1
|
Suresh HG, Pascoe N, Andrews B. The structure and function of deubiquitinases: lessons from budding yeast. Open Biol 2020; 10:200279. [PMID: 33081638 PMCID: PMC7653365 DOI: 10.1098/rsob.200279] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification that regulates diverse cellular processes in eukaryotic cells. The specificity of ubiquitin (Ub) signalling for different bioprocesses and pathways is dictated by the large variety of mono-ubiquitination and polyubiquitination events, including many possible chain architectures. Deubiquitinases (DUBs) reverse or edit Ub signals with high sophistication and specificity, forming an integral arm of the Ub signalling machinery, thus impinging on fundamental cellular processes including DNA damage repair, gene expression, protein quality control and organellar integrity. In this review, we discuss the many layers of DUB function and regulation, with a focus on insights gained from budding yeast. Our review provides a framework to understand key aspects of DUB biology.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Natasha Pascoe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
2
|
Kim HJ, Kim HJ, Jeong JE, Baek JY, Jeong J, Kim S, Kim YM, Kim Y, Nam JH, Huh SH, Seo J, Jin BK, Lee KJ. N-terminal truncated UCH-L1 prevents Parkinson's disease associated damage. PLoS One 2014; 9:e99654. [PMID: 24959670 PMCID: PMC4069018 DOI: 10.1371/journal.pone.0099654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jae-Eun Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jeong Yeob Baek
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Young-Mee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Youhwa Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jin Han Nam
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sue Hee Huh
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jawon Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| |
Collapse
|
3
|
Ganoth A, Tsfadia Y, Wiener R. Ubiquitin: Molecular modeling and simulations. J Mol Graph Model 2013; 46:29-40. [DOI: 10.1016/j.jmgm.2013.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
4
|
|
5
|
Spasser L, Brik A. Chemistry and Biology of the Ubiquitin Signal. Angew Chem Int Ed Engl 2012; 51:6840-62. [DOI: 10.1002/anie.201200020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 01/07/2023]
|
6
|
Ohayon S, Spasser L, Aharoni A, Brik A. Targeting deubiquitinases enabled by chemical synthesis of proteins. J Am Chem Soc 2012; 134:3281-9. [PMID: 22279964 DOI: 10.1021/ja2116712] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ubiquitination/ubiquitylation is involved in a wide range of cellular processes in eukaryotes, such as protein degradation and DNA repair. Ubiquitination is a reversible post-translational modification, with the removal of the ubiquitin (Ub) protein being catalyzed by a family of enzymes known as deubiquitinases (DUBs). Approximately 100 DUBs are encoded in the human genome and are involved in a variety of regulatory processes, such as cell-cycle progression, tissue development, and differentiation. DUBs were, moreover, found to be associated with several diseases and as such are emerging as potential therapeutic targets. Several directions have been pursued in the search for lead anti-DUB compounds. However, none of these strategies have delivered inhibitors reaching advanced clinical stages due to several challenges in the discovery process, such as the absence of a highly sensitive and practically available high-throughput screening assay. In this study, we report on the design and preparation of a FRET-based assay for DUBs based on the application of our recent chemical method for the synthesis of Ub bioconjugates. In the assay, the ubiquitinated peptide was specifically labeled with a pair of FRET labels and used to screen a library comprising 1000 compounds against UCH-L3. Such analysis identified a novel and potent inhibitor able to inhibit this DUB in time-dependent manner with k(inact) = 0.065 min(-1) and K(i) = 0.8 μM. Our assay, which was also found suitable for the UCH-L1 enzyme, should assist in the ongoing efforts targeting the various components of the ubiquitin system and studying the role of DUBs in health and disease.
Collapse
Affiliation(s)
- Shimrit Ohayon
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | |
Collapse
|
7
|
Pasten C, Ortiz-Pineda PA, García-Arrarás JE. Ubiquitin-proteasome system components are upregulated during intestinal regeneration. Genesis 2012; 50:350-65. [PMID: 21913312 DOI: 10.1002/dvg.20803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 11/06/2022]
Abstract
The ubiquitin proteasome system (UPS) is the main proteolytic system of cells. Recent evidence suggests that the UPS plays a regulatory role in regeneration processes. Here, we explore the possibility that the UPS is involved during intestinal regeneration of the sea cucumber Holothuria glaberrima. These organisms can regenerate most of their digestive tract following a process of evisceration. Initially, we identified components of H. glaberrima UPS, including sequences for Rpn10, β3, and ubiquitin-RPL40. Predicted proteins from the mRNA sequences showed high degree of conservation that ranged from 60% (Rpn10) to 98% (Ub-RPL40). Microarrays and RT-PCR experiments showed that these genes were upregulated during intestinal regeneration. In addition, we demonstrated expression of alpha 20S proteasome subunits and ubiquitinated proteins during intestinal regeneration and detected them in the epithelium and connective tissue of the regenerating intestine. Finally, the intestinal regeneration was altered in animals treated with MG132, a proteasome inhibitor. These findings support our contention that proteasomes are playing an important role during intestinal regeneration.
Collapse
Affiliation(s)
- Consuelo Pasten
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931
| | | | | |
Collapse
|
8
|
Setsuie R, Suzuki M, Tsuchiya Y, Wada K. Skeletal muscles of Uchl3 knockout mice show polyubiquitinated protein accumulation and stress responses. Neurochem Int 2010; 56:911-8. [PMID: 20380862 DOI: 10.1016/j.neuint.2010.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Ubiquitin C-terminal hydrolase (UCH)-L3 is an enzyme with a strongly suggested de-ubiquitinating function by in vitro studies, but has poorly been investigated in vivo. In this study, we show that skeletal muscles of Uchl3(-/-) mice exhibit the up-regulation of cleaved ATF6, Grp78, and PDI as well as HSP27, HSP70, HSP90 and HSP110, which indicate the induction of stress responses. The prominent accumulation of polyubiquitinated proteins, one of the factors reported to induce stress responses, was observed in the skeletal muscle of Uchl3(-/-) mice. Mouse embryonic fibroblasts (MEFs) from Uchl3(-/-) mice also showed an accumulation of polyubiquitinated proteins. Moreover, the polyubiquitinated protein accumulation in Uchl3(-/-) MEFs was attenuated by the exogenous expression of wild-type, but not hydrolase activity deficient, UCH-L3. In addition, wild-type, but not its hydrolase activity or ubiquitin binding activity deficient UCH-L3 showed the ability to cleave ubiquitin from polyubiquitinated lysozyme in vitro. These results suggest that UCH-L3 functions as a de-ubiquitinating enzyme in vivo where lack of its hydrolase activity may result in the prominent accumulation of ubiquitinated proteins and subsequent induction of stress responses in skeletal muscle.
Collapse
Affiliation(s)
- Rieko Setsuie
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | |
Collapse
|
9
|
Yoshimoto N, Tatematsu K, Okajima T, Tanizawa K, Kuroda S. Accumulation of polyubiquitinated proteins by overexpression of RBCC protein interacting with protein kinase C2, a splice variant of ubiquitin ligase RBCC protein interacting with protein kinase C1. FEBS J 2009; 276:6375-85. [DOI: 10.1111/j.1742-4658.2009.07350.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363-97. [PMID: 19489724 DOI: 10.1146/annurev.biochem.78.082307.091526] [Citation(s) in RCA: 1094] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin(-like) protein, and remodel polyubiquitin(-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five gene families. Most DUB activity is cryptic, and conformational rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multiprotein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have led to new insights into the function of yeast and human DUBs. This review discusses ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes.
Collapse
Affiliation(s)
- Francisca E Reyes-Turcu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
11
|
Setsuie R, Sakurai M, Sakaguchi Y, Wada K. Ubiquitin dimers control the hydrolase activity of UCH-L3. Neurochem Int 2009; 54:314-21. [DOI: 10.1016/j.neuint.2008.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/03/2008] [Accepted: 12/15/2008] [Indexed: 11/17/2022]
|
12
|
Roth G, Freund S, Möhrle B, Wöllner K, Brünjes J, Gauglitz G, Wiesmüller KH, Jung G. Ubiquitin binds to a short peptide segment of hydrolase UCH-L3: a study by FCS, RIfS, ITC and NMR. Chembiochem 2008; 8:323-31. [PMID: 17211910 DOI: 10.1002/cbic.200600254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Screening for small peptidic affinity tags for the detection of ubiquitin and ubiquitinated proteins yielded the dodecapeptide amide DPDELRFNAIAL-NH(2) as a specific ubiquitin-interacting ligand. A peptide collection--based on crystal structures with ubiquitin-interacting proteins--was designed and confirmed by sequence comparison of ubiquitin-interacting motifs. Four independent physical detection methods demonstrated that the peptide binds to monomeric ubiquitin with an affinity of about 10 muM and with fast on and off rates. Fluorescence correlation spectroscopy with fluorescent peptides showed specific interaction with ubiquitin. Reflectometric interference spectroscopy with surface-immobilized peptides and isothermal calorimetry measurements confirmed the specific binding of ubiquitin and fast rate constants. (1)H,(15)N heteronuclear NMR localised the interaction site across the beta sheet of ubiquitin. The peptide aligns well with the ubiquitin-interacting motif and represents a lead structure for the rational design of high-affinity tags for targeting ubiquitinated protein in vitro and in vivo.
Collapse
Affiliation(s)
- Günter Roth
- Institut für Organische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
French M, Swanson K, Shih SC, Radhakrishnan I, Hicke L. Identification and characterization of modular domains that bind ubiquitin. Methods Enzymol 2007; 399:135-57. [PMID: 16338353 DOI: 10.1016/s0076-6879(05)99009-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To receive and transmit the information carried by ubiquitin signals, cells have evolved an array of modular ubiquitin-binding domains. These domains bind directly and noncovalently to monoubiquitin and polyubiquitin chains and are found within proteins that function in diverse biological processes. Ubiquitin-binding domains characterized thus far are generally small and structurally diverse, yet they all interact with the same hydrophobic patch on the surface of ubiquitin. The rapid identification and characterization of ubiquitin-binding domains has been accomplished through the extensive use of bioinformatics, biochemistry, molecular biology, and biophysics. Here, we discuss the strategies and tools that have been most successful in the identification and characterization of ubiquitin-binding domains.
Collapse
Affiliation(s)
- Michael French
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | |
Collapse
|
14
|
Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S, Kroemer M. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 2006; 14:1293-302. [PMID: 16905103 PMCID: PMC7126176 DOI: 10.1016/j.str.2006.06.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/11/2006] [Accepted: 06/16/2006] [Indexed: 01/08/2023]
Abstract
Deubiquitinating proteases reverse protein ubiquitination and rescue their target proteins from destruction by the proteasome. USP2, a cysteine protease and a member of the ubiquitin specific protease family, is overexpressed in prostate cancer and stabilizes fatty acid synthase, which has been associated with the malignancy of some aggressive prostate cancers. Here, we report the structure of the human USP2 catalytic domain in complex with ubiquitin. Ubiquitin uses two major sites for the interaction with the protease. Both sites are required simultaneously, as shown by USP2 inhibition assays with peptides and ubiquitin mutants. In addition, a layer of ordered water molecules mediates key interactions between ubiquitin and USP2. As several of those molecules are found at identical positions in the previously solved USP7/ubiquitin-aldehyde complex structure, we suggest a general mechanism of water-mediated ubiquitin recognition by USPs.
Collapse
Affiliation(s)
- Martin Renatus
- Protease Platform, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lakomek NA, Carlomagno T, Becker S, Griesinger C, Meiler J. A thorough dynamic interpretation of residual dipolar couplings in ubiquitin. JOURNAL OF BIOMOLECULAR NMR 2006; 34:101-15. [PMID: 16518697 DOI: 10.1007/s10858-005-5686-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 11/14/2005] [Indexed: 05/07/2023]
Abstract
The presence of slow motions with large amplitudes, as detected by measurements based on residual dipolar couplings [Peti, W., Meiler, J., Brueschweiler, R. and Griesinger, C. (2002) J. Am. Chem. Soc., 124, 5822-5833], has stirred up much discussion in recent years. Based on ubiquitin NH residual dipolar couplings (rdcs) measured in 31 different alignment conditions, a model-free analysis of structure and dynamics [Meiler, J., Peti, W., Prompers, J., Griesinger, C. and Brueschweiler, R. (2001) J. Am. Chem. Soc., 123, 6098-6107] is presented. Starting from this broad experimental basis, rdc-based order parameters with so far unattained accuracy were determined. These rdc-based order parameters underpin the presence of new modes of motion slower than the inverse overall tumbling correlation time. Amplitudes and anisotropies of the motion were derived. The effect of structural noise on the results was proven to be negligible.
Collapse
Affiliation(s)
- Nils A Lakomek
- NMR based structural biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | | | | | | | | |
Collapse
|
16
|
Kiel C, Serrano L. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J Mol Biol 2005; 355:821-44. [PMID: 16310215 DOI: 10.1016/j.jmb.2005.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/29/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Ubiquitin-like domains are present, apart from ubiquitin-like proteins themselves, in many multidomain proteins involved in different signal transduction processes. The sequence conservation for all ubiquitin superfold family members is rather poor, even between subfamily members, leading to mistakes in sequence alignments using conventional sequence alignment methods. However, a correct alignment is essential, especially for in silico methods that predict binding partners on the basis of sequence and structure. In this study, using 3D-structural information we have generated and manually corrected sequence alignments for proteins of the five ubiquitin superfold subfamilies. On the basis of this alignment, we suggest domains for which structural information will be useful to allow homology modelling. In addition, we have analysed the energetic and electrostatic properties of ubiquitin-like domains in complex with various functional binding proteins using the protein design algorithm FoldX. On the basis of an in silico alanine-scanning mutagenesis, we provide a detailed binding epitope mapping of the hotspots of the ubiquitin domain fold, involved in the interaction with different domains and proteins. Finally, we provide a consensus fingerprint sequence that identifies all sequences described to belong to the ubiquitin superfold family. It is possible that the method that we describe may be applied to other domain families sharing a similar fold but having low levels of sequence homology.
Collapse
Affiliation(s)
- Christina Kiel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
17
|
Tirat A, Schilb A, Riou V, Leder L, Gerhartz B, Zimmermann J, Worpenberg S, Eidhoff U, Freuler F, Stettler T, Mayr L, Ottl J, Leuenberger B, Filipuzzi I. Synthesis and characterization of fluorescent ubiquitin derivatives as highly sensitive substrates for the deubiquitinating enzymes UCH-L3 and USP-2. Anal Biochem 2005; 343:244-55. [PMID: 15963938 DOI: 10.1016/j.ab.2005.04.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/07/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.
Collapse
Affiliation(s)
- Aline Tirat
- Discovery Technologies, Novartis Institutes for Biomedical Research, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci U S A 2005; 102:12700-5. [PMID: 16118278 PMCID: PMC1188261 DOI: 10.1073/pnas.0506344102] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxia type 3 is a human neurodegenerative disease resulting from polyglutamine tract expansion. The affected protein, ataxin-3, which contains an N-terminal Josephin domain followed by tandem ubiquitin (Ub)-interacting motifs (UIMs) and a polyglutamine stretch, has been implicated in the function of the Ub proteasome system. NMR-based structural analysis has now revealed that the Josephin domain binds Ub and has a papain-like fold that is reminiscent of that of other deubiquitinases, despite primary sequence divergence but consistent with its deubiqutinating activity. Mutation of the catalytic Cys enhances the stability of a complex between ataxin-3 and polyubiquitinated proteins. This effect depends on the integrity of the UIM region, suggesting that the UIMs are bound to the substrate polyubiquitin during catalysis. We propose that ataxin-3 functions as a polyubiquitin chain-editing enzyme.
Collapse
Affiliation(s)
- Yuxin Mao
- Howard Hughes Medical Institute and Department of Cell Biology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
19
|
Narasimhan J, Wang M, Fu Z, Klein JM, Haas AL, Kim JJP. Crystal Structure of the Interferon-induced Ubiquitin-like Protein ISG15. J Biol Chem 2005; 280:27356-65. [PMID: 15917233 DOI: 10.1074/jbc.m502814200] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The biological effects of the ISG15 protein arise in part from its conjugation to cellular targets as a primary response to interferon-alpha/beta induction and other markers of viral or parasitic infection. Recombinant full-length ISG15 has been produced for the first time in high yield by mutating Cys78 to stabilize the protein and by cloning in a C-terminal arginine cap to protect the C terminus against proteolytic inactivation. The cap is subsequently removed with carboxypeptidase B to yield mature biologically active ISG15 capable of stoichiometric ATP-dependent thiolester formation with its human UbE1L activating enzyme. The three-dimensional structure of recombinant ISG15C78S was determined at 2.4-A resolution. The ISG15 structure comprises two beta-grasp folds having main chain root mean square deviation (r.m.s.d.) values from ubiquitin of 1.7 A (N-terminal) and 1.0 A (C-terminal). The beta-grasp domains pack across two conserved 3(10) helices to bury 627 A2 that accounts for 7% of the total solvent-accessible surface area. The distribution of ISG15 surface charge forms a ridge of negative charge extending nearly the full-length of the molecule. Additionally, the N-terminal domain contains an apolar region comprising almost half its solvent accessible surface. The C-terminal domain of ISG15 was superimposed on the structure of Nedd8 (r.m.s.d. = 0.84 A) bound to its AppBp1-Uba3 activating enzyme to model ISG15 binding to UbE1L. The docking model predicts several key side-chain interactions that presumably define the specificity between the ubiquitin and ISG15 ligation pathways to maintain functional integrity of their signaling.
Collapse
Affiliation(s)
- Jana Narasimhan
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
20
|
Massi F, Grey MJ, Palmer AG. Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R1rho relaxation experiments. Protein Sci 2005; 14:735-42. [PMID: 15722448 PMCID: PMC2279275 DOI: 10.1110/ps.041139505] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
NMR spin relaxation experiments are used to characterize the dynamics of the backbone of ubiquitin. Chemical exchange processes affecting residues Ile 23, Asn 25, Thr 55, and Val 70 are characterized using on- and off-resonance rotating-frame 15N R1rho relaxation experiments to have a kinetic exchange rate constant of 25,000 sec(-1) at 280 K. The exchange process affecting residues 23, 25, and 55 appears to result from disruption of N-cap hydrogen bonds of the alpha-helix and possibly from repacking of the side chain of Ile 23. Chemical exchange processes affecting other residues on the surface of ubiquitin are identified using 1H-15N multiple quantum relaxation experiments. These residues are located near or at the regions known to interact with various enzymes of the ubiquitin-dependent protein degradation pathway.
Collapse
Affiliation(s)
- Francesca Massi
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
21
|
Misaghi S, Galardy PJ, Meester WJN, Ovaa H, Ploegh HL, Gaudet R. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J Biol Chem 2004; 280:1512-20. [PMID: 15531586 DOI: 10.1074/jbc.m410770200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 A resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structure confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.
Collapse
Affiliation(s)
- Shahram Misaghi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Mason DE, Ek J, Peters EC, Harris JL. Substrate Profiling of Deubiquitin Hydrolases with a Positional Scanning Library and Mass Spectrometry. Biochemistry 2004; 43:6535-44. [PMID: 15157086 DOI: 10.1021/bi049722j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deconjugation of ubiquitin from cellular proteins is catalyzed by the deubiquitin hydrolase (DUB) family of enzymes and is an important component of the ubiquitin regulatory system affecting cellular function beyond simple maintenance of monomeric pools of ubiquitin. Specific deconjugation of ubiquitinated substrates has been described, but substrate recognition is poorly understood. To determine whether specificity may be conferred by recognition of a primary cognate sequence, the substrate preferences of two DUBs, UCH-L3 and isopeptidase T (IsoT), were profiled using a positional scanning branched peptide library. The sequence of the library was based on K48-branched diubiquitin, RLXXXXK(GGRLRLVL)QLEDGR, where X denotes a diversified position in the library (P1' '-P4' ' numbered from K48). Hydrolysis of the branched peptide was indicative of DUB activity and was detected and quantified by mass spectrometry. IsoT was active toward the library but demonstrated little preference for the diversified positions. In contrast, UCH-L3 exhibited minor amino acid preferences at P2' ' and P4' ' and a 10-fold preference for the basic residues Arg and Lys at P3' '. Kinetic analysis of substrates with optimized and suboptimized sequences (as defined by the library profile) confirmed the preference at P3' '. Substrate inhibition of UCH-L3 but not IsoT was noted for the optimized sequence at concentrations greater than 5 microM and with an IC(50) of 12.2 microM; the inhibition was determined to be competition with Ub-AMC (ubiquitin C-terminal 7-amido-4-methylcoumarin).
Collapse
Affiliation(s)
- Daniel E Mason
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
23
|
Russell NS, Wilkinson KD. Identification of a Novel 29-Linked Polyubiquitin Binding Protein, Ufd3, Using Polyubiquitin Chain Analogues†,‡. Biochemistry 2004; 43:4844-54. [PMID: 15096053 DOI: 10.1021/bi035626r] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysine 48-linked polyubiquitin chains are the best understood form of polyubiquitin and are necessary for the function of the ubiquitin-proteasome system. However, other forms of polyubiquitin (e.g., K29- and K63-linked chains) are also present in vivo. Less is known about the functional roles of these linkages or the proteins specifically interacting with these forms of polyubiquitin. Use of native polyubiquitin chains to identify binding proteins is complicated by the difficulties of synthesis and stability. Here, we report the synthesis of a nonhydrolyzable analogue of 29-linked polyubiquitin chains on an affinity support and its use in identifying proteins that bind 29-linked polyubiquitin chains. The 29-linked Ub4 resin was stable and tightly bound recombinant human Isopeptidase T (USP5), a deubiquitinating enzyme known to bind the 29-linked polyubiquitin chains. Two high affinity interactors of the 29-linked polyubiquitin analogues were identified from Saccharomyces cerevisiae lysates. They were identified as Ubp14, the yeast ortholog of Isopeptidase T, and Ufd3, a member of the ubiquitin-fusion degradation pathway with unknown function. Purified recombinant Ufd3 bound to the resin as well, confirming that Ufd3 is a novel binding partner of polyubiquitin. These results demonstrate the efficacy of using polyubiquitin analogue affinity supports to identify novel binding partners of specifically linked polyubiquitin chains. Identification of these proteins will lead to a greater understanding of the physiological relevance of different polyubiquitin linkages.
Collapse
Affiliation(s)
- Nathaniel S Russell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
24
|
Gan-Erdene T, Nagamalleswari K, Yin L, Wu K, Pan ZQ, Wilkinson KD. Identification and characterization of DEN1, a deneddylase of the ULP family. J Biol Chem 2003; 278:28892-900. [PMID: 12759362 DOI: 10.1074/jbc.m302890200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify deneddylases, proteases with specificity for hydrolysis of Nedd8 derivatives, a facile method was developed for the synthesis of Nedd8 amidomethylcoumarin (a substrate) and Nedd8 vinyl sulfone (an inhibitor). Deneddylase activity is necessary to reverse the conjugation of Nedd8 to cullin, a modification that regulates at least some ubiquitin ligases. The reaction of Nedd8 vinyl sulfone with L-M(TK-) mouse fibroblast lysates identified two deneddylases. The deubiquitinating enzyme UCH-L3 is labeled by both ubiquitin vinyl sulfone and Nedd8 vinyl sulfone. In contrast, a second and more selective enzyme is labeled only by Nedd8 vinyl sulfone. This protein, DEN1, is a 221-amino acid thiol protease that is encoded by an open reading frame previously annotated as SENP8. Recombinant human DEN1 shows significant specificity for Nedd8 and catalyzes the hydrolysis of Nedd8 amidomethylcoumarin with a Km of 51 nm and a kcat of7s-1. The catalytic efficiency of DEN1 acting upon ubiquitin amidomethylcoumarin is 6 x 10-4 that of Nedd8 amidomethylcoumarin and its activity on SUMO-1 amidomethylcoumarin is undetectable. This selectivity was unexpected as DEN1 is most closely related to enzymes that catalyze desumoylation. This observation expands to four the number of DUB families with members that can process the C terminus of Nedd8.
Collapse
Affiliation(s)
- Tudeviin Gan-Erdene
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Insulin-degrading enzyme (IDE) is a metalloprotease implicated in insulin degradation and suggested to have a variety of additional functions, including the clearance of amyloid beta peptides of Alzheimer's disease. Little is known about endogenous proteins that may interact with and modulate IDE's activity in the cell. We purified and characterized two proteins from mouse leukemic splenocytes that interact with IDE and inhibit its insulin-degrading activity. A protein of 14 kDa was similar to a competitive IDE inhibitor reported previously. The major inhibitor was identified by amino acid sequencing as ubiquitin, a protein that is post-translationally covalently attached to other intracellular proteins and regulates diverse cellular processes. Ubiquitin inhibited insulin-degrading activity of IDE and diminished crosslinking of 125I-insulin to IDE in a specific, concentration-dependent, reversible, and ATP-independent manner. Ubiquitin did not affect the crosslinking of 125I-insulin to insulin receptors or of 125I-atrial natriuretic peptide (ANP) to its receptor guanylate cyclase-A. These findings suggest a novel role for ubiquitin or perhaps proteins with ubiquitin-like domains in regulating the function of IDE.
Collapse
Affiliation(s)
- Tomo Saric
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
26
|
Drake SK, Bourdon E, Wehr NB, Levine RL, Backlund PS, Yergey AL, Rouault TA. Numerous proteins in Mammalian cells are prone to iron-dependent oxidation and proteasomal degradation. Dev Neurosci 2003; 24:114-24. [PMID: 12401949 DOI: 10.1159/000065693] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanisms that underlie iron toxicity in cells and organisms are poorly understood. Previous studies of regulation of the cytosolic iron sensor, iron-regulatory protein 2 (IRP2), indicate that iron-dependent oxidation triggers ubiquitination and proteasomal degradation of IRP2. To determine if oxidization by iron is involved in degradation of other proteins, we have used a carbonyl assay to identify oxidized proteins in lysates from RD4 cells treated with either an iron source or iron chelator. Protein lysates from iron-loaded or iron-depleted cells were resolved on two-dimensional gels and these iron manipulations were also repeated in the presence of proteasomal inhibitors. Eleven abundant proteins were identified as prone to iron-dependent oxidation and subsequent proteasomal degradation. These proteins included two putative iron-binding proteins, hNFU1 and calreticulin; two proteins involved in metabolism of hydrogen peroxide, peroxiredoxin 2 and superoxide dismutase 1; and several proteins identified in inclusions in neurodegenerative diseases, including HSP27, UCHL1, actin and tropomyosin. Our results indicate that cells can recognize and selectively eliminate iron-dependently oxidized proteins, but unlike IRP2, levels of these proteins do not significantly decrease in iron-treated cells. As iron overload is a feature of many human neurological diseases, further characterization of the process of degradation of iron-dependently oxidized proteins may yield insights into mechanisms of human disease.
Collapse
Affiliation(s)
- Steven K Drake
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Stone DH, Sivamurthy N, Contreras MA, Fitzgerald L, LoGerfo FW, Quist WC. Altered ubiquitin/proteasome expression in anastomotic intimal hyperplasia. J Vasc Surg 2001; 34:1016-22. [PMID: 11743554 DOI: 10.1067/mva.2001.119888] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Anastomotic intimal hyperplasia remains a leading mechanism of prosthetic arterial graft failure. Recent studies using messenger RNA differential display have demonstrated altered proteasome gene expression at the anastomoses in an expanded polytetrafluoroethylene canine carotid model. However, this technique is technically limited because of a paucity of available hyperplastic tissue at early time periods after arterial injury. Microarray gene chip technology offers a new and sensitive technique to assay early gene expression, requiring far less tissue for analysis. The purpose of this study was to screen for altered proteasome gene expression at 48 hours and 14 days after prosthetic arterial grafting. METHODS Expanded polytetrafluoroethylene grafts (6-mm diameter, n = 9) were implanted into 25-kg mongrel dogs. The normal intervening carotid artery was used as control. At 48 hours and 14 days, RNA was extracted from the perianastomotic tissue and compared with RNA from the control carotid. Messenger RNA was then hybridized to microarray genomes screening for differential gene expression. RESULTS Two 26S proteasome genes and five ubiquitin pathway genes were significantly underexpressed at 48 hours, among several hundred significantly expressed clones. The two 26S proteasome genes were 26S proteasomal subunit p55 (0.26), and 26S proteasomal subunit p40.5 (0.13). The underexpressed ubiquitin genes included ubiquitin (0.31), Nedd-4-like ubiquitin-protein ligase (0.30), ubiquitin conjugating enzyme UbcH2 (0.25), putative ubiquitin C-terminal hydrolase UHX1 (0.11), and ubiquitin-conjugating enzyme UbcH7 (0.12). At 14 days, six ubiquitin genes were underexpressed, and 17 26S proteasome genes were significantly downregulated. CONCLUSIONS This study shows decreased expression of the ubiquitin/proteasome pathway 48 hours after graft implantation and similar diminished expression patterns after 14 days. This early and sustained underexpression after arterial bypass may lead to altered cell cycle control and matrix protein signaling, contributing to the unregulated proliferation of smooth muscle cells and extracellular matrix in anastomotic intimal hyperplasia after prosthetic arterial grafting.
Collapse
Affiliation(s)
- D H Stone
- Department of Surgery, Division of Vascular Surgery, Beth Israel-Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Urbauer JL, Adelman K, Urbauer RJ, Simeonov MF, Gilmore JM, Zolkiewski M, Brody EN. Conserved regions 4.1 and 4.2 of sigma(70) constitute the recognition sites for the anti-sigma factor AsiA, and AsiA is a dimer free in solution. J Biol Chem 2001; 276:41128-32. [PMID: 11518715 DOI: 10.1074/jbc.m106400200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of the bacteriophage T4-encoded AsiA protein with the final sigma(70) subunit of the Escherichia coli RNA polymerase is one of the principal events governing transcription of the T4 genome. Analytical ultracentrifugation and NMR studies indicate that free AsiA is a symmetric dimer and the dimers can exchange subunits. Using NMR, the mutual recognition sites on AsiA and final sigma(70) have been elucidated. Residues throughout the N-terminal half of AsiA are involved either directly or indirectly in binding to final sigma(70) whereas the two highly conserved C-terminal regions of final sigma(70), denoted 4.1 and 4.2, constitute the entire AsiA binding domain. Peptides corresponding to these regions bind tightly to AsiA individually and simultaneously. Simultaneous binding promotes structural changes in AsiA that mimic interaction with the complete AsiA binding determinant of final sigma(70). Moreover, the results suggest that a significant rearrangement of the dimer accompanies peptide binding. Thus, both conserved regions 4.1 and 4.2 are intimately involved in recognition of AsiA by final sigma(70). The interaction of AsiA with 4.1 provides a potential explanation of the differential abilities of DNA and AsiA to bind to free final sigma(70) and a mechanistic alternative to models of AsiA function that rely on binding to a single site on final sigma(70).
Collapse
Affiliation(s)
- J L Urbauer
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hamilton KS, Ellison MJ, Barber KR, Williams RS, Huzil JT, McKenna S, Ptak C, Glover M, Shaw GS. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 2001; 9:897-904. [PMID: 11591345 DOI: 10.1016/s0969-2126(01)00657-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ubiquitin-conjugating enzymes (E2s) are central enzymes involved in ubiquitin-mediated protein degradation. During this process, ubiquitin (Ub) and the E2 protein form an unstable E2-Ub thiolester intermediate prior to the transfer of ubiquitin to an E3-ligase protein and the labeling of a substrate for degradation. A series of complex interactions occur among the target substrate, ubiquitin, E2, and E3 in order to efficiently facilitate the transfer of the ubiquitin molecule. However, due to the inherent instability of the E2-Ub thiolester, the structural details of this complex intermediate are not known. RESULTS A three-dimensional model of the E2-Ub thiolester intermediate has been determined for the catalytic domain of the E2 protein Ubc1 (Ubc1(Delta450)) and ubiquitin from S. cerevisiae. The interface of the E2-Ub intermediate was determined by kinetically monitoring thiolester formation by 1H-(15)N HSQC spectra by using combinations of 15N-labeled and unlabeled Ubc1(Delta450) and Ub proteins. By using the surface interface as a guide and the X-ray structures of Ub and the 1.9 A structure of Ubc1(Delta450) determined here, docking simulations followed by energy minimization were used to produce the first model of a E2-Ub thiolester intermediate. CONCLUSIONS Complementary surfaces were found on the E2 and Ub proteins whereby the C terminus of Ub wraps around the E2 protein terminating in the thiolester between C88 (Ubc1(Delta450)) and G76 (Ub). The model supports in vivo and in vitro experiments of E2 derivatives carrying surface residue substitutions. Furthermore, the model provides insights into the arrangement of Ub, E2, and E3 within a ternary targeting complex.
Collapse
Affiliation(s)
- K S Hamilton
- Department of Biochemistry, The University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yin L, Krantz B, Russell NS, Deshpande S, Wilkinson KD. Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation. Biochemistry 2000; 39:10001-10. [PMID: 10933821 DOI: 10.1021/bi0007019] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of nonhydrolyzable ubiquitin dimer analogues has been synthesized and evaluated as inhibitors of ubiquitin-dependent processes. Dimer analogues were synthesized by cross-linking ubiquitin containing a terminal cysteine (G76C) to ubiquitin containing cysteine at position 11 ((76-11)Ub(2)), 29 ((76-29)Ub(2)), 48 ((76-48)Ub(2)), or 63 ((76-63)Ub(2)). A head-to-head dimer of cysteine G76C ((76-76)Ub(2)) served as a control. These analogues are mimics of the different chain linkages observed in natural polyubiquitin chains. All analogues showed weak inhibition toward the catalytic domain of UCH-L3 and a UBP pseudogene. In the absence of ubiquitin, isopeptidase T was inhibited only by the dimer linked through residue 29. In the presence of 0.5 microM ubiquitin, isopeptidase T was inhibited by several of the dimer analogues, with the (76-29)Ub(2) dimer exhibiting a K(i) of 1.8 nM. However, USP14, the human homologue of yeast Ubp6, was not inhibited at the concentrations tested. Some analogues of ubiquitin dimer also acted as selective inhibitors of conjugation and deconjugation of ubiquitin catalyzed by reticulocyte fraction II. (76-76)Ub(2) and (76-11)Ub(2) did not inhibit the conjugation of ubiquitin, while (76-29)Ub(2), (76-48)Ub(2), and (76-63)Ub(2) were potent inhibitors of conjugation. This specificity is consistent with the known ability of cells to form K29-, K48-, and K63-linked polyubiquitin chains. While (76-11)Ub(2), (76-29)Ub(2), and (76-63)Ub(2) inhibited release of ubiquitin from a pool of total conjugates, (76-48)Ub(2) and (76-76)Ub(2) showed no significant inhibition. Isopeptidase T was shown to specifically disassemble two conjugates (assumed to be di- and triubiquitin with masses of 26 and 17 kDa) formed in the reticulocyte lysate system. This activity was inhibited differentially by all dimer analogues. The inhibitor selectivity for deconjugation of the 26 and 17 kDa conjugates was similar to that observed for isopeptidase T. The observations suggest that these two conjugated proteins of the reticulocyte lysate are specific substrates for isopeptidase T in lysates.
Collapse
Affiliation(s)
- L Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | | | | | | | | |
Collapse
|
31
|
Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 2000; 11:141-8. [PMID: 10906270 DOI: 10.1006/scdb.2000.0164] [Citation(s) in RCA: 398] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The post-translational modification of proteins by covalent attachment of ubiquitin targets these proteins for degradation by the proteasome. An astounding number of proteins are involved in ubiquitination and deubiquitination of proteins. The pathways are combinatorial, and selectivity of proteolysis will depend strongly on the exact combination of ubiquitinating and deubiquitinating enzymes present at any time. In addition to temporal control, it is likely that these modifications are also regulated spatially. In this review, we discuss the regulation of ubiquitination by enzymes of this pathway and highlight some of the outstanding problems in understanding this regulation.
Collapse
Affiliation(s)
- K D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|