylase function does not lead to an increased actinonin-resistance frequency in comparison to B. subtilis mutants carrying only one deformylase gene.
Collapse
Affiliation(s)
- Michael Haas
- Institute for Anti-infectives Research, Pharma Research, Bayer AG, D-42096 Wuppertal, Germany1
| | - Dieter Beyer
- Institute for Anti-infectives Research, Pharma Research, Bayer AG, D-42096 Wuppertal, Germany1
| | - Reinhold Gahlmann
- Institute for Anti-infectives Research, Pharma Research, Bayer AG, D-42096 Wuppertal, Germany1
| | - Christoph Freiberg
- Institute for Anti-infectives Research, Pharma Research, Bayer AG, D-42096 Wuppertal, Germany1
| |
Collapse
|
46
|
Apfel C, Banner DW, Bur D, Dietz M, Hubschwerlen C, Locher H, Marlin F, Masciadri R, Pirson W, Stalder H. 2-(2-Oxo-1,4-dihydro-2H-quinazolin-3-yl)- and 2-(2,2-dioxo-1,4-dihydro-2H-2lambda6-benzo[1,2,6]thiadiazin-3-yl)-N-hydroxy-acetamides as potent and selective peptide deformylase inhibitors. J Med Chem 2001; 44:1847-52. [PMID: 11384231 DOI: 10.1021/jm000352g] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Potent, selective, and structurally new inhibitors of the Fe(II) enzyme Escherichia coli peptide deformylase (PDF) were obtained by rational optimization of the weakly binding screening hit (5-chloro-2-oxo-1,4-dihydro-2H-quinazolin-3-yl)-acetic acid hydrazide (1). Three-dimensional structural information, gathered from Ni-PDF complexed with 1, suggested the preparation of two series of related hydroxamic acid analogues, 2-(2-oxo-1,4-dihydro-2H-quinazolin-3-yl)-N-hydroxy-acetamides (A) and 2-(2,2-dioxo-1,4-dihydro-2H-2lambda(6)-benzo[1,2,6]thiadiazin-3-yl)-N-hydroxy-acetamides (B), among which potent PDF inhibitors (37, 42, and 48) were identified. Moreover, two selected compounds, one from each series, 36 and 41, showed good selectivity for PDF over several endoproteases including matrix metalloproteases. However, these compounds showed only weak antibacterial activity.
Collapse
Affiliation(s)
- C Apfel
- Discovery Chemistry, F. Hoffmann-La Roche Ltd., CH-4070 Basle, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Giglione C, Serero A, Pierre M, Boisson B, Meinnel T. Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 2000; 19:5916-29. [PMID: 11060042 PMCID: PMC305796 DOI: 10.1093/emboj/19.21.5916] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The N-terminal protein processing pathway is an essential mechanism found in all organisms. However, it is widely believed that deformylase, a key enzyme involved in this process in bacteria, does not exist in eukaryotes, thus making it a target for antibacterial agents such as actinonin. In an attempt to define this process in higher eukaryotes we have used Arabidopsis thaliana as a model organism. Two deformylase cDNAs, the first identified in any eukaryotic system, and six distinct methionine aminopeptidase cDNAs were cloned. The corresponding proteins were characterized in vivo and in vitro. Methionine aminopeptidases were found in the cytoplasm and in the organelles, while deformylases were localized in the organelles only. Our work shows that higher plants have a much more complex machinery for methionine removal than previously suspected. We were also able to identify deformylase homologues from several animals and clone the corresponding cDNA from human cells. Our data provide the first evidence that lower and higher eukaryotes, as well as bacteria, share a similar N-terminal protein processing machinery, indicating universality of this system.
Collapse
Affiliation(s)
- C Giglione
- Institut des Sciences Végétales, UPR40, Centre National de la Recherche Scientifique, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Jayasekera MM, Kendall A, Shammas R, Dermyer M, Tomala M, Shapiro MA, Holler TP. Novel nonpeptidic inhibitors of peptide deformylase. Arch Biochem Biophys 2000; 381:313-6. [PMID: 11032420 DOI: 10.1006/abbi.2000.1987] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel series of nonpeptidic compounds structurally related to the known anticholesteremic thyropropic acid were found to inhibit Escherichia coli peptide deformylase (PDF), with IC50 values in the low-micromolar range. Kinetic analysis of [4-(4-hydroxyphenoxy)-3,5-diiodophenyl]acetic acid reveals competitive inhibition, with a Ki value of 0.66 +/- 0.007 microM. A structure-activity relationship study demonstrates that the carboxylate is required for activity, while the distal phenolic function can be methylated without significant effect. Either decreasing the number of iodine atoms on the molecule to one or increasing the number of iodine atoms to four results in the loss of an order of magnitude in potency. These compounds are the first nonpeptidic inhibitors disclosed and represent a template from which better inhibitors might be designed.
Collapse
Affiliation(s)
- M M Jayasekera
- Department of Biochemistry, Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Berreau LM, Makowska-Grzyska MM, Arif AM. Amide Alcoholysis in Mononuclear Zinc and Cadmium Complexes Ligated by Thioether Sulfur and Nitrogen Donors. Inorg Chem 2000. [DOI: 10.1021/ic000547e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lisa M. Berreau
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Magdalena M. Makowska-Grzyska
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Atta M. Arif
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
50
|
Margolis PS, Hackbarth CJ, Young DC, Wang W, Chen D, Yuan Z, White R, Trias J. Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob Agents Chemother 2000; 44:1825-31. [PMID: 10858337 PMCID: PMC89968 DOI: 10.1128/aac.44.7.1825-1831.2000] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peptide deformylase, a bacterial enzyme, represents a novel target for antibiotic discovery. Two deformylase homologs, defA and defB, were identified in Staphylococcus aureus. The defA homolog, located upstream of the transformylase gene, was identified by genomic analysis and was cloned from chromosomal DNA by PCR. A distinct homolog, defB, was cloned from an S. aureus genomic library by complementation of the arabinose-dependent phenotype of a P(BAD)-def Escherichia coli strain grown under arabinose-limiting conditions. Overexpression in E. coli of defB, but not defA, correlated to increased deformylase activity and decreased susceptibility to actinonin, a deformylase-specific inhibitor. The defB gene could not be disrupted in wild-type S. aureus, suggesting that this gene, which encodes a functional deformylase, is essential. In contrast, the defA gene could be inactivated; the function of this gene is unknown. Actinonin-resistant mutants grew slowly in vitro and did not show cross-resistance to other classes of antibiotics. When compared to the parent, an actinonin-resistant strain produced an attenuated infection in a murine abscess model, indicating that this strain also has a growth disadvantage in vivo. Sequence analysis of the actinonin-resistant mutants revealed that each harbors a loss-of-function mutation in the fmt gene. Susceptibility to actinonin was restored when the wild-type fmt gene was introduced into these mutant strains. An S. aureus Deltafmt strain was also resistant to actinonin, suggesting that a functional deformylase activity is not required in a strain that lacks formyltransferase activity. Accordingly, the defB gene could be disrupted in an fmt mutant.
Collapse
|