1
|
Villar J, Salazar ML, Jiménez JM, Campo MD, Manubens A, Gleisner MA, Ávalos I, Salazar-Onfray F, Salazar F, Mitchell DA, Alshahrani MY, Martínez-Pomares L, Becker MI. C-type lectin receptors MR and DC-SIGN are involved in recognition of hemocyanins, shaping their immunostimulatory effects on human dendritic cells. Eur J Immunol 2021; 51:1715-1731. [PMID: 33891704 DOI: 10.1002/eji.202149225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Hemocyanins are used as immunomodulators in clinical applications because they induce a strong Th1-biased cell-mediated immunity, which has beneficial effects. They are multiligand glycosylated molecules with abundant and complex mannose-rich structures. It remains unclear whether these structures influence hemocyanin-induced immunostimulatory processes in human APCs. We have previously shown that hemocyanin glycans from Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), participate in their immune recognition and immunogenicity in mice, interacting with murine C-type lectin receptors (CLRs). Here, we studied the interactions of these hemocyanins with two major mannose-binding CLRs on monocyte-derived human DCs: MR (mannose receptor) and DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin). Diverse analyses showed that hemocyanins are internalized by a mannose-sensitive mechanism. This process was calcium dependent. Moreover, hemocyanins colocalized with MR and DC-SIGN, and were partly internalized through clathrin-mediated endocytosis. The hemocyanin-mediated proinflammatory cytokine response was impaired when using deglycosylated FLH and KLH compared to CCH. We further showed that hemocyanins bind to human MR and DC-SIGN in a carbohydrate-dependent manner with affinity constants in the physiological concentration range. Overall, we showed that these three clinically valuable hemocyanins interact with human mannose-sensitive CLRs, initiating an immune response and promoting a Th1 cell-driving potential.
Collapse
Affiliation(s)
- Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - José M Jiménez
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Miguel Del Campo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Ignacio Ávalos
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Daniel A Mitchell
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| |
Collapse
|
2
|
Beckers M, Mann D, Sachse C. Structural interpretation of cryo-EM image reconstructions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:26-36. [PMID: 32735944 DOI: 10.1016/j.pbiomolbio.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The productivity of single-particle cryo-EM as a structure determination method has rapidly increased as many novel biological structures are being elucidated. The ultimate result of the cryo-EM experiment is an atomic model that should faithfully represent the computed image reconstruction. Although the principal approach of atomic model building and refinement from maps resembles that of the X-ray crystallographic methods, there are important differences due to the unique properties resulting from the 3D image reconstructions. In this review, we discuss the practiced work-flow from the cryo-EM image reconstruction to the atomic model. We give an overview of (i) resolution determination methods in cryo-EM including local and directional resolution variation, (ii) cryo-EM map contrast optimization including complementary map types that can help in identifying ambiguous density features, (iii) atomic model building and (iv) refinement in various resolution regimes including (v) their validation and (vi) discuss differences between X-ray and cryo-EM maps. Based on the methods originally developed for X-ray crystallography, the path from 3D image reconstruction to atomic coordinates has become an integral and important part of the cryo-EM structure determination work-flow that routinely delivers atomic models.
Collapse
Affiliation(s)
- Maximilian Beckers
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany; Candidate for Joint PhD Degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany; Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany; Chemistry Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Schäfer GG, Grebe LJ, Depoix F, Lieb B. Hemocyanins of Muricidae: New 'Insights' Unravel an Additional Highly Hydrophilic 800 kDa Mass Within the Molecule. J Mol Evol 2021; 89:62-72. [PMID: 33439299 PMCID: PMC7884596 DOI: 10.1007/s00239-020-09986-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023]
Abstract
Hemocyanins are giant oxygen transport proteins that freely float within the hemolymph of most molluscs. The basic quaternary structure of molluscan hemocyanins is a cylindrical decamer with a diameter of 35 nm which is built of 400 kDa subunits. Previously published results, however, showed that one out of two hemocyanin subunits of Rapana venosa encompasses two polypeptides, one 300 kDa and one 100 kDa polypeptide which aggregate to typical 4 MDa and 8 MDa hemocyanin (di-)decamer molecules. It was shown that the polypeptides are bound most probably by one or more cysteine disulfide bridges but it remained open if these polypeptides were coded by one or two genes. Our here presented results clearly showed that both polypeptides are coded by one gene only and that this phenomenon can also be found in the gastropod Nucella lapillus. Thus, it can be defined as clade-specific for Muricidae, a group of the very diverse Caenogastropoda. In addition, we discovered a further deviation of this hemocyanin subunit within both species, namely a region of 340 mainly hydrophilic amino acids (especially histidines and aspartic acids) which have not been identified in any other molluscan hemocyanin, yet. Our results indicate that, within the quaternary structure, these additional amino acids most probably protrude within the inner part of didecamer cylinders, forming a large extra mass of up to 800 kDa. They presumably influence the structure of the protein and may affect the functionality. Thus, these findings reveal further insights into the evolution and structures of gastropod hemocyanins.
Collapse
Affiliation(s)
- Gabriela Giannina Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany.
| | - Lukas Jörg Grebe
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Frank Depoix
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Bernhard Lieb
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| |
Collapse
|
4
|
Hu M, Zhang Q, Yang J, Li X. Unit quaternion description of spatial rotations in 3D electron cryo-microscopy. J Struct Biol 2020; 212:107601. [PMID: 33068699 DOI: 10.1016/j.jsb.2020.107601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Electron cryo-microscopy (cryoEM) involves the estimation of spatial rotations, or saying orientations, of projection images or three-dimensional (3D) volumes. Euler angle system is widely used to describe spatial rotations in most cryoEM algorithms and software. In this review, we introduce unit quaternion as an alternate to Euler angles for describing spatial rotations, customize and develop corresponding tools for increasing demands of statistical analysis of spatial rotations in cryoEM. Some basic properties and definitions of quaternion are first recalled. Thereafter, distance and geodesic between rotations are introduced to aid comparisons and interpolations between rotations, which are prerequisites of statistics of rotations in 3D cryoEM. Furthermore, statistics of rotations are reviewed. Techniques potentially useful in cryoEM, such as calculations of the average rotation, generation of quasi-regular grids, sampling, inference with uniform distribution and angular central Gaussian (ACG) distribution, and estimation of rotation precision, are reviewed and developed. Finally, molecular symmetry presented in unit quaternion form is discussed. Unit quaternion system is shown as a convenient and comprehensive mathematical tool for cryoEM.
Collapse
Affiliation(s)
- Mingxu Hu
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China; School of Life Science, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, China
| | - Qi Zhang
- Department of Mathematical Sciences, Tsinghua University, China
| | - Jing Yang
- Department of Mathematical Sciences, Tsinghua University, China.
| | - Xueming Li
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China; School of Life Science, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, China; Beijing Frontier Research Center for Biological Structure, China.
| |
Collapse
|
5
|
Beckers M, Sachse C. Permutation testing of Fourier shell correlation for resolution estimation of cryo-EM maps. J Struct Biol 2020; 212:107579. [DOI: 10.1016/j.jsb.2020.107579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
|
6
|
Kaelber JT, Yost SA, Webber KA, Firlar E, Liu Y, Danos O, Mercer AC. Structure of the AAVhu.37 capsid by cryoelectron microscopy. Acta Crystallogr F Struct Biol Commun 2020; 76:58-64. [PMID: 32039886 PMCID: PMC7010358 DOI: 10.1107/s2053230x20000308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/11/2020] [Indexed: 11/10/2022] Open
Abstract
Adeno-associated viruses (AAVs) are used as in vivo gene-delivery vectors in gene-therapy products and have been heavily investigated for numerous indications. Over 100 naturally occurring AAV serotypes and variants have been isolated from primate samples. Many reports have described unique properties of these variants (for instance, differences in potency, target cell or evasion of the immune response), despite high amino-acid sequence conservation. AAVhu.37 is of interest for clinical applications owing to its proficient transduction of the liver and central nervous system. The sequence identity of the AAVhu.37 VP1 to the well characterized AAVrh.10 serotype, for which no structure is available, is greater than 98%. Here, the structure of the AAVhu.37 capsid at 2.56 Å resolution obtained via single-particle cryo-electron microscopy is presented.
Collapse
Affiliation(s)
- Jason T. Kaelber
- Institute of Quantitative Biomedicine and Rutgers New Jersey CryoEM/CryoET Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Samantha A. Yost
- Research and Early Development, REGENXBIO Inc., Rockville, MD 20850, USA
| | - Keith A. Webber
- Technical Operations, REGENXBIO Inc., Rockville, MD 20850, USA
| | - Emre Firlar
- Institute of Quantitative Biomedicine and Rutgers New Jersey CryoEM/CryoET Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ye Liu
- Research and Early Development, REGENXBIO Inc., Rockville, MD 20850, USA
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc., Rockville, MD 20850, USA
| | - Andrew C. Mercer
- Research and Early Development, REGENXBIO Inc., Rockville, MD 20850, USA
| |
Collapse
|
7
|
Descloux A, Grußmayer KS, Radenovic A. Parameter-free image resolution estimation based on decorrelation analysis. Nat Methods 2019; 16:918-924. [PMID: 31451766 DOI: 10.1038/s41592-019-0515-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/15/2019] [Indexed: 11/09/2022]
Abstract
Super-resolution microscopy opened diverse new avenues of research by overcoming the resolution limit imposed by diffraction. Exploitation of the fluorescent emission of individual fluorophores made it possible to reveal structures beyond the diffraction limit. To accurately determine the resolution achieved during imaging is challenging with existing metrics. Here, we propose a method for assessing the resolution of individual super-resolved images based on image partial phase autocorrelation. The algorithm is model-free and does not require any user-defined parameters. We demonstrate its performance on a wide variety of imaging modalities, including diffraction-limited techniques. Finally, we show how our method can be used to optimize image acquisition and post-processing in super-resolution microscopy.
Collapse
Affiliation(s)
- A Descloux
- École Polytechnique Fédérale de Lausanne, Laboratory of Nanoscale Biology, Lausanne, Switzerland.
| | - K S Grußmayer
- École Polytechnique Fédérale de Lausanne, Laboratory of Nanoscale Biology, Lausanne, Switzerland
| | - A Radenovic
- École Polytechnique Fédérale de Lausanne, Laboratory of Nanoscale Biology, Lausanne, Switzerland.
| |
Collapse
|
8
|
Palacios M, Tampe R, Del Campo M, Zhong TY, López MN, Salazar-Onfray F, Becker MI. Antitumor activity and carrier properties of novel hemocyanins coupled to a mimotope of GD2 ganglioside. Eur J Med Chem 2018. [DOI: 10.1016/j.ejmech.2018.02.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Afanasyev P, Seer-Linnemayr C, Ravelli RBG, Matadeen R, De Carlo S, Alewijnse B, Portugal RV, Pannu NS, Schatz M, van Heel M. Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin. IUCRJ 2017; 4:678-694. [PMID: 28989723 PMCID: PMC5619859 DOI: 10.1107/s2052252517010922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/24/2017] [Indexed: 05/12/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure.
Collapse
Affiliation(s)
- Pavel Afanasyev
- Institute of Biology Leiden, Leiden University, 2333 CC Leiden, The Netherlands
- Institute of Nanoscopy, Maastricht University, 6211 LK Maastricht, The Netherlands
| | | | | | - Rishi Matadeen
- Netherlands Centre for Electron Nanoscopy (NeCEN), Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sacha De Carlo
- Netherlands Centre for Electron Nanoscopy (NeCEN), Einsteinweg 55, 2333 CC Leiden, The Netherlands
- FEI Company/Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Bart Alewijnse
- Institute of Biology Leiden, Leiden University, 2333 CC Leiden, The Netherlands
- FEI Company/Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | - Navraj S. Pannu
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | | | - Marin van Heel
- Institute of Biology Leiden, Leiden University, 2333 CC Leiden, The Netherlands
- Brazilian Nanotechnology National Laboratory (LNNANO), Campinas, SP, Brazil
- Department of Life Sciences, Imperial College London, England
| |
Collapse
|
10
|
Sorzano C, Vargas J, Otón J, Abrishami V, de la Rosa-Trevín J, Gómez-Blanco J, Vilas J, Marabini R, Carazo J. A review of resolution measures and related aspects in 3D Electron Microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 124:1-30. [DOI: 10.1016/j.pbiomolbio.2016.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/22/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022]
|
11
|
Zhang F, Chen Y, Ren F, Wang X, Liu Z, Wan X. A Two-Phase Improved Correlation Method for Automatic Particle Selection in Cryo-EM. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:316-325. [PMID: 28368809 DOI: 10.1109/tcbb.2015.2415787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Particle selection from cryo-electron microscopy (Cryo-EM) images is very important for high-resolution reconstruction of macromolecular structure. The methods of particle selection can be roughly grouped into two classes, template-matching methods and feature-based methods. In general, template-matching methods usually generate better results than feature-based methods. However, the accuracy of template-matching methods is restricted by the noise and low contrast of Cryo-EM images. Moreover, the processing speed of template-matching methods, restricted by the random orientation of particles, further limits their practical applications. In this paper, combining the advantages of feature-based methods and template-matching methods, we present a two-phase improved correlation method for automatic, fast particle selection. In Phase I, we generate a preliminary particle set using rotation-invariant features of particles. In Phase II, we filter the preliminary particle set using a correlation method to reduce the interference of the high noise background and improve the precision of particle selection. We apply several optimization strategies, including a modified adaboost algorithm, Divide and Conquer technique, cascade strategy and graphics processing unit parallel technique, to improve feature recognition ability and reduce processing time. In addition, we developed two correlation score functions for different correlation situations. Experimental results on the benchmark of Cryo-EM images show that our method can improve the accuracy and processing speed of particle selection significantly.
Collapse
|
12
|
Shinohara R, Yamada T, Schade B, Böttcher C, Sato T, Sugimura N, Shibue T, Komatsu T. Structural Insights into a Hemoglobin-Albumin Cluster in Aqueous Medium. J Phys Chem Lett 2017; 8:819-824. [PMID: 28151688 DOI: 10.1021/acs.jpclett.6b02907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A hemoglobin (Hb) wrapped covalently by three human serum albumins (HSAs) is a triangular protein cluster designed as an artificial O2-carrier and red blood cell substitute. We report the structural insights into this Hb-HSA3 cluster in aqueous medium revealed by 3D reconstruction based on cryogenic transmission electron microscopy (cryo-TEM) data and small-angle X-ray scattering (SAXS) measurements. Cryo-TEM observations showed individual particles with approximately 15 nm diameter in the vitrified ice layer. Subsequent image processing and 3D reconstruction proved the expected spatial arrangements of an Hb in the center and three HSAs at the periphery. SAXS measurements demonstrated the monodispersity of the Hb-HSA3 cluster having a molecular mass of 270 kDa. The pair-distance distribution function suggested the existence of oblate-like particles with a maximum dimeter of ∼17 nm. The supramolecular 3D structure reconstructed from the SAXS intensity using an ab initio procedure was similar to that obtained from cryo-TEM data.
Collapse
Affiliation(s)
- Ryuichi Shinohara
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Boris Schade
- Research Center of Electron Microscopy, Institute of Chemistry and Biochemistry, Freie Universität Berlin , Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Christoph Böttcher
- Research Center of Electron Microscopy, Institute of Chemistry and Biochemistry, Freie Universität Berlin , Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Takaaki Sato
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University , 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Natsuhiko Sugimura
- Materials Characterization Central Laboratory, Waseda University , 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshimichi Shibue
- Materials Characterization Central Laboratory, Waseda University , 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
13
|
Zhong TY, Arancibia S, Born R, Tampe R, Villar J, Del Campo M, Manubens A, Becker MI. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 196:4650-62. [PMID: 27183578 DOI: 10.4049/jimmunol.1501156] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages.
Collapse
Affiliation(s)
- Ta-Ying Zhong
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Sergio Arancibia
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Raimundo Born
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Ricardo Tampe
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Miguel Del Campo
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and Biosonda Corporation, Santiago 7750269, Chile
| |
Collapse
|
14
|
Kumar S, Ludwig K, Schade B, von Berlepsch H, Papp I, Tyagi R, Gulia M, Haag R, Böttcher C. Introducing Chirality into Nonionic Dendritic Amphiphiles and Studying Their Supramolecular Assembly. Chemistry 2016; 22:5629-36. [PMID: 26961861 DOI: 10.1002/chem.201504504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/22/2022]
Abstract
Chiral head groups have been introduced into water-soluble hydroxyl-terminated nonionic amphiphiles and the impact of the head group stereochemistry on the supramolecular ultrastructures has been studied. Enantiomeric isomers were compared with the achiral meso form and the racemic mixture by means of cryogenic transmission electron microscopy and circular dichroism spectroscopy. Structurally, all amphiphiles are composed of the first-generation hydrophilic polyglycerol head group coupled to a single hydrophobic hexadecyl chain through an amide linkage and diaromatic spacer. The enantiomers aggregate to form twisted ribbons with uniform handedness, whereas the meso stereoisomer and racemic mixture produce elongated assemblies, namely, tubules and platelets, but without a chiral ultrastructure. Simulations on the molecular packing geometries of the stereoisomers indicate different preferential assembly routes that explain the individual supramolecular aggregation behavior.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-, 131039, Haryana, India.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195, Berlin, Germany
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195, Berlin, Germany
| | - Hans von Berlepsch
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195, Berlin, Germany
| | - Ilona Papp
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rahul Tyagi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Monika Gulia
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-, 131039, Haryana, India
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195, Berlin, Germany.
| |
Collapse
|
15
|
Frank J. Generalized single-particle cryo-EM--a historical perspective. Microscopy (Oxf) 2016; 65:3-8. [PMID: 26566976 PMCID: PMC4749046 DOI: 10.1093/jmicro/dfv358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 11/14/2022] Open
Abstract
This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.
Collapse
Affiliation(s)
- Joachim Frank
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Kimura T, Shinohara R, Böttcher C, Komatsu T. Core–shell clusters of human haemoglobin A and human serum albumin: artificial O2-carriers having various O2-affinities. J Mater Chem B 2015; 3:6157-6164. [DOI: 10.1039/c5tb00540j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Core–shell clusters composed of human haemoglobin A and human serum albumin having various O2-affinities have been synthesized as potential O2-carriers designed as red blood cell substitutes.
Collapse
Affiliation(s)
- Takuya Kimura
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Bunkyo-ku
- Japan
| | - Ryuichi Shinohara
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Bunkyo-ku
- Japan
| | - Christoph Böttcher
- Research Centre of Electron Microscopy
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Germany
| | - Teruyuki Komatsu
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Bunkyo-ku
- Japan
| |
Collapse
|
17
|
González-Solá M, Al-Khayat HA, Behra M, Kensler RW. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure. Biophys J 2014; 106:1671-80. [PMID: 24739166 PMCID: PMC4008832 DOI: 10.1016/j.bpj.2014.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022] Open
Abstract
To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes.
Collapse
Affiliation(s)
- Maryví González-Solá
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico.
| | - Hind A Al-Khayat
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martine Behra
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico
| | - Robert W Kensler
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, Puerto Rico
| |
Collapse
|
18
|
Hoang TV, Cavin X, Schultz P, Ritchie DW. gEMpicker: a highly parallel GPU-accelerated particle picking tool for cryo-electron microscopy. BMC STRUCTURAL BIOLOGY 2013; 13:25. [PMID: 24144335 PMCID: PMC3942177 DOI: 10.1186/1472-6807-13-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/14/2013] [Indexed: 11/25/2022]
Abstract
Background Picking images of particles in cryo-electron micrographs is an important step in solving the 3D structures of large macromolecular assemblies. However, in order to achieve sub-nanometre resolution it is often necessary to capture and process many thousands or even several millions of 2D particle images. Thus, a computational bottleneck in reaching high resolution is the accurate and automatic picking of particles from raw cryo-electron micrographs. Results We have developed “gEMpicker”, a highly parallel correlation-based particle picking tool. To our knowledge, gEMpicker is the first particle picking program to use multiple graphics processor units (GPUs) to accelerate the calculation. When tested on the publicly available keyhole limpet hemocyanin dataset, we find that gEMpicker gives similar results to the FindEM program. However, compared to calculating correlations on one core of a contemporary central processor unit (CPU), running gEMpicker on a modern GPU gives a speed-up of about 27 ×. To achieve even higher processing speeds, the basic correlation calculations are accelerated considerably by using a hierarchy of parallel programming techniques to distribute the calculation over multiple GPUs and CPU cores attached to multiple nodes of a computer cluster. By using a theoretically optimal reduction algorithm to collect and combine the cluster calculation results, the speed of the overall calculation scales almost linearly with the number of cluster nodes available. Conclusions The very high picking throughput that is now possible using GPU-powered workstations or computer clusters will help experimentalists to achieve higher resolution 3D reconstructions more rapidly than before.
Collapse
Affiliation(s)
- Thai V Hoang
- Inria Nancy - Grand Est, 615 rue du Jardin Botanique, 54600 Villers-lès-Nancy, France.
| | | | | | | |
Collapse
|
19
|
Tomita D, Kimura T, Hosaka H, Daijima Y, Haruki R, Ludwig K, Böttcher C, Komatsu T. Covalent core-shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromolecules 2013; 14:1816-25. [PMID: 23675962 DOI: 10.1021/bm400204y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Covalent core-shell structured protein clusters of hemoglobin (Hb) and human serum albumin (HSA) (HbX-HSAm) (m = 2, 3) with novel physiological properties were generated by linkage of Hb surface lysins to HSA cysteine-34 via an α-succinimidyl-ε-maleimide cross-linker (X: 1 or 2). The isoelectric points of HbX-HSAm (pI = 5.0-5.2) were markedly lower than that of Hb and almost identical to that of HSA. AFM and TEM measurements revealed a triangular Hb1-HSA3 cluster in aqueous medium. The complete 3D structure of Hb1-HSA3 based on TEM data was reconstructed, revealing two possible conformer variants. All HbX-HSAm clusters showed a moderately higher O2 affinity than the native Hb. Furthermore, the exterior HSA units possess a remarkable ability to bind lumiflavin (LF). The addition of NADH to an aqueous solution of the met-Hb2-(HSA-LF)3 cluster reduced the inactive ferric Hb center to the functional ferrous Hb. This O2-carrying hemoprotein cluster with strongly negative surface net charge, high O2 affinity, and NADH-dependent reductase unit can support a new generation of molecular architecture for red blood cell substitutes.
Collapse
Affiliation(s)
- Daiki Tomita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University , 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Single particle electron microscopy is a versatile technique for the structural analysis of protein complexes in near-native conditions. While tremendous progress has been made during the past few decades in techniques for specimen preparation, imaging, and image analysis, the field is still in development. In the context of this volume on electron crystallography, the following chapter gives practical guidelines on how to begin single particle EM studies, including preparing specimens, selecting imaging conditions, and choosing which of the many approaches to image analysis are appropriate for a specific sample.
Collapse
Affiliation(s)
- Wilson C Y Lau
- Molecular Structure and Function Program, Departments of Biochemistry and Medical Biophysics, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
21
|
Markl J. Evolution of molluscan hemocyanin structures. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1840-52. [PMID: 23454609 DOI: 10.1016/j.bbapap.2013.02.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/17/2022]
Abstract
Hemocyanin transports oxygen in the hemolymph of many molluscs and arthropods and is therefore a central physiological factor in these animals. Molluscan hemocyanin molecules are oligomers composed of many protein subunits that in turn encompass subsets of distinct functional units. The structure and evolution of molluscan hemocyanin have been studied for decades, but it required the recent progress in DNA sequencing, X-ray crystallography and 3D electron microscopy to produce a detailed view of their structure and evolution. The basic quaternary structure is a cylindrical decamer 35nm in diameter, consisting of wall and collar (typically at one end of the cylinder). Depending on the animal species, decamers, didecamers and multidecamers occur in the hemolymph. Whereas the wall architecture of the decamer seems to be invariant, four different types of collar have been identified in different molluscan taxa. Correspondingly, there exist four subunit types that differ in their collar functional units and range from 350 to 550kDa. Thus, molluscan hemocyanin subunits are among the largest polypeptides in nature. In this report, recent 3D reconstructions are used to explain and visualize the different functional units, subunits and quaternary structures of molluscan hemocyanins. Moreover, on the basis of DNA analyses and structural considerations, their possible evolution is traced. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
22
|
Dolashka P, Zal F, Dolashki A, Molin L, Traldi P, Salvato B. ESI-MS and MALLS analysis of quaternary structure of molluscan hemocyanins. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:940-947. [PMID: 22791262 DOI: 10.1002/jms.2967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The understanding of the function of macromolecular complexes is mainly related to a precise knowledge of their structure. Recently, the development of suitable mass spectrometric techniques (electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI)) and multi-angle laser light scattering has enabled mass determination of native complexes and of their subunits. By these techniques, the structure and association/dissociation behavior of huge molecules of molluscan Octopus vulgaris, Sepia officinalis and Rapana venosa have been characterized. Molecular masses of the native and dissociated molecule of cephalopodan Hcs O. vulgaris (3545 and 359.3 kDa, respectively) and S. officinalis (4134 and 443.8 kDa, respectively) revealed that only one type subunit organizes their molecules, while the presence of two isoforms with different masses (422.8 and 400.0 kDa) has been determined for gastropodan R. venosa Hc, aggregated into didecamers. The difference of their structural subunits was also established after limited proteolysis with TPCK-trypsin. Eight functional units (FUs) with masses of ~ 50 kDa were isolated from both subunits of RvH and isoform of Sepia officinalis, while seven FUs were purified from OvH. Further characterization of proteins by ESI-mass spectrometry (MS) and MALDI-MS, methods gave insights into post-translational modifications such as glycosylation. Glycosylation of O. vulgaris and S. officinalis Hcs was suggested based on the differences (11.6 and 40.0 kDa, respectively) between the masses measured by ESI-MS and those calculated by their gene sequences.
Collapse
Affiliation(s)
- Pavlina Dolashka
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, G. Bonchev 9, Sofia 1113, Bulgaria.
| | | | | | | | | | | |
Collapse
|
23
|
Sokolova OS, Shaitan KV, Grizel AV, Popinako AV, Karlova MG, Kirpichnikov MP. Three-dimensional structure of human voltage-gated ion channel Kv10.2 studied by electron microscopy of macromolecules and molecular modeling. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:177-84. [DOI: 10.1134/s1068162012020100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bammes BE, Rochat RH, Jakana J, Chen DH, Chiu W. Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. J Struct Biol 2012; 177:589-601. [PMID: 22285189 PMCID: PMC3314222 DOI: 10.1016/j.jsb.2012.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 11/28/2022]
Abstract
One limitation in electron cryo-microscopy (cryo-EM) is the inability to recover high-resolution signal from the image-recording media at the full-resolution limit of the transmission electron microscope. Direct electron detection using CMOS-based sensors for digitally recording images has the potential to alleviate this shortcoming. Here, we report a practical performance evaluation of a Direct Detection Device (DDD®) for biological cryo-EM at two different microscope voltages: 200 and 300 kV. Our DDD images of amorphous and graphitized carbon show strong per-pixel contrast with image resolution near the theoretical sampling limit of the data. Single-particle reconstructions of two frozen-hydrated bacteriophages, P22 and ε15, establish that the DDD is capable of recording usable signal for 3D reconstructions at about 4/5 of the Nyquist frequency, which is a vast improvement over the performance of conventional imaging media. We anticipate the unparalleled performance of this digital recording device will dramatically benefit cryo-EM for routine tomographic and single-particle structural determination of biological specimens.
Collapse
Affiliation(s)
- Benjamin E. Bammes
- Graduate Program in Structural and Computational Biology and Molecular Biophysics
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan H. Rochat
- Graduate Program in Structural and Computational Biology and Molecular Biophysics
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dong-Hua Chen
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Graduate Program in Structural and Computational Biology and Molecular Biophysics
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Bammes BE, Rochat RH, Jakana J, Chiu W. Practical performance evaluation of a 10k × 10k CCD for electron cryo-microscopy. J Struct Biol 2011; 175:384-93. [PMID: 21619932 PMCID: PMC3150461 DOI: 10.1016/j.jsb.2011.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022]
Abstract
Electron cryo-microscopy (cryo-EM) images are commonly collected using either charge-coupled devices (CCD) or photographic film. Both film and the current generation of 16 megapixel (4k × 4k) CCD cameras have yielded high-resolution structures. Yet, despite the many advantages of CCD cameras, more than two times as many structures of biological macromolecules have been published in recent years using photographic film. The continued preference to film, especially for subnanometer-resolution structures, may be partially influenced by the finer sampling and larger effective specimen imaging area offered by film. Large format digital cameras may finally allow them to overtake film as the preferred detector for cryo-EM. We have evaluated a 111-megapixel (10k × 10k) CCD camera with a 9 μm pixel size. The spectral signal-to-noise ratios of low dose images of carbon film indicate that this detector is capable of providing signal up to at least 2/5 Nyquist frequency potentially retrievable for 3D reconstructions of biological specimens, resulting in more than double the effective specimen imaging area of existing 4k × 4k CCD cameras. We verified our estimates using frozen-hydrated ε15 bacteriophage as a biological test specimen with previously determined structure, yielding a ∼7 Å resolution single particle reconstruction from only 80 CCD frames. Finally, we explored the limits of current CCD technology by comparing the performance of this detector to various CCD cameras used for recording data yielding subnanometer resolution cryo-EM structures submitted to the electron microscopy data bank (http://www.emdatabank.org/).
Collapse
Affiliation(s)
- Benjamin E. Bammes
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan H. Rochat
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Chiu PL, Kelly DF, Walz T. The use of trehalose in the preparation of specimens for molecular electron microscopy. Micron 2011; 42:762-72. [PMID: 21752659 DOI: 10.1016/j.micron.2011.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/29/2022]
Abstract
Biological specimens have to be prepared for imaging in the electron microscope in a way that preserves their native structure. Two-dimensional (2D) protein crystals to be analyzed by electron crystallography are best preserved by sugar embedding. One of the sugars often used to embed 2D crystals is trehalose, a disaccharide used by many organisms for protection against stress conditions. Sugars such as trehalose can also be added to negative staining solutions used to prepare proteins and macromolecular complexes for structural studies by single-particle electron microscopy (EM). In this review, we describe trehalose and its characteristics that make it so well suited for preparation of EM specimens and we review specimen preparation methods with a focus on the use of trehalose.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
27
|
Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol 2011; 9:e1000603. [PMID: 21468301 PMCID: PMC3066130 DOI: 10.1371/journal.pbio.1000603] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 02/04/2011] [Indexed: 12/21/2022] Open
Abstract
The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly.
Collapse
Affiliation(s)
- Carrie Bernecky
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Patricia Grob
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Christopher C. Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Eva Nogales
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation. Micron 2011; 42:141-51. [DOI: 10.1016/j.micron.2010.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/21/2022]
|
29
|
Sander B, Golas MM. Visualization of bionanostructures using transmission electron microscopical techniques. Microsc Res Tech 2010; 74:642-63. [DOI: 10.1002/jemt.20963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/01/2010] [Indexed: 11/10/2022]
|
30
|
Liao HY, Frank J. Definition and estimation of resolution in single-particle reconstructions. Structure 2010; 18:768-75. [PMID: 20637413 DOI: 10.1016/j.str.2010.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/23/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
In this paper, we review current practices for establishing the resolution in single-particle reconstructions. The classical Raleigh criterion for the resolution is not applicable in this case, and the resolution is commonly defined by a consistency test, whereby the data set is randomly split in half and the two resulting reconstructions are then compared. Such a procedure, however, may introduce statistical dependence between the two half-sets, which leads to a too optimistic resolution estimate. On the other hand, this overestimation is counteracted by the diminished statistical properties of a mere half of the data set. The "true" resolution of the whole data set can be estimated when the functional relationship between the data size and the resolution is known. We are able to estimate this functional by taking into account the B-factor and the geometry of data collection. Finally, the drawbacks of resolution estimation are entirely avoided by computing the correlation of neighboring voxels in the Fourier domain.
Collapse
Affiliation(s)
- Hstau Y Liao
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
31
|
Jäger CM, Hirsch A, Schade B, Ludwig K, Böttcher C, Clark T. Self-assembly of structurally persistent micelles is controlled by specific-ion effects and hydrophobic guests. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10460-10466. [PMID: 19957972 DOI: 10.1021/la9038123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A combined study using cryo-TEM experiments and molecular dynamics simulations reveals remarkable details of the factors that affect the self-organization of specifically designed T-shaped amphiphilic dendrimers upon treatment of an aqueous solution with ultrasound under a layer of hexane. This treatment leads to dodecameric, structured micelles rather than the heptameric ones observed without hexane. Three-dimensional reconstruction of the cryo-TEM images provides very detailed structures of the micelles, and molecular dynamics simulations suggest that approximately 36 hexane molecules are needed to stabilize the dodecameric micelles. Sodium counterions are found to exert a significant stabilizing effect that results in an apparent attraction between the highly negatively charged polycarboxylate headgroups. DFT calculations support the observation that the formation of ion multiplets is especially crucial for this stabilizing counterion effect, which reduces headgroup repulsion. This and the increased hydrophobic stabilization that results from the hexane-enlarged core of the micelle lead to stable dodecameric micelles. The specific effects found for sodium counterions are largely absent for potassium.
Collapse
Affiliation(s)
- Christof M Jäger
- Computer-Chemie-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Varshney A, Ahmad B, Rabbani G, Kumar V, Yadav S, Khan RH. Acid-induced unfolding of didecameric keyhole limpet hemocyanin: detection and characterizations of decameric and tetrameric intermediate states. Amino Acids 2010; 39:899-910. [DOI: 10.1007/s00726-010-0524-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
33
|
Abstract
This essay gives the autho's personal account on the development of concepts underlying single-particle reconstruction, a technique in electron microscopy of macromolecular assemblies with a remarkable record of achievements as of late. The ribosome proved to be an ideal testing ground for the development of specimen preparation methods, cryo-EM techniques, and algorithms, with discoveries along the way as a rich reward. Increasingly, cryo-EM and single-particle reconstruction, in combination with classification techniques, is revealing dynamic information on functional molecular machines uninhibited by molecular contacts.
Collapse
Affiliation(s)
- Joachim Frank
- The Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
34
|
Abstract
The Leishmania tarentolae mitochondrial ribosome (Lmr) is a minimal ribosomal RNA (rRNA)-containing ribosome. We have obtained a cryo-EM map of the Lmr. The map reveals several features that have not been seen in previously-determined structures of eubacterial or eukaryotic (cytoplasmic or organellar) ribosomes to our knowledge. Comparisons of the Lmr map with X-ray crystallographic and cryo-EM maps of the eubacterial ribosomes and a cryo-EM map of the mammalian mitochondrial ribosome show that (i) the overall structure of the Lmr is considerably more porous, (ii) the topology of the intersubunit space is significantly different, with fewer intersubunit bridges, but more tunnels, and (iii) several of the functionally-important rRNA regions, including the alpha-sarcin-ricin loop, have different relative positions within the structure. Furthermore, the major portions of the mRNA channel, the tRNA passage, and the nascent polypeptide exit tunnel contain Lmr-specific proteins, suggesting that the mechanisms for mRNA recruitment, tRNA interaction, and exiting of the nascent polypeptide in Lmr must differ markedly from the mechanisms deduced for ribosomes in other organisms. Our study identifies certain structural features that are characteristic solely of mitochondrial ribosomes and other features that are characteristic of both mitochondrial and chloroplast ribosomes (i.e., organellar ribosomes).
Collapse
|
35
|
AL-Khayat HA, Morris EP, Squire JM. The 7-stranded structure of relaxed scallop muscle myosin filaments: Support for a common head configuration in myosin-regulated muscles. J Struct Biol 2009; 166:183-94. [DOI: 10.1016/j.jsb.2009.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/09/2009] [Accepted: 02/15/2009] [Indexed: 11/16/2022]
|
36
|
Schuette JC, Murphy FV, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CMT. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 2009; 28:755-65. [PMID: 19229291 PMCID: PMC2666022 DOI: 10.1038/emboj.2009.26] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/14/2009] [Indexed: 11/09/2022] Open
Abstract
We have used single-particle reconstruction in cryo-electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF-Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF-Tu, but before the release of EF-Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 A. Secondary structure elements in tRNA, EF-Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF-Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF-Tu.
Collapse
Affiliation(s)
- Jan-Christian Schuette
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank V Murphy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ann C Kelley
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - John R Weir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Giesebrecht
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Justus Loerke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas—Houston Medical School, Houston, TX, USA
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas—Houston Medical School, Houston, TX, USA
| | - V Ramakrishnan
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Becker MI, Fuentes A, Del Campo M, Manubens A, Nova E, Oliva H, Faunes F, Valenzuela MA, Campos-Vallette M, Aliaga A, Ferreira J, De Ioannes AE, De Ioannes P, Moltedo B. Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties. Int Immunopharmacol 2009; 9:330-9. [PMID: 19159699 DOI: 10.1016/j.intimp.2008.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/05/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
38
|
Becherer M, Schade B, Böttcher C, Hirsch A. Supramolecular Assembly of Self-Labeled Amphicalixarenes. Chemistry 2009; 15:1637-48. [DOI: 10.1002/chem.200802008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
JONIĆ S, SORZANO C, BOISSET N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc 2008; 232:562-79. [DOI: 10.1111/j.1365-2818.2008.02119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Gatsogiannis C, Markl J. Keyhole limpet hemocyanin: 9-A CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. J Mol Biol 2008; 385:963-83. [PMID: 19013468 DOI: 10.1016/j.jmb.2008.10.080] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 10/19/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
Hemocyanins are blue copper-containing respiratory proteins in the hemolymph of many arthropods and molluscs. Molluscan hemocyanins are decamers, didecamers, or multidecamers of a 340- to 400-kDa polypeptide subunit containing seven or eight globular functional units (FUs; FU-a to FU-h), each with an oxygen-binding site. The decamers are short 35-nm hollow cylinders, with their lumen narrowed by a collar complex. Our recently published 9-A cryo-electron microscopy/crystal structure hybrid model of a 3.4-MDa cephalopod hemocyanin decamer [Nautilus pompilius hemocyanin (NpH)] revealed the pathway of the seven-FU subunit (340 kDa), 15 types of inter-FU interface, and an asymmetric collar consisting of five "arcs" (FU-g pairs). We now present a comparable hybrid model of an 8-MDa gastropod hemocyanin didecamer assembled from two asymmetric decamers [isoform keyhole limpet hemocyanin (KLH) 1 of the established immunogen KLH]. Compared to NpH, the KLH1 subunit (400 kDa) is C-terminally elongated by FU-h, which is further extended by a unique tail domain. We have found that the wall-and-arc structure of the KLH1 decamer is very similar to that of NpH. We have traced the subunit pathway and how it continues from KLH1-g to KLH1-h to form an annulus of five "slabs" (FU-h pairs) at one cylinder edge. The 15 types of inter-FU interface detected in NpH are also present in KLH1. Moreover, we have identified one arc/slab interface, two slab/slab interfaces, five slab/wall interfaces, and four decamer/decamer interfaces. The 27 interfaces are described on the basis of two subunit conformers, yielding an asymmetric homodimer. Six protrusions from the cryo-electron microscopy structure per subunit are associated with putative attachment sites for N-linked glycans, indicating a total of 120 sugar trees in KLH1. Also, putative binding sites for divalent cations have been detected. In conclusion, the present 9-A data on KLH1 confirm and substantially broaden our recent analysis of the smaller cephalopod hemocyanin and essentially solve the gastropod hemocyanin structure.
Collapse
|
41
|
High-resolution single-particle 3D analysis on GroEL prepared by cryo-negative staining. Micron 2008; 39:934-43. [DOI: 10.1016/j.micron.2007.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/23/2022]
|
42
|
Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 2008; 15:939-47. [DOI: 10.1038/nsmb.1473] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Stagg SM, Lander GC, Quispe J, Voss NR, Cheng A, Bradlow H, Bradlow S, Carragher B, Potter CS. A test-bed for optimizing high-resolution single particle reconstructions. J Struct Biol 2008; 163:29-39. [PMID: 18534866 DOI: 10.1016/j.jsb.2008.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/04/2008] [Accepted: 04/01/2008] [Indexed: 01/08/2023]
Abstract
It is becoming routine for cryoEM single particle reconstructions to result in 3D electron density maps with resolutions of approximately 10A, but maps with resolutions of 5A or better are still celebrated events. The electron microscope has a resolving power to better than 2A, and thus should not be a limiting factor; instead the practical limitations in resolution most likely arise from a combination of specimen preparation methods, data collection parameters, and data analysis procedures. With the aid of a highly automated system for acquiring images, coupled to a relational database to keep track of all processing parameters, we have taken a systematic approach to optimizing parameters affecting the resolution of single particle reconstructions. Using GroEL as a test-bed, we performed a series of 3D reconstructions where we systematically varied the number of particles used in computing the map, the accelerating voltage of the microscope, and the electron dose used to acquire the images. We also investigated methods for excluding unacceptable or "bad" particles from contributing to the final 3D map. Using relatively standard instrumentation (Tecnai F20, 4K x 4K CCD, side entry cold stage) and a completely automated approach, these approaches resulted in a map with a nominal resolution of 5.4A (FSC(0.5)) in which secondary structure is clearly discernable and the handedness of some of the alpha-helices in the GroEL structure can be determined.
Collapse
Affiliation(s)
- Scott M Stagg
- The National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Presicce P, Taddeo A, Conti A, Villa ML, Della Bella S. Keyhole limpet hemocyanin induces the activation and maturation of human dendritic cells through the involvement of mannose receptor. Mol Immunol 2008; 45:1136-45. [PMID: 17765973 DOI: 10.1016/j.molimm.2007.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/10/2007] [Accepted: 07/18/2007] [Indexed: 11/30/2022]
Abstract
Keyhole limpet hemocyanin (KLH) is a xenoantigen largely used in vitro as an immunogen to study primary antigen-specific T cell responses and in vivo as a vaccine component with optimal carrier qualities. So far, the mechanisms by which KLH exerts its immunostimulatory properties are still largely unknown. In particular, although dendritic cells (DCs) play a central role in the initiation and activation of immune responses, the effects of KLH on these cells have been poorly explored. In the present study we investigated the effects of KLH on DCs differentiated in vitro from human monocytes. We observed that KLH promotes the activation and maturation of DCs, as assessed by up-regulation of the surface expression of CD80, CD86, CD40, HLA-DR and CD83. Moreover, even if KLH stimulated the production of IL-12 and IL-10 by DCs, the final balance was clearly in favour of IL-12. According to these stimulatory effects, KLH significantly increased the allostimulatory activity of DCs. To verify whether these effects of KLH may be related to the binding of this highly glycosilated molecule to mannose receptor (MR), we performed inhibition experiments with anti-MR antibody. Results showed that the stimulatory activity of KLH is indeed partially mediated by its interaction with MR. Taken together, our results seem to indicate that KLH does promote the maturation of DCs endowed with the ability to stimulate cell-mediated immune responses. We suggest that this property of KLH may represent a novel further mechanism by which this molecule may exert its efficacy when co-administered with others antigens in immunotherapeutic protocols.
Collapse
Affiliation(s)
- Pietro Presicce
- Dipartimento di Scienze e Tecnologie Biomediche, Cattedra di Immunologia, Università degli Studi di Milano, Italy.
| | | | | | | | | |
Collapse
|
45
|
Electron cryomicroscopy reveals different F1+F2 protein States in intact parainfluenza virions. J Virol 2008; 82:3775-81. [PMID: 18216117 DOI: 10.1128/jvi.02154-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electron cryomicrographs of intact parainfluenza virus 5 (PIV5) virions revealed two different surface structures, namely, a continuous layer and distinct individual spikes. The structure of these spikes reconstructed from intact virions was compared with known F ectodomain structures and was found to be different from the prefusion PIV5 F0 structure but, surprisingly, very similar to the human PIV3 F postfusion structure. Hence, we conclude that the individual F1+F2 spikes in intact PIV5 virions also correspond to the postfusion state. Since the observed fusion activity of PIV5 virions has to be associated with prefusion F1+F2 proteins, they have necessarily to be localized in the continuous surface structure. The data therefore strongly suggest that the prefusion state of the F1+F2 protein requires stabilization, most probably by the association with hemagglutinin-neuraminidase. The conversion of F1+F2 proteins from the prefusion toward the postfusion state while embedded in the virus membrane is topologically difficult to comprehend on the basis of established models and demands reconsideration of our current understanding.
Collapse
|
46
|
Datta PP, Wilson DN, Kawazoe M, Swami NK, Kaminishi T, Sharma MR, Booth TM, Takemoto C, Fucini P, Yokoyama S, Agrawal RK. Structural aspects of RbfA action during small ribosomal subunit assembly. Mol Cell 2008; 28:434-45. [PMID: 17996707 DOI: 10.1016/j.molcel.2007.08.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/28/2007] [Accepted: 08/24/2007] [Indexed: 12/17/2022]
Abstract
Ribosome binding factor A (RbfA) is a bacterial cold shock response protein, required for an efficient processing of the 5' end of the 16S ribosomal RNA (rRNA) during assembly of the small (30S) ribosomal subunit. Here we present a crystal structure of Thermus thermophilus (Tth) RbfA and a three-dimensional cryo-electron microscopic (EM) map of the Tth 30S*RbfA complex. RbfA binds to the 30S subunit in a position overlapping the binding sites of the A and P site tRNAs, and RbfA's functionally important C terminus extends toward the 5' end of the 16S rRNA. In the presence of RbfA, a portion of the 16S rRNA encompassing helix 44, which is known to be directly involved in mRNA decoding and tRNA binding, is displaced. These results shed light on the role played by RbfA during maturation of the 30S subunit, and also indicate how RbfA provides cells with a translational advantage under conditions of cold shock.
Collapse
Affiliation(s)
- Partha P Datta
- Laboratory of Structural Pathology, Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proc Natl Acad Sci U S A 2007; 104:19315-20. [PMID: 18042701 DOI: 10.1073/pnas.0709856104] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis in the chloroplast is carried out by chloroplast ribosomes (chloro-ribosome) and regulated in a light-dependent manner. Chloroplast or plastid ribosomal proteins (PRPs) generally are larger than their bacterial counterparts, and chloro-ribosomes contain additional plastid-specific ribosomal proteins (PSRPs); however, it is unclear to what extent these proteins play structural or regulatory roles during translation. We have obtained a three-dimensional cryo-EM map of the spinach 70S chloro-ribosome, revealing the overall structural organization to be similar to bacterial ribosomes. Fitting of the conserved portions of the x-ray crystallographic structure of the bacterial 70S ribosome into our cryo-EM map of the chloro-ribosome reveals the positions of PRP extensions and the locations of the PSRPs. Surprisingly, PSRP1 binds in the decoding region of the small (30S) ribosomal subunit, in a manner that would preclude the binding of messenger and transfer RNAs to the ribosome, suggesting that PSRP1 is a translation factor rather than a ribosomal protein. PSRP2 and PSRP3 appear to structurally compensate for missing segments of the 16S rRNA within the 30S subunit, whereas PSRP4 occupies a position buried within the head of the 30S subunit. One of the two PSRPs in the large (50S) ribosomal subunit lies near the tRNA exit site. Furthermore, we find a mass of density corresponding to chloro-ribosome recycling factor; domain II of this factor appears to interact with the flexible C-terminal domain of PSRP1. Our study provides evolutionary insights into the structural and functional roles that the PSRPs play during protein synthesis in chloroplasts.
Collapse
|
48
|
The dynamics of signal triggering in a gp130-receptor complex. Structure 2007; 15:441-8. [PMID: 17437716 PMCID: PMC1885967 DOI: 10.1016/j.str.2007.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 01/10/2007] [Accepted: 02/15/2007] [Indexed: 01/30/2023]
Abstract
gp130 is a shared signal-transducing membrane-associated receptor for several hematopoietic cytokines. The 30 Å resolution cryo-electron microscopy (cryo-EM) structure of the Interleukin 11(IL-11)-IL-11 Receptor-gp130 extracellular complex reveals the architecture and dynamics of this gp130-containing signaling complex. Normal-mode analysis reveals a repertoire of conformational changes that could function in signal triggering. This suggests a concerted mechanism of signaling involving all the components of the complex. This could provide a general mechanism of signal transfer for cytokines utilizing the JAK-STAT signaling cascade.
Collapse
|
49
|
Gatsogiannis C, Moeller A, Depoix F, Meissner U, Markl J. Nautilus pompilius hemocyanin: 9 A cryo-EM structure and molecular model reveal the subunit pathway and the interfaces between the 70 functional units. J Mol Biol 2007; 374:465-86. [PMID: 17936782 DOI: 10.1016/j.jmb.2007.09.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 09/07/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022]
Abstract
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a "pearl-chain" of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O(2) molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 A cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 A resolution (FSC(1/2-bit) criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 A structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.
Collapse
|
50
|
Leschziner AE, Nogales E. Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2007; 36:43-62. [PMID: 17201674 DOI: 10.1146/annurev.biophys.36.040306.132742] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is becoming increasingly clear that many macromolecules are intrinsically flexible and exist in multiple conformations in solution. Single-particle reconstruction of vitrified samples (cryo-electron microscopy, or cryo-EM) is uniquely positioned to visualize this conformational flexibility in its native state. Although heterogeneity remains a significant challenge in cryo-EM single-particle analysis, recent efforts in the field point to a future where it will be possible to tap into this rich source of biological information on a routine basis. In this article, we review the basic principles behind a few relatively new and generally applicable methods that show particular promise as tools to analyze macromolecular flexibility. We also discuss some of their recent applications to problems of biological interest.
Collapse
Affiliation(s)
- Andres E Leschziner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|