1
|
Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, Shen H, Laird PW, Berman BP. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 2018; 50:591-602. [PMID: 29610480 PMCID: PMC5893360 DOI: 10.1038/s41588-018-0073-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
DNA methylation loss occurs frequently in cancer genomes, primarily within lamina-associated, late-replicating regions termed Partially Methylated Domains (PMDs). We profiled 39 diverse primary tumors and 8 matched adjacent tissues using Whole-Genome Bisulfite Sequencing (WGBS), and analyzed them alongside 343 additional human and 206 mouse WGBS datasets. We identified a local CpG sequence context associated with preferential hypomethylation in PMDs. Analysis of CpGs in this context (“Solo-WCGWs”) revealed previously undetected PMD hypomethylation in almost all healthy tissue types. PMD hypomethylation increased with age, beginning during fetal development, and appeared to track the accumulation of cell divisions. In cancer, PMD hypomethylation depth correlated with somatic mutation density and cell-cycle gene expression, consistent with its reflection of mitotic history, and suggesting its application as a mitotic clock. We propose that late replication leads to lifelong progressive methylation loss, which acts as a biomarker for cellular aging and which may contribute to oncogenesis.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Huy Q Dinh
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Daniel J Weisenberger
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Charles M Nicolet
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Urulangodi M, Dhanaraju R, Gupta K, Roy RP, Bujnicki JM, Rao DN. Asymmetric DNA methylation by dimeric EcoP15I DNA methyltransferase. Biochimie 2016; 128-129:70-82. [PMID: 27422119 DOI: 10.1016/j.biochi.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
Abstract
EcoP15I DNA methyltransferase (M.EcoP15I) recognizes short asymmetric sequence, 5'-CAGCAG-3', and methylates the second adenine only on one strand of the double-stranded DNA (dsDNA). In vivo, this methylation is sufficient to protect the host DNA from cleavage by the cognate restriction endonuclease, R.EcoP15I, because of the stringent cleavage specificity requirements. Biochemical and structural characterization support the notion that purified M.EcoP15I exists and functions as dimer. However, the exact role of dimerization in M.EcoP15I reaction mechanism remains elusive. Here we engineered M.EcoP15I to a stable monomeric form and studied the role of dimerization in enzyme catalyzed methylation reaction. While the monomeric form binds single-stranded DNA (ssDNA) containing the recognition sequence it is unable to methylate it. Further we show that, while the monomeric form has AdoMet binding and Mg(2+) binding motifs intact, optimal dsDNA binding required for methylation is dependent on dimerization. Together, our biochemical data supports a unique subunit organization for M.EcoP15I to catalyze the methylation reaction.
Collapse
Affiliation(s)
| | - Rajkumar Dhanaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kanchan Gupta
- National Institute of Immunology, New Delhi 110 067, India
| | - Rajendra P Roy
- National Institute of Immunology, New Delhi 110 067, India
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, PL-02-109 Warsaw, Poland
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Schrader A, Gross T, Thalhammer V, Längst G. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays. PLoS One 2015; 10:e0140076. [PMID: 26496704 PMCID: PMC4619679 DOI: 10.1371/journal.pone.0140076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.
Collapse
Affiliation(s)
- Anna Schrader
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Thomas Gross
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Verena Thalhammer
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
4
|
Mitsudome T, Mon H, Xu J, Li Z, Lee JM, Patil AA, Masuda A, Iiyama K, Morokuma D, Kusakabe T. Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:55-65. [PMID: 25623240 DOI: 10.1016/j.ibmb.2015.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
DNA methylation is an important epigenetic mechanism involved in gene expression of vertebrates and invertebrates. In general, DNA methylation profile is established by de novo DNA methyltransferases (DNMT-3A, -3B) and maintainance DNA methyltransferase (DNMT-1). DNMT-1 has a strong substrate preference for hemimethylated DNA over the unmethylated one. Because the silkworm genome lacks an apparent homologue of de novo DNMT, it is still unclear that how silkworm chromosome establishes and maintains its DNA methylation profile. As the first step to unravel this enigma, we purified recombinant BmDNMT-1 using baculovirus expression system and characterized its DNA-binding and DNA methylation activity. We found that the BmDNMT-1 preferentially methylates hemimethylated DNA despite binding to both unmethylated and hemimethylated DNA. Interestingly, BmDNMT-1 formed a complex with DNA in the presence or absence of methyl group donor, S-Adenosylmethionine (AdoMet) and the AdoMet-dependent complex formation was facilitated by Zn(2+) and Mn(2+). Our results provide clear evidence that BmDNMT-1 retained the function as maintenance DNMT but its sensitivity to metal ions is different from mammalian DNMT-1.
Collapse
Affiliation(s)
- Takumi Mitsudome
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Zhiqing Li
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Anandrao Ashok Patil
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Atsushi Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Daisuke Morokuma
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan.
| |
Collapse
|
5
|
Svedružić ŽM. Dnmt1 structure and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:221-54. [PMID: 21507353 DOI: 10.1016/b978-0-12-387685-0.00006-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dnmt1, the principal DNA methyltransferase in mammalian cells, is a large and a highly dynamic enzyme with multiple regulatory features that can control DNA methylation in cells. This chapter highlights how insights into Dnmt1 structure and function can advance our understanding of DNA methylation in cells. The allosteric site(s) on Dnmt1 can regulate processes of de novo and maintenance DNA methylation in cells. Remaining open questions include which molecules, by what mechanism, bind at the allosteric site(s) in cells? Different phosphorylation sites on Dnmt1 can change its activity or ability to bind DNA target sites. Thirty-one different molecules are currently known to have physical and/or functional interaction with Dnmt1 in cells. The Dnmt1 structure and enzymatic mechanism offer unique insights into those interactions. The interacting molecules are involved in chromatin organization, DNA repair, cell cycle regulation, and apoptosis and also include RNA polymerase II, some RNA-binding proteins, and some specific Dnmt1-inhibitory RNA molecules. Combined insights from studies of different enzymatic features of Dnmt1 offer novel ideas for development of drug candidates, and can be used in selection of promising drug candidates from more than 15 different compounds that have been identified as possible inhibitors of DNA methylation in cells.
Collapse
Affiliation(s)
- Željko M Svedružić
- Medical Biochemistry, PB Rab, Faculty of Medicine, University of Rijeka, Rab, Croatia
| |
Collapse
|
6
|
Purdy MM, Holz-Schietinger C, Reich NO. Identification of a second DNA binding site in human DNA methyltransferase 3A by substrate inhibition and domain deletion. Arch Biochem Biophys 2010; 498:13-22. [PMID: 20227382 DOI: 10.1016/j.abb.2010.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 02/02/2023]
Abstract
The human DNA methyltransferase 3A (DNMT3A) is essential for establishing DNA methylation patterns. Knowing the key factors involved in the regulation of mammalian DNA methylation is critical to furthering understanding of embryonic development and designing therapeutic approaches targeting epigenetic mechanisms. We observe substrate inhibition for the full length DNMT3A but not for its isolated catalytic domain, demonstrating that DNMT3A has a second binding site for DNA. Deletion of recognized domains of DNMT3A reveals that the conserved PWWP domain is necessary for substrate inhibition and forms at least part of the allosteric DNA binding site. The PWWP domain is demonstrated here to bind DNA in a cooperative manner with muM affinity. No clear sequence preference was observed, similar to previous observations with the isolated PWWP domain of Dnmt3b but with one order of magnitude weaker affinity. Potential roles for a low affinity, low specificity second DNA binding site are discussed.
Collapse
Affiliation(s)
- Matthew M Purdy
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, 93106-9510, USA
| | | | | |
Collapse
|
7
|
Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L, Xu Z. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 2010; 17:4052-71. [PMID: 20939822 PMCID: PMC3003592 DOI: 10.2174/092986710793205372] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/20/2010] [Indexed: 12/29/2022]
Abstract
DNA methylation is an epigenetic event involved in a variety array of processes that may be the foundation of genetic phenomena and diseases. DNA methyltransferase is a key enzyme for cytosine methylation in DNA, and can be divided into two functional families (Dnmt1 and Dnmt3) in mammals. All mammalian DNA methyltransferases are encoded by their own single gene, and consisted of catalytic and regulatory regions (except Dnmt2). Via interactions between functional domains in the regulatory or catalytic regions and other adaptors or cofactors, DNA methyltransferases can be localized at selective areas (specific DNA/nucleotide sequence) and linked to specific chromosome status (euchromatin/heterochromatin, various histone modification status). With assistance from UHRF1 and Dnmt3L or other factors in Dnmt1 and Dnmt3a/Dnmt3b, mammalian DNA methyltransferases can be recruited, and then specifically bind to hemimethylated and unmethylated double-stranded DNA sequence to maintain and de novo setup patterns for DNA methylation. Complicated enzymatic steps catalyzed by DNA methyltransferases include methyl group transferred from cofactor Ado-Met to C5 position of the flipped-out cytosine in targeted DNA duplex. In the light of the fact that different DNA methyltransferases are divergent in both structures and functions, and use unique reprogrammed or distorted routines in development of diseases, design of new drugs targeting specific mammalian DNA methyltransferases or their adaptors in the control of key steps in either maintenance or de novo DNA methylation processes will contribute to individually treating diseases related to DNA methyltransferases.
Collapse
Affiliation(s)
- F. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Mao
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - Y. Ding
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - C. Rui
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Wu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - A. Shi
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - H. Zhang
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
| | - L. Zhang
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| | - Z. Xu
- First Hospital & Perinatal Biology Center of Soochow University, Suzhou 215123, China
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| |
Collapse
|
8
|
Malygin EG, Evdokimov AA, Hattman S. Dimeric/oligomeric DNA methyltransferases: an unfinished story. Biol Chem 2009; 390:835-44. [PMID: 19453271 DOI: 10.1515/bc.2009.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methyltransferases (MTases) are enzymes that carry out post-replicative sequence-specific modifications. The initial experimental data on the structure and kinetic characteristics of the EcoRI MTase led to the paradigm that type II systems comprise dimeric endonucleases and monomeric MTases. In retrospect, this was logical because, while the biological substrate of the restriction endonuclease is two-fold symmetrical, the in vivo substrate for the MTase is generally hemi-methylated and, hence, inherently asymmetric. Thus, the paradigm was extended to include all DNA MTases except the more complex bifunctional type I and type III enzymes. Nevertheless, a gradual enlightenment grew over the last decade that has changed the accepted view on the structure of DNA MTases. These results necessitate a more complex view of the structure and function of these important enzymes.
Collapse
Affiliation(s)
- Ernst G Malygin
- State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | | | |
Collapse
|
9
|
Evdokimov AA, Zinoviev VV, Kuznetsov VV, Netesova NA, Malygin EG. Design of oligonucleotide inhibitors for human DNA methyltransferase 1. Mol Biol 2009. [DOI: 10.1134/s0026893309030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 2006; 34:1182-8. [PMID: 16500889 PMCID: PMC1383621 DOI: 10.1093/nar/gkl002] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methyltransferase 1 (Dnmt1) has a central role in copying the pattern of DNA methylation after replication which is one manifestation of epigenetic inheritance. With oligonculeotide substrates we show that mouse Dnmt1 has a 30- to 40-fold preference for hemimethylated DNA that is almost lost after addition of fully methylated oligonucleotides. Using long hemimethylated DNA substrates that carry defined methylation patterns and bisulfite analysis of the methylation reaction products, we show a 15-fold preference for hemimethylated CG sites. Dnmt1 moves along the DNA in a random walk methylating hemimethylated substrates with high processivity (>50 sites are visited on average which corresponds to linear diffusion over 6000 bp). The frequency of skipping sites is very low (<0.3%) and there is no detectable flanking sequence preference. CGCTC sites tend to terminate the processive methylation of DNA by Dnmt1. Unmethylated DNA is modified non-processively with a preference for methylation at CCGG sites. We simulate the propagation of methylation patterns using a stochastic model with the specificity of Dnmt1 observed here and conclude that either methylation of several sites is required to propagate the methylation information over several cellular generations or additional epigenetic information must be used.
Collapse
Affiliation(s)
- Rachna Goyal
- Institut für BiochemieFB 08, Heinrich-Buff-Ring 58, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Richard Reinhardt
- Max Planck Institute for Molecular GeneticsIhnestrasse 63-73, D-14195 Berlin-Dahlem, Germany
| | - Albert Jeltsch
- Biochemistry, International University Bremen, School of Engineering and ScienceCampus Ring 1, 28759 Bremen, Germany
- To whom correspondence should be addressed. Tel: +49 421 200 3247; Fax: +49 421 200 3249;
| |
Collapse
|
11
|
Svedruzić ZM, Reich NO. Mechanism of allosteric regulation of Dnmt1's processivity. Biochemistry 2006; 44:14977-88. [PMID: 16274244 DOI: 10.1021/bi050988f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have analyzed the relationship between the allosteric regulation and processive catalysis of DNA methyltransferase 1 (Dnmt1). Processivity is described quantitatively in terms of turnover rate, DNA dissociation rate, and processivity probability. Our results provide further evidence that the active site and the allosteric sites on Dnmt1 can bind DNA independently. Dnmt1's processive catalysis on unmethylated DNA is partially inhibited when the allosteric site binds unmethylated DNA and fully inhibited when the allosteric site binds a single-stranded oligonucleotide inhibitor. The partial inhibition by unmethylated DNA is caused by a decrease in the turnover rate and an increase in the substrate DNA dissociation rate. Processive catalysis with premethylated DNA is not affected if the allosteric site is exposed to premethylated DNA but is fully inhibited if the allosteric site binds unmethylated DNA or poly(dA-dT). In sum, the occupancy of the allosteric site modulates the enzyme's commitment to catalysis, which reflects the nature of the substrate and the DNA bound at the allosteric site. Our in vitro results are consistent with the possibility that the processive action of Dnmt1 may be regulated in vivo by specific regulatory nucleic acids such as DNA, RNA, or poly(ADP-ribose).
Collapse
Affiliation(s)
- Zeljko M Svedruzić
- Department of Chemistry and Biochemistry and Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
12
|
Svedruzić ZM, Reich NO. DNA cytosine C5 methyltransferase Dnmt1: catalysis-dependent release of allosteric inhibition. Biochemistry 2005; 44:9472-85. [PMID: 15996102 DOI: 10.1021/bi050295z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We followed the cytosine C(5) exchange reaction with Dnmt1 to characterize its preference for different DNA substrates, its allosteric regulation, and to provide a basis for comparison with the bacterial enzymes. We determined that the methyl transfer is rate-limiting, and steps up to and including the cysteine-cytosine covalent intermediate are in rapid equilibrium. Changes in these rapid equilibrium steps account for many of the previously described features of Dnmt1 catalysis and specificity including faster reactions with premethylated DNA versus unmethylated DNA, faster reactions with DNA in which guanine is replaced with inosine [poly(dC-dG) vs poly(dI-dC)], and 10-100-fold slower catalytic rates with Dnmt1 relative to the bacterial enzyme M.HhaI. Dnmt1 interactions with the guanine within the CpG recognition site can prevent the premature release of the target base and solvent access to the active site that could lead to mutagenic deamination. Our results suggest that the beta-elimination step following methyl transfer is not mediated by free solvent. Dnmt1 shows a kinetic lag in product formation and allosteric inhibition with unmethylated DNA that is not observed with premethylated DNA. Thus, we suggest the enzyme undergoes a slow relief from allosteric inhibition upon initiation of catalysis on unmethylated DNA. Notably, this relief from allosteric inhibition is not caused by self-activation through the initial methylation reaction, as the same effect is observed during the cytosine C(5) exchange reaction in the absence of AdoMet. We describe limitations in the Michaelis-Menten kinetic analysis of Dnmt1 and suggest alternative approaches.
Collapse
Affiliation(s)
- Zeljko M Svedruzić
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
13
|
Handa V, Jeltsch A. Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J Mol Biol 2005; 348:1103-12. [PMID: 15854647 DOI: 10.1016/j.jmb.2005.02.044] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 02/18/2005] [Accepted: 02/18/2005] [Indexed: 11/16/2022]
Abstract
Mammalian DNA methyltransferases methylate cytosine residues within CG dinucleotides. By statistical analysis of published data of the Human Epigenome Project we have determined flanking sequences of up to +/-four base-pairs surrounding the central CG site that are characteristic of high (5'-CTTGCGCAAG-3') and low (5'-TGTTCGGTGG-3') levels of methylation in human genomic DNA. We have investigated the influence of flanking sequence on the catalytic activity of the Dnmt3a and Dnmt3b de novo DNA methyltransferases using a set of synthetic oligonucleotide substrates that covers all possible +/-1 flanks in quantitative terms. Methylation kinetics experiments revealed a >13-fold difference between the preferred (RCGY) and disfavored +/-1 flanking base-pairs (YCGR). In addition, AT-rich flanks are preferred over GC-rich ones. These experimental preferences coincide with the genomic methylation patterns. Therefore, we have expanded our experimental analysis and found a >500-fold difference in the methylation rates of the consensus sequences for high and low levels of methylation in the genome. This result demonstrates a very pronounced flanking sequence preference of Dnmt3a and Dnmt3b. It suggests that the methylation pattern of human DNA is due, in part, to the flanking sequence preferences of the de novo DNA MTases and that flanking sequence preferences could be involved in the origin of CG islands. Furthermore, similar flanking sequence preferences have been found for the stimulation of the immune system by unmethylated CGs, suggesting a co-evolution of DNA MTases and the immune system.
Collapse
Affiliation(s)
- Vikas Handa
- Institut für Biochemie, FB 08, Heinrich-Buff-Ring 58, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | | |
Collapse
|
14
|
Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 2004; 279:48350-9. [PMID: 15339928 DOI: 10.1074/jbc.m403427200] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the cell, Dnmt1 is the major enzyme in maintenance of the pattern of DNA methylation after DNA replication. Evidence suggests that the protein is located at the replication fork, where it could directly modify nascent DNA immediately after replication. To elucidate the potential mechanism of this process, we investigate the processivity of DNA methylation and accuracy of copying an existing pattern of methylation in this study using purified Dnmt1 and hemimethylated substrate DNA. We demonstrate that Dnmt1 methylates a hemimethylated 958-mer substrate in a highly processive reaction. Fully methylated and unmethylated CG sites do not inhibit processive methylation of the DNA. Extending previous work, we show that unmethylated sites embedded in a hemimethylated context are modified at an approximately 24-fold reduced rate, which demonstrates that the enzyme accurately copies existing patterns of methylation. Completely unmodified DNA is methylated even more slowly due to an allosteric activation of Dnmt1 by methylcytosine-containing DNA. Interestingly, Dnmt1 is not able to methylate hemimethylated CG sites on different strands of the DNA in a processive manner, indicating that Dnmt1 keeps its orientation with respect to the DNA while methylating the CG sites on one strand of the DNA.
Collapse
Affiliation(s)
- Andrea Hermann
- Institut für Biochemie, FB 08, Heinrich-Buff-Ring 58, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | | | | |
Collapse
|
15
|
Sistla S, Krishnamurthy V, Rao DN. Single-stranded DNA binding and methylation by EcoP1I DNA methyltransferase. Biochem Biophys Res Commun 2004; 314:159-65. [PMID: 14715260 DOI: 10.1016/j.bbrc.2003.12.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
EcoP1I methyltransferase (M.EcoP1I) belongs to the type III restriction-modification system encoded by prophage P1 that infects Escherichia coli. Binding of M.EcoP1I to double-stranded DNA and single-stranded DNA has been characterized. Binding to both single- and double-stranded DNA could be competed out by unlabeled single-stranded DNA. Metal ions did not influence DNA binding. Interestingly, M.EcoP1I was able to methylate single-stranded DNA. Kinetic parameters were determined for single- and double-stranded DNA methylation. This feature of the enzyme probably functions in protecting the phage genome from restriction by type III restriction enzymes and thus could be considered as an anti-restriction system. This study describing in vitro methylation of single-stranded DNA by the type III methyltransferase EcoP1I allows understanding of the mechanism of action of these enzymes and also their role in the biology of single-stranded phages.
Collapse
Affiliation(s)
- Srivani Sistla
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | |
Collapse
|
16
|
Aubol BE, Reich NO. Murine DNA cytosine C(5)-methyltransferase: in vitro studies of de novo methylation spreading. Biochem Biophys Res Commun 2003; 310:209-14. [PMID: 14511672 DOI: 10.1016/j.bbrc.2003.08.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The preference of murine DNA (cytosine-5)-methyltransferase (Dnmt1) for single stranded DNA substrates is increased up to 50-fold by the presence of a proximal 5-methyl cytosine (5(me)C). This modulation is distance-dependent and is due to an enhanced binding affinity and minor changes in catalytic efficiency. No modulation was observed with double stranded DNA. Modulation requires that the 5(me)C moiety be attached to the DNA strand containing the CpG methylation target. Our results support a model in which 5(me)C binding by the enzyme occurs to at least one site outside the region involved in CpG recognition. No modulation in response to 5(me)C is observed with the bacterial enzyme M.SssI, which lacks the large N-terminal regulatory domain found in Dnmt1. We suggest that this allosteric modulation involves the N-terminal domain of Dnmt1.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | |
Collapse
|
17
|
Flynn J, Fang JY, Mikovits JA, Reich NO. A potent cell-active allosteric inhibitor of murine DNA cytosine C5 methyltransferase. J Biol Chem 2003; 278:8238-43. [PMID: 12477724 DOI: 10.1074/jbc.m209839200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The major DNA cytosine methyltransferase isoform in mouse erythroleukemia cells, Dnmt1, exhibits potent dead-end inhibition with a single-stranded nucleic acid by binding to an allosteric site on the enzyme. The previously reported substrate inhibition with double-stranded substrates also involves binding to an allosteric site. Thus, both forms of inhibition involve ternary enzyme-DNA-DNA complexes. The inhibition potency of the single-stranded nucleic acid is determined by the sequence, length, and most appreciably the presence of a single 5-methylcytosine residue. A single-stranded phosphorothioate derivative inhibits DNA methylation activity in nuclear extracts. Mouse erythroleukemia cells treated with the phosphorothioate inhibitor show a significant decrease in global genomic methylation levels. Inhibitor treatment of human colon cancer cells causes demethylation of the p16 tumor suppressor gene and subsequent p16 re-expression. Allosteric inhibitors of mammalian DNA cytosine methyltransferases, representing a new class of molecules with potential therapeutic applications, may be used to elucidate novel epigenetic mechanisms that control development.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemistry and Biochemistry and Program in Biochemistry and Molecular Biology, University of California, Santa Barbara 93106, USA
| | | | | | | |
Collapse
|
18
|
Reddy YV, Rao DN. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. J Mol Biol 2000; 298:597-610. [PMID: 10788323 DOI: 10.1006/jmbi.2000.3673] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EcoP15I DNA methyltransferase, a member of the type III restriction-modification system, binds to the sequence 5'-CAGCAG-3' transferring a methyl group from S-adenosyl-l-methionine to the second adenine base. We have investigated protein-DNA interactions in the methylase-DNA complex by three methods. Determination of equilibrium dissociation constants indicated that the enzyme had higher affinity for DNA containing mismatches at the target base within the recognition sequence. Potassium permanganate footprinting studies revealed that there was a hyper-reactive permanganate cleavage site coincident with adenine that is the target base for methylation. More importantly, to detect DNA conformational alterations within the enzyme-DNA complexes, we have used a fluorescence-based assay. When EcoP15I DNA methyltransferase bound to DNA containing 2-aminopurine substitutions within the cognate sequence, an eight to tenfold fluorescent enhancement resulting from enzymatic flipping of the target adenine base was observed. Furthermore, fluorescence spectroscopy analysis showed that the changes attributable to structural distortion were specific for only the bases within the recognition sequence. More importantly, we observed that both the adenine bases in the recognition site appear to be structurally distorted to the same extent. While the target adenine base is probably flipped out of the DNA duplex, our results also suggest that fluorescent enhancements could be derived from protein-DNA interactions other than base flipping. Taken together, our results support the proposed base flipping mechanism for adenine methyltransferases.
Collapse
Affiliation(s)
- Y V Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
19
|
Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274:33002-10. [PMID: 10551868 DOI: 10.1074/jbc.274.46.33002] [Citation(s) in RCA: 434] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.
Collapse
Affiliation(s)
- S Pradhan
- New England Biolabs, Beverly, Massachusetts 01915, USA
| | | | | | | |
Collapse
|
20
|
Bacolla A, Pradhan S, Roberts RJ, Wells RD. Recombinant human DNA (cytosine-5) methyltransferase. II. Steady-state kinetics reveal allosteric activation by methylated dna. J Biol Chem 1999; 274:33011-9. [PMID: 10551869 DOI: 10.1074/jbc.274.46.33011] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initial velocity determinations were conducted with human DNA (cytosine-5) methyltransferase (DNMT1) on unmethylated and hemimethylated DNA templates in order to assess the mechanism of the reaction. Initial velocity data with DNA and S-adenosylmethionine (AdoMet) as variable substrates and product inhibition studies with methylated DNA and S-adenosylhomocysteine (AdoHcy) were obtained and evaluated as double-reciprocal plots. These relationships were linear for plasmid DNA, exon-1 from the imprinted small nuclear ribonucleoprotein-associated polypeptide N, (CGG.CCG)(12), (m(5)CGG. CCG)(12), and (CGG.CCG)(73) but were not linear for (CGG. Cm(5)CG)(12). Inhibition by AdoHcy was apparently competitive versus AdoMet and uncompetitive/noncompetitive versus DNA at </=20 microM AdoMet. Addition of the product (methylated DNA) to unmethylated plasmid DNA increased V(max(app)) resulting in mixed stimulation and inhibition. Velocity equations indicated a two-step mechanism as follows: first, activation of DNMT1 by methylated DNA that bound to an allosteric site, and second, the addition of AdoMet and DNA to the catalytic site. The preference of DNMT1 for hemimethylated DNA may be the result of positive cooperativity of AdoMet binding mediated by allosteric activation by the methylated CG steps. We propose that this activation plays a role in vivo in the regulation of maintenance methylation.
Collapse
Affiliation(s)
- A Bacolla
- Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University, Texas Medical Center, Houston, Texas 77030-3303, USA.
| | | | | | | |
Collapse
|
21
|
Flynn J, Reich N. Murine DNA (cytosine-5-)-methyltransferase: steady-state and substrate trapping analyses of the kinetic mechanism. Biochemistry 1998; 37:15162-9. [PMID: 9790680 DOI: 10.1021/bi9810609] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA (cytosine-5-)-methyltransferase is essential for viable mammalian development and has a central function in the determination and maintenance of epigenetic methylation patterns. Steady-state and substrate trapping studies were performed to better understand how the enzyme functions. The catalytic efficiency was dependent on substrate DNA length. A 14-fold increase in KmDNA was observed as the length decreased from 5000 to 100 base pairs and kcat decreased by a third. Steady-state analyses were used to identify the order of substrate addition onto the enzyme and the order of product release. Double-reciprocal patterns of velocity versus substrate concentration intersected far from the origin and were nearly parallel. The kinetic mechanism does not appear to change when the DNA substrate is either 6250 or 100 base pairs in length. Isotope trapping studies showed that the initial enzyme-AdoMet complex was not catalytically competent; however, the initial enzyme-poly(dI.dC-dI.dC) complex was observed to be competent for catalysis. Product inhibition studies also support a sequential ordered bi-bi kinetic mechanism in which DNA binds to the enzyme first, followed by S-adenosyl-L-methionine, and then the products S-adenosyl-L-homocysteine and methylated DNA are released. The proposed mechanism is similar to the mechanism proposed for M. HhaI, a bacterial DNA (cytosine-5-)-methyltransferase. Evidence for an enzyme-DNA-DNA ternary complex is also presented.
Collapse
Affiliation(s)
- J Flynn
- Department of Chemistry, Program in Biochemistry and Molecular Biology, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|