1
|
Pham S, Zhao B, Neetu N, Sankaran B, Patil K, Ramani S, Song Y, Estes MK, Palzkill T, Prasad BV. CONFORMATIONAL FLEXIBILITY IS A CRITICAL FACTOR IN DESIGNING BROAD-SPECTRUM HUMAN NOROVIRUS PROTEASE INHIBITORS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613336. [PMID: 39345439 PMCID: PMC11430002 DOI: 10.1101/2024.09.16.613336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is, therefore, an excellent target for developing small molecule inhibitors. While rupintrivir, a potent small-molecule inhibitor of several picornavirus proteases, effectively inhibits GI.1 protease, it is an order of magnitude less effective against GII protease. Other GI.1 protease inhibitors also tend to be less effective against GII proteases. To understand the structural basis for the potency difference, we determined the crystal structures of proteases of GI.1, pandemic GII.4 (Houston and Sydney), and GII.3 in complex with rupintrivir. These structures show that the open substrate pocket in GI protease binds rupintrivir without requiring significant conformational changes, whereas, in GII proteases, the closed pocket flexibly extends, reorienting arginine-112 in the BII-CII loop to accommodate rupintrivir. Structures of R112A protease mutants with rupintrivir, coupled with enzymatic and inhibition studies, suggest R112 is involved in displacing both substrate and ligands from the active site, implying a role in the release of cleaved products during polyprotein processing. Thus, the primary determinant for differential inhibitor potency between the GI and GII proteases is the increased flexibility in the BII-CII loop of the GII proteases caused by H-G mutation in this loop. Therefore, the inherent flexibility of the BII-CII loop in GII proteases is a critical factor to consider when developing broad-spectrum inhibitors for HuNoV proteases.
Collapse
Affiliation(s)
- Son Pham
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Neetu Neetu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Jiang H, Lin C, Chang J, Zou X, Zhang J, Li J. Crystal structures of the 3C proteases from Coxsackievirus B3 and B4. Acta Crystallogr F Struct Biol Commun 2024; 80:183-190. [PMID: 39052022 PMCID: PMC11299732 DOI: 10.1107/s2053230x24006915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Enteroviruses cause a wide range of disorders with varying presentations and severities, and some enteroviruses have emerged as serious public health concerns. These include Coxsackievirus B3 (CVB3), an active causative agent of viral myocarditis, and Coxsackievirus B4 (CVB4), which may accelerate the progression of type 1 diabetes. The 3C proteases from CVB3 and CVB4 play important roles in the propagation of these viruses. In this study, the 3C proteases from CVB3 and CVB4 were expressed in Escherichia coli and purified by affinity chromatography and gel-filtration chromatography. The crystals of the CVB3 and CVB4 3C proteases diffracted to 2.10 and 2.01 Å resolution, respectively. The crystal structures were solved by the molecular-replacement method and contained a typical chymotrypsin-like fold and a conserved His40-Glu71-Cys147 catalytic triad. Comparison with the structures of 3C proteases from other enteroviruses revealed high similarity with minor differences, which will guide the design of 3C-targeting inhibitors with broad-spectrum properties.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang UniversityNanchang330031People’s Republic of China
| | - Cheng Lin
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou341000People’s Republic of China
| | - Jingyi Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang UniversityNanchang330031People’s Republic of China
| | - Xiaofang Zou
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou341000People’s Republic of China
| | - Jin Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang UniversityNanchang330031People’s Republic of China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou341000People’s Republic of China
| |
Collapse
|
3
|
Vlok M, Solis N, Sadasivan J, Mohamud Y, Warsaba R, Kizhakkedathu J, Luo H, Overall CM, Jan E. Identification of the proteolytic signature in CVB3-infected cells. J Virol 2024; 98:e0049824. [PMID: 38953667 PMCID: PMC11265341 DOI: 10.1128/jvi.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.
Collapse
Affiliation(s)
- Marli Vlok
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Department of Oral and Biological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jibin Sadasivan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasir Mohamud
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reid Warsaba
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M. Overall
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral and Biological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Sanfaçon H, Skern T. AlphaFold modeling of nepovirus 3C-like proteinases provides new insights into their diverse substrate specificities. Virology 2024; 590:109956. [PMID: 38052140 DOI: 10.1016/j.virol.2023.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
The majority of picornaviral 3C proteinases (3Cpro) cleavage sites possess glutamine at the P1 position. Plant nepovirus 3C-like proteinases (3CLpro) show however much broader specificity, cleaving not only after glutamine, but also after several basic and hydrophobic residues. To investigate this difference, we employed AlphaFold to generate structural models of twelve selected 3CLpro, representing six substrate specificities. Generally, we observed favorable correlations between the architecture and charge of nepovirus proteinase S1 subsites and their ability to accept or restrict larger residues. The models identified a conserved aspartate residue close to the P1 residue in the S1 subsites of all nepovirus proteinases examined, consistent with the observed strong bias against negatively-charged residues at the P1 position of nepovirus cleavage sites. Finally, a cramped S4 subsite along with the presence of two unique histidine and serine residues explains the strict requirement of the grapevine fanleaf virus proteinase for serine at the P4 position.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| | - Tim Skern
- Department of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, A-1030, Vienna, Austria.
| |
Collapse
|
5
|
Karaseva MA, Gramma VA, Safina DR, Lunina NA, Komissarov AA, Kostrov SV, Demidyuk IV. Expression and Purification of His-Tagged Variants of Human Hepatitis A Virus 3C Protease. Protein Pept Lett 2024; 31:305-311. [PMID: 38644721 DOI: 10.2174/0109298665293548240327082821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Protease 3C (3Cpro) is the only protease encoded in the human hepatitis A virus genome and is considered as a potential target for antiviral drugs due to its critical role in the viral life cycle. Additionally, 3Cpro has been identified as a potent inducer of ferroptosis, a newly described type of cell death. Therefore, studying the molecular mechanism of 3Cpro functioning can provide new insights into viral-host interaction and the biological role of ferroptosis. However, such studies require a reliable technique for producing the functionally active recombinant enzyme. OBJECTIVE Here, we expressed different modified forms of 3Cpro with a hexahistidine tag on the N- or C-terminus to investigate the applicability of immobilized metal Ion affinity chromatography (IMAC) for producing 3Cpro. METHODS We expressed the proteins in Escherichia coli and purified them using IMAC, followed by gel permeation chromatography. The enzymatic activity of the produced proteins was assayed using a specific chromogenic substrate. RESULTS Our findings showed that the introduction and position of the hexahistidine tag did not affect the activity of the enzyme. However, the yield of the target protein was highest for the variant with seven C-terminal residues replaced by a hexahistidine sequence. CONCLUSION We demonstrated the applicability of our approach for producing recombinant, enzymatically active 3Cpro.
Collapse
Affiliation(s)
- Maria A Karaseva
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | - Vladislav A Gramma
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
- HTW Berlin-University of Applied Sciences, Wilhelminenhofstr. 75A, 12459 Berlin, Germany
| | - Dina R Safina
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | - Natalia A Lunina
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | | | - Sergey V Kostrov
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| | - Ilya V Demidyuk
- National Research Centre "Kurchatov Institute", Moscow 123182, Russia
| |
Collapse
|
6
|
Mondal S, Sarvari G, Boehr DD. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Viruses 2023; 15:2413. [PMID: 38140654 PMCID: PMC10747604 DOI: 10.3390/v15122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.
Collapse
Affiliation(s)
| | | | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Campagnola G, Peersen O. Co-folding and RNA activation of poliovirus 3C pro polyprotein precursors. J Biol Chem 2023; 299:105258. [PMID: 37717698 PMCID: PMC10590986 DOI: 10.1016/j.jbc.2023.105258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Positive-strand RNA viruses use long open reading frames to express large polyproteins that are processed into individual proteins by viral proteases. Polyprotein processing is highly regulated and yields intermediate species with different functions than the fully processed proteins, increasing the biochemical diversity of the compact viral genome while also presenting challenges in that proteins must remain stably folded in multiple contexts. We have used circular dichroism spectroscopy and single molecule microscopy to examine the solution structure and self-association of the poliovirus P3 region protein composed of membrane binding 3A, RNA priming 3B (VPg), 3Cpro protease, and 3Dpol RNA-dependent RNA polymerase proteins. Our data indicate that co-folding interactions within the 3ABC segment stabilize the conformational state of the 3C protease region, and this stabilization requires the full-length 3A and 3B proteins. Enzymatic activity assays show that 3ABC is also an active protease, and it cleaves peptide substrates at rates comparable to 3Cpro. The cleavage of a larger polyprotein substrate is stimulated by the addition of RNA, and 3ABCpro becomes 20-fold more active than 3Cpro in the presence of stoichiometric amounts of viral cre RNA. The data suggest that co-folding within the 3ABC region results in a protease that can be highly activated toward certain cleavage sites by localization to specific RNA elements within the viral replication center, providing a mechanism for regulating viral polyprotein processing.
Collapse
Affiliation(s)
- Grace Campagnola
- Department of Biochemistry & Molecular Birology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve Peersen
- Department of Biochemistry & Molecular Birology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
8
|
Glover JNM, Kay CM, Lemieux J, Read RJ. Michael James (1940-2023). Acta Crystallogr D Struct Biol 2023; 79:953-955. [PMID: 37712437 PMCID: PMC10565731 DOI: 10.1107/s2059798323006976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Michael James is remembered.
Collapse
Affiliation(s)
- J. N. Mark Glover
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Cyril M. Kay
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joanne Lemieux
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
9
|
Wan L, Wang X, Wang T, Yuan X, Liu W, Huang Y, Deng C, Cao S. Comparison of Target Pocket Similarity and Progress into Research on Inhibitors of Picornavirus 3C Proteases. Chem Biodivers 2023; 20:e202201100. [PMID: 36808685 DOI: 10.1002/cbdv.202201100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/21/2023]
Abstract
The 3C protease (3C Pro) plays a significant role in the life cycle of picornaviruses from replication to translation, making it an attractive target for structure-based design of drugs against picornaviruses. The structurally related 3C-like protease (3CL Pro) is an important protein involved in the replication of coronaviruses. With the emergence of COVID-19 and consequent intensive research into 3CL Pro, development of 3CL Pro inhibitors has emerged as a popular topic. This article compares the similarities of the target pockets of various 3C and 3CL Pros from numerous pathogenic viruses. This article also reports several types of 3C Pro inhibitors that are currently undergoing extensive studies and introduces various structural modifications of 3C Pro inhibitors to provide a reference for the development of new and more effective inhibitors of 3C Pro and 3CL Pro.
Collapse
Affiliation(s)
- Li Wan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xiaobo Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Tangle Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xiaolan Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wei Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Changyong Deng
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Shuang Cao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| |
Collapse
|
10
|
Yuan X, Kadowaki T. DWV 3C Protease Uncovers the Diverse Catalytic Triad in Insect RNA Viruses. Microbiol Spectr 2022; 10:e0006822. [PMID: 35575593 PMCID: PMC9241925 DOI: 10.1128/spectrum.00068-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
Deformed wing virus (DWV) is the most prevalent Iflavirus that is infecting honey bees worldwide. However, the mechanisms of its infection and replication in host cells are poorly understood. In this study, we analyzed the structure and function of DWV 3C protease (3Cpro), which is necessary for the cleavage of the polyprotein to synthesize mature viral proteins. Thus, it is one of the nonstructural viral proteins essential for the replication. We found that the 3Cpros of DWV and picornaviruses share common enzymatic properties, including sensitivity to the same inhibitors, such as rupintrivir. The predicted structure of DWV 3Cpro by AlphaFold2, the predicted rupintrivir binding domain, and the protease activities of mutant proteins revealed that it has a Cys-His-Asn catalytic triad. Moreover, 3Cpros of other Iflaviruses and Dicistrovirus appear to contain Asn, Ser, Asp, or Glu as the third residue of the catalytic triad, suggesting diversity in insect RNA viruses. Both precursor 3Cpro with RNA-dependent RNA polymerase and mature 3Cpro are present in DWV-infected cells, suggesting that they may have different enzymatic properties and functions. DWV 3Cpro is the first 3Cpro characterized among insect RNA viruses, and our study uncovered both the common and unique characteristics among 3Cpros of Picornavirales. Furthermore, it would be possible to use the specific inhibitors of DWV 3Cpro to control DWV infection in honey bees in future. IMPORTANCE The number of managed honey bee (Apis mellifera) colonies has considerably declined in many developed countries in the recent years. Deformed wing virus (DWV) vectored by the mites is the major threat to honey bee colonies and health. To give insight into the mechanism of DWV replication in the host cells, we studied the structure-function relationship of 3C protease (3Cpro), which is necessary to cleave a viral polyprotein at the specific sites to produce the mature proteins. We found that the overall structure, some inhibitors, and processing of 3Cpro are shared between Picornavirales; however, there is diversity in the catalytic triad. DWV 3Cpro is the first viral protease characterized among insect RNA viruses and reveals the evolutionary history of 3Cpro among Picornavirales. Furthermore, DWV 3Cpro inhibitors identified in our study could also be applied to control DWV in honey bees in future.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Jiangsu Province, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Jiangsu Province, China
| |
Collapse
|
11
|
Structure of Senecavirus A 3C Protease Revealed the Cleavage Pattern of 3C Protease in Picornaviruses. J Virol 2022; 96:e0073622. [PMID: 35727031 DOI: 10.1128/jvi.00736-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Senecavirus A (SVA) is an emerging picornavirus infecting porcine of all age groups and causing foot and mouth disease (FMD)-like symptoms. One of its key enzymes is the 3C protease (3Cpro), which is similar to other picornaviruses and essential for virus maturation by controlling polyprotein cleavage and RNA replication. In this study, we reported the crystal structure of SVA 3Cpro at a resolution of 1.9 Å and a thorough structural comparison against all published picornavirus 3Cpro structures. Using statistical and graphical visualization techniques, we also investigated the sequence specificity of the 3Cpro. The structure revealed that SVA 3Cpro adopted a typical chymotrypsin-like fold with the S1 subsite as the most conservative site among picornavirus 3Cpro. The surface loop, A1-B1 hairpin, adopted a novel conformation in SVA 3Cpro and formed a positively charged protrusion around S' subsites. Correspondingly, SVA scissile bonds preferred Asp rather than neutral amino acids at P3' and P4'. Moreover, SVA 3Cpro showed a wide range tolerance to P4 residue volume (acceptable range: 67 Å3 to 141 Å3), such as aromatic side chain, in contrast to other picornaviruses. In summary, our results provided valuable information for understanding the cleavage pattern of 3Cpro. IMPORTANCE Picornaviridae is a group of RNA viruses that harm both humans and livestock. 3Cpro is an essential enzyme for picornavirus maturation, which makes it a promising target for antiviral drug development and a critical component for virus-like particle (VLP) production. However, the current challenge in the development of antiviral drugs and VLP vaccines includes the limited knowledge of how subsite structure determines the 3Cpro cleavage pattern. Thus, an extensive comparative study of various picornaviral 3Cpro was required. Here, we showed the 1.9 Å crystal structure of SVA 3Cpro. The structure revealed similarities and differences in the substrate-binding groove among picornaviruses, providing new insights into the development of inhibitors and VLP.
Collapse
|
12
|
Zhu J, Zhang H, Lin Q, Lyu J, Lu L, Chen H, Zhang X, Zhang Y, Chen K. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds. Drug Des Devel Ther 2022; 16:1067-1082. [PMID: 35450403 PMCID: PMC9015912 DOI: 10.2147/dddt.s359009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/26/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a threat to human health. 3C-like proteinase (3CLpro) plays an important role in the viral life cycle. Hence, it is considered an attractive antiviral target protein. Whole-genome sequencing showed that the sequence homology between SARS-CoV-2 3CLpro and SARS-CoV 3CLpro is 96.08%, with high similarity in the substrate-binding region. Thus, assessing peptidomimetic inhibitors of SARS-CoV 3CLpro could accelerate the development of peptidomimetic inhibitors for SARS-CoV-2 3CLpro. Accordingly, we herein discuss progress on SARS-CoV-2 3CLpro peptidomimetic inhibitors. Inflammation plays a major role in the pathophysiological process of COVID-19. Small-molecule compounds targeting 3CLpro with both antiviral and anti-inflammatory effects are also briefly discussed in this paper.
Collapse
Affiliation(s)
- Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Haiyan Zhang
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qinghong Lin
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Jingting Lyu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Lu Lu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Hanxi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Xuning Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
- Correspondence: Keda Chen, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China, Tel +8615068129828, Email ; Yanjun Zhang, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China, Tel +8613858115856, Fax +86057188280783, Email
| |
Collapse
|
13
|
Ekanayaka P, Shin SH, Weeratunga P, Lee H, Kim TH, Chathuranga K, Subasinghe A, Park JH, Lee JS. Foot-and-Mouth Disease Virus 3C Protease Antagonizes Interferon Signaling and C142T Substitution Attenuates the FMD Virus. Front Microbiol 2021; 12:737031. [PMID: 34867853 PMCID: PMC8639872 DOI: 10.3389/fmicb.2021.737031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
3C protease (3Cpro), a chymotrypsin-like cysteine protease encoded by the foot-and-mouth disease virus (FMDV), plays an essential role in processing the FMDV P1 polyprotein into individual viral capsid proteins in FMDV replication. Previously, it has been shown that 3Cpro is involved in the blockage of the host type-I interferon (IFN) responses by FMDV. However, the underlying mechanisms are poorly understood. Here, we demonstrated that the protease activity of 3Cpro contributed to the degradation of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling cascade in proteasome, lysosome and caspase-independent manner. And also, we examined the degradation ability on RIG-I and MDA5 of wild-type FMDV 3Cpro and FMDV 3Cpro C142T mutant which is known to significantly alter the enzymatic activity of 3Cpro. The results showed that the FMDV 3Cpro C142T mutant dramatically reduce the degradation of RIG-I and MDA5 due to weakened protease activity. Thus, the protease activity of FMDV 3Cpro governs its RIG-I and MDA5 degradation ability and subsequent negative regulation of the type-I IFN signaling. Importantly, FMD viruses harboring 3Cpro C142T mutant showed the moderate attenuation of FMDV in a pig model. In conclusion, our results indicate that a novel mechanism evolved by FMDV 3Cpro to counteract host type-I IFN responses and a rational approach to virus attenuation that could be utilized for future vaccine development.
Collapse
Affiliation(s)
- Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sung Ho Shin
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, South Korea
| | - Prasanna Weeratunga
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Hyuncheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Ashan Subasinghe
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, South Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
14
|
De Jesús-González LA, Palacios-Rápalo S, Reyes-Ruiz JM, Osuna-Ramos JF, Cordero-Rivera CD, Farfan-Morales CN, Gutiérrez-Escolano AL, del Ángel RM. The Nuclear Pore Complex Is a Key Target of Viral Proteases to Promote Viral Replication. Viruses 2021; 13:v13040706. [PMID: 33921849 PMCID: PMC8073804 DOI: 10.3390/v13040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content favoring their replication. Alteration of the nuclear pore complex has been observed not only in viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this last case, the alteration of the NPC can reduce the transport of transcription factors involved in the immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral proteases, one of the most critical groups of viral proteins that regulate these nucleus–cytoplasmic transport changes. This review focuses on the description and discussion of the role of viral proteases in the modification of nucleus–cytoplasmic transport in viruses with cytoplasmic replicative cycles and its repercussions in viral replication.
Collapse
|
15
|
Yi J, Peng J, Yang W, Zhu G, Ren J, Li D, Zheng H. Picornavirus 3C - a protease ensuring virus replication and subverting host responses. J Cell Sci 2021; 134:134/5/jcs253237. [PMID: 33692152 DOI: 10.1242/jcs.253237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The protease 3C is encoded by all known picornaviruses, and the structural features related to its protease and RNA-binding activities are conserved; these contribute to the cleavage of viral polyproteins and the assembly of the viral RNA replication complex during virus replication. Furthermore, 3C performs functions in the host cell through its interaction with host proteins. For instance, 3C has been shown to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and to inactivate key factors in innate immunity signaling pathways, inhibiting the production of interferon and inflammatory cytokines. Importantly, 3C maintains virus infection by subtly subverting host cell death and modifying critical molecules in host organelles. This Review focuses on the molecular mechanisms through which 3C mediates physiological processes involved in virus-host interaction, thus highlighting the picornavirus-mediated pathogenesis caused by 3C.
Collapse
Affiliation(s)
- Jiamin Yi
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jiangling Peng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Guoqiang Zhu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
16
|
The Picornavirus Precursor 3CD Has Different Conformational Dynamics Compared to 3C pro and 3D pol in Functionally Relevant Regions. Viruses 2021; 13:v13030442. [PMID: 33803479 PMCID: PMC8001691 DOI: 10.3390/v13030442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses have evolved numerous strategies to maximize the use of their limited genetic material, including proteolytic cleavage of polyproteins to yield products with different functions. The poliovirus polyprotein 3CD is involved in important protein-protein, protein-RNA and protein-lipid interactions in viral replication and infection. It is a precursor to the 3C protease and 3D RNA-dependent RNA polymerase, but has different protease specificity, is not an active polymerase, and participates in other interactions differently than its processed products. These functional differences are poorly explained by the known X-ray crystal structures. It has been proposed that functional differences might be due to differences in conformational dynamics between 3C, 3D and 3CD. To address this possibility, we conducted nuclear magnetic resonance spectroscopy experiments, including multiple quantum relaxation dispersion, chemical exchange saturation transfer and methyl spin-spin relaxation, to probe conformational dynamics across multiple timescales. Indeed, these studies identified differences in conformational dynamics in functionally important regions, including enzyme active sites, and RNA and lipid binding sites. Expansion of the conformational ensemble available to 3CD may allow it to perform additional functions not observed in 3C and 3D alone despite having nearly identical lowest-energy structures.
Collapse
|
17
|
Yuan S, Fan K, Chen Z, Sun Y, Hou H, Zhu L. Structure of the HRV-C 3C-Rupintrivir Complex Provides New Insights for Inhibitor Design. Virol Sin 2020; 35:445-454. [PMID: 32103448 PMCID: PMC7462945 DOI: 10.1007/s12250-020-00196-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/25/2019] [Indexed: 10/24/2022] Open
Abstract
Human rhinoviruses (HRVs) are the predominant infectious agents for the common cold worldwide. The HRV-C species cause severe illnesses in children and are closely related to acute exacerbations of asthma. 3C protease, a highly conserved enzyme, cleaves the viral polyprotein during replication and assists the virus in escaping the host immune system. These key roles make 3C protease an important drug target. A few structures of 3Cs complexed with an irreversible inhibitor rupintrivir have been determined. These structures shed light on the determinants of drug specificity. Here we describe the structures of HRV-C15 3C in free and inhibitor-bound forms. The volume-decreased S1' subsite and half-closed S2 subsite, which were thought to be unique features of enterovirus A 3C proteases, appear in the HRV-C 3C protease. Rupintrivir assumes an "intermediate" conformation in the complex, which might open up additional avenues for the design of potent antiviral inhibitors. Analysis of the features of the three-dimensional structures and the amino acid sequences of 3C proteases suggest new applications for existing drugs.
Collapse
Affiliation(s)
- Shuai Yuan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Zhonghao Chen
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai Hou
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Guo J, Douangamath A, Song W, Coker AR, Chan AE, Wood SP, Cooper JB, Resnick E, London N, Delft FV. In crystallo-screening for discovery of human norovirus 3C-like protease inhibitors. J Struct Biol X 2020; 4:100031. [PMID: 32743543 PMCID: PMC7365090 DOI: 10.1016/j.yjsbx.2020.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of human epidemic nonbacterial gastroenteritis are mainly caused by noroviruses. Viral replication requires a 3C-like cysteine protease (3CLpro) which processes the 200 kDa viral polyprotein into six functional proteins. The 3CLpro has attracted much interest due to its potential as a target for antiviral drugs. A system for growing high-quality crystals of native Southampton norovirus 3CLpro (SV3CP) has been established, allowing the ligand-free crystal structure to be determined to 1.3 Å in a tetrameric state. This also allowed crystal-based fragment screening to be performed with various compound libraries, ultimately to guide drug discovery for SV3CP. A total of 19 fragments were found to bind to the protease out of the 844 which were screened. Two of the hits were located at the active site of SV3CP and showed good inhibitory activity in kinetic assays. Another 5 were found at the enzyme's putative RNA-binding site and a further 11 were located in the symmetric central cavity of the tetramer.
Collapse
Affiliation(s)
- Jingxu Guo
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Alice Douangamath
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Weixiao Song
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Alun R. Coker
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - A.W. Edith Chan
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Steve P. Wood
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Jonathan B. Cooper
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX, UK
| | - Efrat Resnick
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir London
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
19
|
Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins. Microbiol Mol Biol Rev 2020; 84:84/2/e00062-19. [PMID: 32188627 DOI: 10.1128/mmbr.00062-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although enteroviruses are associated with a wide variety of diseases and conditions, their mode of replication is well conserved. Their genome is carried as a single, positive-sense RNA strand. At the 5' end of the strand is an approximately 90-nucleotide self-complementary region called the 5' cloverleaf, or the oriL. This noncoding region serves as a platform upon which host and virus proteins, including the 3B, 3C, and 3D virus proteins, assemble in order to initiate replication of a negative-sense RNA strand. The negative strand in turn serves as a template for synthesis of multiple positive-sense RNA strands. Building on structural studies of individual RNA stem-loops, the structure of the intact 5' cloverleaf from rhinovirus has recently been determined via nuclear magnetic resonance/small-angle X-ray scattering (NMR/SAXS)-based methods, while structures have also been determined for enterovirus 3A, 3B, 3C, and 3D proteins. Analysis of these structures, together with structural and modeling studies of interactions between host and virus proteins and RNA, has begun to provide insight into the enterovirus replication mechanism and the potential to inhibit replication by blocking these interactions.
Collapse
|
20
|
Li G, Liu X, Yang M, Zhang G, Wang Z, Guo K, Gao Y, Jiao P, Sun J, Chen C, Wang H, Deng W, Xiao H, Li S, Wu H, Wang Y, Cao L, Jia Z, Shang L, Yang C, Guo Y, Rao Z. Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design. J Virol 2020; 94:e02125-19. [PMID: 32075933 PMCID: PMC7199414 DOI: 10.1128/jvi.02125-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023] Open
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.
Collapse
Affiliation(s)
- Guobang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Xiaoxia Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Mengyuan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Guangshun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Zhengyang Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Kun Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Yuxue Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Peng Jiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Weilong Deng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Huihe Xiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Sizheng Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Haoru Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Ying Wang
- Tianjin Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, People's Republic of China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- College of Life Science, Nankai University, Tianjin, People's Republic of China
| | - Zihan Jia
- College of Life Science, Nankai University, Tianjin, People's Republic of China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
- College of Life Science, Nankai University, Tianjin, People's Republic of China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
21
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
22
|
Prostova MA, Smertina E, Bakhmutov DV, Gasparyan AA, Khitrina EV, Kolesnikova MS, Shishova AA, Gmyl AP, Agol VI. Characterization of Mutational Tolerance of a Viral RNA-Protein Interaction. Viruses 2019; 11:v11050479. [PMID: 31130655 PMCID: PMC6563195 DOI: 10.3390/v11050479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Replication of RNA viruses is generally markedly error-prone. Nevertheless, these viruses usually retain their identity under more or less constant conditions due to different mechanisms of mutation tolerance. However, there exists only limited information on quantitative aspects of the mutational tolerance of distinct viral functions. To address this problem, we used here as a model the interaction between a replicative cis-acting RNA element (oriL) of poliovirus and its ligand (viral protein 3CD). The mutational tolerance of a conserved tripeptide of 3CD, directly involved in this interaction, was investigated. Randomization of the relevant codons and reverse genetics were used to define the space of viability-compatible sequences. Surprisingly, at least 11 different amino acid substitutions in this tripeptide were not lethal. Several altered viruses exhibited wild-type-like phenotypes, whereas debilitated (but viable) genomes could increase their fitness by the acquisition of reversions or compensatory mutations. Together with our study on the tolerance of oriL (Prostova et al., 2015), the results demonstrate that at least 42 out of 51 possible nucleotide replacements within the two relevant genomic regions are viability-compatible. These results provide new insights into structural aspects of an important viral function as well as into the general problems of viral mutational robustness and evolution.
Collapse
Affiliation(s)
- Maria A Prostova
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia.
| | - Elena Smertina
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, 117192 Moscow, Russia.
| | - Denis V Bakhmutov
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
| | - Anna A Gasparyan
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Elena V Khitrina
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- A. N. Belozersky Institute of Physical-Chemical Biology, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia.
| | - Marina S Kolesnikova
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
| | - Anna A Shishova
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
| | - Anatoly P Gmyl
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Vadim I Agol
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, 108819 Moscow, Russia.
- A. N. Belozersky Institute of Physical-Chemical Biology, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia.
| |
Collapse
|
23
|
Kanitz M, Blanck S, Heine A, Gulyaeva AA, Gorbalenya AE, Ziebuhr J, Diederich WE. Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. Virology 2019; 533:21-33. [PMID: 31078932 PMCID: PMC7111312 DOI: 10.1016/j.virol.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
Cavally virus (CavV) is a mosquito-borne plus-strand RNA virus in the family Mesoniviridae (order Nidovirales). We present X-ray structures for the CavV 3C-like protease (3CLpro), as a free enzyme and in complex with a peptide aldehyde inhibitor mimicking the P4-to-P1 residues of a natural substrate. The 3CLpro structure (refined to 1.94 Å) shows that the protein forms dimers. The monomers are comprised of N-terminal domains I and II, which adopt a chymotrypsin-like fold, and a C-terminal α-helical domain III. The catalytic Cys-His dyad is assisted by a complex network of interactions involving a water molecule that mediates polar contacts between the catalytic His and a conserved Asp located in the domain II-III junction and is suitably positioned to stabilize the developing positive charge of the catalytic His in the transition state during catalysis. The study also reveals the structural basis for the distinct P2 Asn-specific substrate-binding pocket of mesonivirus 3CLpros. First structure of a 3CLpro of an invertebrate RNA virus. Structural basis of the unique substrate specificity defined by Asn at the P2 position of mesonivirus 3CLpro substrates. Emerging role of a conserved Asp residue that assists the Cys-His catalytic dyad in vertebrate and invertebrate 3CLpros.
Collapse
Affiliation(s)
- Manuel Kanitz
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany; Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Sandra Blanck
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Anastasia A Gulyaeva
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Wibke E Diederich
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany; Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany.
| |
Collapse
|
24
|
Validating Enterovirus D68-2A pro as an Antiviral Drug Target and the Discovery of Telaprevir as a Potent D68-2A pro Inhibitor. J Virol 2019; 93:JVI.02221-18. [PMID: 30674624 DOI: 10.1128/jvi.02221-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a viral pathogen that leads to severe respiratory illness and has been linked with the development of acute flaccid myelitis (AFM) in children. No vaccines or antivirals are currently available for EV-D68 infection, and treatment options for hospitalized patients are limited to supportive care. Here, we report the expression of the EV-D68 2A protease (2Apro) and characterization of its enzymatic activity. Furthermore, we discovered that telaprevir, an FDA-approved drug used for the treatment of hepatitis C virus (HCV) infections, is a potent antiviral against EV-D68 by targeting the 2Apro enzyme. Using a fluorescence resonance energy transfer-based substrate cleavage assay, we showed that the purified EV-D68 2Apro has proteolytic activity selective against a peptide sequence corresponding to the viral VP1-2A polyprotein junction. Telaprevir inhibits EV-D68 2Apro through a nearly irreversible, biphasic binding mechanism. In cell culture, telaprevir showed submicromolar-to-low-micromolar potency against several recently circulating neurotropic strains of EV-D68 in different human cell lines. To further confirm the antiviral drug target, serial viral passage experiments were performed to select for resistance against telaprevir. An N84T mutation near the active site of 2Apro was identified in resistant viruses, and this mutation reduced the potency of telaprevir in both the enzymatic and cellular antiviral assays. Collectively, we report for the first time the in vitro enzymatic activity of EV-D68 2Apro and the identification of telaprevir as a potent EV-D68 2Apro inhibitor. These findings implicate EV-D68 2Apro as an antiviral drug target and highlight the repurposing potential of telaprevir to treat EV-D68 infection.IMPORTANCE A 2014 EV-D68 outbreak in the United States has been linked to the development of acute flaccid myelitis in children. Unfortunately, no treatment options against EV-D68 are currently available, and the development of effective therapeutics is urgently needed. Here, we characterize and validate a new EV-D68 drug target, the 2Apro, and identify telaprevir-an FDA-approved drug used to treat hepatitis C virus (HCV) infections-as a potent antiviral with a novel mechanism of action toward 2Apro 2Apro functions as a viral protease that cleaves a peptide sequence corresponding to the VP1-2A polyprotein junction. The binding of telaprevir potently inhibits its enzymatic activity, and using drug resistance selection, we show that the potent antiviral activity of telaprevir was due to 2Apro inhibition. This is the first inhibitor to selectively target the 2Apro from EV-D68 and can be used as a starting point for the development of therapeutics with selective activity against EV-D68.
Collapse
|
25
|
Fernandes MHV, Maggioli MF, Otta J, Joshi LR, Lawson S, Diel DG. Senecavirus A 3C Protease Mediates Host Cell Apoptosis Late in Infection. Front Immunol 2019; 10:363. [PMID: 30918505 PMCID: PMC6424860 DOI: 10.3389/fimmu.2019.00363] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Senecavirus A (SVA), an oncolytic picornavirus used for cancer treatment in humans, has recently emerged as a vesicular disease (VD)-causing agent in swine worldwide. Notably, SVA-induced VD is indistinguishable from foot-and-mouth disease (FMD) and other high-consequence VDs of pigs. Here we investigated the role of apoptosis on infection and replication of SVA. Given the critical role of the nuclear factor-kappa B (NF-κB) signaling pathway on modulation of cell death, we first assessed activation of NF-κB during SVA infection. Results here show that while early during infection SVA induces activation of NF-κB, as evidenced by nuclear translocation of NF-κB-p65 and NF-κB-mediated transcription, late in infection a cleaved product corresponding to the C-terminus of NF-κB-p65 is detected in infected cells, resulting in lower NF-κB transcriptional activity. Additionally, we assessed the potential role of SVA 3C protease (3Cpro) in SVA-induced host-cell apoptosis and cleavage of NF-κB-p65. Transient expression of SVA 3Cpro was associated with cleavage of NF-κB-p65 and Poly (ADP-ribose) polymerase (PARP), suggesting its involvement in virus-induced apoptosis. Most importantly, we showed that while cleavage of NF-κB-p65 is secondary to caspase activation, the proteolytic activity of SVA 3Cpro is essential for induction of apoptosis. Experiments using the pan-caspase inhibitor Z-VAD-FMK confirmed the relevance of late apoptosis for SVA infection, indicating that SVA induces apoptosis, presumably, as a mechanism to facilitate virus release and/or spread from infected cells. Together, these results suggest an important role of apoptosis for SVA infection biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego G. Diel
- Animal Disease Research And Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
26
|
GII.4 Norovirus Protease Shows pH-Sensitive Proteolysis with a Unique Arg-His Pairing in the Catalytic Site. J Virol 2019; 93:JVI.01479-18. [PMID: 30626675 DOI: 10.1128/jvi.01479-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (NoVs) are the main cause of epidemic and sporadic gastroenteritis. Phylogenetically, noroviruses are divided into seven genogroups, with each divided into multiple genotypes. NoVs belonging to genogroup II and genotype 4 (GII.4) are globally most prevalent. Genetic diversity among the NoVs and the periodic emergence of novel strains present a challenge for the development of vaccines and antivirals to treat NoV infection. NoV protease is essential for viral replication and is an attractive target for the development of antivirals. The available structure of GI.1 protease provided a basis for the design of inhibitors targeting the active site of the protease. These inhibitors, although potent against the GI proteases, poorly inhibit the GII proteases, for which structural information is lacking. To elucidate the structural basis for this difference in the inhibitor efficiency, we determined the crystal structure of a GII.4 protease. The structure revealed significant changes in the S2 substrate-binding pocket, making it noticeably smaller, and in the active site, with the catalytic triad residues showing conformational changes. Furthermore, a conserved arginine is found inserted into the active site, interacting with the catalytic histidine and restricting substrate/inhibitor access to the S2 pocket. This interaction alters the relationships between the catalytic residues and may allow for a pH-dependent regulation of protease activity. The changes we observed in the GII.4 protease structure may explain the reduced potency of the GI-specific inhibitors against the GII protease and therefore must be taken into account when designing broadly cross-reactive antivirals against NoVs.IMPORTANCE Human noroviruses (NoVs) cause sporadic and epidemic gastroenteritis worldwide. They are divided into seven genogroups (GI to GVII), with each genogroup further divided into several genotypes. Human NoVs belonging to genogroup II and genotype 4 (GII.4) are the most prevalent. Currently, there are no vaccines or antiviral drugs available for NoV infection. The protease encoded by NoV is considered a valuable target because of its essential role in replication. NoV protease structures have only been determined for the GI genogroup. We show here that the structure of the GII.4 protease exhibits several significant changes from GI proteases, including a unique pairing of an arginine with the catalytic histidine that makes the proteolytic activity of GII.4 protease pH sensitive. A comparative analysis of NoV protease structures may provide a rational framework for structure-based drug design of broadly cross-reactive inhibitors targeting NoVs.
Collapse
|
27
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
28
|
Jung E, Lee JY, Kim HJ, Ryu CK, Lee KI, Kim M, Lee CK, Go YY. Identification of quinone analogues as potential inhibitors of picornavirus 3C protease in vitro. Bioorg Med Chem Lett 2018; 28:2533-2538. [PMID: 29866517 DOI: 10.1016/j.bmcl.2018.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022]
Abstract
Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ∼6000 small molecules in search of potential picornavirus 3C protease (3Cpro) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3Cpro and HRV 3Cpro with IC50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development.
Collapse
Affiliation(s)
- Eunhye Jung
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Joo-Youn Lee
- Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Ho Jeong Kim
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womens University, Seoul 03760, Republic of Korea.
| | - Chung-Kyu Ryu
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womens University, Seoul 03760, Republic of Korea.
| | - Kee-In Lee
- Green Carbon Catalysis Group, Carbon Resources Institute, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Meehyein Kim
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| | - Chong-Kyo Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Yun Young Go
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
29
|
Jagdeo JM, Dufour A, Klein T, Solis N, Kleifeld O, Kizhakkedathu J, Luo H, Overall CM, Jan E. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection. J Virol 2018; 92:e02211-17. [PMID: 29437971 PMCID: PMC5874412 DOI: 10.1128/jvi.02211-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cproin vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner.IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection.
Collapse
Affiliation(s)
- Julienne M Jagdeo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antoine Dufour
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theo Klein
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oded Kleifeld
- School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Shengjuler D, Chan YM, Sun S, Moustafa IM, Li ZL, Gohara DW, Buck M, Cremer PS, Boehr DD, Cameron CE. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain. Structure 2017; 25:1875-1886.e7. [PMID: 29211985 PMCID: PMC5728361 DOI: 10.1016/j.str.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses.
Collapse
Affiliation(s)
- Djoshkun Shengjuler
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yan Mei Chan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Simou Sun
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhen-Lu Li
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Paul S Cremer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
31
|
Prostova MA, Deviatkin AA, Tcelykh IO, Lukashev AN, Gmyl AP. Independent evolution of tetraloop in enterovirus oriL replicative element and its putative binding partners in virus protein 3C. PeerJ 2017; 5:e3896. [PMID: 29018627 PMCID: PMC5633025 DOI: 10.7717/peerj.3896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022] Open
Abstract
Background Enteroviruses are small non-enveloped viruses with a (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features a low-fidelity process, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. Methods To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6, 400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. Results A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y = U/C, N = any nucleotide, H = A/C/U). The putative RNA-binding tripeptide 154–156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific. Discussion Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.
Collapse
Affiliation(s)
- Maria A Prostova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Andrei A Deviatkin
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Irina O Tcelykh
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
32
|
Affiliation(s)
- Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;,
| | - John E. Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
33
|
Abstract
Viruses are major pathogenic agents that can cause a variety of diseases, such as AIDS, hepatitis, respiratory diseases, and many more, in humans, plants, and animals. The most prominent of them have been adenoviruses, alphaviruses, flaviviruses, hepatitis C virus, herpesviruses, human immunodeficiency virus of type 1, and picornaviruses. This chapter presents an introductory remark on such viruses, mechanisms of their invasion, and diseases related to them. The inhibition of these viruses is of great concern to human beings. Each of these viruses encodes one or more proteases that play crucial roles in their replication, and thus they are important targets for the design and development of potent antiviral agents. The chapter, therefore, also introduces the readers to such proteases and their structures and functions. This chapter is thus a prelude to the remaining chapters in the book, which present in detail about the different viruses and their proteases.
Collapse
Affiliation(s)
- Anjana Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Satya P. Gupta
- National Institute of Technical Teachers’ Training and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
34
|
Chan YM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure 2016; 24:509-517. [PMID: 27050688 DOI: 10.1016/j.str.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The 3C protein is a master regulator of the picornaviral infection cycle, responsible for both cleaving viral and host proteins, and interacting with genomic RNA replication elements. Here we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to show that 3C is conformationally dynamic across multiple timescales. Binding of peptide and RNA lead to structural dynamics changes at both the protease active site and the RNA-binding site, consistent with these sites being dynamically coupled. Indeed, binding of RNA influences protease activity, and likewise, interactions at the active site affect RNA binding. We propose that RNA and peptide binding re-shapes the conformational energy landscape of 3C to regulate subsequent functions, including formation of complexes with other viral proteins. The observed channeling of the 3C energy landscape may be important for regulation of the viral infection cycle.
Collapse
Affiliation(s)
- Yan M Chan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
35
|
Yang J, Leen EN, Maree FF, Curry S. Crystal structure of the 3C protease from Southern African Territories type 2 foot-and-mouth disease virus. PeerJ 2016; 4:e1964. [PMID: 27168976 PMCID: PMC4860321 DOI: 10.7717/peerj.1964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/02/2016] [Indexed: 11/23/2022] Open
Abstract
The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cpro performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cpro from serotype A—one of the seven serotypes of FMDV—adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3Cpro amino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3Cpro from SAT2/GHA/8/91.
Collapse
Affiliation(s)
- Jingjie Yang
- Departmet of Life Sciences, Imperial College , London , United Kingdom
| | - Eoin N Leen
- Departmet of Life Sciences, Imperial College , London , United Kingdom
| | - Francois F Maree
- Transboundary Animal Disease Programme, Agricultural Research Council, Onderstepoort Veterinary Institute , Onderstepoort , South Africa
| | - Stephen Curry
- Departmet of Life Sciences, Imperial College , London , United Kingdom
| |
Collapse
|
36
|
Sun D, Chen S, Cheng A, Wang M. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. Viruses 2016; 8:82. [PMID: 26999188 PMCID: PMC4810272 DOI: 10.3390/v8030082] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3C(pro)s) of picornaviruses share similar spatial structures and it is becoming apparent that 3C(pro) plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3C(pro) are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3C(pro) can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3C(pro) and these essential factors, 3C(pro) is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3C(pro) are ongoing and a better understanding of the roles played by 3C(pro) may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3C(pro) is summarized.
Collapse
Affiliation(s)
- Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu 611130, China.
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu 611130, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu 611130, China.
| |
Collapse
|
37
|
Moustafa IM, Gohara DW, Uchida A, Yennawar N, Cameron CE. Conformational Ensemble of the Poliovirus 3CD Precursor Observed by MD Simulations and Confirmed by SAXS: A Strategy to Expand the Viral Proteome? Viruses 2015; 7:5962-86. [PMID: 26610545 PMCID: PMC4664992 DOI: 10.3390/v7112919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
The genomes of RNA viruses are relatively small. To overcome the small-size limitation, RNA viruses assign distinct functions to the processed viral proteins and their precursors. This is exemplified by poliovirus 3CD protein. 3C protein is a protease and RNA-binding protein. 3D protein is an RNA-dependent RNA polymerase (RdRp). 3CD exhibits unique protease and RNA-binding activities relative to 3C and is devoid of RdRp activity. The origin of these differences is unclear, since crystal structure of 3CD revealed "beads-on-a-string" structure with no significant structural differences compared to the fully processed proteins. We performed molecular dynamics (MD) simulations on 3CD to investigate its conformational dynamics. A compact conformation of 3CD was observed that was substantially different from that shown crystallographically. This new conformation explained the unique properties of 3CD relative to the individual proteins. Interestingly, simulations of mutant 3CD showed altered interface. Additionally, accelerated MD simulations uncovered a conformational ensemble of 3CD. When we elucidated the 3CD conformations in solution using small-angle X-ray scattering (SAXS) experiments a range of conformations from extended to compact was revealed, validating the MD simulations. The existence of conformational ensemble of 3CD could be viewed as a way to expand the poliovirus proteome, an observation that may extend to other viruses.
Collapse
Affiliation(s)
- Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1100 South Grand Ave, St Louis, MO 63104, USA.
| | - Akira Uchida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Neela Yennawar
- Huck Institutes of life sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
38
|
Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex. Virology 2015; 485:492-501. [PMID: 26303005 DOI: 10.1016/j.virol.2015.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/12/2015] [Accepted: 07/28/2015] [Indexed: 01/11/2023]
Abstract
The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showed that 3D entered the replication complex in the form of its precursor, P3 (or 3CD), and was cleaved to release active 3D polymerase. Furthermore, our results showed that P3 is the preferred precursor that binds to the 5'CL. Using reciprocal complementation assays, we showed that one molecule of P3 binds the 5'CL and that a second molecule of P3 provides 3D. In addition, we showed that a second molecule of P3 served as the VPg provider. These results support a model in which P3 binds to the 5'CL and recruits additional molecules of P3, which are cleaved to release either 3D or VPg to initiate RNA replication.
Collapse
|
39
|
Kim BK, Cho JH, Jeong P, Lee Y, Lim JJ, Park KR, Eom SH, Kim YC. Benserazide, the first allosteric inhibitor of Coxsackievirus B3 3C protease. FEBS Lett 2015; 589:1795-801. [PMID: 26022398 PMCID: PMC7094222 DOI: 10.1016/j.febslet.2015.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 01/20/2023]
Abstract
Coxsackievirus B3 is the main cause of human viral myocarditis and cardiomyopathy. Virally encoded Coxsackievirus 3C protease (3C(pro)) plays an essential role in viral proliferation. Here, benserazide was discovered as a novel inhibitor from a drug library screen targeting Coxsackievirus 3C(pro) using a FRET-based enzyme assay. Benserazide, whose chemical structure has no electrophilic functional groups, was characterized as a non-competitive inhibitor by enzyme kinetic studies. A molecular docking study with benserazide and its analogs indicated that a novel putative allosteric binding site was involved. Specifically, a 2,3,4-trihydroxybenzyl moiety was determined to be a key pharmacophore for the enzyme's inhibitory activity. We suggest that the putative allosteric binding site may be a novel target for future therapeutic strategies.
Collapse
Affiliation(s)
- Bo-Kyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju (GIST) 500-712, Republic of Korea
| | - Joong-Heui Cho
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 701-310, Republic of Korea
| | - Pyeonghwa Jeong
- Department of Medical System Engineering (DMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Youngjin Lee
- School of Life Sciences, Steitz Center for Structural Biology, Systems Biology Research Center and Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Jia Jia Lim
- School of Life Sciences, Steitz Center for Structural Biology, Systems Biology Research Center and Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Steitz Center for Structural Biology, Systems Biology Research Center and Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Steitz Center for Structural Biology, Systems Biology Research Center and Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju (GIST) 500-712, Republic of Korea; Department of Medical System Engineering (DMSE), Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
40
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
41
|
Blanck S, Stinn A, Tsiklauri L, Zirkel F, Junglen S, Ziebuhr J. Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases. J Virol 2014; 88:13747-58. [PMID: 25231310 PMCID: PMC4248970 DOI: 10.1128/jvi.02040-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cavally virus (CavV) and related viruses in the family Mesoniviridae diverged profoundly from other nidovirus lineages but largely retained the characteristic set of replicative enzymes conserved in the Coronaviridae and Roniviridae. The expression of these enzymes in virus-infected cells requires the extensive proteolytic processing of two large replicase polyproteins, pp1a and pp1ab, by the viral 3C-like protease (3CL(pro)). Here, we show that CavV 3CL(pro) autoproteolytic cleavage occurs at two N-terminal (N1 and N2) and one C-terminal (C1) processing site(s). The mature form of 3CL(pro) was revealed to be a 314-residue protein produced by cleavage at FKNK1386|SAAS (N2) and YYNQ1700|SATI (C1). Site-directed mutagenesis data suggest that the mesonivirus 3CL(pro) employs a catalytic Cys-His dyad comprised of CavV pp1a/pp1ab residues Cys-1539 and His-1434. The study further suggests that mesonivirus 3CL(pro) substrate specificities differ from those of related nidovirus proteases. The presence of Gln (or Glu) at the P1 position was not required for cleavage, although residues that control Gln/Glu specificity in related viral proteases are retained in the CavV 3CL(pro) sequence. Asn at the P2 position was identified as a key determinant for mesonivirus 3CL(pro) substrate specificity. Other positions, including P4 and P1', each are occupied by structurally related amino acids, indicating a supportive role in substrate binding. Together, the data identify a new subgroup of nidovirus main proteases and support previous conclusions on phylogenetic relationships between the main nidovirus lineages. IMPORTANCE Mesoniviruses have been suggested to provide an evolutionary link between nidovirus lineages with small (13 to 16 kb) and large (26 to 32 kb) RNA genome sizes, and it has been proposed that a specific set of enzymes, including a proofreading exoribonuclease and other replicase gene-encoded proteins, play a key role in the major genome expansion leading to the currently known lineages of large nidoviruses. Despite their smaller genome size (20 kb), mesoniviruses retained most of the replicative domains conserved in large nidoviruses; thus, they are considered interesting models for studying possible key events in the evolution of RNA genomes of exceptional size and complexity. Our study provides the first characterization of a mesonivirus replicase gene-encoded nonstructural protein. The data confirm and extend previous phylogenetic studies of mesoniviruses and related viruses and pave the way for studies into the formation of the mesonivirus replication complex and functional and structural studies of its functional subunits.
Collapse
Affiliation(s)
- Sandra Blanck
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Anne Stinn
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Lali Tsiklauri
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
42
|
Verdaguer N, Ferrero D, Murthy MRN. Viruses and viral proteins. IUCRJ 2014; 1:492-504. [PMID: 25485129 PMCID: PMC4224467 DOI: 10.1107/s205225251402003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 05/30/2023]
Abstract
For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.
Collapse
Affiliation(s)
- Nuria Verdaguer
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Diego Ferrero
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Mathur R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
43
|
Bodewes R, Lempp C, Schürch AC, Habierski A, Hahn K, Lamers M, von Dörnberg K, Wohlsein P, Drexler JF, Haagmans BL, Smits SL, Baumgärtner W, Osterhaus ADME. Novel divergent nidovirus in a python with pneumonia. J Gen Virol 2014; 95:2480-2485. [PMID: 25063552 DOI: 10.1099/vir.0.068700-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The order Nidovirales contains large, enveloped viruses with a non-segmented positive-stranded RNA genome. Nidoviruses have been detected in man and various animal species, but, to date, there have been no reports of nidovirus in reptiles. In the present study, we describe the detection, characterization, phylogenetic analyses and disease association of a novel divergent nidovirus in the lung of an Indian python (Python molurus) with necrotizing pneumonia. Characterization of the partial genome (>33 000 nt) of this virus revealed several genetic features that are distinct from other nidoviruses, including a very large polyprotein 1a, a putative ribosomal frameshift signal that was identical to the frameshift signal of astroviruses and retroviruses and an accessory ORF that showed some similarity with the haemagglutinin-neuraminidase of paramyxoviruses. Analysis of genome organization and phylogenetic analysis of polyprotein 1ab suggests that this virus belongs to the subfamily Torovirinae. Results of this study provide novel insights into the genetic diversity within the order Nidovirales.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Charlotte Lempp
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Anita C Schürch
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Andre Habierski
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Hahn
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Mart Lamers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Saskia L Smits
- Viroclinics Biosciences BV, Rotterdam, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Albert D M E Osterhaus
- Artemis Research Institute for Wildlife Health, Utrecht, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.,Viroclinics Biosciences BV, Rotterdam, The Netherlands.,Centre for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
44
|
Paliwal D, Panda SK, Kapur N, Varma SPK, Durgapal H. Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein. J Gen Virol 2014; 95:1689-1700. [PMID: 24795447 DOI: 10.1099/vir.0.066142-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute viral hepatitis across the world, is a non-enveloped, plus-strand RNA virus. Its genome codes three proteins, pORF1 (multifunctional polyprotein), pORF2 (capsid protein) and pORF3 (multi-regulatory protein). pORF1 encodes methyltransferase, putative papain-like cysteine protease, helicase and replicase enzymes. Of these, the protease domain has not been characterized. On the basis of sequence analysis, we cloned and expressed a protein covering aa 440-610 of pORF1, expression of which led to cell death in Escherichia coli BL-21 and Huh7 hepatoma cells. Finally, we expressed and purified this protein from E. coli C43 cells (resistant to toxic proteins). The refolded form of this protein showed protease activity in gelatin zymography. Digestion assays showed cleavage of both pORF1 and pORF2 as observed previously. MS revealed digestion of capsid protein at both the N and C termini. N-terminal sequencing of the ~35 kDa methyltransferase, ~35 kDa replicase and ~56 kDa pORF2 proteins released by protease digestion revealed that the cleavage sites were alanine15/isoleucine16, alanine1364/valine1365 in pORF1 and leucine197/valine198 in pORF2. Specificity of these cleavage sites was validated by site-directed mutagenesis. Further characterization of the HEV protease, carried out using twelve inhibitors, showed chymostatin and PMSF to be the most efficient inhibitors, indicating this protein as a chymotrypsin-like protease. The specificity was further confirmed by cleavage of the chymotrypsin-specific fluorogenic peptide N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Mutational analysis of the conserved serine/cysteine/histidine residues suggested that H443 and C472/C481/C483 are possibly the active site residues. To our knowledge, this is the first direct demonstration of HEV protease and its function.
Collapse
Affiliation(s)
- Daizy Paliwal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Neeraj Kapur
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Satya Pavan Kumar Varma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Hemlata Durgapal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
45
|
Wang J, Su H, Zhang T, Du J, Cui S, Yang F, Jin Q. Inhibition of Enterovirus 71 replication by 7-hydroxyflavone and diisopropyl-flavon7-yl Phosphate. PLoS One 2014; 9:e92565. [PMID: 24664133 PMCID: PMC3963929 DOI: 10.1371/journal.pone.0092565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/25/2014] [Indexed: 11/24/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease, which has been continuously prevalent in Asia in recent years. In children, severe cases can lead to death, and no prophylactic or therapeutic measures against EV71 infection are available. The 3C proteases of EV71 play an important role in viral replication and are an ideal drug target. In previous work, we resolved the crystal structure for EV71 3Cpro. In this report, we took advantage of the automated docking program AutoDock 4.0 to simulate EV71 3Cpro-ligand conformation. 7-hydroxyflavone (HF) and its phosphate ester(FIP) were predicted to bind with EV71 3Cpro.In an in vitro protease inhibition assay, FIP inhibited EV71 3Cpro protease activity. Both flavones were highly active against EV71, protecting cells from EV71 infection. Replication of viral RNA and formation of EV71 plaque were all strongly inhibited in cells. These results indicated that HF and FIP may serve as potential protective agents in the treatment of patients with chronic EV71 infection.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haoxiang Su
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
46
|
Roqué Rosell NR, Mokhlesi L, Milton NE, Sweeney TR, Zunszain PA, Curry S, Leatherbarrow RJ. Design and synthesis of irreversible inhibitors of foot-and-mouth disease virus 3C protease. Bioorg Med Chem Lett 2014; 24:490-4. [PMID: 24374278 DOI: 10.1016/j.bmcl.2013.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly infectious and economically devastating disease of livestock. The FMDV genome is translated as a single polypeptide precursor that is cleaved into functional proteins predominantly by the highly conserved viral 3C protease, making this enzyme an attractive target for antiviral drugs. A peptide corresponding to an optimal substrate has been modified at the C-terminus, by the addition of a warhead, to produce irreversible inhibitors that react as Michael acceptors with the enzyme active site. Further investigation highlighted key structural determinants for inhibition, with a positively charged P2 being particularly important for potency.
Collapse
Affiliation(s)
- Núria R Roqué Rosell
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ladan Mokhlesi
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Nicholas E Milton
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Trevor R Sweeney
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Patricia A Zunszain
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Stephen Curry
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Robin J Leatherbarrow
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom; Egerton Court, Liverpool John Moores University, Liverpool L1 2UA, United Kingdom.
| |
Collapse
|
47
|
In vitro and in vivo evidence for differences in the protease activity of two arabis mosaic nepovirus isolates and their impact on the infectivity of chimeric cDNA clones. Virology 2013; 446:102-11. [DOI: 10.1016/j.virol.2013.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/11/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022]
|
48
|
Liu HL, Lin JC, Ho Y, Hsieh WC, Chen CW, Su YC. Homology Models and Molecular Dynamics Simulations of Main Proteinase from Coronavirus Associated with Severe Acute Respiratory Syndrome (SARS). J CHIN CHEM SOC-TAIP 2013; 51:889-900. [PMID: 32336761 PMCID: PMC7167048 DOI: 10.1002/jccs.200400134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 11/29/2022]
Abstract
In this study, two structural models (denoted as MproST and MproSH) of the main proteinase (Mpro) from the novel coronavirus associated with severe acute respiratory syndrome (SARS‐CoV) were constructed based on the crystallographic structures of Mpro from transmissible gastroenteritis coronavirus (TGEV) (MproT) and human coronavirus HcoV‐229E (MproH), respectively. Various 200 ps molecular dynamics simulations were subsequently performed to investigate the dynamics behaviors of several structural features. Both MproST and MproSH exhibit similar folds as their respective template proteins. These structural models reveal three distinct functional domains as well as an intervening loop connecting domains II and III as found in both template proteins. In addition, domain III of these structures exhibits the least secondary structural conservation. A catalytic cleft containing the substrate binding subsites S1 and the S2 between domains I and II are also observed in these structural models. Although these structures share many common features, the most significant difference occurs at the S2 subsite, where the amino acid residues lining up this subsite are least conserved. It may be a critical challenge for designing anti‐SARS drugs by simply screening the known database of proteinase inhibitors.
Collapse
Affiliation(s)
- Hsuan-Liang Liu
- Department of Chemical Engineering and Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| | - Jin-Chung Lin
- Department of Chemical Engineering and Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Chan Hsieh
- Department of Chemical Engineering and Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| | - Chin-Wen Chen
- Department of Chemical Engineering and Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| | - Yuan-Chen Su
- Department of Chemical Engineering and Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C
| |
Collapse
|
49
|
Wu C, Cai Q, Chen C, Li N, Peng X, Cai Y, Yin K, Chen X, Wang X, Zhang R, Liu L, Chen S, Li J, Lin T. Structures of Enterovirus 71 3C proteinase (strain E2004104-TW-CDC) and its complex with rupintrivir. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:866-71. [PMID: 23633597 DOI: 10.1107/s0907444913002862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/28/2013] [Indexed: 11/10/2022]
Abstract
The crystal structure of 3C proteinase (3C(pro)) from Enterovirus 71 (EV71) was determined in space group C2221 to 2.2 Å resolution. The fold was similar to that of 3C(pro) from other picornaviruses, but the difference in the β-ribbon reported in a previous structure was not observed. This β-ribbon was folded over the substrate-binding cleft and constituted part of the essential binding sites for interaction with the substrate. The structure of its complex with rupintrivir (AG7088), a peptidomimetic inhibitor, was also characterized in space group P212121 to 1.96 Å resolution. The inhibitor was accommodated without any spatial hindrance despite the more constricted binding site; this was confirmed by functional assays, in which the inhibitor showed comparable potency towards EV71 3C(pro) and human rhinovirus 3C(pro), which is the target that rupintrivir was designed against.
Collapse
Affiliation(s)
- Caiming Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tan J, George S, Kusov Y, Perbandt M, Anemüller S, Mesters JR, Norder H, Coutard B, Lacroix C, Leyssen P, Neyts J, Hilgenfeld R. 3C protease of enterovirus 68: structure-based design of Michael acceptor inhibitors and their broad-spectrum antiviral effects against picornaviruses. J Virol 2013; 87:4339-51. [PMID: 23388726 PMCID: PMC3624371 DOI: 10.1128/jvi.01123-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/05/2013] [Indexed: 11/20/2022] Open
Abstract
We have determined the cleavage specificity and the crystal structure of the 3C protease of enterovirus 68 (EV68 3C(pro)). The protease exhibits a typical chymotrypsin fold with a Cys...His...Glu catalytic triad; its three-dimensional structure is closely related to that of the 3C(pro) of rhinovirus 2, as well as to that of poliovirus. The phylogenetic position of the EV68 3C(pro) between the corresponding enzymes of rhinoviruses on the one hand and classical enteroviruses on the other prompted us to use the crystal structure for the design of irreversible inhibitors, with the goal of discovering broad-spectrum antiviral compounds. We synthesized a series of peptidic α,β-unsaturated ethyl esters of increasing length and for each inhibitor candidate, we determined a crystal structure of its complex with the EV68 3C(pro), which served as the basis for the next design round. To exhibit inhibitory activity, compounds must span at least P3 to P1'; the most potent inhibitors comprise P4 to P1'. Inhibitory activities were found against the purified 3C protease of EV68, as well as with replicons for poliovirus and EV71 (50% effective concentration [EC(50)] = 0.5 μM for the best compound). Antiviral activities were determined using cell cultures infected with EV71, poliovirus, echovirus 11, and various rhinovirus serotypes. The most potent inhibitor, SG85, exhibited activity with EC(50)s of ≈180 nM against EV71 and ≈60 nM against human rhinovirus 14 in a live virus-cell-based assay. Even the shorter SG75, spanning only P3 to P1', displayed significant activity (EC(50) = 2 to 5 μM) against various rhinoviruses.
Collapse
Affiliation(s)
- Jinzhi Tan
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research, University of Lübeck, Lübeck, Germany
| | - Shyla George
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research, University of Lübeck, Lübeck, Germany
| | - Yuri Kusov
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research, University of Lübeck, Lübeck, Germany
| | - Markus Perbandt
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- Laboratory for Structural Biology of Infection and Inflammation, Universities of Lübeck and Hamburg, Hamburg, Germany
| | - Stefan Anemüller
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research, University of Lübeck, Lübeck, Germany
| | - Jeroen R. Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research, University of Lübeck, Lübeck, Germany
| | - Helene Norder
- Department of Clinical Microbiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Bruno Coutard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Centre National de la Recherche Scientifique and Universités d'Aix-Marseille I et II, Marseille, France
| | - Céline Lacroix
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pieter Leyssen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research, University of Lübeck, Lübeck, Germany
- Laboratory for Structural Biology of Infection and Inflammation, Universities of Lübeck and Hamburg, Hamburg, Germany
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|