1
|
A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q Rev Biophys 2021; 54:e5. [PMID: 33722316 DOI: 10.1017/s0033583521000032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative parameters for a two-state cooperative transition in duplex DNAs were finally obtained during the last 5 years. After a brief discussion of observations pertaining to the existence of the two-state equilibrium per se, the lengths, torsion, and bending elastic constants of the two states involved and the cooperativity parameter of the model are simply stated. Experimental tests of model predictions for the responses of DNA to small applied stretching, twisting, and bending stresses, and changes in temperature, ionic conditions, and sequence are described. The mechanism and significance of the large cooperativity, which enables significant DNA responses to such small perturbations, are also noted. The capacity of the model to resolve a number of long-standing and sometimes interconnected puzzles in the extant literature, including the origin of the broad pre-melting transition studied by numerous workers in the 1960s and 1970s, is demonstrated. Under certain conditions, the model predicts significant long-range attractive or repulsive interactions between hypothetical proteins with strong preferences for one or the other state that are bound to well-separated sites on the same DNA. A scenario is proposed for the activation of the ilvPG promoter on a supercoiled DNA by integration host factor.
Collapse
|
2
|
Kim SH, Ganji M, Kim E, van der Torre J, Abbondanzieri E, Dekker C. DNA sequence encodes the position of DNA supercoils. eLife 2018; 7:e36557. [PMID: 30523779 PMCID: PMC6301789 DOI: 10.7554/elife.36557] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of DNA is increasingly understood to play a decisive role in vital cellular processes. Many studies focus on the role of DNA-packaging proteins, crowding, and confinement in arranging chromatin, but structural information might also be directly encoded in bare DNA itself. Here, we visualize plectonemes (extended intertwined DNA structures formed upon supercoiling) on individual DNA molecules. Remarkably, our experiments show that the DNA sequence directly encodes the structure of supercoiled DNA by pinning plectonemes at specific sequences. We develop a physical model that predicts that sequence-dependent intrinsic curvature is the key determinant of pinning strength and demonstrate this simple model provides very good agreement with the data. Analysis of several prokaryotic genomes indicates that plectonemes localize directly upstream of promoters, which we experimentally confirm for selected promotor sequences. Our findings reveal a hidden code in the genome that helps to spatially organize the chromosomal DNA.
Collapse
Affiliation(s)
- Sung Hyun Kim
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Mahipal Ganji
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Eugene Kim
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Jaco van der Torre
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Elio Abbondanzieri
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Cees Dekker
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| |
Collapse
|
3
|
Fenoglio I, Ponti J, Alloa E, Ghiazza M, Corazzari I, Capomaccio R, Rembges D, Oliaro-Bosso S, Rossi F. Singlet oxygen plays a key role in the toxicity and DNA damage caused by nanometric TiO2 in human keratinocytes. NANOSCALE 2013; 5:6567-6576. [PMID: 23760471 DOI: 10.1039/c3nr01191g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanometric TiO2 has been reported to be cytotoxic and genotoxic in different in vitro models when activated by UV light. However, a clear picture of the species mediating the observed toxic effects is still missing. Here, a nanometric TiO2 powder has been modified at the surface to completely inhibit its photo-catalytic activity and to inhibit the generation of all reactive species except for singlet oxygen. The prepared powders have been tested for their ability to induce strand breaks in plasmid DNA and for their cytotoxicity and genotoxicity toward human keratinocyte (HaCaT) cells (100-500 μg mL(-1), 15 min UVA/B exposure at 216-36 mJ m(-2) respectively). The data reported herein indicate that the photo-toxicity of TiO2 is mainly triggered by particle-derived singlet oxygen. The data presented herein contribute to the knowledge of structure-activity relationships which are needed for the design of safe nanomaterials.
Collapse
Affiliation(s)
- Ivana Fenoglio
- Dipartimento di Chimica, G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, University of Torino, via P. Giuria 7, 10125-Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zohar H, Muller SJ. Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. NANOSCALE 2011; 3:3027-39. [PMID: 21734993 PMCID: PMC3322637 DOI: 10.1039/c1nr10280j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review is a practical guide for experimentalists interested in specifically labeling internal sequences on double-stranded (ds) DNA molecules for single-molecule experiments. We describe six labeling approaches demonstrated in a single-molecule context and discuss the merits and drawbacks of each approach with particular attention to the amount of specialized training and reagents required. By evaluating each approach according to criteria relevant to single-molecule experiments, including labeling yield and compatibility with cofactors such as Mg(2+), we provide a simple reference for selecting a labeling method for given experimental constraints. Intended for non-specialists seeking accessible solutions to DNA labeling challenges, the approaches outlined emphasize simplicity, robustness, suitability for use by non-biologists, and utility in diverse single-molecule experiments.
Collapse
Affiliation(s)
- Hagar Zohar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
5
|
Lyubchenko YL. Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 2010; 42:196-206. [PMID: 20864349 DOI: 10.1016/j.micron.2010.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/24/2010] [Accepted: 08/24/2010] [Indexed: 02/06/2023]
Abstract
Sample preparation techniques allowing reliable and reproducible imaging of DNA with various structures, topologies and complexes with proteins are reviewed. The major emphasis is given to methods utilizing chemical functionalization of mica, enabling preparation of the surfaces with required characteristics. The methods are illustrated by examples of imaging of different DNA structures. Special attention is given to the possibility of AFM to image the dynamics of DNA at the nanoscale. The capabilities of time-lapse AFM in aqueous solutions are illustrated by imaging of dynamic processes as transitions of local alternative structures (transition of DNA between H and B forms). The application of AFM to studies of protein-DNA complexes is illustrated by a few examples of imaging site-specific complexes, as well as such systems as chromatin. The time-lapse AFM studies of protein-DNA complexes including very recent advances with the use of high-speed AFM are reviewed.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| |
Collapse
|
6
|
Gansen A, Tóth K, Schwarz N, Langowski J. Structural variability of nucleosomes detected by single-pair Förster resonance energy transfer: histone acetylation, sequence variation, and salt effects. J Phys Chem B 2009; 113:2604-13. [PMID: 18950220 DOI: 10.1021/jp7114737] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleosomes were reconstituted from 170 bp long fragments of 5S rDNA and an optimal positioning sequence, the Selex 601, with recombinant histones. In free-solution single pair Förster resonance energy transfer (spFRET) measurements of the distance between fluorescently labeled bases in the nucleosomal DNA, the samples exhibited structural diversity. The structural heterogeneity correlated with the stability of the complexes and depended on the DNA sequence and histone acetylation. The stability of the nucleosomes was assessed via dilution-driven disruption: histone acetylation decreased nucleosome stability. The spFRET experiments used a new approach for data acquisition and analysis that we term "deliberately detuned detection" (D3). This permits the separation of subpopulations in the samples even for the low-FRET regime characteristic for the linker-DNA labeled nucleosomes. Thus, it became possible to study in more detail histone acetylation- and salt-dependent structural variations using either end- or internally labeled DNAs on the nucleosome. We found that the distance distribution of the fluorophore pairs on the linker DNA ends was much more sensitive to histone acetylation or sequence variation than that of labels on the internal part of the DNA, which was more tightly associated with the histone core. spFRET on freely diffusing nucleosomes allows us therefore to localize the influence of histone modifications and DNA sequence variations on the nucleosome structure and dynamics.
Collapse
Affiliation(s)
- Alex Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
7
|
Abstract
AbstractShort runs of adenines are a ubiquitous DNA element in regulatory regions of many organisms. When runs of 4–6 adenine base pairs (‘A-tracts’) are repeated with the helical periodicity, they give rise to global curvature of the DNA double helix, which can be macroscopically characterized by anomalously slow migration on polyacrylamide gels. The molecular structure of these DNA tracts is unusual and distinct from that of canonical B-DNA. We review here our current knowledge about the molecular details of A-tract structure and its interaction with sequences flanking them of either side and with the environment. Various molecular models were proposed to describe A-tract structure and how it causes global deflection of the DNA helical axis. We review old and recent findings that enable us to amalgamate the various findings to one model that conforms to the experimental data. Sequences containing phased repeats of A-tracts have from the very beginning been synonymous with global intrinsic DNA bending. In this review, we show that very often it is the unique structure of A-tracts that is at the basis of their widespread occurrence in regulatory regions of many organisms. Thus, the biological importance of A-tracts may often be residing in their distinct structure rather than in the global curvature that they induce on sequences containing them.
Collapse
|
8
|
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. EUKARYOTIC CELL 2009; 8:530-9. [PMID: 19218426 DOI: 10.1128/ec.00358-08] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As with other organisms with a completed genome sequence, opportunities for performing large-scale studies, such as expression and localization, on Toxoplasma gondii are now much more feasible. We present a system for tagging genes endogenously with yellow fluorescent protein (YFP) in a Deltaku80 strain. Ku80 is involved in DNA strand repair and nonhomologous DNA end joining; previous studies in other organisms have shown that in its absence, random integration is eliminated, allowing the insertion of constructs with homologous sequences into the proper loci. We generated a vector consisting of YFP and a dihydrofolate reductase-thymidylate synthase selectable marker. The YFP is preceded by a ligation-independent cloning (LIC) cassette, which allows the insertion of PCR products containing complementary LIC sequences. We demonstrated that the Deltaku80 strain is more effective and efficient in integrating the YFP-tagged constructs into the correct locus than wild-type strain RH. We then selected several hypothetical proteins that were identified by a proteomic screen of excreted-secreted antigens and that displayed microarray expression profiles similar to known micronemal proteins, with the thought that these could potentially be new proteins with roles in cell invasion. We localized these hypothetical proteins by YFP fluorescence and showed expression by immunoblotting. Our findings demonstrate that the combination of the Deltaku80 strain and the pYFP.LIC constructs reduces both the time and cost required to determine localization of a new gene of interest. This should allow the opportunity for performing larger-scale studies of novel T. gondii genes.
Collapse
|
9
|
Lyubchenko YL, Shlyakhtenko LS. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 2008; 47:206-13. [PMID: 18835446 DOI: 10.1016/j.ymeth.2008.09.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022] Open
Abstract
This paper describes protocols for studies of structure and dynamics of DNA and protein-DNA complexes with atomic force microscopy (AFM) utilizing the surface chemistry approach. The necessary specifics for the preparation of functionalized surfaces and AFM probes with the use of silanes and silatranes, including the protocols for synthesis of silatranes are provided. The methodology of studies of local and global conformations DNA with the major focus on the time-lapse imaging of DNA in aqueous solutions is illustrated by the study of dynamics of Holliday junctions including branch migration. The analysis of nucleosome dynamics is selected as an example to illustrate the application of the time-lapse AFM to studies of dynamics of protein-DNA complexes. The force spectroscopy is the modality of AFM with a great importance to various fields of biomedical studies. The AFM force spectroscopy approach for studies of specific protein-DNA complexes is illustrated by the data on analysis of dynamics of synaptic SfiI-DNA complexes. When necessary, additional specifics are added to the corresponding example.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, COP 1012, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | |
Collapse
|
10
|
Escudé C, Roulon T, Lyonnais S, Le Cam E. Multiple topological labeling for imaging single plasmids. Anal Biochem 2007; 362:55-62. [PMID: 17250797 DOI: 10.1016/j.ab.2006.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/06/2006] [Accepted: 12/13/2006] [Indexed: 11/18/2022]
Abstract
Sequence-specific labeling methods for double-stranded DNA are required for mapping protein binding sites or specific DNA structures on circular DNA molecules by high-resolution imaging techniques such as electron and atomic force microscopies. Site-specific labeling can be achieved by ligating a DNA fragment to a stem-loop-triplex-forming oligonucleotide, thereby forming a topologically linked complex. The superhelicity of the plasmid is not altered and the process can be applied to two different target sites simultaneously, using DNA fragments of different sizes. Observation of the labeled plasmids by electron microscopy revealed that, under conditions where the triple helices were stable, the two labels were located at 339+/-34 bp from one another, in agreement with the distance between the two target sequences for triple helix formation (350 bp). Under conditions where the triple helices were not stable, the short DNA fragments could slide away from their target site. The concomitant attachment of two different stable labels makes it possible, for the first time to our knowledge, to label a circular DNA molecule and obtain information on its direction. In addition to its potential applications as a tool for structural investigations of single DNA molecules and their interactions with proteins, this DNA labeling method may also prove useful in biotechnology and gene therapy.
Collapse
Affiliation(s)
- Christophe Escudé
- Département Régulations, Développement et Diversité Moléculaire, USM 0503 Muséum National d'Histoire Naturelle, INSERM U565, CNRS UMR5153, Case postale 26, 43 Rue Cuvier, 75231 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
11
|
Abstract
Visualization of site-specific labels in long linear or circular DNA allows unambiguous identification of various local DNA structures. Here we describe a novel and efficient approach to site-specific DNA labeling. The restriction enzyme SfiI binds to DNA but leaves it intact in the presence of calcium and therefore may serve as a protein label of 13 bp recognition sites. Since SfiI requires simultaneous interaction with two DNA recognition sites for stable binding, this requirement is satisfied by providing an isolated recognition site in the DNA target and an additional short DNA duplex also containing the recognition site. The SfiI/DNA complexes were visualized with AFM and the specificity of the labeling was confirmed by the length measurements. Using this approach, two sites in plasmid DNA were labeled in the presence of a large excess of the helper duplex to compete with the formation of looped structures of the intramolecular synaptic complex. We show that the labeling procedure does not interfere with the superhelical tension-driven formation of alternative DNA structures such as cruciforms. The complex is relatively stable at low and high pH (pH 5 and 9) making the developed approach attractive for use at conditions requiring the pH change.
Collapse
Affiliation(s)
| | - Vladimir N. Potaman
- Institute of Biosciences and Technology, Texas A&M University HealthSciences Center, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | - Yuri L. Lyubchenko
- To whom correspondence should be addressed. Tel: +1 402 559 1971; Fax: +1 402 559 9543;
| |
Collapse
|
12
|
Blumberg S, Pennington MW, Meiners JC. Do femtonewton forces affect genetic function? A review. J Biol Phys 2006; 32:73-95. [PMID: 19669453 DOI: 10.1007/s10867-005-9002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022] Open
Abstract
Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a 'substrate tension switch' could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo. We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics and Biophysics Research Division, Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, USA.
| | | | | |
Collapse
|
13
|
|
14
|
Bussiek M, Tóth K, Brun N, Langowski J. DNA-loop formation on nucleosomes shown by in situ scanning force microscopy of supercoiled DNA. J Mol Biol 2005; 345:695-706. [PMID: 15588819 DOI: 10.1016/j.jmb.2004.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/21/2004] [Accepted: 11/09/2004] [Indexed: 11/22/2022]
Abstract
The flexibility of the chromatin structure, necessary for the processing of the genomic DNA, is controlled by a number of factors where flexibility and mobility of the nucleosomes is essential. Here, the influence of DNA supercoiling on the structure of single nucleosomes is investigated. Circular supercoiled plasmid DNA sub-saturated with histones was visualized by scanning force microscopy (SFM) in aqueous solution. SFM-imaging compared with topological analysis indicates instability of nucleosomes when the salt concentration is raised from 10 mM to 100 mM NaCl. Nucleosomes were observed after the deposition to the used scanning surface, i.e. mica coated with polylysine. On the images, the nucleosomes appear with a high probability in end-loops near the apices of the superhelices. In 100 mM NaCl but not in 10 mM NaCl, a significant number of complexes present the nucleosomes on superhelical crossings mainly located adjacent to an end-loop. The morphology of these structures and statistical analysis suggest that DNA loops were formed on the histone octamers, where the loop size distribution shows a pronounced peak at 50 nm. Recently, the formation and diffusion of loops on octamers has been discussed as a mechanism of translocations of nucleosomes along DNA. The presented data likely confirm the occurrence of loops, which may be stabilized by supercoiling. Analysis of the structure of regular nucleosomes not located on crossings indicates that reducing the salt concentration leads to more conformations, where DNA is partially unwrapped from the distal ends of the octamer.
Collapse
Affiliation(s)
- Malte Bussiek
- German Cancer Research Center, Div. Biophysics of Macromolecules, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
15
|
Abstract
Nucleic acids are characterized by a vast structural variability. Secondary structural conformations include the main polymorphs A, B, and Z, cruciforms, intrinsic curvature, and multistranded motifs. DNA secondary motifs are stabilized and regulated by the primary base sequence, contextual effects, environmental factors, as well as by high-order DNA packaging modes. The high-order modes are, in turn, affected by secondary structures and by the environment. This review is concerned with the flow of structural information among the hierarchical structural levels of DNA molecules, the intricate interplay between the various factors that affect these levels, and the regulation and physiological significance of DNA high-order structures.
Collapse
Affiliation(s)
- Abraham Minsky
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Oussatcheva EA, Pavlicek J, Sankey OF, Sinden RR, Lyubchenko YL, Potaman VN. Influence of global DNA topology on cruciform formation in supercoiled DNA. J Mol Biol 2004; 338:735-43. [PMID: 15099741 DOI: 10.1016/j.jmb.2004.02.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 02/12/2004] [Accepted: 02/14/2004] [Indexed: 11/22/2022]
Abstract
DNA supercoiling plays an important role in many genetic processes such as replication, transcription, and recombination. Supercoiling provides energy for helix un-pairing and drives the formation of alternative DNA structural transitions, like cruciforms. Supercoiling also allows distant DNA regions to be brought into close proximity through the formation of inter-wound supercoils. Recently, we showed that the inverted repeat-to-cruciform transition acts as a molecular switch, influencing the global topology of a topological plasmid domain. As alternative DNA structures can affect global topology, a corollary hypothesis might be that the localization of a specific DNA sequence within a topological domain may affect the energetics required for formation of an alternative DNA structure. Here, we test this hypothesis and show that the localization of an inverted repeat to an apical position increases the rate of cruciform formation and reduces the superhelical energy required to drive the transition. For this, we created a series of plasmids containing an inverted repeat and an A-tract bent DNA sequence. The A-tract forms a permanent 180 degrees bend irrespective of DNA topology. The inverted repeat and the bent sequence were placed either at six o'clock or nine o'clock positions with respect to each other. Using 2D agarose gel electrophoresis, we show that the six o'clock construct extrudes the cruciform at a lower superhelical density than a control plasmid without the bend. Atomic force microscopy shows that the nine o'clock construct has the propensity to form branched molecules with the cruciform at the end of one branch. These results demonstrate that the localization of sequences within specific regions of a topological domain can affect the energetics of structural transitions as well as the branching structure of the domain. As structural transitions can be involved in biological processes, localization of alternative conformation-forming sequences to specific locations within a domain provides an additional means for gene regulation.
Collapse
Affiliation(s)
- Elena A Oussatcheva
- Center for Genome Research, Institute of Biosciences and Technology, Texas A and M University System Health Sciences Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sucato CA, Rangel DP, Aspleaf D, Fujimoto BS, Schurr JM. Monte Carlo simulations of locally melted supercoiled DNAs in 20 mM ionic strength. Biophys J 2004; 86:3079-96. [PMID: 15111422 PMCID: PMC1304174 DOI: 10.1016/s0006-3495(04)74357-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 01/14/2004] [Indexed: 11/17/2022] Open
Abstract
Mesoscopic models of unmelted and locally melted supercoiled DNAs in 20 mM ionic strength are simulated over a range of linking difference from deltal = 0 to -26 turns, or superhelix density from sigma = 0 to -0.062. A domain containing m = 0, 28, or 56 melted basepairs (out of 4349 total) is modeled simply by a region of suitable length with substantially reduced torsion and bending elastic constants. Average structural properties are calculated from the saved configurations, and a reversible work protocol is used to calculate the supercoiling free energy, The cross-writhe between duplex and melted regions (defined herein) is found to be negligibly small. The total writhe, radius of gyration, and ordered elements of the diagonalized inertial tensor are found to be nearly universal functions of the residual linking difference (deltal(r)) associated with the duplex region, independent of m. However, deformability of the tertiary structure, as manifested by the variance of those same properties, is not a universal function of deltal(r)), but depends upon m.delta (SC) varies with deltal(r)) more strongly than deltal(r)) (2)due to the low ionic strength. The twist energy parameter, E (T) obtained from the simulated delta G(SC), deltal(r)), and net twisting strain of the melted region T (D), is found to be independent of m, hence also of the torsion and bending elastic constants of the melted region. However, E(T) increases linearly with -deltalr), which leads to 1). a small overestimation of E (T) for any given deltal(r)) when E(T) is determined from the observed deltal and deltal (r) by the protocol of Bauer and Benham; and 2). a significant enhancement of the apparent slope, -dE(T)/d(T), obtained via the protocol of Bauer and Benham, relative to the actual slope at fixed delta l(r). After taking these two effects into account, the theoretical and experimental values E(T) and -dE(T)/d(T) values agree rather well. For the larger deltal the melted regions are found preferentially in the linker domains between interwound arms, rather than in the apical regions at the ends of interwound arms.
Collapse
Affiliation(s)
- Christopher A Sucato
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
18
|
Bussiek M, Mücke N, Langowski J. Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 2004; 31:e137. [PMID: 14602930 PMCID: PMC275574 DOI: 10.1093/nar/gng137] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The conformations of supercoiled (sc) DNA and linear DNA bound to polylysine (PL)-coated mica were investigated by scanning force microscopy (SFM) in solution. From the polymer statistical analysis of linear DNA, we could distinguish between re-arrangements or trapping of the DNA on the surface. Conditions of re-arrangements to an almost equilibrated state can be achieved at appropriate PL surface concentrations. We could show that the ability of re-arrangements depends on the salt concentration of the adsorption/imaging buffer. Comparing the statistical analysis of the linear DNA with SFM images of scDNA suggested that irregular scDNA conformations are formed under conditions of trapping, whereas plectonemic structures are favoured under conditions of surface re-arrangements. Salt-dependent changes in the scDNA conformation over the range of 10-100 mM NaCl, as characterised by the parameters writhe and the superhelix radius r, are observable only under conditions that enable surface re-arrangements. The measured values of writhe suggest that the scDNA loses approximately one-half of the supercoils during the binding to the surface. At the same time r increases systematically with decreasing writhe, thus the scDNA topology remains determined by the constraints on supercoiling during the binding to PL-coated mica.
Collapse
Affiliation(s)
- Malte Bussiek
- German Cancer Research Center, Department of Biophysics of Macromolecules, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Shlyakhtenko LS, Miloseska L, Potaman VN, Sinden RR, Lyubchenko YL. Intersegmental interactions in supercoiled DNA: atomic force microscope study. Ultramicroscopy 2003; 97:263-70. [PMID: 12801679 DOI: 10.1016/s0304-3991(03)00051-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intersegmental interactions in DNA facilitated by the neutralization of electrostatic repulsion was studied as a function of salt concentration and DNA supercoiling. DNA samples with defined superhelical densities were deposited onto aminopropyl mica at different ionic conditions and imaged in air after drying of the samples. Similar to hydrodynamic data, we did not observe a collapse of supercoiled DNA, as proposed earlier by cryo-EM studies. Instead, the formation of the contacts between DNA helices within supercoiled loops with no visible space between the duplexes was observed. The length of such close contacts increased upon increasing NaCl concentration. DNA supercoiling was a critical factor for the stabilization of intersegmental contacts. Implications of the observed effect for understanding DNA compaction in the cell and for regulation DNA transactions via interaction of distantly separated DNA regions are discussed.
Collapse
|
20
|
Abstract
Transient electric birefringence has been used to analyze DNA bending in six restriction fragments containing 171, 174, 207, 263, 289, and 471 bp in three different low ionic strength buffers. The target fragments contain sequences corresponding to the apparent bend centers in pUC19 and Litmus 28, previously identified by the circular permutation assay (Strutz, K.; Stellwagen, N. C. Electrophoresis 1996, 17, 989-995). The target fragments migrate anomalously slowly in polyacrylamide gels and exhibit birefringence relaxation times that are shorter than those of restriction fragments of the same size, taken from nonbent regions of the same plasmids. Apparent bend angles ranging from 30 degrees to 41 degrees were calculated for the target fragments by tau-ratio method. The bend angles of four of the target fragments were independent of temperature from 4 degrees C to 20 degrees C, but decreased when the temperature was increased to 37 degrees C. The bend angles of the other two target fragments were independent of temperature over the entire range examined, 4 degrees -37 degrees C. Hence, the thermal stability of sequence-dependent bends in random-sequence DNA is variable. The bend angles of five of the six target fragments were independent of the presence or absence of Mg2+ ions in the solution, indicating most of the target fragments were stably bent or curved, rather than anisometrically flexible. Restriction fragments containing 219 and 224 bp, with sequences somewhat offset from the sequence of the 207 bp fragment, were also studied. Comparison of the tau-ratios of these overlapping fragments allowed both the bend angle and bend position to be independently determined. These methods should be useful for analyzing sequence-dependent bending in other random-sequence DNAs.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
21
|
Mukhopadhyay R, Srivatsan SG, Verma S. Surface trapping and AFM detection of DNA topological intermediates generated from an oxidative chemical nuclease. Biochem Biophys Res Commun 2003; 308:165-9. [PMID: 12890496 DOI: 10.1016/s0006-291x(03)01351-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Direct observation of DNA topological intermediates generated from a 'chemical nuclease' treatment has been made by atomic force microscopy (AFM). The intermediates were trapped at the mica-water interface and imaging was carried out in the dynamic force mode. Complete conversion from supercoiled circular state to relaxed circular/linear state has been observed over a time scale of 8 min. Implication of such studies in complementing gel electrophoresis data has been predicted.
Collapse
Affiliation(s)
- R Mukhopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | | | | |
Collapse
|
22
|
Potaman VN. Applications of triple-stranded nucleic acid structures to DNA purification, detection and analysis. Expert Rev Mol Diagn 2003; 3:481-96. [PMID: 12877387 DOI: 10.1586/14737159.3.4.481] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regions of double-stranded (duplex) DNA with purine bases predominantly in one strand and pyrimidine bases in the other may bind oligonucleotides of an appropriate sequence to form triple-stranded (triplex) structures. Oligonucleotide analogs and mimics, such as peptide nucleic acid, may also form stable complexes with duplex DNA. Triplex formation enables the specific targeting of duplex domains. The principles of triplex structures and recent developments in the gene therapeutic and biotechnological applications are briefly reviewed. Adaptations of triplex methodology to molecular diagnostics (DNA purification, detection and analysis) are reviewed in greater detail.
Collapse
Affiliation(s)
- Vladimir N Potaman
- Institute of Biosciences & Technology, Texas A&M University Health Sciences Center, Houston 77030-3303, USA.
| |
Collapse
|
23
|
Kuhn H, Hu Y, Frank-Kamenetskii MD, Demidov VV. Artificial site-specific DNA-nicking system based on common restriction enzyme assisted by PNA openers. Biochemistry 2003; 42:4985-92. [PMID: 12718541 DOI: 10.1021/bi020669d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the peptide nucleic acid (PNA)-directed design of a DNA-nicking system that enables selective and quantitative cleavage of one strand of duplex DNA at a designated site, thus mimicking natural nickases and significantly extending their potential. This system exploits the ability of pyrimidine PNAs to serve as openers for specific DNA sites by invading the DNA duplex and exposing one DNA strand for oligonucleotide hybridization. The resultant secondary duplex can act as a substrate for a restriction enzyme, which ultimately creates a nick in the parent DNA. We demonstrate that several restriction enzymes of different types could be successfully used in the PNA-assisted system we developed. Importantly, the enzyme cleavage efficiency is basically not impaired on such artificially generated substrates, compared with the efficiency on regular DNA duplexes. Our design originates a vast class of semisynthetic rare-cleaving DNA nickases, which are essentially absent at present. In addition, we show that the site-specific PNA-assisted nicking of duplex DNA can be engaged in a rolling-circle DNA amplification (RCA) reaction. This new RCA format demonstrates the practical potential of the novel biomolecular tool we propose for DNA technology and DNA diagnostics.
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
24
|
Potaman VN, Lushnikov AY, Sinden RR, Lyubchenko YL. Site-specific labeling of supercoiled DNA at the A+T rich sequences. Biochemistry 2002; 41:13198-206. [PMID: 12403621 DOI: 10.1021/bi026402w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Progress in structural biology studies of supercoiled DNA and its complexes with regulatory proteins depends on the availability of reliable and routine procedures for site-specific labeling of circular molecules. For this, we made use of oligonucleotide uptake by plasmid DNA under negative superhelical tension. Subsequent circularization of the oligonucleotide label facilitated by an oligonucleotide scaffold results in its threading between the two strands of duplex DNA. Several lines of evidence, including direct AFM mapping of the label, show that the circular oligonucleotide is stably localized at its target, an A+T rich region. The specific binding mode when the oligonucleotide threads the double helix results in a DNA kink that tends to occupy an apical position in a plectonemically wound supercoiled DNA, similar to the positioning of an A-tract bend. Site-specific labels may allow visualization techniques, such as electron and atomic force microscopies, to reliably map protein binding sites, identify local alternative structures in supercoiled DNA, and monitor structural dynamics of DNA molecules in real time. Site-specific oligonucleotide reactions with DNA may also have application in biotechnology and gene therapy.
Collapse
Affiliation(s)
- Vladimir N Potaman
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, Houston, Texas 77030-3303, USA.
| | | | | | | |
Collapse
|
25
|
Bussiek M, Klenin K, Langowski J. Kinetics of Site–Site Interactions in Supercoiled DNA with Bent Sequences. J Mol Biol 2002; 322:707-18. [PMID: 12270708 DOI: 10.1016/s0022-2836(02)00817-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A curved DNA segment is known to adopt a preferred end loop localization in superhelical (sc) DNA and thus may organize the overall conformation of the molecule. Through this process it influences the probability of site juxtaposition. We addressed the effect of a curvature on site-site interactions quantitatively by measuring the kinetics of cross-linking of two biotinylated positions in scDNA by streptavidin. The DNA was biotinylated at either symmetric or asymmetric positions with respect to a curved insert via triplex-forming oligonucleotides (TFOs) modified with biotin. We used a quench-flow device to mix the DNA with the protein and scanning force microscopy to quantify the reaction products. As a measure of the interaction probability, rate constants of cross-linking and local concentrations j(M) of one biotinylated site in the vicinity of the other were determined and compared to Monte Carlo simulations for corresponding DNAs. In good agreement with the simulations, a j(M) value of 1.74 microM between two sites 500bp apart was measured for an scDNA without curvature. When a curvature was centered between the sites, the interaction probability increased about twofold over the DNA without curvature, significantly less than expected from the simulations. However, the relative differences of the interaction probabilities due to varied biotin positions with respect to the curvature agreed quantitatively with the theory.
Collapse
Affiliation(s)
- Malte Bussiek
- German Cancer Research Center, Div. Biophysics of Macromolecules, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
26
|
Nagami F, Zuccheri G, Samorì B, Kuroda R. Time-lapse imaging of conformational changes in supercoiled DNA by scanning force microscopy. Anal Biochem 2002; 300:170-6. [PMID: 11779108 DOI: 10.1006/abio.2001.5435] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the scanning force microscopy (SFM) images of supercoiled DNA on untreated mica thus far reported have not shown tight plectonemic structure seen by electron microscopy, but instead less coiled molecules and sometimes a partly "condensed" state with intimate chain-chain interactions. By observing time-lapse images of conformational changes of DNA induced by decreasing ionic strength of imaging buffer in solution SFM, we could show that the process of water rinsing, an indispensable step for preparation of dried samples, may be responsible for some of the conformational anomalies in the images previously reported. We have studied several protocols to observe supercoiled DNA molecules by SFM and discuss the merits and the demerits. Images obtained following uranyl acetate treatment may be ideal for the detection of DNA damage, as the supercoiled and nicked forms are easily distinguishable.
Collapse
Affiliation(s)
- Fuji Nagami
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
27
|
Shlyakhtenko LS, Potaman VN, Sinden RR, Gall AA, Lyubchenko YL. Structure and dynamics of three-way DNA junctions: atomic force microscopy studies. Nucleic Acids Res 2000; 28:3472-7. [PMID: 10982865 PMCID: PMC110733 DOI: 10.1093/nar/28.18.3472] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used atomic force microscopy (AFM) to study the conformation of three-way DNA junctions, intermediates of DNA replication and recombination. Immobile three-way junctions with one hairpin arm (50, 27, 18 and 7 bp long) and two relatively long linear arms were obtained by annealing two partially homologous restriction fragments. Fragments containing inverted repeats of specific length formed hairpins after denaturation. Three-way junctions were obtained by annealing one strand of a fragment from a parental plasmid with one strand of an inverted repeat-containing fragment, purified from gels, and examined by AFM. The molecules are clearly seen as three-armed molecules with one short arm and two flexible long arms. The AFM analysis revealed two important features of three-way DNA junctions. First, three-way junctions are very dynamic structures. This conclusion is supported by a high variability of the inter-arm angle detected on dried samples. The mobility of the junctions was observed directly by imaging the samples in liquid (AFM in situ). Second, measurements of the angle between the arms led to the conclusion that three-way junctions are not flat, but rather pyramid-like. Non-flatness of the junction should be taken into account in analysis of the AFM data.
Collapse
Affiliation(s)
- L S Shlyakhtenko
- Department of Microbiology and Department of Biology, Arizona State University, Tempe, AZ 85287-2701, USA
| | | | | | | | | |
Collapse
|
28
|
Schulz A, Langowski J, Rippe K. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme. J Mol Biol 2000; 300:709-25. [PMID: 10891265 DOI: 10.1006/jmbi.2000.3921] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription activator protein NtrC (nitrogen regulatory protein C) can catalyze the transition of Escherichia coli RNA polymerase complexed with the sigma 54 factor (RNAP.sigma(54)) from the closed complex (RNAP.sigma(54) bound at the promoter) to the open complex (melting of the promoter DNA). This process involves phosphorylation of NtrC (NtrC-P), assembly of an octameric NtrC-P complex at the enhancer sequence, interaction of this complex with promoter-bound RNAP.sigma(54) via DNA looping, and hydrolysis of ATP. We have used this system to study the influence of the DNA conformation on the transcription activation rate in single-round transcription experiments with superhelical plasmids as well as linearized templates. Most of the templates had an intrinsically curved DNA sequence between the enhancer and the promoter and differed with respect to the location of the curvature and the distance between the two DNA sites. The following results were obtained: (i) a ten- to 60-fold higher activation rate was observed with the superhelical templates as compared to the linearized conformation; (ii) the presence of an intrinsically curved DNA sequence increased the activation rate of linear templates about five times; (iii) no systematic effect for the presence and/or location of the inserted curved sequence was observed for the superhelical templates. However, the transcription activation rate varied up to a factor of 10 between some of the constructs. (iv) Differences in the distance between enhancer and promoter had little effect for the superhelical templates studied. The results were compared with theoretical calculations for the dependence of the contact probability between enhancer and promoter expressed as the molar local concentration j(M). A correlation of j(M) with the transcription activation rate was observed for values of 10(-8) M<j(M)<10(-6) M and a kinetic model for NtrC-P-catalyzed open complex formation was developed.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Enhancer Elements, Genetic/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Holoenzymes/metabolism
- Kinetics
- Models, Genetic
- Nucleic Acid Conformation
- PII Nitrogen Regulatory Proteins
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic/genetics
- RNA Polymerase Sigma 54
- Sigma Factor/metabolism
- Templates, Genetic
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- A Schulz
- Deutsches Krebsforschungszentrum, Abteilung Biophysik der Makromoleküle, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
29
|
Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL. A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J Mol Biol 2000; 296:1169-73. [PMID: 10698623 DOI: 10.1006/jmbi.2000.3542] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction between specific sites along a DNA molecule is often crucial for the regulation of genetic processes. However, mechanisms regulating the interaction of specific sites are unknown. We have used atomic force microscopy to demonstrate that the structural transition between cruciform conformations can act as a molecular switch to facilitate or prevent communication between distant regions in DNA. Cruciform structures exist in vivo and they are critically involved in the initiation of replication and the regulation of gene expression in different organisms. Therefore, structural transitions of the cruciform may play a key role in these processes.
Collapse
Affiliation(s)
- L S Shlyakhtenko
- Department of Microbiology, Arizona State University, Tempe, AZ 85287-2701, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The effect of ethanol on the structure of DNA confined to mica in the presence of Mg2+was examined by varying the ethanol concentration and imaging the DNA by atomic force microscopy. Contour length measurements of the DNA show a transition from all-B-form at 0% ethanol to all-A-form at >25% ethanol. At intermediate ethanol concentrations, contour lengths suggest that individual molecules of air-dried DNA are trapped with mixed compositions of A-form and B-form. The relative composition depends on the ethanol concentration. Fitting the length distributions at intermediate ethanol concentrations to a simple binomial model results in an upper bound estimate for the A-form and B-form domains of approximately 54 bp in the individual molecules. In addition to length changes, the apparent persistence length of DNA decreases with increasing ethanol concentration. At high concentrations of ethanol (>20%), DNA formed several higher order structures, including flower shaped condensates and toroids.
Collapse
Affiliation(s)
- Y Fang
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|