1
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
2
|
Lucas MC, Pryszcz LP, Medina R, Milenkovic I, Camacho N, Marchand V, Motorin Y, Ribas de Pouplana L, Novoa EM. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Nat Biotechnol 2024; 42:72-86. [PMID: 37024678 PMCID: PMC10791586 DOI: 10.1038/s41587-023-01743-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Transfer RNAs (tRNAs) play a central role in protein translation. Studying them has been difficult in part because a simple method to simultaneously quantify their abundance and chemical modifications is lacking. Here we introduce Nano-tRNAseq, a nanopore-based approach to sequence native tRNA populations that provides quantitative estimates of both tRNA abundances and modification dynamics in a single experiment. We show that default nanopore sequencing settings discard the vast majority of tRNA reads, leading to poor sequencing yields and biased representations of tRNA abundances based on their transcript length. Re-processing of raw nanopore current intensity signals leads to a 12-fold increase in the number of recovered tRNA reads and enables recapitulation of accurate tRNA abundances. We then apply Nano-tRNAseq to Saccharomyces cerevisiae tRNA populations, revealing crosstalks and interdependencies between different tRNA modification types within the same molecule and changes in tRNA populations in response to oxidative stress.
Collapse
Affiliation(s)
- Morghan C Lucas
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leszek P Pryszcz
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivan Milenkovic
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Virginie Marchand
- CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France
| | - Yuri Motorin
- CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
3
|
Katoh T, Suga H. A comprehensive analysis of translational misdecoding pattern and its implication on genetic code evolution. Nucleic Acids Res 2023; 51:10642-10652. [PMID: 37638759 PMCID: PMC10602915 DOI: 10.1093/nar/gkad707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
The universal genetic code is comprised of 61 sense codons, which are assigned to 20 canonical amino acids. However, the evolutionary basis for the highly conserved mapping between amino acids and their codons remains incompletely understood. A possible selective pressure of evolution would be minimization of deleterious effects caused by misdecoding. Here we comprehensively analyzed the misdecoding pattern of 61 codons against 19 noncognate amino acids where an arbitrary amino acid was omitted, and revealed the following two rules. (i) If the second codon base is U or C, misdecoding is frequently induced by mismatches at the first and/or third base, where any mismatches are widely tolerated; whereas misdecoding with the second-base mismatch is promoted by only U-G or C-A pair formation. (ii) If the second codon base is A or G, misdecoding is promoted by only G-U or U-G pair formation at the first or second position. In addition, evaluation of functional/structural diversities of amino acids revealed that less diverse amino acid sets are assigned at codons that induce more frequent misdecoding, and vice versa, so as to minimize deleterious effects of misdecoding in the modern genetic code.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Cho G, Lee J, Kim J. Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification. Nucleic Acids Res 2023; 51:1971-1983. [PMID: 36762482 PMCID: PMC9976899 DOI: 10.1093/nar/gkad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
The uridine at the 34th position of tRNA, which is able to base pair with the 3'-end codon on mRNA, is usually modified to influence many aspects of decoding properties during translation. Derivatives of 5-methyluridine (xm5U), which include methylaminomethyl (mnm-) or carboxymethylaminomethyl (cmnm-) groups at C5 of uracil base, are widely conserved at the 34th position of many prokaryotic tRNAs. In Gram-negative bacteria such as Escherichia coli, a bifunctional MnmC is involved in the last two reactions of the biosynthesis of mnm5(s2)U, in which the enzyme first converts cmnm5(s2)U to 5-aminomethyl-(2-thio)uridine (nm5(s2)U) and subsequently installs the methyl group to complete the formation of mnm5(s2)U. Although mnm5s2U has been identified in tRNAs of Gram-positive bacteria and plants as well, their genomes do not contain an mnmC ortholog and the gene(s) responsible for this modification is unknown. We discovered that MnmM, previously known as YtqB, is the methyltransferase that converts nm5s2U to mnm5s2U in Bacillus subtilis through comparative genomics, gene complementation experiments, and in vitro assays. Furthermore, we determined X-ray crystal structures of MnmM complexed with anticodon stem loop of tRNAGln. The structures provide the molecular basis underlying the importance of U33-nm5s2U34-U35 as the key determinant for the specificity of MnmM.
Collapse
Affiliation(s)
- Gyuhyeok Cho
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jangmin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
5
|
Kulik K, Sadowska K, Wielgus E, Pacholczyk-Sienicka B, Sochacka E, Nawrot B. 2-Selenouridine, a Modified Nucleoside of Bacterial tRNAs, Its Reactivity in the Presence of Oxidizing and Reducing Reagents. Int J Mol Sci 2022; 23:ijms23147973. [PMID: 35887319 PMCID: PMC9325004 DOI: 10.3390/ijms23147973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The 5-substituted 2-selenouridines are natural components of the bacterial tRNA epitranscriptome. Because selenium-containing biomolecules are redox-active entities, the oxidation susceptibility of 2-selenouridine (Se2U) was studied in the presence of hydrogen peroxide under various conditions and compared with previously reported data for 2-thiouridine (S2U). It was found that Se2U is more susceptible to oxidation and converted in the first step to the corresponding diselenide (Se2U)2, an unstable intermediate that decomposes to uridine and selenium. The reversibility of the oxidized state of Se2U was demonstrated by the efficient reduction of (Se2U)2 to Se2U in the presence of common reducing agents. Thus, the 2-selenouridine component of tRNA may have antioxidant potential in cells because of its ability to react with both cellular ROS components and reducing agents. Interestingly, in the course of the reactions studied, we found that (Se2U)2 reacts with Se2U to form new ‘oligomeric nucleosides′ as linear and cyclic byproducts.
Collapse
Affiliation(s)
- Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
- Correspondence: ; Tel.: +48-(42)-68-03-215
| | - Klaudia Sadowska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
| |
Collapse
|
6
|
Zheng YY, Wu Y, Begley TJ, Sheng J. Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chem Biol 2021; 2:990-1003. [PMID: 34458821 PMCID: PMC8341892 DOI: 10.1039/d1cb00038a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety of sulfur-modified nucleosides and nucleotides. While the discovery, regulation and functions of DNA phosphorothioate (PS) modification, where one of the non-bridging oxygen atoms is replaced by sulfur on the DNA backbone, are important topics, this review focuses on the sulfur modification in natural cellular RNAs and therapeutic nucleic acids. The sulfur modifications on RNAs exhibit diversity in terms of modification location and cellular function, but the various sulfur modifications share common biosynthetic strategies across RNA species, cell types and domains of life. The first section reviews the post-transcriptional sulfur modifications on nucleobases with an emphasis on thiouridine on tRNA and phosphorothioate modification on RNA backbones, as well as the functions of the sulfur modifications on different species of cellular RNAs. The second section reviews the biosynthesis of different types of sulfur modifications and summarizes the general strategy for the biosynthesis of sulfur-containing RNA residues. One of the main goals of investigating sulfur modifications is to aid the genomic drug development pipeline and enhance our understandings of the rapidly growing nucleic acid-based gene therapies. The last section of the review focuses on the current drug development strategies employing sulfur substitution of oxygen atoms in therapeutic RNAs.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Ying Wu
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Thomas J Begley
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- Department of Biological Science, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| |
Collapse
|
7
|
Manavski N, Vicente A, Chi W, Meurer J. The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods. Genes (Basel) 2021; 12:genes12081121. [PMID: 34440296 PMCID: PMC8394491 DOI: 10.3390/genes12081121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Modifications in nucleic acids are present in all three domains of life. More than 170 distinct chemical modifications have been reported in cellular RNAs to date. Collectively termed as epitranscriptome, these RNA modifications are often dynamic and involve distinct regulatory proteins that install, remove, and interpret these marks in a site-specific manner. Covalent nucleotide modifications-such as methylations at diverse positions in the bases, polyuridylation, and pseudouridylation and many others impact various events in the lifecycle of an RNA such as folding, localization, processing, stability, ribosome assembly, and translational processes and are thus crucial regulators of the RNA metabolism. In plants, the nuclear/cytoplasmic epitranscriptome plays important roles in a wide range of biological processes, such as organ development, viral infection, and physiological means. Notably, recent transcriptome-wide analyses have also revealed novel dynamic modifications not only in plant nuclear/cytoplasmic RNAs related to photosynthesis but especially in chloroplast mRNAs, suggesting important and hitherto undefined regulatory steps in plastid functions and gene expression. Here we report on the latest findings of known plastid RNA modifications and highlight their relevance for the post-transcriptional regulation of chloroplast gene expression and their role in controlling plant development, stress reactions, and acclimation processes.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Alexandre Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
- Correspondence: ; Tel.: +49-89-218074556
| |
Collapse
|
8
|
C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3' Synonymous mRNA Codons. Int J Mol Sci 2020; 21:ijms21082882. [PMID: 32326096 PMCID: PMC7216251 DOI: 10.3390/ijms21082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
5-Substituted 2-selenouridines (R5Se2U) are post-transcriptional modifications present in the first anticodon position of transfer RNA. Their functional role in the regulation of gene expression is elusive. Here, we present efficient syntheses of 5-methylaminomethyl-2-selenouridine (1, mnm5Se2U), 5-carboxymethylaminomethyl-2-selenouridine (2, cmnm5Se2U), and Se2U (3) alongside the crystal structure of the latter nucleoside. By using pH-dependent potentiometric titration, pKa values for the N3H groups of 1–3 were assessed to be significantly lower compared to their 2-thio- and 2-oxo-congeners. At physiological conditions (pH 7.4), Se2-uridines 1 and 2 preferentially adopted the zwitterionic form (ZI, ca. 90%), with the positive charge located at the amino alkyl side chain and the negative charge at the Se2-N3-O4 edge. As shown by density functional theory (DFT) calculations, this ZI form efficiently bound to guanine, forming the so-called “new wobble base pair”, which was accepted by the ribosome architecture. These data suggest that the tRNA anticodons with wobble R5Se2Us may preferentially read the 5′-NNG-3′ synonymous codons, unlike their 2-thio- and 2-oxo-precursors, which preferentially read the 5′-NNA-3′ codons. Thus, the interplay between the levels of U-, S2U- and Se2U-tRNA may have a dominant role in the epitranscriptomic regulation of gene expression via reading of the synonymous 3′-A- and 3′-G-ending codons.
Collapse
|
9
|
The [4Fe-4S] cluster of sulfurtransferase TtuA desulfurizes TtuB during tRNA modification in Thermus thermophilus. Commun Biol 2020; 3:168. [PMID: 32265486 PMCID: PMC7138817 DOI: 10.1038/s42003-020-0895-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
TtuA and TtuB are the sulfurtransferase and sulfur donor proteins, respectively, for biosynthesis of 2-thioribothymidine (s2T) at position 54 of transfer RNA (tRNA), which is responsible for adaptation to high temperature environments in Thermus thermophilus. The enzymatic activity of TtuA requires an iron-sulfur (Fe-S) cluster, by which a sulfur atom supplied by TtuB is transferred to the tRNA substrate. Here, we demonstrate that the Fe-S cluster directly receives sulfur from TtuB through its inherent coordination ability. TtuB forms a [4Fe-4S]-TtuB intermediate, but that sulfur is not immediately released from TtuB. Further desulfurization assays and mutation studies demonstrated that the release of sulfur from the thiocarboxylated C-terminus of TtuB is dependent on adenylation of the substrate tRNA, and the essential residue for TtuB desulfurization was identified. Based on these findings, the molecular mechanism of sulfur transfer from TtuB to Fe-S cluster is proposed. Chen et al. demonstrate how the Fe-S cluster receives sulfur from TtuB, a ubiquitin-like sulfur donor during tRNA modification. They find that the release of sulfur from the thiocarboxylated C-terminus of TtuB depends on the adenylation of the substrate tRNA. This study provides molecular insights into the sulfur modification of tRNA.
Collapse
|
10
|
Shaheen R, Mark P, Prevost CT, AlKindi A, Alhag A, Estwani F, Al-Sheddi T, Alobeid E, Alenazi MM, Ewida N, Ibrahim N, Hashem M, Abdulwahab F, Bryant EM, Spinelli E, Millichap J, Barnett SS, Kearney HM, Accogli A, Scala M, Capra V, Nigro V, Fu D, Alkuraya FS. Biallelic variants in CTU2 cause DREAM-PL syndrome and impair thiolation of tRNA wobble U34. Hum Mutat 2019; 40:2108-2120. [PMID: 31301155 DOI: 10.1002/humu.23870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 01/29/2023]
Abstract
The wobble position in the anticodon loop of transfer ribonucleic acid (tRNA) is subject to numerous posttranscriptional modifications. In particular, thiolation of the wobble uridine has been shown to play an important role in codon-anticodon interactions. This modification is catalyzed by a highly conserved CTU1/CTU2 complex, disruption of which has been shown to cause abnormal phenotypes in yeast, worms, and plants. We have previously suggested that a single founder splicing variant in human CTU2 causes a novel multiple congenital anomalies syndrome consisting of dysmorphic facies, renal agenesis, ambiguous genitalia, microcephaly, polydactyly, and lissencephaly (DREAM-PL). In this study, we describe five new patients with DREAM-PL phenotype and whose molecular analysis expands the allelic heterogeneity of the syndrome to five different alleles; four of which predict protein truncation. Functional characterization using patient-derived cells for each of these alleles, as well as the original founder allele; revealed a specific impairment of wobble uridine thiolation in all known thiol-containing tRNAs. Our data establish a recognizable CTU2-linked autosomal recessive syndrome in humans characterized by defective thiolation of the wobble uridine. The potential deleterious consequences for the translational efficiency and fidelity during development as a mechanism for pathogenicity represent an attractive target of future investigations.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Paul Mark
- Spectrum Health Division of Medical Genetics, Grand Rapids, Michigan
| | - Christopher T Prevost
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Adila AlKindi
- Genetics Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ahmad Alhag
- Department of Pediatrics, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Fatima Estwani
- Department of Pediatrics, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Tarfa Al-Sheddi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Mona M Alenazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia
| | - Emily M Bryant
- Epilepsy Center and Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Egidio Spinelli
- Epilepsy Center and Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - John Millichap
- Epilepsy Center and Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sarah S Barnett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Hutton M Kearney
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrea Accogli
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Marcello Scala
- Department of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Valeria Capra
- Department of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Nilsson EM, Alexander RW. Bacterial wobble modifications of NNA-decoding tRNAs. IUBMB Life 2019; 71:1158-1166. [PMID: 31283100 DOI: 10.1002/iub.2120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 01/18/2023]
Abstract
Nucleotides of transfer RNAs (tRNAs) are highly modified, particularly at the anticodon. Bacterial tRNAs that read A-ending codons are especially notable. The U34 nucleotide canonically present in these tRNAs is modified by a wide range of complex chemical constituents. An additional two A-ending codons are not read by U34-containing tRNAs but are accommodated by either inosine or lysidine at the wobble position (I34 or L34). The structural basis for many N34 modifications in both tRNA aminoacylation and ribosome decoding has been elucidated, and evolutionary conservation of modifying enzymes is also becoming clearer. Here we present a brief review of the structure, function, and conservation of wobble modifications in tRNAs that translate A-ending codons. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1158-1166, 2019.
Collapse
Affiliation(s)
- Emil M Nilsson
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| | - Rebecca W Alexander
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
12
|
Candiracci J, Migeot V, Chionh YH, Bauer F, Brochier T, Russell B, Shiozaki K, Dedon P, Hermand D. Reciprocal regulation of TORC signaling and tRNA modifications by Elongator enforces nutrient-dependent cell fate. SCIENCE ADVANCES 2019; 5:eaav0184. [PMID: 31223645 PMCID: PMC6584457 DOI: 10.1126/sciadv.aav0184] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Nutrient availability has a profound impact on cell fate. Upon nitrogen starvation, wild-type fission yeast cells uncouple cell growth from cell division to generate small, round-shaped cells that are competent for sexual differentiation. The TORC1 (TOR complex 1) and TORC2 complexes exert opposite controls on cell growth and cell differentiation, but little is known about how their activity is coordinated. We show that transfer RNA (tRNA) modifications by Elongator are critical for this regulation by promoting the translation of both key components of TORC2 and repressors of TORC1. We further identified the TORC2 pathway as an activator of Elongator by down-regulating a Gsk3 (glycogen synthase kinase 3)-dependent inhibitory phosphorylation of Elongator. Therefore, a feedback control is operating between TOR complex (TORC) signaling and tRNA modification by Elongator to enforce the advancement of mitosis that precedes cell differentiation.
Collapse
Affiliation(s)
- Julie Candiracci
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| | - Valerie Migeot
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| | - Yok-Hian Chionh
- Singapore–MIT Alliance for Research and Technology Centre (SMART), Center for Life Sciences 05-06, 28 Medical Drive, 117456 Singapore
| | - Fanelie Bauer
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| | - Thomas Brochier
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| | - Brandon Russell
- Massachusetts Institute of Technology, 56-787B77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Peter Dedon
- Singapore–MIT Alliance for Research and Technology Centre (SMART), Center for Life Sciences 05-06, 28 Medical Drive, 117456 Singapore
- Massachusetts Institute of Technology, 56-787B77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | - Damien Hermand
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| |
Collapse
|
13
|
Nguyen HA, Hoffer ED, Dunham CM. Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNACGGProfor decoding. J Biol Chem 2019; 294:5281-5291. [PMID: 30782843 PMCID: PMC6462517 DOI: 10.1074/jbc.ra119.007410] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Indexed: 01/15/2023] Open
Abstract
Modification of anticodon nucleotides allows tRNAs to decode multiple codons, expanding the genetic code. Additionally, modifications located in the anticodon loop, outside the anticodon itself, stabilize tRNA–codon interactions, increasing decoding fidelity. Anticodon loop nucleotide 37 is 3′ to the anticodon and, in tRNA CGG Pro , is methylated at the N1 position in its nucleobase (m1G37). The m1G37 modification in tRNA CGG Pro stabilizes its interaction with the codon and maintains the mRNA frame. However, it is unclear how m1G37 affects binding at the decoding center to both cognate and +1 slippery codons. Here, we show that the tRNA CGG Pro m1G37 modification is important for the association step during binding to a cognate CCG codon. In contrast, m1G37 prevented association with a slippery CCC-U or +1 codon. Similar analyses of frameshift suppressor tRNASufA6, a tRNA CGG Pro derivative containing an extra nucleotide in its anticodon loop that undergoes +1 frameshifting, reveal that m1G37 destabilizes interactions with both the cognate CCG and slippery codons. One reason for this destabilization is the disruption of a conserved U32·A38 nucleotide pairing in the anticodon stem through insertion of G37.5. Restoring the tRNASufA6 U32·A37.5 pairing results in a high-affinity association on the slippery CCC-U codon. Further, an X-ray crystal structure of the 70S ribosome bound to tRNASufA6 U32·A37.5 at 3.6 Å resolution shows a reordering of the anticodon loop consistent with the findings from the high-affinity measurements. Our results reveal how the tRNA modification at nucleotide 37 stabilizes interactions with the mRNA codon to preserve the mRNA frame.
Collapse
Affiliation(s)
- Ha An Nguyen
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and
- the Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Eric D Hoffer
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Christine M Dunham
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and
- the Department of Chemistry, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
14
|
Vasilyev N, Gao A, Serganov A. Noncanonical features and modifications on the 5'-end of bacterial sRNAs and mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1509. [PMID: 30276982 PMCID: PMC6657780 DOI: 10.1002/wrna.1509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Although many eukaryotic transcripts contain cap structures, it has been long thought that bacterial RNAs do not carry any special modifications on their 5'-ends. In bacteria, primary transcripts are produced by transcription initiated with a nucleoside triphosphate and are therefore triphosphorylated on 5'-ends. Some transcripts are then processed by nucleases that yield monophosphorylated RNAs for specific cellular activities. Many primary transcripts are also converted to monophosphorylated species by removal of the terminal pyrophosphate for 5'-end-dependent degradation. Recent studies surprisingly revealed an expanded repertoire of chemical groups on 5'-ends of bacterial RNAs. In addition to mono- and triphosphorylated moieties, some mRNAs and sRNAs contain cap-like structures and diphosphates on their 5'-ends. Although incorporation and removal of these groups have become better understood in recent years, the physiological significance of these modifications remain obscure. This review highlights recent studies aimed at identification and elucidation of novel modifications on the 5'-ends of bacterial RNAs and discusses possible physiological applications of the modified RNAs. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
15
|
Pedersen S, Terkelsen TB, Eriksen M, Hauge MK, Lund CC, Sneppen K, Mitarai N. Fast Translation within the First 45 Codons Decreases mRNA Stability and Increases Premature Transcription Termination in E. coli. J Mol Biol 2019; 431:1088-1097. [DOI: 10.1016/j.jmb.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
16
|
Maroney MJ, Hondal RJ. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic Biol Med 2018; 127:228-237. [PMID: 29588180 PMCID: PMC6158117 DOI: 10.1016/j.freeradbiomed.2018.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/16/2022]
Abstract
This review highlights the contributions of Jean Chaudière to the field of selenium biochemistry. Chaudière was the first to recognize that one of the main reasons that selenium in the form of selenocysteine is used in proteins is due to the fact that it strongly resists permanent oxidation. The foundations for this important concept was laid down by Al Tappel in the 1960's and even before by others. The concept of oxygen tolerance first recognized in the study of glutathione peroxidase was further advanced and refined by those studying [NiFeSe]-hydrogenases, selenosubtilisin, and thioredoxin reductase. After 200 years of selenium research, work by Marcus Conrad and coworkers studying glutathione peroxidase-4 has provided definitive evidence for Chaudière's original hypothesis (Ingold et al., 2018) [36]. While the reaction of selenium with oxygen is readily reversible, there are many other examples of this phenomenon of reversibility. Many reactions of selenium can be described as "easy in - easy out". This is due to the strong nucleophilic character of selenium to attack electrophiles, but then this reaction can be reversed due to the strong electrophilic character of selenium and the weakness of the selenium-carbon bond. Several examples of this are described.
Collapse
Affiliation(s)
- Michael J Maroney
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Life Sciences Laboratories, 240 Thatcher Road, Room N373, Amherst, MA 01003-9364, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States.
| |
Collapse
|
17
|
Sierant M, Leszczynska G, Sadowska K, Komar P, Radzikowska-Cieciura E, Sochacka E, Nawrot B. Escherichia coli
tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA via
S-geranylated-intermediate. FEBS Lett 2018; 592:2248-2258. [DOI: 10.1002/1873-3468.13124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Lodz Poland
| | | | - Klaudia Sadowska
- Institute of Organic Chemistry; Lodz University of Technology; Poland
| | - Patrycja Komar
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Lodz Poland
| | | | - Elzbieta Sochacka
- Institute of Organic Chemistry; Lodz University of Technology; Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Lodz Poland
| |
Collapse
|
18
|
Goffena J, Lefcort F, Zhang Y, Lehrmann E, Chaverra M, Felig J, Walters J, Buksch R, Becker KG, George L. Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat Commun 2018; 9:889. [PMID: 29497044 PMCID: PMC5832791 DOI: 10.1038/s41467-018-03221-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
Familial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator's function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease.
Collapse
Affiliation(s)
- Joy Goffena
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Jehremy Felig
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Joseph Walters
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Richard Buksch
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA.
| |
Collapse
|
19
|
Sochacka E, Lodyga-Chruscinska E, Pawlak J, Cypryk M, Bartos P, Ebenryter-Olbinska K, Leszczynska G, Nawrot B. C5-substituents of uridines and 2-thiouridines present at the wobble position of tRNA determine the formation of their keto-enol or zwitterionic forms - a factor important for accuracy of reading of guanosine at the 3΄-end of the mRNA codons. Nucleic Acids Res 2017; 45:4825-4836. [PMID: 28088758 PMCID: PMC5416851 DOI: 10.1093/nar/gkw1347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022] Open
Abstract
Modified nucleosides present in the wobble position of the tRNA anticodons regulate protein translation through tuning the reading of mRNA codons. Among 40 of such nucleosides, there are modified uridines containing either a sulfur atom at the C2 position and/or a substituent at the C5 position of the nucleobase ring. It is already evidenced that tRNAs with 2-thiouridines at the wobble position preferentially read NNA codons, while the reading mode of the NNG codons by R5U/R5S2U-containing anticodons is still elusive. For a series of 18 modified uridines and 2-thiouridines, we determined the pKa values and demonstrated that both modifying elements alter the electron density of the uracil ring and modulate the acidity of their N3H proton. In aqueous solutions at physiological pH the 2-thiouridines containing aminoalkyl C5-substituents are ionized in ca. 50%. The results, confirmed also by theoretical calculations, indicate that the preferential binding of the modified units bearing non-ionizable 5-substituents to guanosine in the NNG codons may obey the alternative C-G-like (Watson–Crick) mode, while binding of those bearing aminoalkyl C5-substituents (protonated under physiological conditions) and especially those with a sulfur atom at the C2 position, adopt a zwitterionic form and interact with guanosine via a ‘new wobble’ pattern.
Collapse
Affiliation(s)
- Elzbieta Sochacka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Lodyga-Chruscinska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Justyna Pawlak
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marek Cypryk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Paulina Bartos
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Katarzyna Ebenryter-Olbinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.,Department of Computer Modeling, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Barbara Nawrot
- Department of Computer Modeling, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
20
|
Meseguer S, Boix O, Navarro-González C, Villarroya M, Boutoual R, Emperador S, García-Arumí E, Montoya J, Armengod ME. microRNA-mediated differential expression of TRMU, GTPBP3 and MTO1 in cell models of mitochondrial-DNA diseases. Sci Rep 2017; 7:6209. [PMID: 28740091 PMCID: PMC5524753 DOI: 10.1038/s41598-017-06553-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/14/2017] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial diseases due to mutations in the mitochondrial (mt) DNA are heterogeneous in clinical manifestations but usually include OXPHOS dysfunction. Mechanisms by which OXPHOS dysfunction contributes to the disease phenotype invoke, apart from cell energy deficit, maladaptive responses to mitochondria-to-nucleus retrograde signaling. Here we used five different cybrid models of mtDNA diseases to demonstrate that the expression of the nuclear-encoded mt-tRNA modification enzymes TRMU, GTPBP3 and MTO1 varies in response to specific pathological mtDNA mutations, thus altering the modification status of mt-tRNAs. Importantly, we demonstrated that the expression of TRMU, GTPBP3 and MTO1 is regulated by different miRNAs, which are induced by retrograde signals like ROS and Ca2+ via different pathways. Our data suggest that the up- or down-regulation of the mt-tRNA modification enzymes is part of a cellular response to cope with a stoichiometric imbalance between mtDNA- and nuclear-encoded OXPHOS subunits. However, this miRNA-mediated response fails to provide full protection from the OXPHOS dysfunction; rather, it appears to aggravate the phenotype since transfection of the mutant cybrids with miRNA antagonists improves the energetic state of the cells, which opens up options for new therapeutic approaches.
Collapse
Affiliation(s)
- Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Olga Boix
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Navarro-González
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Magda Villarroya
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Rachid Boutoual
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sonia Emperador
- Universidad de Zaragoza - CIBERER (node 727)-Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Elena García-Arumí
- Hospital Universitario Vall d'Hebron (Barcelona, Spain) and Biomedical Research Networking Centre for Rare Diseases CIBERER, node 701, Barcelona, Spain
| | - Julio Montoya
- Universidad de Zaragoza - CIBERER (node 727)-Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - M-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain. .,CIBERER node 721, Valencia, Spain.
| |
Collapse
|
21
|
Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses. PLoS Genet 2017; 13:e1006921. [PMID: 28732077 PMCID: PMC5544249 DOI: 10.1371/journal.pgen.1006921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 08/04/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell’s maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions. Post-transcriptional modification of tRNAs is a universal process, thought to be essential for optimizing the functions of tRNAs. In humans, defects in the modification at position 2 (performed by protein TRMU) and 5 (carried out by proteins GTPBP3 and MTO1) of the uridine located at the wobble position of mitochondrial tRNAs (mt-tRNAs) cause oxidative phosphorylation (OXPHOS) dysfunction, and lead to liver and heart failure, respectively. However, the underlying mechanisms leading to pathogenesis are not well-known, and hence there is no molecular explanation for the different clinical phenotypes. We use Caenorhabditis elegans to compare in the same animal model and genetic background the effects of inactivating the TRMU, GTPBP3 and MTO1 orthologues on the phenotype and gene expression pattern of nuclear and mitochondrial DNA. Our data show that C. elegans responds to mt-tRNA hypomodification by changing in a defect-specific manner the expression of nuclear and mitochondrial genes, which leads, in all single mutants, to a rescue of the OXPHOS dysfunction that is associated with a biological cost. Our work suggests that pathology may develop as a consequence of the cell’s maladaptive response to the hypomodification status of mt-tRNAs.
Collapse
|
22
|
Haruehanroengra P, Vangaveti S, Ranganathan SV, Wang R, Chen A, Sheng J. Nature's Selection of Geranyl Group as a tRNA Modification: The Effects of Chain Length on Base-Pairing Specificity. ACS Chem Biol 2017; 12:1504-1513. [PMID: 28418649 DOI: 10.1021/acschembio.7b00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recently discovered geranyl modification on the 2-thio position of wobble U34 residues in tRNAGlu, tRNALys, and tRNAGln in several bacteria has been found to enhance the U:G pairing specificity and reduce the frameshifting error during translation. It is a fundamentally interesting question why nature chose a C10 terpene group in tRNA systems. In this study, we explore the significance of the terpene length on base-paring stability and specificity using a series of 2-thiouridine analogues containing different lengths of carbon chains, namely, methyl- (C1), dimethylallyl- (C5), and farnesyl-modified (C15) 2-thiothymidines in a DNA duplex. Our thermal denaturation studies indicate that the relatively long chain length of ≥ C10 is required to maintain the base-pairing discrimination of thymidine between G and A. The results from our molecular dynamics simulations show that in the T:G-pair-containing duplex, the geranyl and farnesyl groups fit into the minor groove and stabilize the overall duplex stability. This effect cannot be achieved by the shorter carbon chains such as methyl and dimethylallyl groups. For a duplex containing a T:A pair, the terpene groups disrupt both hydrogen bonding and stacking interactions by pushing the opposite A out of the helical structure. Overall, as the terpene chain length increases, the xT:G pair stabilizes the duplex, whereas the xT:A pair causes destabilization, indicating the evolutionary significance of the long terpene group on base-pairing specificity and codon recognition.
Collapse
Affiliation(s)
- Phensinee Haruehanroengra
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Sweta Vangaveti
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Srivathsan V. Ranganathan
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rui Wang
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Alan Chen
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Jia Sheng
- Department
of Chemistry and ‡The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
23
|
Biochemical and structural characterization of oxygen-sensitive 2-thiouridine synthesis catalyzed by an iron-sulfur protein TtuA. Proc Natl Acad Sci U S A 2017; 114:4954-4959. [PMID: 28439027 DOI: 10.1073/pnas.1615585114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-thiouridine (s2U) at position 54 of transfer RNA (tRNA) is a posttranscriptional modification that enables thermophilic bacteria to survive in high-temperature environments. s2U is produced by the combined action of two proteins, 2-thiouridine synthetase TtuA and 2-thiouridine synthesis sulfur carrier protein TtuB, which act as a sulfur (S) transfer enzyme and a ubiquitin-like S donor, respectively. Despite the accumulation of biochemical data in vivo, the enzymatic activity by TtuA/TtuB has rarely been observed in vitro, which has hindered examination of the molecular mechanism of S transfer. Here we demonstrate by spectroscopic, biochemical, and crystal structure analyses that TtuA requires oxygen-labile [4Fe-4S]-type iron (Fe)-S clusters for its enzymatic activity, which explains the previously observed inactivation of this enzyme in vitro. The [4Fe-4S] cluster was coordinated by three highly conserved cysteine residues, and one of the Fe atoms was exposed to the active site. Furthermore, the crystal structure of the TtuA-TtuB complex was determined at a resolution of 2.5 Å, which clearly shows the S transfer of TtuB to tRNA using its C-terminal thiocarboxylate group. The active site of TtuA is connected to the outside by two channels, one occupied by TtuB and the other used for tRNA binding. Based on these observations, we propose a molecular mechanism of S transfer by TtuA using the ubiquitin-like S donor and the [4Fe-4S] cluster.
Collapse
|
24
|
Synonymous Codons: Choose Wisely for Expression. Trends Genet 2017; 33:283-297. [PMID: 28292534 DOI: 10.1016/j.tig.2017.02.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
The genetic code, which defines the amino acid sequence of a protein, also contains information that influences the rate and efficiency of translation. Neither the mechanisms nor functions of codon-mediated regulation were well understood. The prevailing model was that the slow translation of codons decoded by rare tRNAs reduces efficiency. Recent genome-wide analyses have clarified several issues. Specific codons and codon combinations modulate ribosome speed and facilitate protein folding. However, tRNA availability is not the sole determinant of rate; rather, interactions between adjacent codons and wobble base pairing are key. One mechanism linking translation efficiency and codon use is that slower decoding is coupled to reduced mRNA stability. Changes in tRNA supply mediate biological regulationfor instance,, changes in tRNA amounts facilitate cancer metastasis.
Collapse
|
25
|
Payne NC, Geissler A, Button A, Sasuclark AR, Schroll AL, Ruggles EL, Gladyshev VN, Hondal RJ. Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic Biol Med 2017; 104:249-261. [PMID: 28108278 PMCID: PMC5328918 DOI: 10.1016/j.freeradbiomed.2017.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/16/2022]
Abstract
Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNAGlu, tRNAGln and tRNALys. It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s2c5Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se2c5Ura) using 1H-NMR spectroscopy, 77Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s2c5Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c5Ura). In contrast, se2c5Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s2c5Ura, whereas very little deselenization of se2c5Ura occurred in the presence of the same antioxidants. In addition, se2c5Ura but not s2c5Ura showed glutathione peroxidase activity, further suggesting that oxidation of se2c5Ura is readily reversible, while oxidation of s2c5Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also confers resistance to oxidation, our findings suggest a common mechanism for the use of selenium in biology.
Collapse
Affiliation(s)
- N Connor Payne
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Andrew Geissler
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Aileen Button
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Alexandru R Sasuclark
- Department of Chemistry, St. Michael's College, 1 Winooski Park, Colchester, VT 05439, United States
| | - Alayne L Schroll
- Department of Chemistry, St. Michael's College, 1 Winooski Park, Colchester, VT 05439, United States
| | - Erik L Ruggles
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States.
| |
Collapse
|
26
|
Wu Y, Wei FY, Kawarada L, Suzuki T, Araki K, Komohara Y, Fujimura A, Kaitsuka T, Takeya M, Oike Y, Suzuki T, Tomizawa K. Mtu1-Mediated Thiouridine Formation of Mitochondrial tRNAs Is Required for Mitochondrial Translation and Is Involved in Reversible Infantile Liver Injury. PLoS Genet 2016; 12:e1006355. [PMID: 27689697 PMCID: PMC5045200 DOI: 10.1371/journal.pgen.1006355] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/08/2016] [Indexed: 12/26/2022] Open
Abstract
Reversible infantile liver failure (RILF) is a unique heritable liver disease characterized by acute liver failure followed by spontaneous recovery at an early stage of life. Genetic mutations in MTU1 have been identified in RILF patients. MTU1 is a mitochondrial enzyme that catalyzes the 2-thiolation of 5-taurinomethyl-2-thiouridine (τm5s2U) found in the anticodon of a subset of mitochondrial tRNAs (mt-tRNAs). Although the genetic basis of RILF is clear, the molecular mechanism that drives the pathogenesis remains elusive. We here generated liver-specific knockout of Mtu1 (Mtu1LKO) mice, which exhibited symptoms of liver injury characterized by hepatic inflammation and elevated levels of plasma lactate and AST. Mechanistically, Mtu1 deficiency resulted in a loss of 2-thiolation in mt-tRNAs, which led to a marked impairment of mitochondrial translation. Consequently, Mtu1LKO mice exhibited severe disruption of mitochondrial membrane integrity and a broad decrease in respiratory complex activities in the hepatocytes. Interestingly, mitochondrial dysfunction induced signaling pathways related to mitochondrial proliferation and the suppression of oxidative stress. The present study demonstrates that Mtu1-dependent 2-thiolation of mt-tRNA is indispensable for mitochondrial translation and that Mtu1 deficiency is a primary cause of RILF. In addition, Mtu1 deficiency is associated with multiple cytoprotective pathways that might prevent catastrophic liver failure and assist in the recovery from liver injury. Mitochondrial transfer tRNA (mt-tRNA) contains a variety of chemical modifications that are introduced post-transcriptionally. Three mt-tRNAs for Lys, Gln and Glu contain 5-taurinomethyl-2-thiouridine (τm5s2U) in their anticodons. It is known that the loss of 2-thiolation of τm5s2U is strongly associated with the development of reversible infantile liver failure (RILF) because pathogenic mutations of RILF were found in the MTU1 gene, which encodes an enzyme responsible for the 2-thiolation of τm5s2U. However, the molecular mechanism underlying RILF pathogenesis associated with a lack of MTU1 remains elusive. To understand the physiological function of MTU1 and its association with liver failure, we generated liver-specific Mtu1-deficient (Mtu1LKO) mice. Mtu1 deficiency abolished 2-thiouridine formation in the three mt-tRNAs. Loss of the 2-thiouridine modification resulted in a marked impairment of mitochondrial translation and abnormal mitochondrial structure. Consequently, the Mtu1LKO mice exhibited liver injury, which resembles the symptoms of RILF patients. Furthermore, mitochondrial dysfunction in Mtu1LKO mice induced mitochondrial biogenesis and suppressed oxidative stress. These findings elucidate the cellular and physiological functions of Mtu1 and provide a mouse model for understanding RILF pathogenesis.
Collapse
Affiliation(s)
- Yong Wu
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Layla Kawarada
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Fujimura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
27
|
Chen M, Narai S, Omura N, Shigi N, Chimnaronk S, Tanaka Y, Yao M. Crystallographic study of the 2-thioribothymidine-synthetic complex TtuA-TtuB from Thermus thermophilus. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:777-781. [PMID: 27710943 DOI: 10.1107/s2053230x16014242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022]
Abstract
The ubiquitin-like protein TtuB is a sulfur carrier for the biosynthesis of 2-thioribothymidine (s2T) at position 54 in some thermophilic bacterial tRNAs. TtuB captures a S atom at its C-terminus as a thiocarboxylate and transfers it to tRNA by the transferase activity of TtuA. TtuB also functions to suppress s2T formation by forming a covalent bond with TtuA. To explore how TtuB interacts with TtuA and switches between these two different functions, high-resolution structure analysis of the TtuA-TtuB complex is required. In this study, the TtuA-TtuB complex from Thermus thermophilus was expressed, purified and crystallized. To mimic the thiocarboxylated TtuB, the C-terminal Gly residue was replaced with Cys (G65C) to obtain crystals of the TtuA-TtuB complex. A Zn-MAD data set was collected to a resolution of 2.5 Å. MAD analysis successfully determined eight Zn sites, and a partial structure model composed of four TtuA-TtuB complexes in the asymmetric unit was constructed.
Collapse
Affiliation(s)
- Minghao Chen
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shun Narai
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Naoki Omura
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Sarin Chimnaronk
- Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
28
|
Satapathy SS, Powdel BR, Buragohain AK, Ray SK. Discrepancy among the synonymous codons with respect to their selection as optimal codon in bacteria. DNA Res 2016; 23:441-449. [PMID: 27426467 PMCID: PMC5066170 DOI: 10.1093/dnares/dsw027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023] Open
Abstract
The different triplets encoding the same amino acid, termed as synonymous codons, are not equally abundant in a genome. Factors such as G + C% and tRNA are known to influence their abundance in a genome. However, the order of the nucleotide in each codon per se might also be another factor impacting on its abundance values. Of the synonymous codons for specific amino acids, some are preferentially used in the high expression genes that are referred to as the 'optimal codons' (OCs). In this study, we compared OCs of the 18 amino acids in 221 species of bacteria. It is observed that there is amino acid specific influence for the selection of OCs. There is also influence of phylogeny in the choice of OCs for some amino acids such as Glu, Gln, Lys and Leu. The phenomenon of codon bias is also supported by the comparative studies of the abundance values of the synonymous codons with same G + C. It is likely that the order of the nucleotides in the triplet codon is also perhaps involved in the phenomenon of codon usage bias in organisms.
Collapse
Affiliation(s)
| | - Bhesh Raj Powdel
- Department of Statistics, Darrang College, Tezpur 784001, Assam, India
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.,Office of the Vice-Chancellor, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
29
|
García P, Encinar Del Dedo J, Ayté J, Hidalgo E. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS. J Biol Chem 2016; 291:790-9. [PMID: 26567340 DOI: 10.1074/jbc.m115.696658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides.
Collapse
Affiliation(s)
- Patricia García
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Javier Encinar Del Dedo
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
30
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Martínez-Zamora A, Meseguer S, Esteve JM, Villarroya M, Aguado C, Enríquez JA, Knecht E, Armengod ME. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS One 2015; 10:e0144273. [PMID: 26642043 PMCID: PMC4671719 DOI: 10.1371/journal.pone.0144273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.
Collapse
Affiliation(s)
- Ana Martínez-Zamora
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Juan M. Esteve
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Magda Villarroya
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Aguado
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
| | - J. Antonio Enríquez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Erwin Knecht
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
| | - M.-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
- * E-mail:
| |
Collapse
|
32
|
Thiaville PC, Iwata-Reuyl D, de Crécy-Lagard V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t(6)A), a universal modification of tRNA. RNA Biol 2015; 11:1529-39. [PMID: 25629598 PMCID: PMC4615747 DOI: 10.4161/15476286.2014.992277] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tRNA modification field has a rich literature covering biochemical analysis going back more than 40 years, but many of the corresponding genes were only identified in the last decade. In recent years, comparative genomic-driven analysis has allowed for the identification of the genes and subsequent characterization of the enzymes responsible for N6-threonylcarbamoyladenosine (t6A). This universal modification, located in the anticodon stem-loop at position 37 adjacent to the anticodon of tRNAs, is found in nearly all tRNAs that decode ANN codons. The t6A biosynthesis enzymes and synthesis pathways have now been identified, revealing both a core set of enzymes and kingdom-specific variations. This review focuses on the elucidation of the pathway, diversity of the synthesis genes, and proposes a new nomenclature for t6A synthesis enzymes.
Collapse
Affiliation(s)
- Patrick C Thiaville
- a Genetics and Genomics Graduate Program ; University of Florida ; Gainesville , FL USA
| | | | | |
Collapse
|
33
|
Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 2015; 11:1495-507. [PMID: 25607529 DOI: 10.4161/15476286.2014.992269] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.
Collapse
Affiliation(s)
- M Eugenia Armengod
- a Laboratory of RNA Modification and Mitochondrial Diseases ; Centro de Investigación Príncipe Felipe ; Valencia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
35
|
Bartos P, Ebenryter-Olbinska K, Sochacka E, Nawrot B. The influence of the C5 substituent on the 2-thiouridine desulfuration pathway and the conformational analysis of the resulting 4-pyrimidinone products. Bioorg Med Chem 2015; 23:5587-94. [DOI: 10.1016/j.bmc.2015.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022]
|
36
|
Sawhney B, Chopra K, Misra R, Ranjan A. Identification of Plasmodium falciparum apicoplast-targeted tRNA-guanine transglycosylase and its potential inhibitors using comparative genomics, molecular modelling, docking and simulation studies. J Biomol Struct Dyn 2015; 33:2404-20. [PMID: 25869381 DOI: 10.1080/07391102.2015.1040074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
tRNA modifications play an important role in the proper folding of tRNA and thereby determine its functionality as an adaptor molecule. Notwithstanding the centrality of this basic process in translation, a major gap in the genomics of Plasmodium falciparum is unambiguous identification of enzymes catalysing the various tRNA modifications. In this study, tRNA-modifying enzymes of P. falciparum were annotated using homology-based approach. Based on the presence of these identified enzymes, the modifications were compared with those of prokaryotic and eukaryotic organisms. Through sequence comparison and phylogenetic analysis, we have identified P. falciparum apicoplast tRNA-guanine 34 transglycosylase (TGT, EC: 2.4.2.29), which shows evidence of its prokaryotic origin. The docking analysis of the modelled TGT structures revealed that binding of quinazolinone derivatives is more favourable with P. falciparum apicoplast TGT as compared to human TGT. Molecular dynamic simulation and molecular mechanics/generalized Born surface area analysis of the complex confirmed the greater binding affinity of the ligand in the binding pocket of P. falciparum TGT protein. Further, evolutionary patterning analysis identified the amino acids of P. falciparum apicoplast TGT that are under purifying selection pressure and hence can be good inhibitor-targeting sites. Based on these computational studies, we suggest that P. falciparum apicoplast tRNA-guanine 34 transglycosylase can be a promising drug target.
Collapse
Affiliation(s)
- Bhavik Sawhney
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India.,b Graduate School , Manipal University , Manipal, Karnataka 576104 , India
| | - Kriti Chopra
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India.,c Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Gachibowli, Hyderabad , Telangana 500046 , India.,d National Centre for Cell Science, NCCS Complex , University of Pune Campus , Ganeshkhind, Pune , Maharashtra 411007 , India
| | - Rohan Misra
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India.,b Graduate School , Manipal University , Manipal, Karnataka 576104 , India
| | - Akash Ranjan
- a Computational and Functional Genomics Group , Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana 500001 , India
| |
Collapse
|
37
|
Cai WM, Chionh YH, Hia F, Gu C, Kellner S, McBee ME, Ng CS, Pang YLJ, Prestwich EG, Lim KS, Babu IR, Begley TJ, Dedon PC. A Platform for Discovery and Quantification of Modified Ribonucleosides in RNA: Application to Stress-Induced Reprogramming of tRNA Modifications. Methods Enzymol 2015; 560:29-71. [PMID: 26253965 DOI: 10.1016/bs.mie.2015.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Here we describe an analytical platform for systems-level quantitative analysis of modified ribonucleosides in any RNA species, with a focus on stress-induced reprogramming of tRNA as part of a system of translational control of cell stress response. This chapter emphasizes strategies and caveats for each of the seven steps of the platform workflow: (1) RNA isolation, (2) RNA purification, (3) RNA hydrolysis to individual ribonucleosides, (4) chromatographic resolution of ribonucleosides, (5) identification of the full set of modified ribonucleosides, (6) mass spectrometric quantification of ribonucleosides, (6) interrogation of ribonucleoside datasets, and (7) mapping the location of stress-sensitive modifications in individual tRNA molecules. We have focused on the critical determinants of analytical sensitivity, specificity, precision, and accuracy in an effort to ensure the most biologically meaningful data on mechanisms of translational control of cell stress response. The methods described here should find wide use in virtually any analysis involving RNA modifications.
Collapse
Affiliation(s)
- Weiling Maggie Cai
- Department of Microbiology, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore
| | - Yok Hian Chionh
- Department of Microbiology, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore
| | - Fabian Hia
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chee Sheng Ng
- Singapore-MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological Institute, Singapore
| | - Yan Ling Joy Pang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kok Seong Lim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - I Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas J Begley
- College of Nanoscale Engineering and Science, State University of New York, Albany, New York, USA
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
38
|
Cui Z, Stein V, Tnimov Z, Mureev S, Alexandrov K. Semisynthetic tRNA complement mediates in vitro protein synthesis. J Am Chem Soc 2015; 137:4404-13. [PMID: 25822136 DOI: 10.1021/ja5131963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genetic code expansion is a key objective of synthetic biology and protein engineering. Most efforts in this direction are focused on reassigning termination or decoding quadruplet codons. While the redundancy of genetic code provides a large number of potentially reassignable codons, their utility is diminished by the inevitable interaction with cognate aminoacyl-tRNAs. To address this problem, we sought to establish an in vitro protein synthesis system with a simplified synthetic tRNA complement, thereby orthogonalizing some of the sense codons. This quantitative in vitro peptide synthesis assay allowed us to analyze the ability of synthetic tRNAs to decode all of 61 sense codons. We observed that, with the exception of isoacceptors for Asn, Glu, and Ile, the majority of 48 synthetic Escherichia coli tRNAs could support protein translation in the cell-free system. We purified to homogeneity functional Asn, Glu, and Ile tRNAs from the native E. coli tRNA mixture, and by combining them with synthetic tRNAs, we formulated a semisynthetic tRNA complement for all 20 amino acids. We further demonstrated that this tRNA complement could restore the protein translation activity of tRNA-depleted E. coli lysate to a level comparable to that of total native tRNA. To confirm that the developed system could efficiently synthesize long polypeptides, we expressed three different sequences coding for superfolder GFP. This novel semisynthetic translation system is a powerful tool for tRNA engineering and potentially enables the reassignment of at least 9 sense codons coding for Ser, Arg, Leu, Pro, Thr, and Gly.
Collapse
Affiliation(s)
- Zhenling Cui
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Viktor Stein
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zakir Tnimov
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
39
|
Sochacka E, Szczepanowski RH, Cypryk M, Sobczak M, Janicka M, Kraszewska K, Bartos P, Chwialkowska A, Nawrot B. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes. Nucleic Acids Res 2015; 43:2499-512. [PMID: 25690900 PMCID: PMC4357714 DOI: 10.1093/nar/gkv109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon-anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3'-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif.
Collapse
Affiliation(s)
- Elzbieta Sochacka
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Ks. J. Trojdena 4, 02-109 Warsaw, Poland
| | - Marek Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Milena Sobczak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Magdalena Janicka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Karina Kraszewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Paulina Bartos
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Anna Chwialkowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
40
|
Panwar B, Raghava GPS. Prediction of uridine modifications in tRNA sequences. BMC Bioinformatics 2014; 15:326. [PMID: 25272949 PMCID: PMC4287530 DOI: 10.1186/1471-2105-15-326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
Background In past number of methods have been developed for predicting post-translational modifications in proteins. In contrast, limited attempt has been made to understand post-transcriptional modifications. Recently it has been shown that tRNA modifications play direct role in the genome structure and codon usage. This study is an attempt to understand kingdom-wise tRNA modifications particularly uridine modifications (UMs), as majority of modifications are uridine-derived. Results A three-steps strategy has been applied to develop an efficient method for the prediction of UMs. In the first step, we developed a common prediction model for all the kingdoms using a dataset from MODOMICS-2008. Support Vector Machine (SVM) based prediction models were developed and evaluated by five-fold cross-validation technique. Different approaches were applied and found that a hybrid approach of binary and structural information achieved highest Area under the curve (AUC) of 0.936. In the second step, we used newly added tRNA sequences (as independent dataset) of MODOMICS-2012 for the kingdom-wise prediction performance evaluation of previously developed (in the first step) common model and achieved performances between the AUC of 0.910 to 0.949. In the third and last step, we used different datasets from MODOMICS-2012 for the kingdom-wise individual prediction models development and achieved performances between the AUC of 0.915 to 0.987. Conclusions The hybrid approach is efficient not only to predict kingdom-wise modifications but also to classify them into two most prominent UMs: Pseudouridine (Y) and Dihydrouridine (D). A webserver called tRNAmod (http://crdd.osdd.net/raghava/trnamod/) has been developed, which predicts UMs from both tRNA sequences and whole genome. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-326) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Gajendra P S Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
| |
Collapse
|
41
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
42
|
Wald N, Margalit H. Auxiliary tRNAs: large-scale analysis of tRNA genes reveals patterns of tRNA repertoire dynamics. Nucleic Acids Res 2014; 42:6552-66. [PMID: 24782525 PMCID: PMC4041420 DOI: 10.1093/nar/gku245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Decoding of all codons can be achieved by a subset of tRNAs. In bacteria, certain tRNA species are mandatory, while others are auxiliary and are variably used. It is currently unknown how this variability has evolved and whether it provides an adaptive advantage. Here we shed light on the subset of auxiliary tRNAs, using genomic data from 319 bacteria. By reconstructing the evolution of tRNAs we show that the auxiliary tRNAs are highly dynamic, being frequently gained and lost along the phylogenetic tree, with a clear dominance of loss events for most auxiliary tRNA species. We reveal distinct co-gain and co-loss patterns for subsets of the auxiliary tRNAs, suggesting that they are subjected to the same selection forces. Controlling for phylogenetic dependencies, we find that the usage of these tRNA species is positively correlated with GC content and may derive directly from nucleotide bias or from preference of Watson-Crick codon-anticodon interactions. Our results highlight the highly dynamic nature of these tRNAs and their complicated balance with codon usage.
Collapse
Affiliation(s)
- Naama Wald
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
43
|
Philipp M, John F, Ringli C. The cytosolic thiouridylase CTU2 of Arabidopsis thaliana is essential for posttranscriptional thiolation of tRNAs and influences root development. BMC PLANT BIOLOGY 2014; 14:109. [PMID: 24774365 PMCID: PMC4014090 DOI: 10.1186/1471-2229-14-109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/22/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND A large number of post-transcriptional modifications of transfer RNAs (tRNAs) have been described in prokaryotes and eukaryotes. They are known to influence their stability, turnover, and chemical/physical properties. A specific subset of tRNAs contains a thiolated uridine residue at the wobble position to improve the codon-anticodon interaction and translational accuracy. The proteins involved in tRNA thiolation are reminiscent of prokaryotic sulfur transfer reactions and of the ubiquitylation process in eukaryotes. In plants, some of the proteins involved in this process have been identified and show a high degree of homology to their non-plant equivalents. For other proteins, the identification of the plant homologs is much less clear, due to the low conservation in protein sequence. RESULTS This manuscript describes the identification of CTU2, the second CYTOPLASMIC THIOURIDYLASE protein of Arabidopsis thaliana. CTU2 is essential for tRNA thiolation and interacts with ROL5, the previously identified CTU1 homolog of Arabidopsis. CTU2 is ubiquitously expressed, yet its activity seems to be particularly important in root tissue. A ctu2 knock-out mutant shows an alteration in root development. CONCLUSIONS The analysis of CTU2 adds a new component to the so far characterized protein network involved in tRNA thiolation in Arabidopsis. CTU2 is essential for tRNA thiolation as a ctu2 mutant fails to perform this tRNA modification. The identified Arabidopsis CTU2 is the first CTU2-type protein from plants to be experimentally verified, which is important considering the limited conservation of these proteins between plant and non-plant species. Based on the Arabidopsis protein sequence, CTU2-type proteins of other plant species can now be readily identified.
Collapse
Affiliation(s)
- Matthias Philipp
- Institute of Plant Biology, University of Zürich, Zollikerstr 107, 8008 Zürich, Switzerland
| | - Florian John
- Institute of Plant Biology, University of Zürich, Zollikerstr 107, 8008 Zürich, Switzerland
- Current Address: Thermo Scientific, Wohlen, Switzerland
| | - Christoph Ringli
- Institute of Plant Biology, University of Zürich, Zollikerstr 107, 8008 Zürich, Switzerland
| |
Collapse
|
44
|
Westhof E, Yusupov M, Yusupova G. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000PRIME REPORTS 2014; 6:19. [PMID: 24765524 PMCID: PMC3974571 DOI: 10.12703/p6-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The natural bases of nucleic acids have a strong preference for one tautomer form, guaranteeing fidelity in their hydrogen bonding potential. However, base pairs observed in recent crystal structures of polymerases and ribosomes are best explained by an alternative base tautomer, leading to the formation of base pairs with Watson-Crick-like geometries. These observations set limits to geometric selection in molecular recognition of complementary Watson-Crick pairs for fidelity in replication and translation processes.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de Biologie Moléculaire et CellulaireCNRS, 15 rue René Descartes, F-67084 Strasbourg CedexFrance
| | - Marat Yusupov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| |
Collapse
|
45
|
Moukadiri I, Garzón MJ, Björk GR, Armengod ME. The output of the tRNA modification pathways controlled by the Escherichia coli MnmEG and MnmC enzymes depends on the growth conditions and the tRNA species. Nucleic Acids Res 2013; 42:2602-23. [PMID: 24293650 PMCID: PMC3936742 DOI: 10.1093/nar/gkt1228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli, the MnmEG complex modifies transfer RNAs (tRNAs) decoding NNA/NNG codons. MnmEG catalyzes two different modification reactions, which add an aminomethyl (nm) or carboxymethylaminomethyl (cmnm) group to position 5 of the anticodon wobble uridine using ammonium or glycine, respectively. In and , however, cmnm5 appears as the final modification, whereas in the remaining tRNAs, the MnmEG products are converted into 5-methylaminomethyl (mnm5) through the two-domain, bi-functional enzyme MnmC. MnmC(o) transforms cmnm5 into nm5, whereas MnmC(m) converts nm5 into mnm5, thus producing an atypical network of modification pathways. We investigate the activities and tRNA specificity of MnmEG and the MnmC domains, the ability of tRNAs to follow the ammonium or glycine pathway and the effect of mnmC mutations on growth. We demonstrate that the two MnmC domains function independently of each other and that and are substrates for MnmC(m), but not MnmC(o). Synthesis of mnm5s2U by MnmEG-MnmC in vivo avoids build-up of intermediates in . We also show that MnmEG can modify all the tRNAs via the ammonium pathway. Strikingly, the net output of the MnmEG pathways in vivo depends on growth conditions and tRNA species. Loss of any MnmC activity has a biological cost under specific conditions.
Collapse
Affiliation(s)
- Ismaïl Moukadiri
- Laboratory of RNA Modification and Mitochondrial Diseases, Príncipe Felipe Research Center, 46012-Valencia, Spain, Department of Molecular Biology, Umeå University, S90187, Sweden and Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U721), Spain
| | | | | | | |
Collapse
|
46
|
Zinshteyn B, Gilbert WV. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet 2013; 9:e1003675. [PMID: 23935536 PMCID: PMC3731203 DOI: 10.1371/journal.pgen.1003675] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA) modifications enhance the efficiency, specificity and fidelity of translation in all organisms. The anticodon modification mcm(5)s(2)U(34) is required for normal growth and stress resistance in yeast; mutants lacking this modification have numerous phenotypes. Mutations in the homologous human genes are linked to neurological disease. The yeast phenotypes can be ameliorated by overexpression of specific tRNAs, suggesting that the modifications are necessary for efficient translation of specific codons. We determined the in vivo ribosome distributions at single codon resolution in yeast strains lacking mcm(5)s(2)U. We found accumulations at AAA, CAA, and GAA codons, suggesting that translation is slow when these codons are in the ribosomal A site, but these changes appeared too small to affect protein output. Instead, we observed activation of the GCN4-mediated stress response by a non-canonical pathway. Thus, loss of mcm(5)s(2)U causes global effects on gene expression due to perturbation of cellular signaling.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Wendy V. Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
47
|
Fernández-Vázquez J, Vargas-Pérez I, Sansó M, Buhne K, Carmona M, Paulo E, Hermand D, Rodríguez-Gabriel M, Ayté J, Leidel S, Hidalgo E. Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet 2013; 9:e1003647. [PMID: 23874237 PMCID: PMC3715433 DOI: 10.1371/journal.pgen.1003647] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/04/2013] [Indexed: 12/25/2022] Open
Abstract
The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNALysUUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery. The success of a biological event such as cellular adaptation to environmental changes requires the complex process of protein expression to be carried out with high efficiency and fidelity. Thus, not only transcription but also mRNA homeostasis and translation have to be performed with maximum efficiency, or survival would be hampered. Our study demonstrates that the role of Elongator, a putative Pol II-associated complex, in survival to stress is to optimize translation efficiency by modifying some particular tRNAs. We show here that Sin3/Elp3, an Elongator component, participates in the modification of the anticodon of the low copy number tRNALysUUU, which probably favours codon recognition. This tRNA recognizes one of the two codons for lysine, which is down-represented in highly expressed constitutive genes. The stress mRNAs, highly-expressed upon stress conditions, have not adapted their lysine codon usage from AAA-to-AAG, and proper tRNALysUUU modification by Elongator is an alternative strategy to accomplish efficient translation of these AAA-containing, abundant stress mRNAs.
Collapse
Affiliation(s)
- Jorge Fernández-Vázquez
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Itzel Vargas-Pérez
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miriam Sansó
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Karin Buhne
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Paulo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Damien Hermand
- Namur Research College (NARC), The University of Namur, Namur, Belgium
| | - Miguel Rodríguez-Gabriel
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sebastian Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
48
|
tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci U S A 2013; 110:12289-94. [PMID: 23836657 DOI: 10.1073/pnas.1300781110] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
tRNA modifications are crucial to ensure translation efficiency and fidelity. In eukaryotes, the URM1 and ELP pathways increase cellular resistance to various stress conditions, such as nutrient starvation and oxidative agents, by promoting thiolation and methoxycarbonylmethylation, respectively, of the wobble uridine of cytoplasmic (tK(UUU)), (tQ(UUG)), and (tE(UUC)). Although in vitro experiments have implicated these tRNA modifications in modulating wobbling capacity and translation efficiency, their exact in vivo biological roles remain largely unexplored. Using a combination of quantitative proteomics and codon-specific translation reporters, we find that translation of a specific gene subset enriched for AAA, CAA, and GAA codons is impaired in the absence of URM1- and ELP-dependent tRNA modifications. Moreover, in vitro experiments using native tRNAs demonstrate that both modifications enhance binding of tK(UUU) to the ribosomal A-site. Taken together, our data suggest that tRNA thiolation and methoxycarbonylmethylation regulate translation of genes with specific codon content.
Collapse
|
49
|
Abstract
Elongator is required for the synthesis of the mcm(5)s(2) modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions.
Collapse
|
50
|
Naumann PT, Lauhon CT, Ficner R. Purification, crystallization and preliminary crystallographic analysis of a 4-thiouridine synthetase-RNA complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:421-4. [PMID: 23545650 PMCID: PMC3614169 DOI: 10.1107/s1744309113004077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/10/2013] [Indexed: 11/10/2022]
Abstract
The sulfurtransferase 4-thiouridine synthetase (ThiI) is involved in the ATP-dependent modification of U8 in tRNA. ThiI from Thermotoga maritima was cloned, overexpressed and purified. A complex comprising ThiI and a truncated tRNA was prepared and crystallized, and X-ray diffraction data were collected to a resolution of 3.5 Å. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 102.9, b = 112.8, c = 132.8 Å.
Collapse
Affiliation(s)
- Peter-Thomas Naumann
- Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Charles T. Lauhon
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Ralf Ficner
- Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|