1
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. Formation of the Native Topology of a Protein is due to the "Conserved but Non-Functional" Residues: A Case of Apomyoglobin Folding. FRONT BIOSCI-LANDMRK 2024; 29:379. [PMID: 39614442 DOI: 10.31083/j.fbl2911379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
This paper is dedicated to the memory of Oleg B. Ptitsyn (1929-1999) and presents an answer to his question: "What is the role of conserved non-functional residues in protein folding?". This answer follows from the experimental works of three labs. The role of non-functional but conserved residues of apomyoglobin (apoMb) in the formation of the native protein fold in the molten globule state has been experimentally revealed. This research proves that the non-functional but conserved residues of apoMb are necessary for the formation and maintenance of the correct topological arrangement of the main elements in the apoMb secondary structure already in the early folding intermediate.
Collapse
Affiliation(s)
- Valentina E Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Vitalii A Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Alexei V Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Biology Department, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
2
|
Bychkova VE, Dolgikh DA, Balobanov VA. Function of the Conserved Non-Functional Residues in Apomyoglobin - to Determine and to Preserve Correct Topology of the Protein. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1905-1909. [PMID: 38105207 DOI: 10.1134/s0006297923110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
In this paper the answer to O. B. Ptitsyn's question "What is the role of conserved non-functional residues in apomyoglobin" is presented, which is based on the research results of three laboratories. The role of conserved non-functional apomyoglobin residues in formation of native topology in the molten globule state of this protein is revealed. This fact allows suggesting that the conserved non-functional residues in this protein are indispensable for fixation and maintaining main elements of the correct topology of its secondary structure in the intermediate state. The correct topology is a native element in the intermediate state of the protein.
Collapse
Affiliation(s)
- Valentina E Bychkova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117871, Russia
| | - Vitalii A Balobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
3
|
Margulies DH, Taylor DK, Jiang J, Boyd LF, Ahmad J, Mage MG, Natarajan K. Chaperones and Catalysts: How Antigen Presentation Pathways Cope With Biological Necessity. Front Immunol 2022; 13:859782. [PMID: 35464465 PMCID: PMC9022212 DOI: 10.3389/fimmu.2022.859782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immune recognition by T lymphocytes and natural killer (NK) cells is in large part dependent on the identification of cell surface MHC molecules bearing peptides generated from either endogenous (MHC I) or exogenous (MHC II) dependent pathways. This review focuses on MHC I molecules that coordinately fold to bind self or foreign peptides for such surface display. Peptide loading occurs in an antigen presentation pathway that includes either the multimolecular peptide loading complex (PLC) or a single chain chaperone/catalyst, TAP binding protein, related, TAPBPR, that mimics a key component of the PLC, tapasin. Recent structural and dynamic studies of TAPBPR reveal details of its function and reflect on mechanisms common to tapasin. Regions of structural conservation among species suggest that TAPBPR and tapasin have evolved to satisfy functional complexities demanded by the enormous polymorphism of MHC I molecules. Recent studies suggest that these two chaperone/catalysts exploit structural flexibility and dynamics to stabilize MHC molecules and facilitate peptide loading.
Collapse
Affiliation(s)
- David H Margulies
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Daniel K Taylor
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Jiansheng Jiang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Lisa F Boyd
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Javeed Ahmad
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Michael G Mage
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| | - Kannan Natarajan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Molecular Biology Section, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Extracting phylogenetic dimensions of coevolution reveals hidden functional signals. Sci Rep 2022; 12:820. [PMID: 35039514 PMCID: PMC8764114 DOI: 10.1038/s41598-021-04260-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Despite the structural and functional information contained in the statistical coupling between pairs of residues in a protein, coevolution associated with function is often obscured by artifactual signals such as genetic drift, which shapes a protein's phylogenetic history and gives rise to concurrent variation between protein sequences that is not driven by selection for function. Here, we introduce a background model for phylogenetic contributions of statistical coupling that separates the coevolution signal due to inter-clade and intra-clade sequence comparisons and demonstrate that coevolution can be measured on multiple phylogenetic timescales within a single protein. Our method, nested coevolution (NC), can be applied as an extension to any coevolution metric. We use NC to demonstrate that poorly conserved residues can nonetheless have important roles in protein function. Moreover, NC improved the structural-contact predictions of several coevolution-based methods, particularly in subsampled alignments with fewer sequences. NC also lowered the noise in detecting functional sectors of collectively coevolving residues. Sectors of coevolving residues identified after application of NC were more spatially compact and phylogenetically distinct from the rest of the protein, and strongly enriched for mutations that disrupt protein activity. Thus, our conceptualization of the phylogenetic separation of coevolution provides the potential to further elucidate relationships among protein evolution, function, and genetic diseases.
Collapse
|
5
|
Khan SH, Prakash A, Pandey P, Islam A, Hassan MI, Lynn AM, Ahmad F. Effects of natural mutations (L94I and L94V) on the stability and mechanism of folding of horse cytochrome c: A combined in vitro and molecular dynamics simulations approach. Int J Biol Macromol 2020; 159:976-985. [PMID: 32439437 DOI: 10.1016/j.ijbiomac.2020.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/13/2022]
Abstract
Known crystal structures of 10 cytochromes (cyts) c from different sources led to the conclusion that natural mutations in these proteins does not affect their 3D structure, hence evolution preserved structure for function. A sequence alignment of horse cyt c with all other 284 cyts c led to two important conclusions: (i) Leu at position 94 is conserved in all 30 mammalian known sequences, and (ii) there are 14 other species which have either Val or Ile at 94th position. We asked a question: Is the avoidance of substitution by Val or Ile at position 94 in the mammalian cyts c by design or by chance? To answer this question, we introduced natural substitutes of Leu94 by Val and Ile in horse cyt c using site-directed mutagenesis. Here, from our in vitro and molecular dynamic simulation studies on L94V and L94I mutants, we concluded that (i) although the natural mutations destabilize the wild type cyt c, it does not significantly affect the mechanism of folding of the protein, (ii) urea-induced denaturation of WT cyt c and its mutants is a two-state process, and (iii) denaturation of WT cyt c and its mutants by guanidinium chloride is not a two-state process.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- Centre for Interdisciplinary research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon 122413, India
| | - Preeti Pandey
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Asimul Islam
- Centre for Interdisciplinary research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Faizan Ahmad
- Centre for Interdisciplinary research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
Rogers DM, Jasim SB, Dyer NT, Auvray F, Réfrégiers M, Hirst JD. Electronic Circular Dichroism Spectroscopy of Proteins. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Mizukami T, Xu M, Fazlieva R, Bychkova VE, Roder H. Complex Folding Landscape of Apomyoglobin at Acidic pH Revealed by Ultrafast Kinetic Analysis of Core Mutants. J Phys Chem B 2018; 122:11228-11239. [PMID: 30133301 DOI: 10.1021/acs.jpcb.8b06895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under mildly acidic conditions (pH 4-4.5) apomyoglobin (apoMb) adopts a partially structured equilibrium state ( M-state) that structurally resembles a kinetic intermediate encountered at a late stage of folding to the native structure at neutral pH. We have previously reported that the M-state is formed rapidly (<1 ms) via a multistate process and thus offers a unique opportunity for exploring early stages of folding by both experimental and computational techniques. In order to gain structural insight into intermediates and barriers at the residue level, we studied the folding/unfolding kinetics of 12 apoMb mutants at pH 4.2 using fluorescence-detected ultrafast mixing techniques. Global analysis of the submillisecond folding/unfolding kinetics vs urea concentration for each variant, based on a sequential four-state mechanism ( U ⇔ I ⇔ L ⇔ M), allowed us to determine elementary rate constants and their dependence on urea concentration for most transitions. Comparison of the free energy diagrams constructed from the kinetic data of the mutants with that of wild-type apoMb yielded quantitative information on the effects of mutations on the free energy (ΔΔ G) of both intermediates and the first two kinetic barriers encountered during folding. Truncation of conserved aliphatic side chains on helices A, G, and H gives rise to a stepwise increase in ΔΔ G as the protein advances from U toward M, consistent with progressive stabilization of native-like contacts within the primary core of apoMb. Helix-helix contacts in the primary core contribute little to the first folding barrier ( U ⇔ I) and thus are not required for folding initiation but are critical for the stability of the late intermediate, L, and the M-state. Alanine substitution of hydrophobic residues at more peripheral helix-helix contact sites of the native structure, which are still absent or unstable in the M-state, shows both positive (destabilizing) and negative (stabilizing) ΔΔ G, indicating that non-native contacts are formed initially and weakened or lost as a result of subsequent structural rearrangement steps.
Collapse
Affiliation(s)
- Takuya Mizukami
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| | - Ming Xu
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| | - Ruzaliya Fazlieva
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| | - Valentina E Bychkova
- Laboratory of Protein Physics , Institute of Protein Science, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Heinrich Roder
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| |
Collapse
|
8
|
Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci U S A 2018; 115:7955-7960. [PMID: 30018060 PMCID: PMC6077723 DOI: 10.1073/pnas.1806833115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dysfunction of mitochondria, the powerhouses of living cells, favors the onset of human diseases, namely neurodegenerative diseases, cardiovascular pathologies, and cancer. Actually, respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 during the insulin-induced neuroprotection response following a brain ischemic injury. Here, we report that the decrease in neuronal death could be directly ascribed to changes in mitochondrial metabolism—including lower production of reactive oxygen species—and cell homeostasis induced by cytochrome c phosphorylation. Our findings thus provide the basis for understanding the molecular mechanism and potential use of phosphomimetic species of cytochrome c, thereby yielding new opportunities to develop more efficient therapies against acute pathologies. Respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 in the postischemic brain upon neuroprotective insulin treatment, but how such posttranslational modification affects mitochondrial metabolism is unclear. Here, we report the structural features and functional behavior of a phosphomimetic cytochrome c mutant, which was generated by site-specific incorporation at position 97 of p-carboxymethyl-l-phenylalanine using the evolved tRNA synthetase method. We found that the point mutation does not alter the overall folding and heme environment of cytochrome c, but significantly affects the entire oxidative phosphorylation process. In fact, the electron donation rate of the mutant heme protein to cytochrome c oxidase, or complex IV, within respiratory supercomplexes was higher than that of the wild-type species, in agreement with the observed decrease in reactive oxygen species production. Direct contact of cytochrome c with the respiratory supercomplex factor HIGD1A (hypoxia-inducible domain family member 1A) is reported here, with the mutant heme protein exhibiting a lower affinity than the wild-type species. Interestingly, phosphomimetic cytochrome c also exhibited a lower caspase-3 activation activity. Altogether, these findings yield a better understanding of the molecular basis for mitochondrial metabolism in acute diseases, such as brain ischemia, and thus could allow the use of phosphomimetic cytochrome c as a neuroprotector with therapeutic applications.
Collapse
|
9
|
Khan SH, Islam A, Hassan MI, Sharma S, Singh TP, Ahmad F. Effect of conservative mutations (L94V and L94I) on the structure and stability of horse cytochrome c. Arch Biochem Biophys 2017; 633:40-49. [DOI: 10.1016/j.abb.2017.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
10
|
Refojo PN, Calisto F, Ribeiro MA, Teixeira M, Pereira MM. The monoheme cytochrome c subunit of Alternative Complex III is a direct electron donor to caa3 oxygen reductase in Rhodothermus marinus. Biol Chem 2017; 398:1037-1044. [DOI: 10.1515/hsz-2016-0323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/23/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Alternative Complex III (ACIII) is an example of the robustness and flexibility of prokaryotic respiratory chains. It performs quinol:cytochrome c oxidoreductase activity, being functionally equivalent to the bc1 complex but structurally unrelated. In this work we further explored ACIII investigating the role of its monoheme cytochrome c subunit (ActE). We expressed and characterized the individually isolated ActE, which allowed us to suggest that ActE is a lipoprotein and to show its function as a direct electron donor to the caa3 oxygen reductase.
Collapse
|
11
|
Structural and thermodynamic characterisation of L94F mutant of horse cytochrome c. Int J Biol Macromol 2016; 92:202-212. [DOI: 10.1016/j.ijbiomac.2016.06.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
|
12
|
Sacquin-Mora S. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? J R Soc Interface 2016; 12:rsif.2015.0876. [PMID: 26577596 DOI: 10.1098/rsif.2015.0876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The determination of a protein's folding nucleus, i.e. a set of native contacts playing an important role during its folding process, remains an elusive yet essential problem in biochemistry. In this work, we investigate the mechanical properties of 70 protein structures belonging to 14 protein families presenting various folds using coarse-grain Brownian dynamics simulations. The resulting rigidity profiles combined with multiple sequence alignments show that a limited set of rigid residues, which we call the consensus nucleus, occupy conserved positions along the protein sequence. These residues' side chains form a tight interaction network within the protein's core, thus making our consensus nuclei potential folding nuclei. A review of experimental and theoretical literature shows that most (above 80%) of these residues were indeed identified as folding nucleus member in earlier studies.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
13
|
Sacquin-Mora S. Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach. Methods Enzymol 2016; 578:227-48. [PMID: 27497169 DOI: 10.1016/bs.mie.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Flexibility is a central aspect of protein function, and ligand binding in enzymes involves a wide range of structural changes, ranging from large-scale domain movements to small loop or side-chain rearrangements. In order to understand how the mechanical properties of enzymes, and the mechanical variations that are induced by ligand binding, relate to enzymatic activity, we carried out coarse-grain Brownian dynamics simulations on a set of enzymes whose structures in the unbound and ligand-bound forms are available in the Protein Data Bank. Our results show that enzymes are remarkably heterogeneous objects from a mechanical point of view and that the local rigidity of individual residues is tightly connected to their part in the protein's overall structure and function. The systematic comparison of the rigidity of enzymes in their unbound and bound forms highlights the fact that small conformational changes can induce large mechanical effects, leading to either more or less flexibility depending on the enzyme's architecture and the location of its ligand-biding site. These mechanical variations target a limited number of specific residues that occupy key locations for enzymatic activity, and our approach thus offers a mean to detect perturbation-sensitive sites in enzymes, where the addition or removal of a few interactions will lead to important changes in the proteins internal dynamics.
Collapse
Affiliation(s)
- S Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
14
|
Echave J, Spielman SJ, Wilke CO. Causes of evolutionary rate variation among protein sites. Nat Rev Genet 2016; 17:109-21. [PMID: 26781812 DOI: 10.1038/nrg.2015.18] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that certain sites within a protein, such as sites in the protein core or catalytic residues in enzymes, are evolutionarily more conserved than other sites. However, our understanding of rate variation among sites remains surprisingly limited. Recent progress to address this includes the development of a wide array of reliable methods to estimate site-specific substitution rates from sequence alignments. In addition, several molecular traits have been identified that correlate with site-specific mutation rates, and novel mechanistic biophysical models have been proposed to explain the observed correlations. Nonetheless, current models explain, at best, approximately 60% of the observed variance, highlighting the limitations of current methods and models and the need for new research directions.
Collapse
Affiliation(s)
- Julian Echave
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | - Stephanie J Spielman
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Claus O Wilke
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
15
|
Sil P, Paul SS, Silvio ED, Travaglini-Allocatelli C, Chattopadhyay K. Studies of cytochrome c-551 unfolding using fluorescence correlation spectroscopy and other biophysical techniques. Phys Chem Chem Phys 2016; 18:24537-48. [DOI: 10.1039/c6cp04819f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence correlation spectroscopy studies with a bacterial cytochrome c labeled at different positions complement NMR hydrogen exchange results.
Collapse
Affiliation(s)
- Pallabi Sil
- Structural Biology and Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Simanta Sarani Paul
- Structural Biology and Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Eva Di Silvio
- Department of Biochemical Sciences
- University of Rome “La Sapienza”
- Rome
- Italy
| | | | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| |
Collapse
|
16
|
Nagao S, Ueda M, Osuka H, Komori H, Kamikubo H, Kataoka M, Higuchi Y, Hirota S. Domain-swapped dimer of Pseudomonas aeruginosa cytochrome c551: structural insights into domain swapping of cytochrome c family proteins. PLoS One 2015; 10:e0123653. [PMID: 25853415 PMCID: PMC4390240 DOI: 10.1371/journal.pone.0123653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 02/06/2023] Open
Abstract
Cytochrome c (cyt c) family proteins, such as horse cyt c, Pseudomonas aeruginosa cytochrome c551 (PA cyt c551), and Hydrogenobacter thermophilus cytochrome c552 (HT cyt c552), have been used as model proteins to study the relationship between the protein structure and folding process. We have shown in the past that horse cyt c forms oligomers by domain swapping its C-terminal helix, perturbing the Met–heme coordination significantly compared to the monomer. HT cyt c552 forms dimers by domain swapping the region containing the N-terminal α-helix and heme, where the heme axial His and Met ligands belong to different protomers. Herein, we show that PA cyt c551 also forms domain-swapped dimers by swapping the region containing the N-terminal α-helix and heme. The secondary structures of the M61A mutant of PA cyt c551 were perturbed slightly and its oligomer formation ability decreased compared to that of the wild-type protein, showing that the stability of the protein secondary structures is important for domain swapping. The hinge loop of domain swapping for cyt c family proteins corresponded to the unstable region specified by hydrogen exchange NMR measurements for the monomer, although the swapping region differed among proteins. These results show that the unstable loop region has a tendency to become a hinge loop in domain-swapped proteins.
Collapse
Affiliation(s)
- Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Mariko Ueda
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Hisao Osuka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678–1297, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1–1 Saiwai-cho, Takamatsu, Kagawa 760–8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679–5148, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678–1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679–5148, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara 630–0192, Japan
- * E-mail:
| |
Collapse
|
17
|
Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping. Protein Sci 2015; 24:366-75. [PMID: 25586341 DOI: 10.1002/pro.2627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/20/2023]
Abstract
Cytochrome c555 from hyperthermophilic bacteria Aquifex aeolicus (AA cyt c555 ) is a hyperstable protein belonging to the cyt c protein family, which possesses a unique long 310 -α-310 helix containing the heme-ligating Met61. Herein, we show that AA cyt c555 forms dimers by swapping the region containing the extra 310 -α-310 helix and C-terminal α-helix. The asymmetric unit of the crystal of dimeric AA cyt c555 contained two dimer structures, where the structure of the hinge region (Val53-Lys57) was different among all four protomers. Dimeric AA cyt c555 dissociated to monomers at 92 ± 1°C according to DSC measurements, showing that the dimer was thermostable. According to CD measurements, the secondary structures of dimeric AA cyt c555 were maintained at pH 2.2-11.0. CN(-) and CO bound to dimeric AA cyt c555 in the ferric and ferrous states, respectively, owing to the flexibility of the hinge region close to Met61 in the dimer, whereas these ligands did not bind to the monomer under the same conditions. In addition, CN(-) and CO bound to the oxidized and reduced dimer at neutral pH and a wide range of pH (pH 2.2-11.0), respectively, in a wide range of temperature (25-85°C), owing to the thermostability and pH tolerance of the dimer. These results show that the ligand binding character of hyperstable AA cyt c555 changes upon dimerization by domain swapping.
Collapse
Affiliation(s)
- Masaru Yamanaka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | | | | | | | | |
Collapse
|
18
|
Matsuoka M, Sugita M, Kikuchi T. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures. BMC Res Notes 2014; 7:654. [PMID: 25231773 PMCID: PMC4180342 DOI: 10.1186/1756-0500-7-654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. RESULTS It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. CONCLUSIONS The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.
Collapse
Affiliation(s)
| | | | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan.
| |
Collapse
|
19
|
Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014; 71:229-55. [PMID: 23615770 PMCID: PMC11113841 DOI: 10.1007/s00018-013-1341-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023]
Abstract
Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104 ± 10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as "key residues", which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ∆G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists interested in understanding the importance of conservation of certain residues throughout the evolution in preserving the structure, function, and stability in proteins.
Collapse
Affiliation(s)
- Sobia Zaidi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| |
Collapse
|
20
|
Söderberg CAG, Rajan S, Shkumatov AV, Gakh O, Schaefer S, Ahlgren EC, Svergun DI, Isaya G, Al-Karadaghi S. The molecular basis of iron-induced oligomerization of frataxin and the role of the ferroxidation reaction in oligomerization. J Biol Chem 2013; 288:8156-8167. [PMID: 23344952 PMCID: PMC3605634 DOI: 10.1074/jbc.m112.442285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/22/2013] [Indexed: 11/06/2022] Open
Abstract
The role of the mitochondrial protein frataxin in iron storage and detoxification, iron delivery to iron-sulfur cluster biosynthesis, heme biosynthesis, and aconitase repair has been extensively studied during the last decade. However, still no general consensus exists on the details of the mechanism of frataxin function and oligomerization. Here, using small-angle x-ray scattering and x-ray crystallography, we describe the solution structure of the oligomers formed during the iron-dependent assembly of yeast (Yfh1) and Escherichia coli (CyaY) frataxin. At an iron-to-protein ratio of 2, the initially monomeric Yfh1 is converted to a trimeric form in solution. The trimer in turn serves as the assembly unit for higher order oligomers induced at higher iron-to-protein ratios. The x-ray crystallographic structure obtained from iron-soaked crystals demonstrates that iron binds at the trimer-trimer interaction sites, presumably contributing to oligomer stabilization. For the ferroxidation-deficient D79A/D82A variant of Yfh1, iron-dependent oligomerization may still take place, although >50% of the protein is found in the monomeric state at the highest iron-to-protein ratio used. This demonstrates that the ferroxidation reaction controls frataxin assembly and presumably the iron chaperone function of frataxin and its interactions with target proteins. For E. coli CyaY, the assembly unit of higher order oligomers is a tetramer, which could be an effect of the much shorter N-terminal region of this protein. The results show that understanding of the mechanistic features of frataxin function requires detailed knowledge of the interplay between the ferroxidation reaction, iron-induced oligomerization, and the structure of oligomers formed during assembly.
Collapse
Affiliation(s)
- Christopher A G Söderberg
- Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Sreekanth Rajan
- Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Alexander V Shkumatov
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Oleksandr Gakh
- Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, Minnesota 55905
| | - Susanne Schaefer
- Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Eva-Christina Ahlgren
- Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Grazia Isaya
- Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, Minnesota 55905.
| | - Salam Al-Karadaghi
- Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
21
|
Udgaonkar JB. Polypeptide chain collapse and protein folding. Arch Biochem Biophys 2013; 531:24-33. [DOI: 10.1016/j.abb.2012.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022]
|
22
|
Lin CY, Chen YC, Lo YS, Yang JM. Inferring homologous protein-protein interactions through pair position specific scoring matrix. BMC Bioinformatics 2013; 14 Suppl 2:S11. [PMID: 23367879 PMCID: PMC3549806 DOI: 10.1186/1471-2105-14-s2-s11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background The protein-protein interaction (PPI) is one of the most important features to understand biological processes. For a PPI, the physical domain-domain interaction (DDI) plays the key role for biology functions. In the post-genomic era, to rapidly identify homologous PPIs for analyzing the contact residue pairs of their interfaces within DDIs on a genomic scale is essential to determine PPI networks and the PPI interface evolution across multiple species. Results In this study, we proposed "pair Position Specific Scoring Matrix (pairPSSM)" to identify homologous PPIs. The pairPSSM can successfully distinguish the true protein complexes from unreasonable protein pairs with about 90% accuracy. For the test set including 1,122 representative heterodimers and 2,708,746 non-interacting protein pairs, the mean average precision and mean false positive rate of pairPSSM were 0.42 and 0.31, respectively. Moreover, we applied pairPSSM to identify ~450,000 homologous PPIs with their interacting domains and residues in seven common organisms (e.g. Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Escherichia coli). Conclusions Our pairPSSM is able to provide statistical significance of residue pairs using evolutionary profiles and a scoring system for inferring homologous PPIs. According to our best knowledge, the pairPSSM is the first method for searching homologous PPIs across multiple species using pair position specific scoring matrix and a 3D dimer as the template to map interacting domain pairs of these PPIs. We believe that pairPSSM is able to provide valuable insights for the PPI evolution and networks across multiple species.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | | | | | | |
Collapse
|
23
|
Mason JM, Bendall DS, Howe CJ, Worrall JA. The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:311-8. [DOI: 10.1016/j.bbapap.2011.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/11/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
|
24
|
Kanaujia SP, Jeyakanthan J, Shinkai A, Kuramitsu S, Yokoyama S, Sekar K. Crystal structures, dynamics and functional implications of molybdenum-cofactor biosynthesis protein MogA from two thermophilic organisms. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:2-16. [PMID: 21206014 PMCID: PMC3079962 DOI: 10.1107/s1744309110035037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/31/2010] [Indexed: 11/11/2022]
Abstract
Molybdenum-cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in almost all kingdoms of life, including humans. Two proteins, MogA and MoeA, catalyze the last step of this pathway in bacteria, whereas a single two-domain protein carries out catalysis in eukaryotes. Here, three crystal structures of the Moco-biosynthesis protein MogA from the two thermophilic organisms Thermus thermophilus (TtMogA; 1.64 Å resolution, space group P2(1)) and Aquifex aeolicus (AaMogA; 1.70 Å resolution, space group P2(1) and 1.90 Å resolution, space group P1) have been determined. The functional roles and the residues involved in oligomerization of the protein molecules have been identified based on a comparative analysis of these structures with those of homologous proteins. Furthermore, functional roles have been proposed for the N- and C-terminal residues. In addition, a possible protein-protein complex of MogA and MoeA has been proposed and the residues involved in protein-protein interactions are discussed. Several invariant water molecules and those present at the subunit interfaces have been identified and their possible structural and/or functional roles are described in brief. In addition, molecular-dynamics and docking studies with several small molecules (including the substrate and the product) have been carried out in order to estimate their binding affinities towards AaMogA and TtMogA. The results obtained are further compared with those obtained for homologous eukaryotic proteins.
Collapse
Affiliation(s)
- Shankar Prasad Kanaujia
- Bioinformatics Centre, Centre of Excellence in Structural Biology and Bio-computing, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
MOTIVATION To test whether protein folding constraints and secondary structure sequence preferences significantly reduce the space of amino acid words in proteins, we compared the frequencies of four- and five-amino acid word clumps (independent words) in proteins to the frequencies predicted by four random sequence models. RESULTS While the human proteome has many overrepresented word clumps, these words come from large protein families with biased compositions (e.g. Zn-fingers). In contrast, in a non-redundant sample of Pfam-AB, only 1% of four-amino acid word clumps (4.7% of 5mer words) are 2-fold overrepresented compared with our simplest random model [MC(0)], and 0.1% (4mers) to 0.5% (5mers) are 2-fold overrepresented compared with a window-shuffled random model. Using a false discovery rate q-value analysis, the number of exceptional four- or five-letter words in real proteins is similar to the number found when comparing words from one random model to another. Consensus overrepresented words are not enriched in conserved regions of proteins, but four-letter words are enriched 1.18- to 1.56-fold in alpha-helical secondary structures (but not beta-strands). Five-residue consensus exceptional words are enriched for alpha-helix 1.43- to 1.61-fold. Protein word preferences in regular secondary structure do not appear to significantly restrict the use of sequence words in unrelated proteins, although the consensus exceptional words have a secondary structure bias for alpha-helix. Globally, words in protein sequences appear to be under very few constraints; for the most part, they appear to be random. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daniel T Lavelle
- Department of Biochemistry and Molecular Genetics, University of Virginia, Jordan Hall Box 800733, Charlottesville, VA 22908, USA
| | | |
Collapse
|
26
|
Narang P, Bhushan K, Bose S, Jayaram B. A computational pathway for bracketing native-like structures fo small alpha helical globular proteins. Phys Chem Chem Phys 2009; 7:2364-75. [PMID: 19785123 DOI: 10.1039/b502226f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Impressive advances in the applications of bioinformatics for protein structure prediction coupled with growing structural databases on one hand and the insurmountable time-scale problem with ab initio computational methods on the other continue to raise doubts whether a computational solution to the protein folding problem--categorized as an NP-hard problem--is within reach in the near future. Combining some specially designed biophysical filters and vector algebra tools with ab initio methods, we present here a promising computational pathway for bracketing native-like structures of small alpha helical globular proteins departing from secondary structural information. The automated protocol is initiated by generating multiple structures around the loops between secondary structural elements. A set of knowledge-based biophysical filters namely persistence length and radius of gyration, developed and calibrated on approximately 1000 globular proteins, is introduced to screen the trial structures to filter out improbable candidates for the native and reduce the size of the library of probable structures. The ensemble so generated encompasses a few structures with native-like topology. Monte Carlo optimizations of the loop dihedrals are then carried out to remove steric clashes. The resultant structures are energy minimized and ranked according to a scoring function tested previously on a series of decoy sets vis-a-vis their corresponding natives. We find that the 100 lowest energy structures culled from the ensemble of energy optimized trial structures comprise at least a few to within 3-5 angstroms of the native. Thus the formidable "needle in a haystack" problem is narrowed down to finding an optimal solution amongst a computationally tractable number of alternatives. Encouraging results obtained on twelve small alpha helical globular proteins with the above outlined pathway are presented and discussed.
Collapse
Affiliation(s)
- Pooja Narang
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
27
|
Huggins W, Ghosh SK, Wollenzien P. Hydrogen bonding and packing density are factors most strongly connected to limiting sites of high flexibility in the 16S rRNA in the 30S ribosome. BMC STRUCTURAL BIOLOGY 2009; 9:49. [PMID: 19643000 PMCID: PMC2731775 DOI: 10.1186/1472-6807-9-49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/30/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Conformational flexibility in structured RNA frequently is critical to function. The 30S ribosomal subunit exists in different conformations in different functional states due to changes in the central part of the 16S rRNA. We are interested in evaluating the factors that might be responsible for restricting flexibility to specific parts of the 16S rRNA using biochemical data obtained from the 30S subunit in solution. This problem was approached taking advantage of the observation that there must be a high degree of conformational flexibility at sites where UV photocrosslinking occurs and a lack of flexibility inhibits photoreactivity at many other sites that are otherwise suitable for reaction. RESULTS We used 30S x-ray structures to quantify the properties of the nucleotide pairs at UV- and UVA-s4U-induced photocrosslinking sites in 16S rRNA and compared these to the properties of many hundreds of additional sites that have suitable geometry but do not undergo photocrosslinking. Five factors that might affect RNA flexibility were investigated - RNA interactions with ribosomal proteins, interactions with Mg2+ ions, the presence of long-range A minor motif interactions, hydrogen bonding and the count of neighboring heavy atoms around the center of each nucleobase to estimate the neighbor packing density. The two factors that are very different in the unreactive inflexible pairs compared to the reactive ones are the average number of hydrogen bonds and the average value for the number of neighboring atoms. In both cases, these factors are greater for the unreactive nucleotide pairs at a statistically very significant level. CONCLUSION The greater extent of hydrogen bonding and neighbor atom density in the unreactive nucleotide pairs is consistent with reduced flexibility at a majority of the unreactive sites. The reactive photocrosslinking sites are clustered in the 30S subunit and this indicates nonuniform patterns of hydrogen bonding and packing density in the 16S rRNA tertiary structure. Because this analysis addresses inter-nucleotide distances and geometry between nucleotides distant in the primary sequence, the results indicate regional and global flexibility of the rRNA.
Collapse
Affiliation(s)
- Wayne Huggins
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
- RTI International, Research Triangle Park, USA
| | - Sujit K Ghosh
- Department of Statistics, North Carolina State University, Raleigh, USA
| | - Paul Wollenzien
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
| |
Collapse
|
28
|
Aubin-Tam ME, Hwang W, Hamad-Schifferli K. Site-directed nanoparticle labeling of cytochrome c. Proc Natl Acad Sci U S A 2009; 106:4095-100. [PMID: 19251670 PMCID: PMC2657428 DOI: 10.1073/pnas.0807299106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Indexed: 11/18/2022] Open
Abstract
Although nanoparticle-protein conjugates have been synthesized for numerous applications, bioconjugation remains a challenge, often resulting in denaturation or loss of protein function. This is partly because the protein-nanoparticle interface is poorly understood, which impedes the use of nanoparticles in nanomedicine. Although the effects of nanoparticle ligand and material on protein structure have been explored, the choice of the labeling site on the protein has not yet been systematically studied. To address this issue, we label cytochrome c site-specifically with a negatively charged Au nanoparticle via a covalent thiol-Au bond. The attachment site is controlled by cysteine mutations of surface residues. The effect of labeling on protein structure is probed by circular dichroism. Protein unfolding is the most severe when the nanoparticle is attached to the N- and C-terminal foldon, the core motif of cytochrome c. Also, when the nanoparticle is attached in the vicinity of charged residues, the amount of structural damage is greater because of salt-dependent electrostatic interactions with charged ligand bis(p-sulfonatophenyl) phenylphosphine on the nanoparticle. Molecular dynamics simulations also elucidate local to global structural perturbation depending on labeling site. These results suggest that the labeling site must be considered as one of the main design criteria for nanoparticle-protein conjugates.
Collapse
Affiliation(s)
- Marie-Eve Aubin-Tam
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843; and
| | - Kimberly Hamad-Schifferli
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
29
|
A single mutation induces molten globule formation and a drastic destabilization of wild-type cytochrome c at pH 6.0. J Biol Inorg Chem 2009; 14:751-60. [DOI: 10.1007/s00775-009-0488-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|
30
|
A new computational model to study mass inhomogeneity and hydrophobicity inhomogeneity in proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:577-87. [DOI: 10.1007/s00249-009-0409-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 01/05/2009] [Accepted: 01/14/2009] [Indexed: 10/20/2022]
|
31
|
Dyuysekina AE, Dolgikh DA, Samatova Baryshnikova EN, Tiktopulo EI, Balobanov VA, Bychkova VE. pH-induced equilibrium unfolding of apomyoglobin: substitutions at conserved Trp14 and Met131 and non-conserved Val17 positions. BIOCHEMISTRY (MOSCOW) 2008; 73:693-701. [PMID: 18620536 DOI: 10.1134/s0006297908060102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A number of residues in globins family are well conserved but are not directly involved in the primary oxygen-carrying function of these proteins. A possible role for these conserved, non-functional residues has been suggested in promoting a rapid and correct folding process to the native tertiary structure. To test this hypothesis, we have studied pH-induced equilibrium unfolding of mutant apomyoglobins with substitutions of the conserved residues Trp14 and Met131, which are not involved in the function of myoglobin, by various amino acids. This allowed estimating their impact on the stability of various conformational states of the proteins and selecting conditions for a folding kinetics study. The results obtained from circular dichroism, tryptophan fluorescence, and differential scanning microcalorimetry for these mutant proteins were compared with those for the wild type protein and for a mutant with the non-conserved Val17 substituted by Ala. In the native folded state, all of the mutant apoproteins have a compact globular structure, but are destabilized in comparison to the wild type protein. The pH-induced denaturation of the mutant proteins occurs through the formation of a molten globule-like intermediate similar to that of the wild type protein. Thermodynamic parameters for all of the proteins were calculated using the three state model. Stability of equilibrium intermediates at pH ~4.0 was shown to be slightly affected by the mutations. Thus, all of the above substitutions influence the stability of the native state of these proteins. The cooperativity of conformational transitions and the exposed to solvent protein surface were also changed, but not for the substitution at Val17.
Collapse
Affiliation(s)
- A E Dyuysekina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | | | | | | | | |
Collapse
|
32
|
Kim S, Chung JK, Kwak K, Bowman SEJ, Bren KL, Bagchi B, Fayer MD. Native and unfolded cytochrome c--comparison of dynamics using 2D-IR vibrational echo spectroscopy. J Phys Chem B 2008; 112:10054-63. [PMID: 18646797 PMCID: PMC2671645 DOI: 10.1021/jp802246h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unfolded vs native CO-coordinated horse heart cytochrome c (h-cyt c) and a heme axial methionine mutant cyt c552 from Hydrogenobacter thermophilus ( Ht-M61A) are studied by IR absorption spectroscopy and ultrafast 2D-IR vibrational echo spectroscopy of the CO stretching mode. The unfolding is induced by guanidinium hydrochloride (GuHCl). The CO IR absorption spectra for both h-cyt c and Ht-M61A shift to the red as the GuHCl concentration is increased through the concentration region over which unfolding occurs. The spectra for the unfolded state are substantially broader than the spectra for the native proteins. A plot of the CO peak position vs GuHCl concentration produces a sigmoidal curve that overlays the concentration-dependent circular dichroism (CD) data of the CO-coordinated forms of both Ht-M61A and h-cyt c within experimental error. The coincidence of the CO peak shift curve with the CD curves demonstrates that the CO vibrational frequency is sensitive to the structural changes induced by the denaturant. 2D-IR vibrational echo experiments are performed on native Ht-M61A and on the protein in low- and high-concentration GuHCl solutions. The 2D-IR vibrational echo is sensitive to the global protein structural dynamics on time scales from subpicosecond to greater than 100 ps through the change in the shape of the 2D spectrum with time (spectral diffusion). At the high GuHCl concentration (5.1 M), at which Ht-M61A is essentially fully denatured as judged by CD, a very large reduction in dynamics is observed compared to the native protein within the approximately 100 ps time window of the experiment. The results suggest the denatured protein may be in a glassy-like state involving hydrophobic collapse around the heme.
Collapse
Affiliation(s)
- Seongheun Kim
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Kyungwon Kwak
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Sarah E. J. Bowman
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216
| | - Biman Bagchi
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - M. D. Fayer
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
33
|
Michel LV, Bren KL. Submolecular unfolding units of Pseudomonas aeruginosa cytochrome c-551. J Biol Inorg Chem 2008; 13:837-45. [PMID: 18392863 DOI: 10.1007/s00775-008-0370-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
Abstract
Hydrogen exchange rates for backbone amide protons of oxidized Pseudomonas aeruginosa cytochrome c-551 (P. aeruginosa cytochrome c) have been measured in the presence of low concentrations of the denaturant guanidine hydrochloride. Analysis of the data has allowed identification of submolecular unfolding units known as foldons. The highest-energy foldon bears similarity to the proposed folding intermediate for P. aeruginosa cytochrome c. Parallels are seen to the foldons of the structurally homologous horse cytochrome c, although the heme axial methionine-bearing loop has greater local stability in P. aeruginosa cytochrome c, in accord with previous folding studies. Regions of low local stability are observed to correspond with regions that interact with redox partners, providing a link between foldon properties and function.
Collapse
Affiliation(s)
- Lea V Michel
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, 14642, USA
| | | |
Collapse
|
34
|
Adam B, Charloteaux B, Beaufays J, Vanhamme L, Godfroid E, Brasseur R, Lins L. Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling. BMC STRUCTURAL BIOLOGY 2008; 8:1. [PMID: 18190694 PMCID: PMC2254393 DOI: 10.1186/1472-6807-8-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 01/11/2008] [Indexed: 11/23/2022]
Abstract
Background Lipocalins are widely distributed in nature and are found in bacteria, plants, arthropoda and vertebra. In hematophagous arthropods, they are implicated in the successful accomplishment of the blood meal, interfering with platelet aggregation, blood coagulation and inflammation and in the transmission of disease parasites such as Trypanosoma cruzi and Borrelia burgdorferi. The pairwise sequence identity is low among this family, often below 30%, despite a well conserved tertiary structure. Under the 30% identity threshold, alignment methods do not correctly assign and align proteins. The only safe way to assign a sequence to that family is by experimental determination. However, these procedures are long and costly and cannot always be applied. A way to circumvent the experimental approach is sequence and structure analyze. To further help in that task, the residues implicated in the stabilisation of the lipocalin fold were determined. This was done by analyzing the conserved interactions for ten lipocalins having a maximum pairwise identity of 28% and various functions. Results It was determined that two hydrophobic clusters of residues are conserved by analysing the ten lipocalin structures and sequences. One cluster is internal to the barrel, involving all strands and the 310 helix. The other is external, involving four strands and the helix lying parallel to the barrel surface. These clusters are also present in RaHBP2, a unusual "outlier" lipocalin from tick Rhipicephalus appendiculatus. This information was used to assess assignment of LIR2 a protein from Ixodes ricinus and to build a 3D model that helps to predict function. FTIR data support the lipocalin fold for this protein. Conclusion By sequence and structural analyzes, two conserved clusters of hydrophobic residues in interactions have been identified in lipocalins. Since the residues implicated are not conserved for function, they should provide the minimal subset necessary to confer the lipocalin fold. This information has been used to assign LIR2 to lipocalins and to investigate its structure/function relationship. This study could be applied to other protein families with low pairwise similarity, such as the structurally related fatty acid binding proteins or avidins.
Collapse
Affiliation(s)
- Benoit Adam
- Centre de Biophysique Moléculaire et Numérique, Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, Belgium.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In order to better understand the mechanical properties of proteins, we have developed simulation tools which enable these properties to be analysed on a residue-by-residue basis. Although these calculations are relatively expensive with all-atom protein models, good results can be obtained much faster using coarse-grained approaches. The results show that proteins are surprisingly heterogeneous from a mechanical point of view and that functionally important residues often exhibit unusual mechanical behaviour. This finding offers a novel means for detecting functional sites and also potentially provides a route for understanding the links between structure and function in more general terms.
Collapse
Affiliation(s)
- Richard Lavery
- Institut de Biologie et Chimie des Proteines, CNRS UMR 5086/Universite de Lyon, 7 passage du Vercors, Lyon 69367, France.
| | | |
Collapse
|
36
|
Sacquin-Mora S, Laforet E, Lavery R. Locating the active sites of enzymes using mechanical properties. Proteins 2007; 67:350-9. [PMID: 17311346 DOI: 10.1002/prot.21353] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have applied the calculation of mechanical properties to a dataset of almost 100 enzymes to determine the extent to which catalytic residues have distinct properties. Specifically, we have calculated force constants describing the ease of moving any given amino acid residue with respect to the other residues in the protein. The results show that catalytic residues are invariably associated with high force constants. Choosing an appropriate cutoff enables the detection of roughly 80% of catalytic residues with only 25% of false positives. It is shown that neither multidomain structures, nor the presence or absence of bound ligands hinder successful detections. It is however noted that active sites near the protein surface are more difficult to detect and that non-catalytic, but structurally key residues may also exhibit high force constants.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
37
|
Jernigan RL, Kloczkowski A. Packing regularities in biological structures relate to their dynamics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2006; 350:251-76. [PMID: 16957327 PMCID: PMC2039702 DOI: 10.1385/1-59745-189-4:251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
The high packing density inside proteins leads to certain geometric regularities and also is one of the most important contributors to the high extent of cooperativity manifested by proteins in their cohesive domain motions. The orientations between neighboring nonbonded residues in proteins substantially follow the similar geometric regularities, regardless of whether the residues are on the surface or buried, a direct result of hydrophobicity forces. These orientations are relatively fixed and correspond closely to small deformations from those of the face-centered cubic lattice, which is the way in which identical spheres pack at the highest density. Packing density also is related to the extent of conservation of residues, and we show this relationship for residue packing densities by averaging over a large sample or residue packings. There are three regimes: (1) over a broad range of packing densities the relationship between sequence entropy and inverse packing density is nearly linear, (2) over a limited range of low packing densities the sequence entropy is nearly constant, and (3) at extremely low packing densities the sequence entropy is highly variable. These packing results provide important justification for the simple elastic network models that have been shown for a large number of proteins to represent protein dynamics so successfully, even when the models are extremely coarse grained. Elastic network models for polymeric chains are simple and could be combined with these protein elastic networks to represent partially denatured parts of proteins. Finally, we show results of applications of the elastic network model to study the functional motions of the ribosome, based on its known structure. These results indicate expected correlations among its components for the step-wise processing steps in protein synthesis, and suggest ways to use these elastic network models to develop more detailed mechanisms, an important possibility because most experiments yield only static structures.
Collapse
Affiliation(s)
- Robert L Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
38
|
Liu X, Li J, Guo W, Wang W. A new method for quantifying residue conservation and its applications to the protein folding nucleus. Biochem Biophys Res Commun 2006; 351:1031-6. [PMID: 17097065 DOI: 10.1016/j.bbrc.2006.10.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/23/2022]
Abstract
The conservation of residues in columns of a multiple sequence alignment (MSA) reflects the importance of these residues for maintaining the structure and function of a protein. To date, many scores have been suggested for quantifying residue conservation, but none has achieved the full rigor both in biology and statistics. In this paper, we present a new approach for measuring the evolutionary conservation at aligned positions. Our conservation measure is related to the logarithmic probabilities for aligned positions, and combines the physicochemical properties and the frequencies of amino acids. Such a measure is both biologically and statistically meaningful. For testing the relationship between an amino acid's evolutionary conservation and its role in the Phi-value defined protein folding kinetics, our results indicate that the folding nucleus residues may not be significantly more conserved than other residues by using the biological-relevance weighted statistical scoring method suggested in this paper as an alternative to entropy-based procedures.
Collapse
Affiliation(s)
- Xinsheng Liu
- Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | | | | | | |
Collapse
|
39
|
Chen M, Wilson CJ, Wu Y, Wittung-Stafshede P, Ma J. Correlation between Protein Stability Cores and Protein Folding Kinetics: A Case Study on Pseudomonas aeruginosa Apo-Azurin. Structure 2006; 14:1401-10. [PMID: 16962971 DOI: 10.1016/j.str.2006.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
This paper reports a combined computational and experimental study of the correlation between protein stability cores and folding kinetics. An empirical potential function was developed, and it was used for analyzing interaction energies among secondary structure elements. Studies on a beta sandwich protein, Pseudomonas aeruginosa azurin, showed that the computationally identified substructure with the strongest interactions in the native state is identical to the "interlocked pair" of beta strands, an invariant motif found in most sandwich-like proteins. Moreover, previous and new in vitro folding results revealed that the identified substructure harbors most residues that form native-like interactions in the folding transition state. These observations demonstrate that the potential function is effective in revealing the relative strength of interactions among various protein parts; they also strengthen the suggestion that the most stable regions in native proteins favor stable interactions early during folding.
Collapse
Affiliation(s)
- Mingzhi Chen
- Graduate Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Williams P, Coates L, Mohammed F, Gill R, Erskine P, Bourgeois D, Wood SP, Anthony C, Cooper JB. The 1.6Å X-ray Structure of the Unusual c-type Cytochrome, Cytochrome cL, from the Methylotrophic Bacterium Methylobacterium extorquens. J Mol Biol 2006; 357:151-62. [PMID: 16414073 DOI: 10.1016/j.jmb.2005.12.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
The structure of cytochrome cL from Methylobacterium extorquens has been determined by X-ray crystallography to a resolution of 1.6 A. This unusually large, acidic cytochrome is the physiological electron acceptor for the quinoprotein methanol dehydrogenase in the periplasm of methylotrophic bacteria. Its amino acid sequence is completely different from that of other cytochromes but its X-ray structure reveals a core that is typical of class I cytochromes c, having alpha-helices folded into a compact structure enclosing the single haem c prosthetic group and leaving one edge of the haem exposed. The haem is bound through thioether bonds to Cys65 and Cys68, and the fifth ligand to the haem iron is provided by His69. Remarkably, the sixth ligand is provided by His112, and not by Met109, which had been shown to be the sixth ligand in solution. Cytochrome cL is unusual in having a disulphide bridge that tethers the long C-terminal extension to the body of the structure. The crystal structure reveals that, close to the inner haem propionate, there is tightly bound calcium ion that is likely to be involved in stabilization of the redox potential, and that may be important in the flow of electrons from reduced pyrroloquinoline quinone in methanol dehydrogenase to the haem of cytochrome cL. As predicted, both haem propionates are exposed to solvent, accounting for the unusual influence of pH on the redox potential of this cytochrome.
Collapse
Affiliation(s)
- Paul Williams
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sacquin-Mora S, Lavery R. Investigating the local flexibility of functional residues in hemoproteins. Biophys J 2006; 90:2706-17. [PMID: 16428284 PMCID: PMC1414562 DOI: 10.1529/biophysj.105.074997] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is now widely accepted that protein function depends not only on structure, but also on flexibility. However, the way mechanical properties contribute to catalytic mechanisms remains unclear. Here, we propose a method for investigating local flexibility within protein structures that combines a reduced protein representation with Brownian dynamics simulations. An analysis of residue fluctuations during the dynamics simulation yields a rigidity profile for the protein made up of force constants describing the ease of displacing each residue with respect to the rest of the structure. This approach has been applied to the analysis of a set of hemoproteins, one of the functionally most diverse protein families. Six proteins containing one or two heme groups have been studied, paying particular attention to the mechanical properties of the active-site residues. The calculated rigidity profiles show that active site residues are generally associated with high force constants and thus rigidly held in place. This observation also holds for diheme proteins if their mechanical properties are analyzed domain by domain. We note, however, that residues other than those in the active site can also have high force constants, as in the case of residues belonging to the folding nucleus of c-type hemoproteins.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, UMR 9080 CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
42
|
Roy S, Singha S, Bhattacharya J, Ghoshmoulick R, Dasgupta AK. A size dependent folding contour for cytochrome C. Biophys Chem 2005; 119:14-22. [PMID: 16183192 DOI: 10.1016/j.bpc.2005.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/20/2005] [Accepted: 08/22/2005] [Indexed: 11/18/2022]
Abstract
The paper describes an experimental construct of the folding route of the heme protein cytochrome-C. The construct highlights a slowing down near the nose of the folding funnel caused by the multiplicity of the energy traps near the native conformation created as a result of complex heme-peptide interaction. Interestingly the hydrodynamic size, the size heterogeneity and peroxidase activity serve as a triple measure of the distance of this near equilibrium departure from native conformation. Accordingly, the folding process is marked with a gradual and reversible reduction of mean hydrodynamic size, size heterogeneity and peroxidase activity (higher in unfolded state). The Dynamic Light Scattering based straightforward illustration of hydrodynamic size variation may serve as a model to slow folding observed in case of heme proteins, the heme itself serving as a natural facilitator for the native peptide conformation.
Collapse
Affiliation(s)
- Shibsekhar Roy
- Department of Biochemistry, Calcutta University, Kolkata, 700019, India
| | | | | | | | | |
Collapse
|
43
|
Andrews D, Mattatall NR, Arnold D, Hill BC. Expression, purification, and characterization of the CuA–cytochrome c domain from subunit II of the Bacillus subtilis cytochrome caa3 complex in Escherichia coli. Protein Expr Purif 2005; 42:227-35. [PMID: 15907384 DOI: 10.1016/j.pep.2004.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 11/12/2004] [Accepted: 11/13/2004] [Indexed: 11/25/2022]
Abstract
Cytochrome caa3 from Bacillus subtilis is a member of the heme-copper oxidase family of integral membrane enzymes that includes mitochondrial cytochrome c oxidase. Subunit II of cytochrome caa3 has an extra 100 amino acids at its C-terminus, relative to its mitochondrial counterpart, and this extension encodes a heme C binding domain. Cytochrome caa3 has many of the properties of the complex formed between mitochondrial cytochrome c and mitochondrial cytochrome c oxidase. To examine more closely the interaction between cytochrome c and the oxidase we have cloned and expressed the Cu(A)-cytochrome c portion of subunit II from the cytochrome caa3 complex of B. subtilis. We are able to express about 2000 nmol, equivalent to 65 mg, of the Cu(A)-cytochrome c protein per litre of Escherichia coli culture. About 500 nmol is correctly targeted to the periplasmic space and we purify 50% of that by a combination of affinity chromatography and ammonium sulfate fractionation. The cytochrome c containing sub-domain is well-folded with a stable environment around the heme C center, as its mid-point potential and rates of reduction are indistinguishable from values for the cytochrome c domain of the holo-enzyme. However, the Cu(A) site lacks copper leading to an inherent instability in this sub-domain. Expression of B. subtilis cytochrome c, as exemplified by the Cu(A)-cytochrome c protein, can be achieved in E. coli, and we conclude that the cytochrome c and Cu(A) sub-domains behave independently despite their close physical and functional association.
Collapse
Affiliation(s)
- Diann Andrews
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | | | |
Collapse
|
44
|
Gallo M, Paludi D, Cicero DO, Chiovitti K, Millo E, Salis A, Damonte G, Corsaro A, Thellung S, Schettini G, Melino S, Florio T, Paci M, Aceto A. Identification of a conserved N-capping box important for the structural autonomy of the prion alpha 3-helix: the disease associated D202N mutation destabilizes the helical conformation. Int J Immunopathol Pharmacol 2005; 18:95-112. [PMID: 15698515 DOI: 10.1177/039463200501800111] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peptides corresponding to three alpha helices present in the C-terminal region of the human prion protein have been synthesized and their structural autonomy analyzed by circular dichroism (CD) and NMR spectroscopy. The results obtained indicate that the protein fragment corresponding to the alpha 3-helix, in contrast to alpha 1 and alpha 2 peptides, shows a complete structural autonomy. The chemical shifts values found for NH and CHalpha resonance of the isolated alpha 3 peptide, formed by 30 aminoacid residues, were markedly and surprisingly similar to the corresponding values of the alpha 3-helix in the protein. The structural autonomy of the alpha 3-helix is profoundly determined by the presence of the conserved capping box and, in part, by the ionic bond formed between Glu200 and Lys204. On the basis of these observations a novel PrP consensus pattern, centered on the alpha 3-helix region, has been defined. The data indicate that this autonomous and highly conserved region of the PrPc likely plays a critical role in folding and stability. This gives an explanation of why many of pathogenic mutations occur in this part of the molecule, sharing relevant effects on the overall protein conformation. In particular the D202N capping mutation almost completely destabilizes the isolated alpha 3 peptide. While it is well known that the D202N substitution is associated with a GSS disease, the possible structural basis of this fatal pathology has never been investigated. We propose that a lower alpha 3-helical propensity leading to a major destabilization of the PrPc molecule initiates the pathogenic process associated with D202N capping mutation.
Collapse
Affiliation(s)
- M Gallo
- Department of Chemical Science and Technology , University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Travaglini-Allocatelli C, Gianni S, Dubey VK, Borgia A, Di Matteo A, Bonivento D, Cutruzzolà F, Bren KL, Brunori M. An obligatory intermediate in the folding pathway of cytochrome c552 from Hydrogenobacter thermophilus. J Biol Chem 2005; 280:25729-34. [PMID: 15883159 DOI: 10.1074/jbc.m502628200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding mechanism of many proteins involves the population of partially organized structures en route to the native state. Identification and characterization of these intermediates is particularly difficult, as they are often only transiently populated and may play different mechanistic roles, being either on-pathway productive species or off-pathway kinetic traps. Following different spectroscopic probes, and employing state-of-the-art kinetic analysis, we present evidence that the folding mechanism of the thermostable cytochrome c552 from Hydrogenobacter thermophilus does involve the presence of an elusive, yet compact, on-pathway intermediate. Characterization of the folding mechanism of this cytochrome c is particularly interesting for the purpose of comparative folding studies, because H. thermophilus cytochrome c552 shares high sequence identity and structural homology with its homologue from the mesophilic bacterium Pseudomonas aeruginosa cytochrome c551, which refolds through a broad energy barrier without the accumulation of intermediates. Analysis of the folding kinetics and correlation with the three-dimensional structure add new evidence for the validity of a consensus folding mechanism in the cytochrome c family.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche, Università di Roma La Sapienza, P. le A. Moro 5, 00185, Roma Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vendruscolo M, Dobson CM. A glimpse at the organization of the protein universe. Proc Natl Acad Sci U S A 2005; 102:5641-2. [PMID: 15827120 PMCID: PMC556289 DOI: 10.1073/pnas.0500274102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | | |
Collapse
|
47
|
Liao H, Yeh W, Chiang D, Jernigan R, Lustig B. Protein sequence entropy is closely related to packing density and hydrophobicity. Protein Eng Des Sel 2005; 18:59-64. [PMID: 15788422 PMCID: PMC2553042 DOI: 10.1093/protein/gzi009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated the correlation between the Shannon information entropy, 'sequence entropy', with respect to the local flexibility of native globular proteins as described by inverse packing density. These are determined at each residue position for a total set of 130 query proteins, where sequence entropies are calculated from each set of aligned residues. For the accompanying aggregate set of 130 alignments, a strong linear correlation is observed between the calculated sequence entropy and the corresponding inverse packing density determined at an associated residue position. This region of linearity spans the range of C(alpha) packing densities from 12 to 25 amino acids within a sphere of 9 angstrom radius. Three different hydrophobicity scales all mimic the behavior of the sequence entropies. This confirms the idea that the ability to accommodate mutations is strongly dependent on the available space and on the propensity for each amino acid type to be buried. Future applications of these types of methods may prove useful in identifying both core and flexible residues within a protein.
Collapse
Affiliation(s)
- H. Liao
- Department of Chemistry, San Jose State University, San Jose, CA 95192-0101
| | - W. Yeh
- Department of General Engineering, San Jose State University, San Jose, CA 95192-0101
| | - D. Chiang
- Sage-N Research, Saratoga, CA 95070-6082
| | - R.L. Jernigan
- L.H. Baker Center for Bioinformatics and Biological Statistics, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50014, USA
| | - B. Lustig
- Department of Chemistry, San Jose State University, San Jose, CA 95192-0101
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Porto M, Roman HE, Vendruscolo M, Bastolla U. Prediction of site-specific amino acid distributions and limits of divergent evolutionary changes in protein sequences. Mol Biol Evol 2004; 22:630-8. [PMID: 15537801 DOI: 10.1093/molbev/msi048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We derive an analytic expression for site-specific stationary distributions of amino acids from the structurally constrained neutral (SCN) model of protein evolution with conservation of folding stability. The stationary distributions that we obtain have a Boltzmann-like shape, and their effective temperature parameter, measuring the limit of divergent evolutionary changes at a given site, can be predicted from a site-specific topological property, the principal eigenvector of the contact matrix of the native conformation of the protein. These analytic results, obtained without free parameters, are compared with simulations of the SCN model and with the site-specific amino acid distributions obtained from the Protein Data Bank. These results also provide new insights into how the topology of a protein fold influences its designability, i.e., the number of sequences compatible with that fold. The dependence of the effective temperature on the principal eigenvector decreases for longer proteins, as a possible consequence of the fact that selection for thermodynamic stability becomes weaker in this case.
Collapse
Affiliation(s)
- Markus Porto
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 8, 64289 Darmstadt, Germany.
| | | | | | | |
Collapse
|
49
|
Paiardini A, Bossa F, Pascarella S. Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: The case of the fold-type I, pyridoxal-5'-phosphate-dependent enzymes. Protein Sci 2004; 13:2992-3005. [PMID: 15498941 PMCID: PMC2286575 DOI: 10.1110/ps.04938104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 07/30/2004] [Accepted: 08/02/2004] [Indexed: 10/26/2022]
Abstract
The wealth of biological information provided by structural and genomic projects opens new prospects of understanding life and evolution at the molecular level. In this work, it is shown how computational approaches can be exploited to pinpoint protein structural features that remain invariant upon long evolutionary periods in the fold-type I, PLP-dependent enzymes. A nonredundant set of 23 superposed crystallographic structures belonging to this superfamily was built. Members of this family typically display high-structural conservation despite low-sequence identity. For each structure, a multiple-sequence alignment of orthologous sequences was obtained, and the 23 alignments were merged using the structural information to obtain a comprehensive multiple alignment of 921 sequences of fold-type I enzymes. The structurally conserved regions (SCRs), the evolutionarily conserved residues, and the conserved hydrophobic contacts (CHCs) were extracted from this data set, using both sequence and structural information. The results of this study identified a structural pattern of hydrophobic contacts shared by all of the superfamily members of fold-type I enzymes and involved in native interactions. This profile highlights the presence of a nucleus for this fold, in which residues participating in the most conserved native interactions exhibit preferential evolutionary conservation, that correlates significantly (r = 0.70) with the extent of mean hydrophobic contact value of their apolar fraction.
Collapse
Affiliation(s)
- Alessandro Paiardini
- Dipartimento di Scienze Bio-chimiche, Università La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
50
|
Braun M, Thöny-Meyer L. Biosynthesis of artificial microperoxidases by exploiting the secretion and cytochrome c maturation apparatuses of Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:12830-5. [PMID: 15328415 PMCID: PMC516481 DOI: 10.1073/pnas.0402435101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microperoxidases were initially isolated as peptide fragments containing covalently bound heme and are derived from naturally occurring c-type cytochromes. They are not only used as model compounds but also have potential applications as biosensors, electron carriers, photoreceptors, microzymes, and drugs. In a systematic attempt to define the minimal requirements for covalent attachment of hemes to c-type cytochromes, we have succeeded to produce artificial microperoxidases with peptide sequences that do not occur naturally and can be manipulated. The in vivo production of these microperoxidases requires targeting of the peptide to the bacterial periplasm, proteolytic processing of the signal peptide, and covalent attachment of heme to the signature motif CXXCH by the cytochrome c maturation proteins CcmA-H. The peptides that bind heme carry a C-terminal histidine tag, presumably to stabilize the heme peptide. We present a heme cassette that is the basis for the de novo design of functional hemoproteins.
Collapse
Affiliation(s)
- Martin Braun
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | |
Collapse
|