1
|
Maslać N, Cadoux C, Bolte P, Murken F, Gu W, Milton RD, Wagner T. Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS J 2024; 291:3454-3480. [PMID: 38696373 DOI: 10.1111/febs.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP·AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.
Collapse
Affiliation(s)
- Nevena Maslać
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Pauline Bolte
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fenja Murken
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wenyu Gu
- Laboratory of Microbial Physiology and Resource Biorecovery, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
2
|
Vazquez Ramos J, Kulka-Peschke CJ, Bechtel DF, Zebger I, Pierik AJ, Layer G. Characterization of the iron-sulfur clusters in the nitrogenase-like reductase CfbC/D required for coenzyme F 430 biosynthesis. FEBS J 2024; 291:3233-3248. [PMID: 38588274 DOI: 10.1111/febs.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Coenzyme F430 is a nickel-containing tetrapyrrole, serving as the prosthetic group of methyl-coenzyme M reductase in methanogenic and methanotrophic archaea. During coenzyme F430 biosynthesis, the tetrapyrrole macrocycle is reduced by the nitrogenase-like CfbC/D system consisting of the reductase component CfbC and the catalytic component CfbD. Both components are homodimeric proteins, each carrying a [4Fe-4S] cluster. Here, the ligands of the [4Fe-4S] clusters of CfbC2 and CfbD2 were identified revealing an all cysteine ligation of both clusters. Moreover, the midpoint potentials of the [4Fe-4S] clusters were determined to be -256 mV for CfbC2 and -407 mV for CfbD2. These midpoint potentials indicate that the consecutive thermodynamically unfavorable 6 individual "up-hill" electron transfers to the organic moiety of the Ni2+-sirohydrochlorin a,c-diamide substrate require an intricate interplay of ATP-binding, hydrolysis, protein complex formation and release to drive product formation, which is a common theme in nitrogenase-like systems.
Collapse
Affiliation(s)
- José Vazquez Ramos
- Pharmazeutische Biologie, Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Germany
| | | | - Gunhild Layer
- Pharmazeutische Biologie, Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
3
|
Tokmina-Lukaszewska M, Huang Q, Berry L, Kallas H, Peters JW, Seefeldt LC, Raugei S, Bothner B. Fe protein docking transduces conformational changes to MoFe nitrogenase active site in a nucleotide-dependent manner. Commun Chem 2023; 6:254. [PMID: 37980448 PMCID: PMC10657360 DOI: 10.1038/s42004-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
The reduction of dinitrogen to ammonia catalyzed by nitrogenase involves a complex series of events, including ATP hydrolysis, electron transfer, and activation of metal clusters for N2 reduction. Early evidence shows that an essential part of the mechanism involves transducing information between the nitrogenase component proteins through conformational dynamics. Here, millisecond time-resolved hydrogen-deuterium exchange mass spectrometry was used to unravel peptide-level protein motion on the time scale of catalysis of Mo-dependent nitrogenase from Azotobacter vinelandii. Normal mode analysis calculations complemented this data, providing insights into the specific signal transduction pathways that relay information across protein interfaces at distances spanning 100 Å. Together, these results show that conformational changes induced by protein docking are rapidly transduced to the active site, suggesting a specific mechanism for activating the metal cofactor in the enzyme active site.
Collapse
Affiliation(s)
| | - Qi Huang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Hayden Kallas
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - John W Peters
- Institute of Biological Chemistry, The University of Oklahoma, Norman, OK, USA
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
4
|
Maggiolo AO, Mahajan S, Rees DC, Clemons WM. Intradimeric Walker A ATPases: Conserved Features of A Functionally Diverse Family. J Mol Biol 2023; 435:167965. [PMID: 37330285 DOI: 10.1016/j.jmb.2023.167965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/19/2023]
Abstract
Nucleoside-triphosphate hydrolases (NTPases) are a diverse, but essential group of enzymes found in all living organisms. NTPases that have a G-X-X-X-X-G-K-[S/T] consensus sequence (where X is any amino acid), known as the Walker A or P-loop motif, constitute a superfamily of P-loop NTPases. A subset of ATPases within this superfamily contains a modified Walker A motif, X-K-G-G-X-G-K-[S/T], wherein the first invariant lysine residue is essential to stimulate nucleotide hydrolysis. Although the proteins in this subset have vastly differing functions, ranging from electron transport during nitrogen fixation to targeting of integral membrane proteins to their correct membranes, they have evolved from a shared ancestor and have thus retained common structural features that affect their functions. These commonalities have only been disparately characterized in the context of their individual proteins systems, but have not been generally annotated as features that unite the members of this family. In this review, we report an analysis based on the sequences, structures, and functions of several members in this family that highlight their remarkable similarities. A principal feature of these proteins is their dependence on homodimerization. Since their functionalities are heavily influenced by changes that happen in conserved elements at the dimer interface, we refer to the members of this subclass as intradimeric Walker A ATPases.
Collapse
Affiliation(s)
- Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Shivansh Mahajan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
5
|
Abstract
Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.
Collapse
|
6
|
Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser. Sci Rep 2021; 11:17976. [PMID: 34504156 PMCID: PMC8429720 DOI: 10.1038/s41598-021-97142-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
Collapse
|
7
|
Mechanical coupling in the nitrogenase complex. PLoS Comput Biol 2021; 17:e1008719. [PMID: 33661889 PMCID: PMC7963043 DOI: 10.1371/journal.pcbi.1008719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/16/2021] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
The enzyme nitrogenase reduces dinitrogen to ammonia utilizing electrons, protons, and energy obtained from the hydrolysis of ATP. Mo-dependent nitrogenase is a symmetric dimer, with each half comprising an ATP-dependent reductase, termed the Fe Protein, and a catalytic protein, known as the MoFe protein, which hosts the electron transfer P-cluster and the active-site metal cofactor (FeMo-co). A series of synchronized events for the electron transfer have been characterized experimentally, in which electron delivery is coupled to nucleotide hydrolysis and regulated by an intricate allosteric network. We report a graph theory analysis of the mechanical coupling in the nitrogenase complex as a key step to understanding the dynamics of allosteric regulation of nitrogen reduction. This analysis shows that regions near the active sites undergo large-scale, large-amplitude correlated motions that enable communications within each half and between the two halves of the complex. Computational predictions of mechanically regions were validated against an analysis of the solution phase dynamics of the nitrogenase complex via hydrogen-deuterium exchange. These regions include the P-loops and the switch regions in the Fe proteins, the loop containing the residue β-188Ser adjacent to the P-cluster in the MoFe protein, and the residues near the protein-protein interface. In particular, it is found that: (i) within each Fe protein, the switch regions I and II are coupled to the [4Fe-4S] cluster; (ii) within each half of the complex, the switch regions I and II are coupled to the loop containing β-188Ser; (iii) between the two halves of the complex, the regions near the nucleotide binding pockets of the two Fe proteins (in particular the P-loops, located over 130 Å apart) are also mechanically coupled. Notably, we found that residues next to the P-cluster (in particular the loop containing β-188Ser) are important for communication between the two halves.
Collapse
|
8
|
Corless EI, Saad Imran SM, Watkins MB, Bacik JP, Mattice JR, Patterson A, Danyal K, Soffe M, Kitelinger R, Seefeldt LC, Origanti S, Bennett B, Bothner B, Ando N, Antony E. The flexible N-terminus of BchL autoinhibits activity through interaction with its [4Fe-4S] cluster and released upon ATP binding. J Biol Chem 2021; 296:100107. [PMID: 33219127 PMCID: PMC7948495 DOI: 10.1074/jbc.ra120.016278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022] Open
Abstract
A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.
Collapse
Affiliation(s)
- Elliot I Corless
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA; Department of Biochemistry, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | | | - Maxwell B Watkins
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - John-Paul Bacik
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Karamatullah Danyal
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Mark Soffe
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Robert Kitelinger
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Brian Bennett
- Department of Physics, Marquette University, Milwaukee, Wisconsin, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA; Department of Biochemistry, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
9
|
Xu Z, Song R, Wang M, Zhang X, Liu G, Qiao G. Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study. Phys Chem Chem Phys 2020; 22:26223-26230. [PMID: 33174542 DOI: 10.1039/d0cp04315j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the wide application of NH3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom (i.e., V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N2 molecule. Particularly, the V-doped system exhibits two feasible configurations for N2 adsorption and an ultralow overpotential (0.10 V) via the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts.
Collapse
Affiliation(s)
- Ziwei Xu
- School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena California 91125, United States
| |
Collapse
|
11
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part V. Nitrogenases. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Rettberg LA, Stiebritz MT, Kang W, Lee CC, Ribbe MW, Hu Y. Structural and Mechanistic Insights into CO 2 Activation by Nitrogenase Iron Protein. Chemistry 2019; 25:13078-13082. [PMID: 31402524 DOI: 10.1002/chem.201903387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/06/2019] [Indexed: 11/09/2022]
Abstract
The Fe protein of nitrogenase catalyzes the ambient reduction of CO2 when its cluster is present in the all-ferrous, [Fe4 S4 ]0 oxidation state. Here, we report a combined structural and theoretical study that probes the unique reactivity of the all-ferrous Fe protein toward CO2 . Structural comparisons of the Azotobacter vinelandii Fe protein in the [Fe4 S4 ]0 and [Fe4 S4 ]+ states point to a possible asymmetric functionality of a highly conserved Arg pair in CO2 binding and reduction. Density functional theory (DFT) calculations provide further support for the asymmetric coordination of O by the "proximal" Arg and binding of C to a unique Fe atom of the all-ferrous cluster, followed by donation of protons by the proximate guanidinium group of Arg that eventually results in the scission of a C-O bond. These results provide important mechanistic and structural insights into CO2 activation by a surface-exposed, scaffold-held [Fe4 S4 ] cluster.
Collapse
Affiliation(s)
- Lee A Rettberg
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Martin T Stiebritz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Wonchull Kang
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.,Department Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| |
Collapse
|
13
|
Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO 2 Capture by a Surface-Exposed [Fe 4S 4] Cluster. mBio 2019; 10:mBio.01497-19. [PMID: 31289188 PMCID: PMC6747716 DOI: 10.1128/mbio.01497-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO2 capture by a surface-exposed [Fe4S4] cluster point to the possibility of developing novel strategies for CO2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO2 activation. Nitrogenase iron (Fe) proteins reduce CO2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans (MaNifH), which is generated in the presence of a reductant, dithionite, and an alternative CO2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO2 is possibly captured in an unactivated, linear conformation near the [Fe4S4] cluster of MaNifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO2 on MaNifH while suggesting a possible role of Arg in the initial coordination of CO2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO2 activation by a surface-exposed [Fe4S4] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO2 into valuable chemical commodities.
Collapse
|
14
|
Abstract
Biological nitrogen fixation, the conversion of dinitrogen (N2) into ammonia (NH3), stands as a particularly challenging chemical process. As the entry point into a bioavailable form of nitrogen, biological nitrogen fixation is a critical step in the global nitrogen cycle. In Nature, only one enzyme, nitrogenase, is competent in performing this reaction. Study of this complex metalloenzyme has revealed a potent substrate reduction system that utilizes some of the most sophisticated metalloclusters known. This chapter discusses the structure and function of nitrogenase, covers methods that have proven useful in the elucidation of enzyme properties, and provides an overview of the three known nitrogenase variants.
Collapse
|
15
|
Crystallization of Nitrogenase Proteins. Methods Mol Biol 2018. [PMID: 30317480 DOI: 10.1007/978-1-4939-8864-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitrogenase is the only known enzymatic system capable of reducing atmospheric dinitrogen to ammonia. This unique reaction requires tightly choreographed interactions between the nitrogenase component proteins, the molybdenum-iron (MoFe)- and iron (Fe)-proteins, as well as regulation of electron transfer between multiple metal centers that are only found in these components. Several decades of research beginning in the 1950s yielded substantial information of how nitrogenase manages the task of N2 fixation. However, key mechanistic steps in this highly oxygen-sensitive and ATP-intensive reaction have only recently been identified at an atomic level. A critical part in any mechanistic elucidation is the necessity to connect spectroscopic and functional properties of the component proteins to the detailed three-dimensional structures. Structural information derived from X-ray diffraction (XRD) methods has provided detailed atomic insights into the enzyme system and, in particular, its active site FeMo-cofactor. The following chapter outlines the general protocols for the crystallization of Azotobacter vinelandii (Av) nitrogenase component proteins, with a special emphasis on different applications, such as high-resolution XRD, single-crystal spectroscopy, and the structural characterization of bound inhibitors.
Collapse
|
16
|
Zhang Y, Mei T, Yang D, Zhang Y, Wang B, Qu J. Synthesis and reactivity of thiolate-bridged multi-iron complexes supported by cyclic (alkyl)(amino)carbene. Dalton Trans 2017; 46:15888-15896. [PMID: 29116275 DOI: 10.1039/c7dt03353b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combined utilization of Me2-cAAC (Me2-cAAC = :C(CH2)(CMe2)2N-2,6-iPr2C6H3) and thiolates as supporting ligands enables the access of unprecedented carbene coordinated thiolate-bridged diiron(ii) complexes [(Me2-cAAC)Fe(μ-SR)(Br)]2 (R = Me, 3; R = Et, 4). The coordination environment of each tetrahedral iron(ii) center in complexes 3 and 4 is composed of one terminal bromide atom, one carbene carbon atom and two thiolate sulfur atoms, which is similar to the carbide-containing sulfur-rich environment of iron centers in the belt region of the FeMo-cofactor. Interestingly, when NaSCPh3 was chosen as the thiolate ligand, C-S bond homolysis occurred to form a rare [3 : 1] site-differentiated cubane-type cluster [(Me2-cAAC)Fe4S4(Br)3][Me2-cAACH] (5). Furthermore, complexes 3 and 4 exhibit good exchange reactivity toward the azide anion to give novel thiolate-bridged diiron complexes with two azido ligands in a trans arrangement.
Collapse
Affiliation(s)
- Yanpeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Nitrogenase is a metalloenzyme system that plays a critical role in biological nitrogen fixation, and the study of how its metallocenters are assembled into functional entities to facilitate the catalytic reduction of dinitrogen to ammonia is an active area of interest. The diazotroph Azotobacter vinelandii is especially amenable to culturing and genetic manipulation, and this organism has provided the basis for many insights into the assembly of nitrogenase proteins and their respective metallocofactors. This chapter will cover the basic procedures necessary for growing A. vinelandii cultures and subsequent recombinant transformation and protein expression techniques. Furthermore, protocols for nitrogenase protein purification and substrate reduction activity assays are described. These methods provide a solid framework for the assessment of nitrogenase assembly and catalysis.
Collapse
Affiliation(s)
| | - Yilin Hu
- University of California, Irvine, Irvine, CA, United States.
| | - Markus W Ribbe
- University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
18
|
Artz JH, Zadvornyy OA, Mulder DW, King PW, Peters JW. Structural Characterization of Poised States in the Oxygen Sensitive Hydrogenases and Nitrogenases. Methods Enzymol 2017; 595:213-259. [PMID: 28882202 DOI: 10.1016/bs.mie.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystallization of FeS cluster-containing proteins has been challenging due to their oxygen sensitivity, and yet these enzymes are involved in many critical catalytic reactions. The last few years have seen a wealth of innovative experiments designed to elucidate not just structural but mechanistic insights into FeS cluster enzymes. Here, we focus on the crystallization of hydrogenases, which catalyze the reversible reduction of protons to hydrogen, and nitrogenases, which reduce dinitrogen to ammonia. A specific focus is given to the different experimental parameters and strategies that are used to trap distinct enzyme states, specifically, oxidants, reductants, and gas treatments. Other themes presented here include the recent use of Cryo-EM, and how coupling various spectroscopies to crystallization is opening up new approaches for structural and mechanistic analysis.
Collapse
Affiliation(s)
- Jacob H Artz
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Oleg A Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Paul W King
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.
| |
Collapse
|
19
|
Sickerman NS, Tanifuji K, Hu Y, Ribbe MW. Synthetic Analogues of Nitrogenase Metallocofactors: Challenges and Developments. Chemistry 2017; 23:12425-12432. [DOI: 10.1002/chem.201702496] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
20
|
Pence N, Tokmina-Lukaszewska M, Yang ZY, Ledbetter RN, Seefeldt LC, Bothner B, Peters JW. Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle. J Biol Chem 2017; 292:15661-15669. [PMID: 28784660 DOI: 10.1074/jbc.m117.801548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/02/2017] [Indexed: 01/21/2023] Open
Abstract
Nitrogenase reduces dinitrogen (N2) to ammonia in biological nitrogen fixation. The nitrogenase Fe protein cycle involves a transient association between the reduced, MgATP-bound Fe protein and the MoFe protein and includes electron transfer, ATP hydrolysis, release of Pi, and dissociation of the oxidized, MgADP-bound Fe protein from the MoFe protein. The cycle is completed by reduction of oxidized Fe protein and nucleotide exchange. Recently, a kinetic study of the nitrogenase Fe protein cycle involving the physiological reductant flavodoxin reported a major revision of the rate-limiting step from MoFe protein and Fe protein dissociation to release of Pi Because the Fe protein cannot interact with flavodoxin and the MoFe protein simultaneously, knowledge of the interactions between flavodoxin and the different nucleotide states of the Fe protein is critically important for understanding the Fe protein cycle. Here we used time-resolved limited proteolysis and chemical cross-linking to examine nucleotide-induced structural changes in the Fe protein and their effects on interactions with flavodoxin. Differences in proteolytic cleavage patterns and chemical cross-linking patterns were consistent with known nucleotide-induced structural differences in the Fe protein and indicated that MgATP-bound Fe protein resembles the structure of the Fe protein in the stabilized nitrogenase complex structures. Docking models and cross-linking patterns between the Fe protein and flavodoxin revealed that the MgADP-bound state of the Fe protein has the most complementary docking interface with flavodoxin compared with the MgATP-bound state. Together, these findings provide new insights into the control mechanisms in protein-protein interactions during the Fe protein cycle.
Collapse
Affiliation(s)
- Natasha Pence
- From the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164.,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, and
| | | | - Zhi-Yong Yang
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Rhesa N Ledbetter
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Lance C Seefeldt
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Brian Bothner
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, and
| | - John W Peters
- From the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, .,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, and
| |
Collapse
|
21
|
Sickerman NS, Hu Y, Ribbe MW. Activation of CO
2
by Vanadium Nitrogenase. Chem Asian J 2017; 12:1985-1996. [DOI: 10.1002/asia.201700624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
22
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nat Chem Biol 2016; 13:147-149. [PMID: 27893704 DOI: 10.1038/nchembio.2245] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
Abstract
The iron (Fe) proteins of molybdenum (Mo) and vanadium (V) nitrogenases mimic carbon monoxide (CO) dehydrogenase in catalyzing the interconversion between CO2 and CO under ambient conditions. Catalytic reduction of CO2 to CO is achieved in vitro and in vivo upon redox changes of the Fe-protein-associated [Fe4S4] clusters. These observations establish the Fe protein as a model for investigation of CO2 activation while suggesting its biotechnological adaptability for recycling the greenhouse gas into useful products.
Collapse
|
24
|
Holm RH, Lo W. Structural Conversions of Synthetic and Protein-Bound Iron–Sulfur Clusters. Chem Rev 2016; 116:13685-13713. [DOI: 10.1021/acs.chemrev.6b00276] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. H. Holm
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Wayne Lo
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
25
|
Frank IE, Turk-Kubo KA, Zehr JP. Rapid annotation of nifH gene sequences using classification and regression trees facilitates environmental functional gene analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:905-916. [PMID: 27557869 DOI: 10.1111/1758-2229.12455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/16/2016] [Indexed: 05/22/2023]
Abstract
The nifH gene is a widely used molecular proxy for studying nitrogen fixation. Phylogenetic classification of nifH gene sequences is an essential step in diazotroph community analysis that requires a fast automated solution due to increasing size of environmental sequence libraries and increasing yield of nifH sequences from high-throughput technologies. A novel approach to rapidly classify nifH amino acid sequences into well-defined phylogenetic clusters that provides a common platform for comparative analysis across studies is presented. Phylogenetic group membership can be accurately predicted with decision tree-type statistical models that identify and utilize signature residues in the amino acid sequences. Our classification models were trained and evaluated with a publicly available and manually curated nifH gene database containing cluster annotations. Model-independent sequence sets from diverse ecosystems were used for further assessment of the models' prediction accuracy. The utility of this novel sequence binning approach was demonstrated in a comparative study where joint treatment of diazotroph assemblages from a wide range of habitats identified habitat-specific and widely-distributed diazotrophs and revealed a marine - terrestrial distinction in community composition. Our rapid and automated phylogenetic cluster assignment circumvents extensive phylogenetic analysis of nifH sequences; hence, it saves substantial time and resources in nitrogen fixation studies.
Collapse
Affiliation(s)
- Ildiko E Frank
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Kendra A Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
26
|
Zhang LM, Morrison CN, Kaiser JT, Rees DC. Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:274-82. [PMID: 25664737 PMCID: PMC4321486 DOI: 10.1107/s1399004714025243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 11/11/2022]
Abstract
The X-ray crystal structure of the nitrogenase MoFe protein from Clostridium pasteurianum (Cp1) has been determined at 1.08 Å resolution by multiwavelength anomalous diffraction phasing. Cp1 and the ortholog from Azotobacter vinelandii (Av1) represent two distinct families of nitrogenases, differing primarily by a long insertion in the α-subunit and a deletion in the β-subunit of Cp1 relative to Av1. Comparison of these two MoFe protein structures at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The FeMo cofactors defining the active sites of the MoFe protein are essentially identical between the two proteins. The surrounding environment is also highly conserved, suggesting that this structural arrangement is crucial for nitrogen reduction. The P clusters are likewise similar, although the surrounding protein and solvent environment is less conserved relative to that of the FeMo cofactor. The P cluster and FeMo cofactor in Av1 and Cp1 are connected through a conserved water tunnel surrounded by similar secondary-structure elements. The long α-subunit insertion loop occludes the presumed Fe protein docking surface on Cp1 with few contacts to the remainder of the protein. This makes it plausible that this loop is repositioned to open up the Fe protein docking surface for complex formation.
Collapse
Affiliation(s)
- Li-Mei Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christine N. Morrison
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jens T. Kaiser
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
27
|
Tezcan FA, Kaiser JT, Howard JB, Rees DC. Structural evidence for asymmetrical nucleotide interactions in nitrogenase. J Am Chem Soc 2014; 137:146-9. [PMID: 25522159 PMCID: PMC4304452 DOI: 10.1021/ja511945e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
roles of ATP hydrolysis in electron-transfer (ET) reactions
of the nitrogenase catalytic cycle remain obscure. Here, we present
a new structure of a nitrogenase complex crystallized with MgADP and
MgAMPPCP, an ATP analogue. In this structure the two nucleotides are
bound asymmetrically by the Fe-protein subunits connected to the two
different MoFe-protein subunits. This binding mode suggests that ATP
hydrolysis and phosphate release may proceed by a stepwise mechanism.
Through the associated Fe-protein conformational changes, a stepwise
mechanism is anticipated to prolong the lifetime of the Fe-protein-MoFe-protein
complex and, in turn, could orchestrate the sequence of intracomplex
ET required for substrate reduction.
Collapse
Affiliation(s)
- F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States
| | | | | | | |
Collapse
|
28
|
Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family. J Biosci 2014; 38:733-40. [PMID: 24287653 DOI: 10.1007/s12038-013-9360-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Biological nitrogen fixation is accomplished by prokaryotes through the catalytic action of complex metalloenzyme, nitrogenase. Nitrogenase is a two-protein component system comprising MoFe protein (NifD and K) and Fe protein (NifH). NifH shares structural and mechanistic similarities as well as evolutionary relationships with light-independent protochlorophyllide reductase (BchL), a photosynthesis-related metalloenzyme belonging to the same protein family. We performed a comprehensive bioinformatics analysis of the NifH/BchL family in order to elucidate the intrinsic functional diversity and the underlying evolutionary mechanism among the members. To analyse functional divergence in the NifH/ BchL family, we have conducted pair-wise estimation in altered evolutionary rates between the member proteins. We identified a number of vital amino acid sites which contribute to predicted functional diversity. We have also made use of the maximum likelihood tests for detection of positive selection at the amino acid level followed by the structure-based phylogenetic approach to draw conclusion on the ancient lineage and novel characterization of the NifH/BchL protein family. Our investigation provides ample support to the fact that NifH protein and BchL share robust structural similarities and have probably deviated from a common ancestor followed by divergence in functional properties possibly due to gene duplication.
Collapse
|
29
|
Senn S, Nanda V, Falkowski P, Bromberg Y. Function-based assessment of structural similarity measurements using metal co-factor orientation. Proteins 2013; 82:648-56. [PMID: 24127252 DOI: 10.1002/prot.24442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/17/2013] [Accepted: 09/26/2013] [Indexed: 12/20/2022]
Abstract
Structure comparison is widely used to quantify protein relationships. Although there are several approaches to calculate structural similarity, specifying significance thresholds for similarity metrics is difficult due to the inherent likeness of common secondary structure elements. In this study, metal co-factor location is used to assess the biological relevance of structural alignments. The distance between the centroids of bound co-factors adds a chemical and function-relevant constraint to the structural superimposition of two proteins. This additional dimension can be used to define cut-off values for discriminating valid and spurious alignments in large alignment sets. The hypothesis underlying our approach is that metal coordination sites constrain structural evolution, thus revealing functional relationships between distantly related proteins. A comparison of three related nitrogenases shows the sequence and fold constraints imposed on the protein structures up to 18 Å away from the centers of their bound metal clusters.
Collapse
Affiliation(s)
- Stefan Senn
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, 08901
| | | | | | | |
Collapse
|
30
|
Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS One 2013; 8:e74500. [PMID: 24058578 PMCID: PMC3772945 DOI: 10.1371/journal.pone.0074500] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/02/2013] [Indexed: 12/04/2022] Open
Abstract
Background Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. Methodology/Principal Findings In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D) had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K), indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season) were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. Conclusions Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.
Collapse
|
31
|
Bergeler M, Stiebritz MT, Reiher M. Structure-Property Relationships of Fe4S4Clusters. Chempluschem 2013; 78:1082-1098. [DOI: 10.1002/cplu.201300186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 11/08/2022]
|
32
|
Jacobs D, Watt GD. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis. Biochemistry 2013; 52:4791-9. [PMID: 23815521 DOI: 10.1021/bi301547b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The [Fe4S4] cluster of the nitrogenase Fe protein from Azotobacter vinelandii can exist in three redox states: oxidized [Fe4S4](2+), dithionite reduced [Fe4S4](1+), and two forms of the all ferrous [Fe4S4](0), S = 4 and 0. Operation of the [Fe4S4](2+)/ [Fe4S4](1+) redox couple transfers one electron to the MoFe protein during catalysis with hydrolysis of two MgATPs. In contrast, the [Fe4S4](2+)/[Fe4S4](0) couple transfers two electrons per binding event, accompanied by hydrolysis of only two MgATPs. Both reactions occur at nearly identical rates even though the number of electrons transferred differs by a factor of 2. MgATP and MgADP facilitate interconversion of the three redox states: 2[Fe4S4](1+) + 4 MgATP = [Fe4S4](2+)(MgATP)2 + [Fe4S4](0)(MgATP)2, as demonstrated by the MgATP reaction. This reaction was investigated as a possible precursor reaction to provide two electrons in the form of [Fe4S4](0)(MgATP)2 for delivery to the MoFe protein to then conduct a two-electron substrate reduction. However, experiments showed that this disproportionation reaction, which readily occurs, was not viable during nitrogenase catalysis utilizing the [Fe4S4](1+) cluster state. The known cooperative behavior of the Fe protein in the [Fe4S4](1+) state taken together with a measured turnover potential of -460 mV with an n = 2 value, suggest a gating process on the MoFe protein involving a two electron step.
Collapse
Affiliation(s)
- Deloria Jacobs
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | | |
Collapse
|
33
|
Mitra D, George SJ, Guo Y, Kamali S, Keable S, Peters JW, Pelmenschikov V, Case DA, Cramer SP. Characterization of [4Fe-4S] cluster vibrations and structure in nitrogenase Fe protein at three oxidation levels via combined NRVS, EXAFS, and DFT analyses. J Am Chem Soc 2013; 135:2530-43. [PMID: 23282058 DOI: 10.1021/ja307027n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Azotobacter vinelandii nitrogenase Fe protein (Av2) provides a rare opportunity to investigate a [4Fe-4S] cluster at three oxidation levels in the same protein environment. Here, we report the structural and vibrational changes of this cluster upon reduction using a combination of NRVS and EXAFS spectroscopies and DFT calculations. Key to this work is the synergy between these three techniques as each generates highly complementary information and their analytical methodologies are interdependent. Importantly, the spectroscopic samples contained no glassing agents. NRVS and DFT reveal a systematic 10-30 cm(-1) decrease in Fe-S stretching frequencies with each added electron. The "oxidized" [4Fe-4S](2+) state spectrum is consistent with and extends previous resonance Raman spectra. For the "reduced" [4Fe-4S](1+) state in Fe protein, and for any "all-ferrous" [4Fe-4S](0) cluster, these NRVS spectra are the first available vibrational data. NRVS simulations also allow estimation of the vibrational disorder for Fe-S and Fe-Fe distances, constraining the EXAFS analysis and allowing structural disorder to be estimated. For oxidized Av2, EXAFS and DFT indicate nearly equal Fe-Fe distances, while addition of one electron decreases the cluster symmetry. However, addition of the second electron to form the all-ferrous state induces significant structural change. EXAFS data recorded to k = 21 Å(-1) indicates a 1:1 ratio of Fe-Fe interactions at 2.56 Å and 2.75 Å, a result consistent with DFT. Broken symmetry (BS) DFT rationalizes the interplay between redox state and the Fe-S and Fe-Fe distances as predominantly spin-dependent behavior inherent to the [4Fe-4S] cluster and perturbed by the Av2 protein environment.
Collapse
Affiliation(s)
- Devrani Mitra
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perrin BS, Ichiye T. Characterizing the effects of the protein environment on the reduction potentials of metalloproteins. J Biol Inorg Chem 2013; 18:103-10. [PMID: 23229112 PMCID: PMC3567609 DOI: 10.1007/s00775-012-0955-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/18/2012] [Indexed: 11/26/2022]
Abstract
The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius R(p) (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ϕ(p) (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of R(p) and ϕ(p). The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q(2), while the electret energy is a function of Q. In addition, R(p) and ϕ(p) are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| |
Collapse
|
35
|
Lo W, Zhang P, Ling CC, Huang S, Holm RH. Formation, spectroscopic characterization, and solution stability of an [Fe4S4]2+ cluster derived from β-cyclodextrin dithiolate. Inorg Chem 2012; 51:9883-92. [PMID: 22934734 DOI: 10.1021/ic301324u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation and solution properties, including stability in mixed aqueous-Me(2)SO media, have been investigated for an [Fe(4)S(4)](2+) cluster derived from β-cyclodextrin (CD) dithiolate. Clusters of the type [Fe(4)S(4)(SAr)(4)](2-) (Ar = Ph, C(6)H(4)-3-F) are generated in Me(2)SO by redox reactions of [Fe(4)S(4)(SEt)(4)](2-) with 2 equiv of ArSSAr. An analogous reaction with the intramolecular disulfide of 6(A),6(D)-(3-NHCOC(6)H(4)-1-SH)(2)-6(A),6(D)-dideoxy-β-cyclodextrin (14), whose synthesis is described, affords a completely substituted cluster formulated as [Fe(4)S(4){β-CD-(1,3-NHCOC(6)H(4)S)(2)}(2)](2-) (15). Ligand binding is indicated by a circular dichroism spectrum and also by UV-visible and isotropically shifted (1)H NMR spectra and redox behavior convincingly similar to [Fe(4)S(4)(SPh)(4)](2-). One formulation of 15 is a single cluster to which two dithiolates are bound, each in bidentate coordination. With there being no proven precedent for this binding mode, we show that the cluster [Fe(4)S(4)(S(2)-m-xyl)(2)](2-) is a single cubane whose m-xylyldithiolate ligands are bound in a bidentate arrangement. This same structure type was proposed for a cluster formulated as [Fe(4)S(4){β-CD-(1,3-SC(6)H(4)S)(2)}(2)](2-) (16; Kuroda et al. J. Am. Chem. Soc.1988, 110, 4049-4050) and reported to be water-stable. Clusters 15 and 16 are derived from similar ligands differing only in the spacer group between the thiolate binding site and the CD platform. In our search for clusters stable in aqueous or organic-aqueous mixed solvents that are potential candidates for the reconstitution of scaffold proteins implicated in cluster biogenesis, 15 is the most stable cluster that we have thus far encountered under anaerobic conditions in the absence of added ligand.
Collapse
Affiliation(s)
- Wayne Lo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
36
|
Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 2012; 7:e42149. [PMID: 22848735 PMCID: PMC3405036 DOI: 10.1371/journal.pone.0042149] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022] Open
Abstract
The nifH gene is the most widely sequenced marker gene used to identify nitrogen-fixing Bacteria and Archaea. Numerous PCR primers have been designed to amplify nifH, but a comprehensive evaluation of nifH PCR primers has not been performed. We performed an in silico analysis of the specificity and coverage of 51 universal and 35 group-specific nifH primers by using an aligned database of 23,847 nifH sequences. We found that there are 15 universal nifH primers that target 90% or more of nitrogen fixers, but that there are also 23 nifH primers that target less than 50% of nifH sequences. The nifH primers we evaluated vary in their phylogenetic bias and their ability to recover sequences from commonly sampled environments. In addition, many of these primers will amplify genes that do not mediate nitrogen fixation, and thus it would be advisable for researchers to screen their sequencing results for the presence of non-target genes before analysis. Universal primers that performed well in silico were tested empirically with soil samples and with genomic DNA from a phylogenetically diverse set of nitrogen-fixing strains. This analysis will be of great utility to those engaged in molecular analysis of nifH genes from isolates and environmental samples.
Collapse
Affiliation(s)
- John Christian Gaby
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Daniel H. Buckley
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Blank MA, Lee CC, Hu Y, Hodgson KO, Hedman B, Ribbe MW. Structural models of the [Fe4S4] clusters of homologous nitrogenase Fe proteins. Inorg Chem 2011; 50:7123-8. [PMID: 21718019 PMCID: PMC3143205 DOI: 10.1021/ic200636k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron (Fe) proteins of molybdenum (Mo)-, vanadium (V)-, and iron (Fe)-only nitrogenases are encoded by nifH, vnfH, and anfH, respectively. While the nifH-encoded Fe protein has been extensively studied over recent years, information regarding the properties of the vnfH- and anfH-encoded Fe proteins has remained scarce. Here, we present a combined biochemical, electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy (XAS) analysis of the [Fe(4)S(4)] clusters of NifH, VnfH, and AnfH of Azotobacter vinelandii . Our data show that all three Fe proteins contain [Fe(4)S(4)] clusters of very similar spectroscopic and geometric structural properties, although NifH differs more from VnfH and AnfH with regard to the electronic structure. These observations have an interesting impact on the theory of the plausible sequence of evolution of nitrogenase Fe proteins. More importantly, the results presented herein provide a platform for future investigations of the differential activities of the three Fe proteins in nitrogenase biosynthesis and catalysis.
Collapse
Affiliation(s)
- Michael A. Blank
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, CA 94025
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, CA 94025
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
38
|
Abstract
Nitrogenase is a globally important enzyme that catalyses the reduction of atmospheric dinitrogen into ammonia and is thus an important part of the nitrogen cycle. The nitrogenase enzyme is composed of a catalytic molybdenum-iron protein (MoFe protein) and a protein containing an [Fe4-S4] cluster (Fe protein) that functions as a dedicated ATP-dependent reductase. The current understanding of electron transfer between these two proteins is based on stopped-flow spectrophotometry, which has allowed the rates of complex formation and electron transfer to be accurately determined. Surprisingly, a total of four Fe protein molecules are required to saturate one MoFe protein molecule, despite there being only two well-characterized Fe-protein-binding sites. This has led to the conclusion that the purified Fe protein is only half-active with respect to electron transfer to the MoFe protein. Studies on the electron transfer between both proteins using rapid-quench EPR confirmed that, during pre-steady-state electron transfer, the Fe protein only becomes half-oxidized. However, stopped-flow spectrophotometry on MoFe protein that had only one active site occupied was saturated by approximately three Fe protein equivalents. These results imply that the Fe protein has a second interaction during the initial stages of mixing that is not involved in electron transfer.
Collapse
|
39
|
Perrin BS, Ichiye T. Fold versus sequence effects on the driving force for protein-mediated electron transfer. Proteins 2011; 78:2798-808. [PMID: 20635418 DOI: 10.1002/prot.22794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electron transport chains composed of electron transfer reactions mainly between proteins provide fast efficient flow of energy in a variety of metabolic pathways. Reduction potentials are essential characteristics of the proteins because they determine the driving forces for the electron transfers. As both polar and charged groups from the backbone and side chains define the electrostatic environment, both the fold and the sequence will contribute. However, although the role of a specific sequence may be determined by experimental mutagenesis studies of reduction potentials, understanding the role of the fold by experiment is much more difficult. Here, continuum electrostatics and density functional theory calculations are used to analyze reduction potentials in [4Fe-4S] proteins. A key feature is that multiple homologous proteins in three different folds are compared: six high potential iron-sulfur proteins, four bacterial ferredoxins, and four nitrogenase iron proteins. Calculated absolute reduction potentials are shown to be in quantitative agreement with electrochemical reduction potentials. Calculations further demonstrate that the contribution of the backbone is larger than that of the side chains and is consistent for homologous proteins but differs for nonhomologous proteins, indicating that the fold is the major protein factor determining the reduction potential, whereas the specific amino acid sequence tunes the reduction potential for a given fold. Moreover, the fold contribution is determined mainly by the proximity of the redox site to the protein surface and the orientation of the dipoles of backbone near the redox site.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, District of Columbia 20057-1227, USA
| | | |
Collapse
|
40
|
Mulder DW, Peters JW. Small angle x-ray scattering spectroscopy. Methods Mol Biol 2011; 766:177-189. [PMID: 21833868 DOI: 10.1007/978-1-61779-194-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Conformational changes imposed upon the Fe protein during binding and hydrolysis of Mg·ATP are key to initiating the cycle of interactions within the nitrogenase complex that result in gated electron transfer and the eventual multiple electron reduction of dinitrogen to ammonia. Wonderful insights into how nitrogenase accomplishes this have been gleaned from a number of very nice crystal structures, but conformational changes can only be inferred in a very superficial manner, and a number of key conformations relevant to fully understanding conformational changes have eluded this approach. Alternatively, small angle x-ray scattering (SAXS) has proven to be a helpful method for complimenting x-ray crystallography and determining solution structures of various nucleotide-bound states.
Collapse
Affiliation(s)
- David W Mulder
- Department of Chemistry and Biochemistry, Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT 59717, USA.
| | | |
Collapse
|
41
|
Lery LMS, Bitar M, Costa MGS, Rössle SCS, Bisch PM. Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria. BMC Genomics 2010; 11 Suppl 5:S7. [PMID: 21210973 PMCID: PMC3045800 DOI: 10.1186/1471-2164-11-s5-s7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. RESULTS Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. CONCLUSIONS The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.
Collapse
Affiliation(s)
- Letícia M S Lery
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-901, Rio de Janeiro, Brasil.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc Natl Acad Sci U S A 2009; 106:14849-54. [PMID: 19706470 DOI: 10.1073/pnas.0907522106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Get3 ATPase directs the delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER). TA-proteins are characterized by having a single transmembrane helix (TM) at their extreme C terminus and include many essential proteins, such as SNAREs, apoptosis factors, and protein translocation components. These proteins cannot follow the SRP-dependent co-translational pathway that typifies most integral membrane proteins; instead, post-translationally, these proteins are recognized and bound by Get3 then delivered to the ER in the ATP dependent Get pathway. To elucidate a molecular mechanism for TA protein binding by Get3 we have determined three crystal structures in apo and ADP forms from Saccharomyces cerevisae (ScGet3-apo) and Aspergillus fumigatus (AfGet3-apo and AfGet3-ADP). Using structural information, we generated mutants to confirm important interfaces and essential residues. These results point to a model of how Get3 couples ATP hydrolysis to the binding and release of TA-proteins.
Collapse
|
44
|
Kittichotirat W, Guerquin M, Bumgarner RE, Samudrala R. Protinfo PPC: a web server for atomic level prediction of protein complexes. Nucleic Acids Res 2009; 37:W519-25. [PMID: 19420059 PMCID: PMC2703994 DOI: 10.1093/nar/gkp306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
‘Protinfo PPC’ (Prediction of Protein Complex) is a web server that predicts atomic level structures of interacting proteins from their amino-acid sequences. It uses the interolog method to search for experimental protein complex structures that are homologous to the input sequences submitted by a user. These structures are then used as starting templates to generate protein complex models, which are returned to the user in Protein Data Bank format via email. The server supports modeling of both homo and hetero multimers and generally produces full atomic level models (including insertion/deletion regions) of protein complexes as long as at least one putative homologous template for the query sequences is found. The modeling pipeline behind Protinfo PPC has been rigorously benchmarked and proven to produce highly accurate protein complex models. The fully automated all atom comparative modeling service for protein complexes provided by Protinfo PPC server offers wide capabilities ranging from prediction of protein complex interactions to identification of possible interaction sites, which will be useful for researchers studying these topics. The Protinfo PPC web server is available at http://protinfo.compbio.washington.edu/ppc/
Collapse
|
45
|
Sarma R, Barney BM, Hamilton TL, Jones A, Seefeldt LC, Peters JW. Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 2009; 47:13004-15. [PMID: 19006326 DOI: 10.1021/bi801058r] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The L protein (BchL) of the dark-operative protochlorophyllide reductase (DPOR) from Rhodobacter sphaeroides has been purified from an Azotobacter vinelandii expression system; its interaction with nucleotides has been examined, and the X-ray structure of the protein has been determined with bound MgADP to 1.6 A resolution. DPOR catalyzes the reduction of protochlorophyllide to chlorophyllide, a reaction critical to the biosynthesis of bacteriochlorophylls. The DPOR holoenzyme is comprised of two component proteins, the dimeric BchL protein and the heterotetrameric BchN/BchB protein. The DPOR component proteins share significant overall similarities with the nitrogenase Fe protein (NifH) and the MoFe (NifDK) protein, the enzyme system responsible for reduction of dinitrogen to ammonia. Here, BchL was expressed in A. vinelandii and purified to homogeneity using an engineered polyhistidine tag. The purified, recombinant BchL was found to contain 3.6 mol of Fe/mol of BchL homodimer, consistent with the presence of a [4Fe-4S] cluster and analogous to the [4Fe-4S] cluster present in the Fe protein. The MgATP- and MgADP-induced conformational changes in BchL were examined by an Fe chelation assay and found to be distinctly different from the nucleotide-stimulated Fe release observed for the Fe protein. The recombinant BchL was crystallized with bound MgADP, and the structure was determined to 1.6 A resolution. BchL is found to share overall structural similarity with the nitrogenase Fe protein, including the subunit bridging [4Fe-4S] cluster and nucleotide binding sites. Despite the high level of structural similarity, however, BchL is found to be incapable of substituting for the Fe protein in a nitrogenase substrate reduction assay. The newly determined structure of BchL and its comparison to its close homologue, the nitrogenase Fe protein, provide the basis for understanding how these highly related proteins can discriminate between their respective functions in microbial systems where each must function simultaneously.
Collapse
Affiliation(s)
- Ranjana Sarma
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hallenbeck PC, George GN, Prince RC, Thorneley RNF. Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster. J Biol Inorg Chem 2009; 14:673-82. [PMID: 19234722 DOI: 10.1007/s00775-009-0480-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/06/2009] [Indexed: 11/25/2022]
Abstract
The Azotobacter vinelandii nifS gene product has been used with selenocysteine to reconstitute Klebsiella pneumoniae nitrogenase Fe protein. Chemical analysis and extended X-ray absorption fine structure (EXAFS) spectroscopy show that the 4Fe4S cluster present in the native protein is replaced by a 4Fe4Se cluster. As well, EXAFS spectroscopy shows that the bond lengths to the cysteine thiolate ligands shrink by 0.05 A (from 2.28 to 2.23 A) upon reduction, whereas the Fe-Fe distance is essentially unchanged. Thus, the core of the 4Fe4Se cluster remains essentially static on reduction, whilst the external cysteine thiolate ligands are pulled in towards the cluster. Compared with native (S)-Fe protein, the (Se)-Fe protein has a 20-fold increased rate of MgATP-induced Fe chelation, a sixfold decreased specific activity for acetylene reduction, a fivefold decreased rate of MgATP-dependent electron transfer from (Se)-Fe protein to MoFe protein, and a fourfold increase in the ATP to 2e (-) ratio. The high ATP to 2e (-) ratio and decreased specific activity are consistent with a lower rate of dissociation of oxidized (Se)-Fe protein from reduced MoFe protein. Thus, the relatively small adjustments in the Fe protein structure necessary to accommodate the 4Fe4Se cluster are transmitted both to adjacent residues that dock at the surface of the MoFe protein and to the ATP hydrolysis sites located approximately 19 A away.
Collapse
Affiliation(s)
- Patrick Clark Hallenbeck
- Département de Microbiologie et Immunologie, Université de Montréal, Succursale Centre-ville, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
47
|
|
48
|
Structural basis for VO2+-inhibition of nitrogenase activity: (B) pH-sensitive inner-sphere rearrangements in the 1H-environment of the metal coordination site of the nitrogenase Fe–protein identified by ENDOR spectroscopy. J Biol Inorg Chem 2008; 13:637-50. [DOI: 10.1007/s00775-008-0364-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 03/05/2008] [Indexed: 11/25/2022]
|
49
|
Sarma R, Mulder DW, Brecht E, Szilagyi RK, Seefeldt LC, Tsuruta H, Peters JW. Probing the MgATP-bound conformation of the nitrogenase Fe protein by solution small-angle X-ray scattering. Biochemistry 2007; 46:14058-66. [PMID: 18001132 PMCID: PMC3289971 DOI: 10.1021/bi700446s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MgATP-bound conformation of the Fe protein of nitrogenase from Azotobacter vinelandii has been examined in solution by small-angle X-ray scattering (SAXS) and compared to existing crystallographically characterized Fe protein conformations. The results of the analysis of the crystal structure of an Fe protein variant with a Switch II single-amino acid deletion recently suggested that the MgATP-bound state of the Fe protein may exist in a conformation that involves a large-scale reorientation of the dimer subunits, resulting in an overall elongated structure relative to the more compact structure of the MgADP-bound state. It was hypothesized that the Fe protein variant may be a conformational mimic of the MgATP-bound state of the native Fe protein largely on the basis of the observation that the spectroscopic properties of the [4Fe-4S] cluster of the variant mimicked in part the spectroscopic signatures of the native nitrogenase Fe protein in the MgATP-bound state. In this work, SAXS studies reveal that the large-scale conformational differences between the native Fe protein and the variant observed by X-ray crystallography are also observed in solution. In addition, comparison of the SAXS curves of the Fe protein nucleotide-bound states to the nucleotide-free states indicates that the conformation of the MgATP-bound state in solution does not resemble the structure of the variant as initially proposed, but rather, at the resolution of this experiment, it resembles the structure of the nucleotide-free state. These results provide insights into the Fe protein conformations that define the role of MgATP in nitrogenase catalysis.
Collapse
Affiliation(s)
- Ranjana Sarma
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - David W. Mulder
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Eric Brecht
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Robert K. Szilagyi
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | | | | | - John W. Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| |
Collapse
|
50
|
Howard JB, Rees DC. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc Natl Acad Sci U S A 2006; 103:17088-93. [PMID: 17088547 PMCID: PMC1859894 DOI: 10.1073/pnas.0603978103] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the process of biological nitrogen fixation, the enzyme nitrogenase catalyzes the ATP-dependent reduction of dinitrogen to ammonia. Nitrogenase consists of two component metalloproteins, the iron (Fe) protein and the molybdenum-iron (MoFe) protein; the Fe protein mediates the coupling of ATP hydrolysis to interprotein electron transfer, whereas the active site of the MoFe protein contains the polynuclear FeMo cofactor, a species composed of seven iron atoms, one molybdenum atom, nine sulfur atoms, an interstitial light atom, and one homocitrate molecule. This Perspective provides an overview of biological nitrogen fixation and introduces three contributions to this special feature that address central aspects of the mechanism and assembly of nitrogenase.
Collapse
Affiliation(s)
- James B. Howard
- *Department of Biochemistry, University of Minnesota, Minneapolis, MN 55455; and
- To whom correspondence may be addressed. E-mail:
or
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|