• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4611598)   Today's Articles (1014)   Subscriber (49382)
For: DeLuca CI, Davies PL, Ye Q, Jia Z. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. J Mol Biol 1998;275:515-25. [PMID: 9466928 DOI: 10.1006/jmbi.1997.1482] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Number Cited by Other Article(s)
1
Dauter Z, Wlodawer A. In some cases more complicated approaches to refinement of macromolecular structures are not necessary. IUCRJ 2024;11:643-644. [PMID: 38958017 PMCID: PMC11220886 DOI: 10.1107/s2052252524005803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
2
Scholl CL, Davies PL. Protein engineering of antifreeze proteins reveals that their activity scales with the area of the ice-binding site. FEBS Lett 2023;597:538-546. [PMID: 36460826 DOI: 10.1002/1873-3468.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
3
Delesky EA, Garcia LF, Lobo AJ, Mikofsky RA, Dowdy ND, Wallat JD, Miyake GM, Srubar WV. Bioinspired Threonine-Based Polymers with Potent Ice Recrystallization Inhibition Activity. ACS APPLIED POLYMER MATERIALS 2022;4:7934-7942. [PMID: 36714526 PMCID: PMC9881732 DOI: 10.1021/acsapm.2c01496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
4
Delesky EA, Srubar WV. Ice-binding proteins and bioinspired synthetic mimics in non-physiological environments. iScience 2022;25:104286. [PMID: 35573196 PMCID: PMC9097698 DOI: 10.1016/j.isci.2022.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]  Open
5
Gharib G, Saeidiharzand S, Sadaghiani AK, Koşar A. Antifreeze Proteins: A Tale of Evolution From Origin to Energy Applications. Front Bioeng Biotechnol 2022;9:770588. [PMID: 35186912 PMCID: PMC8851421 DOI: 10.3389/fbioe.2021.770588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022]  Open
6
Ghalamara S, Silva S, Brazinha C, Pintado M. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. BIORESOUR BIOPROCESS 2022;9:5. [PMID: 38647561 PMCID: PMC10992025 DOI: 10.1186/s40643-022-00494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022]  Open
7
Mikhailovskii O, Xue Y, Skrynnikov NR. Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform Amber. IUCRJ 2022;9:114-133. [PMID: 35059216 PMCID: PMC8733891 DOI: 10.1107/s2052252521011891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
8
Maddah M, Shahabi M, Peyvandi K. How Does DcAFP, a Plant Antifreeze Protein, Control Ice Inhibition through the Kelvin Effect? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Baskaran A, Kaari M, Venugopal G, Manikkam R, Joseph J, Bhaskar PV. Anti freeze proteins (Afp): Properties, sources and applications - A review. Int J Biol Macromol 2021;189:292-305. [PMID: 34419548 DOI: 10.1016/j.ijbiomac.2021.08.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
10
Arsiccio A, Pisano R. The Ice-Water Interface and Protein Stability: A Review. J Pharm Sci 2020;109:2116-2130. [DOI: 10.1016/j.xphs.2020.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
11
Carrot ‘antifreeze’ protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization. Biochem J 2020;477:2179-2192. [DOI: 10.1042/bcj20200238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
12
Maddah M, Maddah M, Peyvandi K. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study. Phys Chem Chem Phys 2019;21:21836-21846. [PMID: 31552400 DOI: 10.1039/c9cp03833g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Perez AF, Taing KR, Quon JC, Flores A, Ba Y. Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique. CRYSTALS 2019;9. [PMID: 33224522 PMCID: PMC7678753 DOI: 10.3390/cryst9070352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
14
Chakraborty S, Jana B. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Phys Chem Chem Phys 2019;21:19298-19310. [DOI: 10.1039/c9cp03135a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Chakraborty S, Jana B. Calcium ion implicitly modulates the adsorption ability of ion-dependent type II antifreeze proteins on an ice/water interface: a structural insight. Metallomics 2019;11:1387-1400. [DOI: 10.1039/c9mt00100j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
16
Bredow M, Tomalty HE, Smith L, Walker VK. Ice and anti-nucleating activities of an ice-binding protein from the annual grass, Brachypodium distachyon. PLANT, CELL & ENVIRONMENT 2018;41:983-992. [PMID: 28035668 DOI: 10.1111/pce.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/15/2023]
17
Flores A, Quon JC, Perez AF, Ba Y. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018;47:611-630. [PMID: 29487966 DOI: 10.1007/s00249-018-1285-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/28/2018] [Accepted: 02/15/2018] [Indexed: 12/01/2022]
18
Roterman I, Banach M, Konieczny L. Antifreeze proteins. Bioinformation 2017;13:400-401. [PMID: 29379256 PMCID: PMC5767914 DOI: 10.6026/97320630013400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 12/25/2022]  Open
19
Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar Drugs 2017;15:md15020027. [PMID: 28134801 PMCID: PMC5334608 DOI: 10.3390/md15020027] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022]  Open
20
Choi SR, Seo YJ, Kim M, Eo Y, Ahn HC, Lee AR, Park CJ, Ryu KS, Cheong HK, Lee SS, Jin E, Lee JH. NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein. FEBS Lett 2016;590:4202-4212. [PMID: 27718246 DOI: 10.1002/1873-3468.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 11/06/2022]
21
Pandey R, Usui K, Livingstone RA, Fischer SA, Pfaendtner J, Backus EHG, Nagata Y, Fröhlich-Nowoisky J, Schmüser L, Mauri S, Scheel JF, Knopf DA, Pöschl U, Bonn M, Weidner T. Ice-nucleating bacteria control the order and dynamics of interfacial water. SCIENCE ADVANCES 2016;2:e1501630. [PMID: 27152346 PMCID: PMC4846457 DOI: 10.1126/sciadv.1501630] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/24/2016] [Indexed: 05/22/2023]
22
Yoshida K, Baron AQR, Uchiyama H, Tsutsui S, Yamaguchi T. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering. J Chem Phys 2016;144:134505. [PMID: 27059578 DOI: 10.1063/1.4944987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Protein–water dynamics in antifreeze protein III activity. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
24
Choi YG, Park CJ, Kim HE, Seo YJ, Lee AR, Choi SR, Lee SS, Lee JH. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase. JOURNAL OF BIOMOLECULAR NMR 2015;61:137-150. [PMID: 25575834 DOI: 10.1007/s10858-014-9895-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
25
Capicciotti CJ, Poisson JS, Boddy CN, Ben RN. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology 2015;70:79-89. [PMID: 25595636 DOI: 10.1016/j.cryobiol.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/11/2023]
26
Observation of ice-like water layers at an aqueous protein surface. Proc Natl Acad Sci U S A 2014;111:17732-6. [PMID: 25468976 DOI: 10.1073/pnas.1414188111] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
27
Narayanan Krishnamoorthy A, Holm C, Smiatek J. Local Water Dynamics around Antifreeze Protein Residues in the Presence of Osmolytes: The Importance of Hydroxyl and Disaccharide Groups. J Phys Chem B 2014;118:11613-21. [DOI: 10.1021/jp507062r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
28
Banerjee R, Chakraborti P, Bhowmick R, Mukhopadhyay S. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium. J Biomol Struct Dyn 2014;33:1424-41. [PMID: 25190099 DOI: 10.1080/07391102.2014.952665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
29
Wilkens C, Poulsen JCN, Ramløv H, Lo Leggio L. Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus. Cryobiology 2014;69:163-8. [PMID: 25025819 DOI: 10.1016/j.cryobiol.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
30
Midya US, Bandyopadhyay S. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. J Phys Chem B 2014;118:4743-52. [PMID: 24725212 DOI: 10.1021/jp412528b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN. Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv 2014. [DOI: 10.1039/c4ra06893a] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
32
Zhang S, Gao J, Lu Y, Cai S, Qiao X, Wang Y, Yu H. Molecular cloning, sequence analysis and homology modeling of the first caudata amphibian antifreeze-like protein in axolotl (Ambystoma mexicanum). Zoolog Sci 2013;30:658-62. [PMID: 23915159 DOI: 10.2108/zsj.30.658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
33
Meister K, Ebbinghaus S, Xu Y, Duman JG, DeVries A, Gruebele M, Leitner DM, Havenith M. Long-range protein-water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci U S A 2013;110:1617-22. [PMID: 23277543 PMCID: PMC3562781 DOI: 10.1073/pnas.1214911110] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
34
Garnham CP, Nishimiya Y, Tsuda S, Davies PL. Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. FEBS Lett 2012;586:3876-81. [PMID: 23017208 DOI: 10.1016/j.febslet.2012.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/09/2012] [Accepted: 09/14/2012] [Indexed: 11/26/2022]
35
Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci U S A 2012;109:9360-5. [PMID: 22645341 PMCID: PMC3386094 DOI: 10.1073/pnas.1121607109] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
36
Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 2012;416:713-24. [PMID: 22306740 DOI: 10.1016/j.jmb.2012.01.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/18/2012] [Indexed: 11/16/2022]
37
A peek at ice binding by antifreeze proteins. Proc Natl Acad Sci U S A 2011;108:7281-2. [PMID: 21518869 DOI: 10.1073/pnas.1104618108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
38
Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry 2010;49:9063-71. [PMID: 20853841 DOI: 10.1021/bi100516e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
39
Kelley JL, Aagaard JE, MacCoss MJ, Swanson WJ. Functional diversification and evolution of antifreeze proteins in the antarctic fish Lycodichthys dearborni. J Mol Evol 2010;71:111-8. [PMID: 20686757 DOI: 10.1007/s00239-010-9367-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/06/2010] [Indexed: 12/01/2022]
40
Takamichi M, Nishimiya Y, Miura A, Tsuda S. Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. FEBS J 2009;276:1471-9. [PMID: 19187223 DOI: 10.1111/j.1742-4658.2009.06887.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
41
Petit-Haertlein I, Blakeley MP, Howard E, Hazemann I, Mitschler A, Haertlein M, Podjarny A. Perdeuteration, purification, crystallization and preliminary neutron diffraction of an ocean pout type III antifreeze protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009;65:406-9. [PMID: 19342793 PMCID: PMC2664773 DOI: 10.1107/s1744309109008574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/09/2009] [Indexed: 11/10/2022]
42
Middleton AJ, Brown AM, Davies PL, Walker VK. Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 2009;583:815-9. [PMID: 19185572 DOI: 10.1016/j.febslet.2009.01.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/25/2022]
43
Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S. Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 2008;382:734-46. [PMID: 18674542 DOI: 10.1016/j.jmb.2008.07.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/13/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
44
Smolin N, Daggett V. Formation of Ice-like Water Structure on the Surface of an Antifreeze Protein. J Phys Chem B 2008;112:6193-202. [DOI: 10.1021/jp710546e] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
45
García-Arribas O, Mateo R, Tomczak MM, Davies PL, Mateu MG. Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges. Protein Sci 2006;16:227-38. [PMID: 17189482 PMCID: PMC2203292 DOI: 10.1110/ps.062448907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
46
Doxey AC, Yaish MW, Griffith M, McConkey BJ. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nat Biotechnol 2006;24:852-5. [PMID: 16823370 DOI: 10.1038/nbt1224] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 05/05/2006] [Indexed: 11/08/2022]
47
Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S. Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. FEBS J 2005;272:482-92. [PMID: 15654886 DOI: 10.1111/j.1742-4658.2004.04490.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
48
Yang C, Sharp KA. Hydrophobic tendency of polar group hydration as a major force in type I antifreeze protein recognition. Proteins 2005;59:266-74. [PMID: 15726609 DOI: 10.1002/prot.20429] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
49
Iwasaki K, Hagiwara Y. Inhibition of Ice Nucleus Growth in Water by Alanine Dipeptide. MOLECULAR SIMULATION 2004. [DOI: 10.1080/08927020410001713951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
50
Yang C, Sharp KA. The mechanism of the type III antifreeze protein action: a computational study. Biophys Chem 2004;109:137-48. [PMID: 15059666 DOI: 10.1016/j.bpc.2003.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 10/17/2003] [Accepted: 10/18/2003] [Indexed: 10/26/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA