1
|
Furubayashi T, Ueda K, Bansho Y, Motooka D, Nakamura S, Mizuuchi R, Ichihashi N. Emergence and diversification of a host-parasite RNA ecosystem through Darwinian evolution. eLife 2020; 9:e56038. [PMID: 32690137 PMCID: PMC7378860 DOI: 10.7554/elife.56038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
In prebiotic evolution, molecular self-replicators are considered to develop into diverse, complex living organisms. The appearance of parasitic replicators is believed inevitable in this process. However, the role of parasitic replicators in prebiotic evolution remains elusive. Here, we demonstrated experimental coevolution of RNA self-replicators (host RNAs) and emerging parasitic replicators (parasitic RNAs) using an RNA-protein replication system we developed. During a long-term replication experiment, a clonal population of the host RNA turned into an evolving host-parasite ecosystem through the continuous emergence of new types of host and parasitic RNAs produced by replication errors. The host and parasitic RNAs diversified into at least two and three different lineages, respectively, and they exhibited evolutionary arms-race dynamics. The parasitic RNA accumulated unique mutations, thus adding a new genetic variation to the whole replicator ensemble. These results provide the first experimental evidence that the coevolutionary interplay between host-parasite molecules plays a key role in generating diversity and complexity in prebiotic molecular evolution.
Collapse
Affiliation(s)
- Taro Furubayashi
- Laboratoire Gulliver, CNRS, ESPCI Paris,
PSL Research UniversityParisFrance
| | - Kensuke Ueda
- Department of Life Science, Graduate
School of Arts and Science, The University of
TokyoTokyoJapan
| | - Yohsuke Bansho
- Graduate School of Frontier Biosciences,
Osaka UniversityOsakaJapan
| | - Daisuke Motooka
- Research Institute for Microbial
Diseases, Osaka UniversityOsakaJapan
| | - Shota Nakamura
- Research Institute for Microbial
Diseases, Osaka UniversityOsakaJapan
| | - Ryo Mizuuchi
- Komaba Institute for Science, The
University of TokyoTokyoJapan
- JST,
PRESTOKawaguchiJapan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate
School of Arts and Science, The University of
TokyoTokyoJapan
- Graduate School of Frontier Biosciences,
Osaka UniversityOsakaJapan
- Komaba Institute for Science, The
University of TokyoTokyoJapan
- Universal Biology Institute, The
University of TokyoTokyoJapan
| |
Collapse
|
2
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
3
|
Abstract
Bacteriophages of the Leviviridae family are small viruses with short single-stranded RNA (ssRNA) genomes. Protein-RNA interactions play a key role throughout the phage life cycle, and all of the conserved phage proteins - the maturation protein, the coat protein and the replicase - are able to recognize specific structures in the RNA genome. The phage-coded replicase subunit associates with several host proteins to form a catalytically active complex. Recognition of the genomic RNA by the replicase complex is achieved in a remarkably complex manner that exploits the RNA-binding properties of host proteins and the particular three-dimensional structure of the phage genome. The coat protein recognizes a hairpin structure at the beginning of the replicase gene. The binding interaction serves to regulate the expression of the replicase gene and can be remarkably different in various ssRNA phages. The maturation protein is a minor structural component of the virion that binds to the genome, mediates attachment to the host and guides the genome into the cell. The maturation protein has two distinct RNA-binding surfaces that are in contact with different regions of the genome. The maturation and coat proteins also work together to ensure the encapsidation of the phage genome in new virus particles. In this chapter, the different ssRNA phage protein-RNA interactions, as well as some of their practical applications, are discussed in detail.
Collapse
Affiliation(s)
| | - Kaspars Tārs
- Biomedical Research and Study Center, Riga, Latvia.
| |
Collapse
|
4
|
Ventura M, Martin L, Jaubert C, Andréola ML, Masante C. Hepatitis C virus intragenomic interactions are modulated by the SLVI RNA structure of the core coding sequence. J Gen Virol 2017; 98:633-642. [PMID: 28141507 DOI: 10.1099/jgv.0.000719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Michel Ventura
- Fédération de Recherche "TransbioMed", Bordeaux, France
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
| | - Lucie Martin
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| | - Chloé Jaubert
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| | - Marie-Line Andréola
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| | - Cyril Masante
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| |
Collapse
|
5
|
Gytz H, Mohr D, Seweryn P, Yoshimura Y, Kutlubaeva Z, Dolman F, Chelchessa B, Chetverin AB, Mulder FAA, Brodersen DE, Knudsen CR. Structural basis for RNA-genome recognition during bacteriophage Qβ replication. Nucleic Acids Res 2015; 43:10893-906. [PMID: 26578560 PMCID: PMC4678825 DOI: 10.1093/nar/gkv1212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023] Open
Abstract
Upon infection of Escherichia coli by bacteriophage Qβ, the virus-encoded β-subunit recruits host translation elongation factors EF-Tu and EF-Ts and ribosomal protein S1 to form the Qβ replicase holoenzyme complex, which is responsible for amplifying the Qβ (+)-RNA genome. Here, we use X-ray crystallography, NMR spectroscopy, as well as sequence conservation, surface electrostatic potential and mutational analyses to decipher the roles of the β-subunit and the first two oligonucleotide-oligosaccharide-binding domains of S1 (OB1–2) in the recognition of Qβ (+)-RNA by the Qβ replicase complex. We show how three basic residues of the β subunit form a patch located adjacent to the OB2 domain, and use NMR spectroscopy to demonstrate for the first time that OB2 is able to interact with RNA. Neutralization of the basic residues by mutagenesis results in a loss of both the phage infectivity in vivo and the ability of Qβ replicase to amplify the genomic RNA in vitro. In contrast, replication of smaller replicable RNAs is not affected. Taken together, our data suggest that the β-subunit and protein S1 cooperatively bind the (+)-stranded Qβ genome during replication initiation and provide a foundation for understanding template discrimination during replication initiation.
Collapse
Affiliation(s)
- Heidi Gytz
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Durita Mohr
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Paulina Seweryn
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yuichi Yoshimura
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zarina Kutlubaeva
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Fleur Dolman
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bosene Chelchessa
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Alexander B Chetverin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Structures and functions of Qβ replicase: translation factors beyond protein synthesis. Int J Mol Sci 2014; 15:15552-70. [PMID: 25184952 PMCID: PMC4200798 DOI: 10.3390/ijms150915552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Qβ replicase is a unique RNA polymerase complex, comprising Qβ virus-encoded RNA-dependent RNA polymerase (the catalytic β-subunit) and three host-derived factors: translational elongation factor (EF) -Tu, EF-Ts and ribosomal protein S1. For almost fifty years, since the isolation of Qβ replicase, there have been several unsolved, important questions about the mechanism of RNA polymerization by Qβ replicase. Especially, the detailed functions of the host factors, EF-Tu, EF-Ts, and S1, in Qβ replicase, which are all essential in the Escherichia coli (E. coli) host for protein synthesis, had remained enigmatic, due to the absence of structural information about Qβ replicase. In the last five years, the crystal structures of the core Qβ replicase, consisting of the β-subunit, EF-Tu and Ts, and those of the core Qβ replicase representing RNA polymerization, have been reported. Recently, the structure of Qβ replicase comprising the β-subunit, EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication, has also been reported. In this review, based on the structures of Qβ replicase, we describe our current understanding of the alternative functions of the host translational elongation factors and ribosomal protein S1 in Qβ replicase as replication factors, beyond their established functions in protein synthesis.
Collapse
|
7
|
Takeshita D, Yamashita S, Tomita K. Molecular insights into replication initiation by Qβ replicase using ribosomal protein S1. Nucleic Acids Res 2014; 42:10809-22. [PMID: 25122749 PMCID: PMC4176380 DOI: 10.1093/nar/gku745] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ribosomal protein S1, consisting of six contiguous OB-folds, is the largest ribosomal protein and is essential for translation initiation in Escherichia coli. S1 is also one of the three essential host-derived subunits of Qβ replicase, together with EF-Tu and EF-Ts, for Qβ RNA replication in E. coli. We analyzed the crystal structure of Qβ replicase, consisting of the virus-encoded RNA-dependent RNA polymerase (β-subunit), EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication. Structural and biochemical studies revealed that the two N-terminal OB-folds of S1 anchor S1 onto the β-subunit, and the third OB-fold is mobile and protrudes beyond the surface of the β-subunit. The third OB-fold mainly interacts with a specific RNA fragment derived from the internal region of Qβ RNA, and its RNA-binding ability is required for replication initiation of Qβ RNA. Thus, the third mobile OB-fold of S1, which is spatially anchored near the surface of the β-subunit, primarily recruits the Qβ RNA toward the β-subunit, leading to the specific and efficient replication initiation of Qβ RNA, and S1 functions as a replication initiation factor, beyond its established function in protein synthesis.
Collapse
Affiliation(s)
- Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Seisuke Yamashita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Kozo Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
8
|
Abstract
UNLABELLED Changes in protein function and other biological properties, such as RNA structure, are crucial for adaptation of organisms to novel or inhibitory environments. To investigate how mutations that do not alter amino acid sequence may be positively selected, we performed a thermal adaptation experiment using the single-stranded RNA bacteriophage Qβ in which the culture temperature was increased from 37.2°C to 41.2°C and finally to an inhibitory temperature of 43.6°C in a stepwise manner in three independent lines. Whole-genome analysis revealed 31 mutations, including 14 mutations that did not result in amino acid sequence alterations, in this thermal adaptation. Eight of the 31 mutations were observed in all three lines. Reconstruction and fitness analyses of Qβ strains containing only mutations observed in all three lines indicated that five mutations that did not result in amino acid sequence changes but increased the amplification ratio appeared in the course of adaptation to growth at 41.2°C. Moreover, these mutations provided a suitable genetic background for subsequent mutations, altering the fitness contribution from deleterious to beneficial. These results clearly showed that mutations that do not alter the amino acid sequence play important roles in adaptation of this single-stranded RNA virus to elevated temperature. IMPORTANCE Recent studies using whole-genome analysis technology suggested the importance of mutations that do not alter the amino acid sequence for adaptation of organisms to novel environmental conditions. It is necessary to investigate how these mutations may be positively selected and to determine to what degree such mutations that do not alter amino acid sequences contribute to adaptive evolution. Here, we report the roles of these silent mutations in thermal adaptation of RNA bacteriophage Qβ based on experimental evolution during which Qβ showed adaptation to growth at an inhibitory temperature. Intriguingly, four synonymous mutations and one mutation in the untranslated region that spread widely in the Qβ population during the adaptation process at moderately high temperature provided a suitable genetic background to alter the fitness contribution of subsequent mutations from deleterious to beneficial at a higher temperature.
Collapse
|
9
|
Tuplin A, Evans DJ, Buckley A, Jones IM, Gould EA, Gritsun TS. Replication enhancer elements within the open reading frame of tick-borne encephalitis virus and their evolution within the Flavivirus genus. Nucleic Acids Res 2011; 39:7034-48. [PMID: 21622960 PMCID: PMC3303483 DOI: 10.1093/nar/gkr237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents.
Collapse
Affiliation(s)
- A Tuplin
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Song BH, Yun SI, Choi YJ, Kim JM, Lee CH, Lee YM. A complex RNA motif defined by three discontinuous 5-nucleotide-long strands is essential for Flavivirus RNA replication. RNA (NEW YORK, N.Y.) 2008; 14:1791-1813. [PMID: 18669441 PMCID: PMC2525960 DOI: 10.1261/rna.993608] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/23/2008] [Indexed: 05/26/2023]
Abstract
Tertiary or higher-order RNA motifs that regulate replication of positive-strand RNA viruses are as yet poorly understood. Using Japanese encephalitis virus (JEV), we now show that a key element in JEV RNA replication is a complex RNA motif that includes a string of three discontinuous complementary sequences (TDCS). The TDCS consists of three 5-nt-long strands, the left (L) strand upstream of the translation initiator AUG adjacent to the 5'-end of the genome, and the middle (M) and right (R) strands corresponding to the base of the Flavivirus-conserved 3' stem-loop structure near the 3'-end of the RNA. The three strands are arranged in an antiparallel configuration, with two sets of base-pairing interactions creating L-M and M-R duplexes. Disrupting either or both of these duplex regions of TDCS completely abolished RNA replication, whereas reconstructing both duplex regions, albeit with mutated sequences, fully restored RNA replication. Modeling of replication-competent genomes recovered from a large pool of pseudorevertants originating from six replication-incompetent TDCS mutants suggests that both duplex base-pairing potentials of TDCS are required for RNA replication. In all cases, acquisition of novel sequences within the 3'M-R duplex facilitated a long-range RNA-RNA interaction of its 3'M strand with either the authentic 5'L strand or its alternative (invariably located upstream of the 5' initiator), thereby restoring replicability. We also found that a TDCS homolog is conserved in other flaviviruses. These data suggest that two duplex base-pairings defined by the TDCS play an essential regulatory role in a key step(s) of Flavivirus RNA replication.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | |
Collapse
|
12
|
Functional circularity of legitimate Qbeta replicase templates. J Mol Biol 2008; 379:414-27. [PMID: 18466922 PMCID: PMC7173182 DOI: 10.1016/j.jmb.2008.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/12/2008] [Accepted: 03/31/2008] [Indexed: 11/21/2022]
Abstract
Qbeta replicase (RNA-directed RNA polymerase of bacteriophage Qbeta) exponentially amplifies certain RNAs in vitro. Previous studies have shown that Qbeta replicase can initiate and elongate on a variety of RNAs; however, only a minute fraction of them are recognized as 'legitimate' templates. Guanosine 5'-triphosphate (GTP)-dependent initiation on a legitimate template generates a stable replicative complex capable of elongation in the presence of aurintricarboxylic acid, a powerful inhibitor of RNA-protein interactions. On the contrary, initiation on an illegitimate template is GTP independent and does not result in the aurintricarboxylic-acid-resistant replicative complex. This article demonstrates that the 3' and 5' termini of a legitimate template cooperate during and after the initiation step. Breach of the cooperation by dividing the template into fragments or by introducing point mutations at the 5' terminus reduces the rate and the yield of initiation, increases the GTP requirement, decreases the overall rate of template copying, and destabilizes the postinitiation replicative complex. These results revive the old idea of a functional circularity of legitimate Qbeta replicase templates and complement the increasing body of evidence that functional circularity may be a common property of RNA templates directing the synthesis of either RNA or protein molecules.
Collapse
|
13
|
Aliprandi P, Sizun C, Perez J, Mareuil F, Caputo S, Leroy JL, Odaert B, Laalami S, Uzan M, Bontems F. S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions: an NMR and SAXS analysis. J Biol Chem 2008; 283:13289-301. [PMID: 18211890 DOI: 10.1074/jbc.m707111200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribosomal protein S1, in Escherichia coli, is necessary for the recognition by the ribosome of the translation initiation codon of most messenger RNAs. It also participates in other functions. In particular, it stimulates the T4 endoribonuclease RegB, which inactivates some of the phage mRNAs, when their translation is no longer required, by cleaving them in the middle of their Shine-Dalgarno sequence. In each function, S1 seems to target very different RNAs, which led to the hypothesis that it possesses different RNA-binding sites. We previously demonstrated that the ability of S1 to activate RegB is carried by a fragment of the protein formed of three consecutive domains (domains D3, D4, and D5). The same fragment plays a central role in all other functions. We analyzed its structural organization and its interactions with three RNAs: two RegB substrates and a translation initiation region. We show that these three RNAs bind the same area of the protein through a set of systematic (common to the three RNAs) and specific (RNA-dependent) interactions. We also show that, in the absence of RNA, the D4 and D5 domains are associated, whereas the D3 and D4 domains are in equilibrium between open (noninteracting) and closed (weakly interacting) forms and that RNA binding induces a structural reorganization of the fragment. All of these results suggest that the ability of S1 to recognize different RNAs results from a high adaptability of both its structure and its binding surface.
Collapse
Affiliation(s)
- Pascale Aliprandi
- CNRS, Antenne de l'ICSN à l'Ecole Polytechnique, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Davis WG, Blackwell JL, Shi PY, Brinton MA. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 2007; 81:10172-87. [PMID: 17626087 PMCID: PMC2045417 DOI: 10.1128/jvi.00531-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3'(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3'(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3' SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3' SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3' SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3' end of the genome and the RC. eEF1A bound with similar efficiencies to the 3'-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.
Collapse
Affiliation(s)
- William G Davis
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Contrary to their host cells, many viruses contain RNA as genetic material and hence encode an RNA-dependent RNA polymerase to replicate their genomes. This review discusses the present status of our knowledge on the structure of these enzymes and the mechanisms of RNA replication. The simplest viruses encode only the catalytic subunit of the replication complex, but other viruses also contribute a variable number of ancillary factors. These and other factors provided by the host cell play roles in the specificity and affinity of template recognition and the assembly of the replication complex. Usually, these host factors are involved in protein synthesis or RNA modification in the host cell, but they play roles in remodeling RNA-RNA, RNA-protein, and protein-protein interactions during virus RNA replication. Furthermore, viruses take advantage of and modify previous cell structural elements, frequently membrane vesicles, for the formation of RNA replication complexes.
Collapse
Affiliation(s)
- Juan Ortín
- Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain.
| | | |
Collapse
|
16
|
Yu L, Markoff L. The topology of bulges in the long stem of the flavivirus 3' stem-loop is a major determinant of RNA replication competence. J Virol 2005; 79:2309-24. [PMID: 15681432 PMCID: PMC546603 DOI: 10.1128/jvi.79.4.2309-2324.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
All flavivirus genomes contain a 3'terminal stem-loop secondary structure (3'SL) formed by the most downstream approximately 100 nucleotides (nt) of the viral RNA. The 3'SL is required for virus replication and has been shown to bind both virus-coded and cellular proteins. Results of the present study using an infectious DNA for WN virus strain 956 initially demonstrated that the dengue virus serotype 2 (DEN2) 3'SL nucleotide sequence could not substitute for that of the WN 3'SL to support WN genome replication. To determine what WN virus-specific 3'SL nucleotide sequences were required for WN virus replication, WN virus 3'SL nucleotide sequences were selectively deleted and replaced by analogous segments of the DEN2 3'SL nucleotide sequence such that the overall 3'SL secondary structure was not disrupted. Top and bottom portions of the WN virus 3'SL were defined according to previous studies (J. L. Blackwell and M. A. Brinton, J. Virol. 71:6433-6444, 1997; L. Zeng, L., B. Falgout, and L. Markoff, J. Virol. 72:7510-7522, 1998). A bulge in the top portion of the long stem of the WN 3'SL was essential for replication of mutant WN RNAs, and replication-defective RNAs failed to produce negative strands in transfected cells. Introduction of a second bulge into the bottom portion of the long stem of the wild-type WN 3'SL markedly enhanced the replication competence of WN virus in mosquito cells but had no effect on replication in mammalian cells. This second bulge was identified as a host cell-specific enhancer of flavivirus replication. Results suggested that bulges and their topological location within the long stem of the 3'SL are primary determinants of replication competence for flavivirus genomes.
Collapse
Affiliation(s)
- Li Yu
- Laboratory Vector-Borne Viruse Disease, Division of Viral Products, FDA, Bethesda, MD 20892, USA
| | | |
Collapse
|
17
|
Tatsuta M, Mizumoto H, Kaido M, Mise K, Okuno T. The red clover necrotic mosaic virus RNA2 trans-activator is also a cis-acting RNA2 replication element. J Virol 2005; 79:978-86. [PMID: 15613326 PMCID: PMC538547 DOI: 10.1128/jvi.79.2.978-986.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the coat protein gene requires RNA-mediated trans-activation of subgenomic RNA synthesis in Red clover necrotic mosaic virus (RCNMV), the genome of which consists of two positive-strand RNAs, RNA1 and RNA2. The trans-acting RNA element required for subgenomic RNA synthesis from RNA1 has been mapped previously to the protein-coding region of RNA2, whereas RNA2 is not required for the replication of RNA1. In this study, we investigated the roles of the protein-coding region in RNA2 replication by analyzing the replication competence of RNA2 mutants containing deletions or nucleotide substitutions. Our results indicate that the same stem-loop structure (SL2) that functions as a trans-activator for RNA-mediated coat protein expression is critically required for the replication of RNA2 itself. Interestingly, however, disruption of the RNA-RNA interaction by nucleotide substitutions in the region of RNA1 corresponding to the SL2 loop of RNA2 does not affect RNA2 replication, indicating that the RNA-RNA interaction is not required for RNA2 replication. Further mutational analysis showed that, in addition to the stem-loop structure itself, nucleotide sequences in the stem and in the loop of SL2 are important for the replication of RNA2. These findings suggest that the structure and nucleotide sequence of SL2 in RNA2 play multiple roles in the virus life cycle.
Collapse
Affiliation(s)
- Masahiro Tatsuta
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
18
|
Lee H, Shin H, Wimmer E, Paul AV. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J Virol 2004; 78:10865-77. [PMID: 15452207 PMCID: PMC521798 DOI: 10.1128/jvi.78.20.10865-10877.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cis-replicating RNA elements in the 5' and 3' nontranslated regions (NTRs) of the hepatitis C virus (HCV) genome have been thoroughly studied before. However, no cis-replicating elements have been identified in the coding sequences of the HCV polyprotein until very recently. The existence of highly conserved and stable stem-loop structures in the RNA polymerase NS5B coding sequence, however, has been previously predicted (A. Tuplin, J. Wood, D. J. Evans, A. H. Patel, and P. Simmonds, RNA 8:824-841, 2002). We have selected for our studies a 249-nt-long RNA segment in the C-terminal NS5B coding region (NS5BCR), which is predicted to form four stable stem-loop structures (SL-IV to SL-VII). By deletion and mutational analyses of the RNA structures, we have determined that two of the stem-loops (SL-V and SL-VI) are essential for replication of the HCV subgenomic replicon in Huh-7 cells. Mutations in the loop and the top of the stem of these RNA elements abolished replicon RNA synthesis but had no effect on translation. In vitro gel shift and filter-binding assays revealed that purified NS5B specifically binds to SL-V. The NS5B-RNA complexes were specifically competed away by unlabeled homologous RNA, to a small extent by 3' NTR RNA, and only poorly by 5' NTR RNA. The other two stem-loops (SL-IV and SL-VII) of the NS5BCR domain were found to be important but not essential for colony formation by the subgenomic replicon. The precise function(s) of these cis-acting RNA elements is not known.
Collapse
Affiliation(s)
- Haekyung Lee
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
19
|
You S, Stump DD, Branch AD, Rice CM. A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J Virol 2004; 78:1352-66. [PMID: 14722290 PMCID: PMC321395 DOI: 10.1128/jvi.78.3.1352-1366.2004] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA structures play key roles in the replication of RNA viruses. Sequence alignment software, thermodynamic RNA folding programs, and classical comparative phylogenetic analysis were used to build models of six RNA elements in the coding region of the hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B. The importance of five of these elements was evaluated by site-directed mutagenesis of a subgenomic HCV replicon. Mutations disrupting one of the predicted stem-loop structures, designated 5BSL3.2, blocked RNA replication, implicating it as an essential cis-acting replication element (CRE). 5BSL3.2 is about 50 bases in length and is part of a larger predicted cruciform structure (5BSL3). As confirmed by RNA structure probing, 5BSL3.2 consists of an 8-bp lower helix, a 6-bp upper helix, a 12-base terminal loop, and an 8-base internal loop. Mutational analysis and structure probing were used to explore the importance of these features. Primary sequences in the loops were shown to be important for HCV RNA replication, and the upper helix appears to serve as an essential scaffold that helps maintain the overall RNA structure. Unlike certain picornavirus CREs, whose function is position independent, 5BSL3.2 function appears to be context dependent. Understanding the role of 5BSL3.2 and determining how this new CRE functions in the context of previously identified elements at the 5' and 3' ends of the RNA genome should provide new insights into HCV RNA replication.
Collapse
Affiliation(s)
- Shihyun You
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
20
|
Tretheway DM, Yoshinari S, Dreher TW. Autonomous role of 3'-terminal CCCA in directing transcription of RNAs by Qbeta replicase. J Virol 2001; 75:11373-83. [PMID: 11689618 PMCID: PMC114723 DOI: 10.1128/jvi.75.23.11373-11383.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied transcription in vitro by Qbeta replicase to deduce the minimal features needed for efficient end-to-end copying of an RNA template. Our studies have used templates ca. 30 nucleotides long that are expected to be free of secondary structure, permitting unambiguous analysis of the role of template sequence in directing transcription. A 3'-terminal CCCA (3'-CCCA) directs transcriptional initiation to opposite the underlined C; the amount of transcription is comparable between RNAs possessing upstream (CCA)(n) tracts, A-rich sequences, or a highly folded domain and is also comparable in single-round transcription assays to transcription of two amplifiable RNAs. Predominant initiation occurs within the 3'-CCCA initiation box when a wide variety of sequences is present immediately upstream, but CCA or a closely similar sequence in that position results in significant internal initiation. Removal of the 3'-A from the 3'-CCCA results in 5- to 10-fold-lower transcription, emphasizing the importance of the nontemplated addition of 3'-A by Qbeta replicase during termination. In considering whether 3'-CCCA could provide sufficient specificity for viral transcription, and consequently amplification, in vivo, we note that tRNA(His) is the only stable Escherichia coli RNA with 3'-CCCA. In vitro-generated transcripts corresponding to tRNA(His) served as poor templates for Qbeta replicase; this was shown to be due to the inaccessibility of the partially base-paired CCCA. These studies demonstrate that 3'-CCCA plays a major role in the control of transcription by Qbeta replicase and that the abundant RNAs present in the host cell should not be efficient templates.
Collapse
Affiliation(s)
- D M Tretheway
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | | | | |
Collapse
|
21
|
Ackermann M, Padmanabhan R. De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 2001; 276:39926-37. [PMID: 11546770 DOI: 10.1074/jbc.m104248200] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Replication of positive strand flaviviruses is mediated by the viral RNA-dependent RNA polymerases (RdRP). To study replication of dengue virus (DEN), a flavivirus family member, an in vitro RdRP assay was established using cytoplasmic extracts of DEN-infected mosquito cells and viral subgenomic RNA templates containing 5'- and 3'-terminal regions (TRs). Evidence supported that an interaction between the TRs containing conserved stem-loop, cyclization motifs, and pseudoknot structural elements is required for RNA synthesis. Two RNA products, a template size and a hairpin, twice that of the template, were formed. To isolate the function of the viral RdRP (NS5) from that of other host or viral factors present in the cytoplasmic extracts, the NS5 protein was expressed and purified from Escherichia coli. In this study, we show that the purified NS5 alone is sufficient for the synthesis of the two products and that the template-length RNA is the product of de novo initiation. Furthermore, the incubation temperature during initiation, but not elongation phase of RNA synthesis modulates the relative amounts of the hairpin and de novo RNA products. A model is proposed that a specific conformation of the viral polymerase and/or structure at the 3' end of the template RNA is required for de novo initiation.
Collapse
Affiliation(s)
- M Ackermann
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7421, USA
| | | |
Collapse
|
22
|
Nagy PD, Pogany J, Simon AE. In vivo and in vitro characterization of an RNA replication enhancer in a satellite RNA associated with turnip crinkle virus. Virology 2001; 288:315-24. [PMID: 11601903 DOI: 10.1006/viro.2001.1099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA replication enhancers are cis-acting elements that can stimulate replication or transcription of RNA viruses. Turnip crinkle virus (TCV) and satC, a parasitic RNA associated with TCV infections, contain stem-loop structures that are RNA replication enhancers (P. Nagy, J. Pogany, and A. E. Simon, EMBO J. 1999, 18, 5653-5665). We have found that replacement of 28 nt of the satC enhancer, termed the motif1-hairpin, with 28 randomized bases reduced satC accumulation 8- to 13-fold in Arabidopsis thaliana protoplasts. Deletion of single-stranded flanking sequences at either side of the hairpin also affected RNA accumulation with combined alterations at both sides of the hairpin showing the most detrimental effect in protoplasts. In vitro analysis with a partially purified TCV RdRp preparation demonstrated that the motif1-hairpin in its minus-sense orientation was able to stimulate RNA synthesis from the satC hairpin promoter (located at the 3' end of plus strands) by almost twofold. This level of RNA synthesis stimulation is approximately fivefold lower than that observed with a linear promoter, suggesting that a highly stable hairpin promoter is less responsive to the presence of the motif1-hairpin enhancer than a linear promoter. The motif1-hairpin in its plus-sense orientation was only 60% as active in enhancing transcription from the hairpin promoter. Since the motif1-hairpin is a hotspot for RNA recombination during plus-strand synthesis and since satC promoters located on the minus-strand are all short linear sequences, these findings support the hypothesis that the motif1-hairpin is primarily involved in enhancing plus-strand synthesis.
Collapse
Affiliation(s)
- P D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | |
Collapse
|
23
|
You S, Falgout B, Markoff L, Padmanabhan R. In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5'- and 3'-terminal regions that influence RNA structure. J Biol Chem 2001; 276:15581-91. [PMID: 11278787 DOI: 10.1074/jbc.m010923200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral replicases of many positive-strand RNA viruses are membrane-bound complexes of cellular and viral proteins that include viral RNA-dependent RNA polymerase (RdRP). The in vitro RdRP assay system that utilizes cytoplasmic extracts from dengue viral-infected cells and exogenous RNA templates was developed to understand the mechanism of viral replication in vivo. Our results indicated that in vitro RNA synthesis at the 3'-untranslated region (UTR) required the presence of the 5'-terminal region (TR) and the two cyclization (CYC) motifs suggesting a functional interaction between the TRs. In this study, using a psoralen-UV cross-linking method and an in vitro RdRP assay, we analyzed structural determinants for physical and functional interactions. Exogenous RNA templates that were used in the assays contained deletion mutations in the 5'-TR and substitution mutations in the 3'-stem-loop structure including those that would disrupt the predicted pseudoknot structure. Our results indicate that there is physical interaction between the 5'-TR and 3'-UTR that requires only the CYC motifs. RNA synthesis at the 3'-UTR, however, requires long range interactions involving the 5'-UTR, CYC motifs, and the 3'-stem-loop region that includes the tertiary pseudoknot structure.
Collapse
Affiliation(s)
- S You
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | |
Collapse
|
24
|
Keller MA, Murphy SK, Parks GD. RNA replication from the simian virus 5 antigenomic promoter requires three sequence-dependent elements separated by sequence-independent spacer regions. J Virol 2001; 75:3993-8. [PMID: 11264390 PMCID: PMC114892 DOI: 10.1128/jvi.75.8.3993-3998.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown for the paramyxovirus simian virus 5 (SV5) that a functional promoter for RNA replication requires proper spacing between two discontinuous elements: a 19-base segment at the 3' terminus (conserved region I [CRI]) and an 18-base internal region (CRII) that is contained within the coding region of the L protein gene. In the work described here, we have used a reverse-genetics system to determine if the 53-base segment between CRI and CRII contains additional sequence-specific signals required for optimal replication or if this segment functions solely as a sequence-independent spacer region. A series of copyback defective interfering minigenome analogs were constructed to contain substitutions of nonviral sequences in place of bases 21 to 72 of the antigenomic promoter, and the relative level of RNA replication was measured by Northern blot analysis. The results from our mutational analysis indicate that in addition to CRI and CRII, optimal replication from the SV5 antigenomic promoter requires a third sequence-dependent element located 51 to 66 bases from the 3' end of the RNA. Minigenome RNA replication was not affected by changes in the either the position of this element in relation to CRI and CRII or the predicted hexamer phase of NP encapsidation. Thus, optimal RNA replication from the SV5 antigenomic promoter requires three sequence-dependent elements, CRI, CRII and bases 51 to 66.
Collapse
Affiliation(s)
- M A Keller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | | | |
Collapse
|
25
|
Abstract
RNA initiation by Qbeta replicase directed by the short-sequence CCA at the 3'-end of all RNAs amplified by this enzyme has been studied. Most CCA repeats in an RNA consisting of 12 CCAs serve as independent sites of de novo RNA initiation, with initiation occurring opposite the 3'-C residue of each CCA. Qbeta replicase is thus capable of internal initiation remote from the 3'-end, although predominant initiation occurs close to the 3'-end. The precise 3'-terminal sequence in (CCA)(n)-containing RNAs influences the number and position of active initiation sites near the 3'-terminus. C residues are required at the initiation site, whereas the position of purines (especially A residues) influences the selection of initiation sites. The template activity of (CCA)(n) RNAs is positively correlated with the number of CCA repeats. Three CCA repeats added to the 3'-end of a nontemplate 83-nt RNA are sufficient to activate transcription by Qbeta replicase. These experiments show that CCA boxes can act as strong initiation sites in the absence of specific cis-acting signals derived from Qbeta RNA, although the efficiency of initiation is modulated by surrounding sequence.
Collapse
Affiliation(s)
- S Yoshinari
- Department of Microbiology, Oregon State University, Corvallis 97331-3804, USA
| | | |
Collapse
|
26
|
Schuppli D, Georgijevic J, Weber H. Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase. J Mol Biol 2000; 295:149-54. [PMID: 10623514 DOI: 10.1006/jmbi.1999.3373] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that Escherichia coli cells deficient in Hfq protein (i.e. the Qbeta "host factor") support bacteriophage Qbeta replication inefficiently, but that the phage evolves rapidly in the mutant host to become essentially host factor independent. An identical set of four point mutations was identified as being responsible for the adapted phenotype in each of three independent adaptation experiments. Here we report the effects of the single mutations and of some of their combinations on host factor dependence of phage multiplication in vivo and of phage RNA replication by Qbeta replicase in vitro. We find that each single substitution produces only small effects, but that in combination the four mutations synergistically account for most of the observed adaptation of the evolved phages. Surprisingly, a reanalysis of the 3'-terminal sequence of the adapted phages resulted in the discovery of a fifth mutation in all three independently evolved phage populations, namely, a C to U residue transition at nucleotide 4214. This mutation had been missed previously because of its location only three nucleotides from the 3'-end. It appears to contribute little to the Hfq independence but may enhance RNA stability by re-establishing the possibility of forming a long-range base-pairing interaction involving the immediate 3'-terminal sequence.
Collapse
Affiliation(s)
- D Schuppli
- Universit]at Z]urich, Z]urich, 8057, Switzerland
| | | | | |
Collapse
|
27
|
Abstract
A puzzling aspect of replication of bacteriophage Qbeta RNA has always been that replicase binds at an internal segment, the M-site, some 1450 nt away from the 3' end. Here, we report on the existence of a long-range pseudoknot, base-pairing eight nt in the loop of the 3' terminal hairpin to a single-stranded interdomain sequence located about 1200 nt upstream, close to the internal replicase binding site. Introduction of a single mismatch into this pseudoknot is sufficient to abolish replication, but the inhibition is fully reversed by a second-site substitution that restores the pairing. The pseudoknot is part of an elaborate structure that seems to hold the 3' end in a fixed position vis a vis the replicase binding site. Our results imply that the shape of the RNA confers the functonality. We discuss the possible relevance of our findings for replication of other viral RNAs.
Collapse
Affiliation(s)
- J Klovins
- Department of Biochemistry Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, 2300 RA, The Netherlands
| | | |
Collapse
|
28
|
You S, Padmanabhan R. A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3'-end of exogenous viral RNA templates requires 5'- and 3'-terminal complementary sequence motifs of the viral RNA. J Biol Chem 1999; 274:33714-22. [PMID: 10559263 DOI: 10.1074/jbc.274.47.33714] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Positive strand viral replicases are membrane-bound complexes of viral and host proteins. The mechanism of viral replication and the role of host proteins are not well understood. To understand this mechanism, a viral replicase assay that utilizes extracts from dengue virus-infected mosquito (C6/36) cells and exogenous viral RNA templates is reported in this study. The 5'- and 3'-terminal regions (TR) of the template RNAs contain the conserved elements including the complementary (cyclization) motifs and stem-loop structures. RNA synthesis in vitro requires both 5'- and 3'-TR present in the same template molecule or when the 5'-TR RNA was added in trans to the 3'-untranslated region (UTR) RNA. However, the 3'-UTR RNA alone is not active. RNA synthesis occurs by elongation of the 3'-end of the template RNA to yield predominantly a double-stranded hairpin-like RNA product, twice the size of the template RNA. These results suggest that an interaction between 5'- and 3'-TR of the viral RNA that modulates the 3'-UTR RNA structure is required for RNA synthesis by the viral replicase. The complementary cyclization motifs of the viral genome also seem to play an important role in this interaction.
Collapse
Affiliation(s)
- S You
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | |
Collapse
|
29
|
Nagy PD, Pogany J, Simon AE. RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus. EMBO J 1999; 18:5653-65. [PMID: 10523308 PMCID: PMC1171632 DOI: 10.1093/emboj/18.20.5653] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA replication requires cis-acting elements to recruit the viral RNA-dependent RNA polymerase (RdRp) and facilitate de novo initiation of complementary strand synthesis. Hairpins that are hot spots for recombination in the genomic RNA of turnip crinkle virus (TCV) and satellite (sat)-RNA C, a parasitic RNA associated with TCV infections, stimulate RNA synthesis 10-fold from a downstream promoter sequence in an in vitro assay using partially purified TCV RdRp. Artificial hairpins had an inhibitory effect on transcription. RNA accumulation in single cells was enhanced 5- to 10-fold when the natural stem-loop structures were inserted into a poorly accumulating sat-RNA. The effect of the stem-loop structures on RNA replication was additive, with insertion of three stem-loop RNA elements increasing sat-RNA accumulation to the greatest extent (25-fold). These stem-loop structures do not influence the stability of the RNAs in vivo, but may serve to recruit the RdRp to the template.
Collapse
Affiliation(s)
- P D Nagy
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
30
|
Dreher TW. FUNCTIONS OF THE 3'-UNTRANSLATED REGIONS OF POSITIVE STRAND RNA VIRAL GENOMES. ANNUAL REVIEW OF PHYTOPATHOLOGY 1999; 37:151-174. [PMID: 11701820 DOI: 10.1146/annurev.phyto.37.1.151] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Positive strand RNA viral genomes are unique in the viral world in serving a dual role as mRNA and replicon. Since the origin of the minus-strand RNA replication intermediate is at the 3'-end of the genome, the 3'-untranslated region (UTR) clearly plays a role in viral RNA replication. The messenger role of this same RNA likely places functional demands on the 3'-UTR to serve roles typical of cellular mRNAs, including the regulation of RNA stability and translation. Current understanding indicates varied roles for positive strand RNA viral 3'-UTRs, with the dominant roles differing between viruses. Three case studies are discussed: turnip yellow mosaic virus RNA, whose 3' tRNA mimicry is thought to negatively regulate minus strand synthesis; brome mosaic virus, whose 3'-UTR contains a unique promoter element directing minus strand synthesis; and tobacco mosaic virus, whose 3'-UTR contains an enhancer of translational expression.
Collapse
Affiliation(s)
- Theo W. Dreher
- Department of Microbiology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331-3804; e-mail:
| |
Collapse
|