1
|
Bartelli NL, Passanisi VJ, Michalska K, Song K, Nhan DQ, Zhou H, Cuthbert BJ, Stols LM, Eschenfeldt WH, Wilson NG, Basra JS, Cortes R, Noorsher Z, Gabraiel Y, Poonen-Honig I, Seacord EC, Goulding CW, Low DA, Joachimiak A, Dahlquist FW, Hayes CS. Proteolytic processing induces a conformational switch required for antibacterial toxin delivery. Nat Commun 2022; 13:5078. [PMID: 36038560 PMCID: PMC9424206 DOI: 10.1038/s41467-022-32795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 08/12/2022] [Indexed: 02/08/2023] Open
Abstract
Many Gram-negative bacteria use CdiA effector proteins to inhibit the growth of neighboring competitors. CdiA transfers its toxic CdiA-CT region into the periplasm of target cells, where it is released through proteolytic cleavage. The N-terminal cytoplasm-entry domain of the CdiA-CT then mediates translocation across the inner membrane to deliver the C-terminal toxin domain into the cytosol. Here, we show that proteolysis not only liberates the CdiA-CT for delivery, but is also required to activate the entry domain for membrane translocation. Translocation function depends on precise cleavage after a conserved VENN peptide sequence, and the processed ∆VENN entry domain exhibits distinct biophysical and thermodynamic properties. By contrast, imprecisely processed CdiA-CT fragments do not undergo this transition and fail to translocate to the cytoplasm. These findings suggest that CdiA-CT processing induces a critical structural switch that converts the entry domain into a membrane-translocation competent conformation.
Collapse
Affiliation(s)
- Nicholas L Bartelli
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Victor J Passanisi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL, USA
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Kiho Song
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Dinh Q Nhan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL, USA
| | - Nicholas G Wilson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jesse S Basra
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Ricardo Cortes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Zainab Noorsher
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Youssef Gabraiel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Isaac Poonen-Honig
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Elizabeth C Seacord
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
- Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - David A Low
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL, USA
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Christopher S Hayes
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA.
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Roy A, Qingxiang S, Alex C, Rajagopalan N, Jobichen C, Sivaraman J, Kini RM. Identification of a α-helical molten globule intermediate and structural characterization of β-cardiotoxin, an all β-sheet protein isolated from the venom of Ophiophagus hannah (king cobra). Protein Sci 2019; 28:952-963. [PMID: 30891862 PMCID: PMC6459992 DOI: 10.1002/pro.3605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
β-Cardiotoxin is a novel member of the snake venom three-finger toxin (3FTX) family. This is the first exogenous protein to antagonize β-adrenergic receptors and thereby causing reduction in heart rates (bradycardia) when administered into animals, unlike the conventional cardiotoxins as reported earlier. 3FTXs are stable all β-sheet peptides with 60-80 amino acid residues. Here, we describe the three-dimensional crystal structure of β-cardiotoxin together with the identification of a molten globule intermediate in the unfolding pathway of this protein. In spite of the overall structural similarity of this protein with conventional cardiotoxins, there are notable differences observed at the loop region and in the charge distribution on the surface, which are known to be critical for cytolytic activity of cardiotoxins. The molten globule intermediate state present in the thermal unfolding pathway of β-cardiotoxin was however not observed during the chemical denaturation of the protein. Interestingly, circular dichroism (CD) and NMR studies revealed the presence of α-helical secondary structure in the molten globule intermediate. These results point to substantial conformational plasticity of β-cardiotoxin, which might aid the protein in responding to the sometimes conflicting demands of structure, stability, and function during its biological lifetime.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - Sun Qingxiang
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- Department of PathologyWest China Hospital, Sichuan UniversityChengduChina 610041
| | - Chapeaurouge Alex
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- Fundação Oswaldo Cruz‐CearáRua São José, 2° Pavimento, PrecaburaEusébio 61760‐000Brazil
| | - Nandhakishore Rajagopalan
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- National Research Council of CanadaCanada
| | - Chacko Jobichen
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - J. Sivaraman
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| |
Collapse
|
3
|
Pastore A, Martin SR, Temussi PA. Generalized View of Protein Folding: In Medio Stat Virtus. J Am Chem Soc 2019; 141:2194-2200. [PMID: 30566837 DOI: 10.1021/jacs.8b10779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteins are often described in textbooks as being only "marginally stable" but many proteins, specifically those with a high free energy of unfolding are, in fact, so stable that they exist only in the fully folded state except under harsh denaturing conditions. Proteins that are truly only marginally stable, those with a low free energy of unfolding, exist as an equilibrium mixture of folded and unfolded forms under "normal" conditions. To some extent such proteins have some features in common with "intrinsically disordered" proteins. We analyzed the relationship between these marginally stable proteins and intrinsically disordered proteins in order to fully understand the twilight zone that distinguishes the two ensembles in the hope of clarifying the fuzzy borders of the current classification that divides the protein world into folded and intrinsically disordered ones. Our analysis suggests that the division may be too drastic and misleading, because it puts within the same category proteins with very different behaviors. We propose a restricted, albeit operational, definition of "marginally stable proteins", referring by this term only to proteins whose free energy difference between the folded and unfolded states falls in the interval 0-3 kcal/mol. These proteins have special features because they normally exist as equilibrium mixtures of folded and unfolded species or as molten globule states. This coexistence makes marginally stable proteins ideal tools to study even small environmental changes to which they may behave as natural sensors.
Collapse
Affiliation(s)
- Annalisa Pastore
- The Wohl Institute, King's College London , 5 Cutcombe Road , London SE59RT , United Kingdom.,Department of Molecular Medicine , University of Pavia , Pavia 27100 , Italy
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute , 1 Midland Road , London NW1 1AT , United Kingdom
| | - Piero Andrea Temussi
- The Wohl Institute, King's College London , 5 Cutcombe Road , London SE59RT , United Kingdom.,Dipartimento di Scienze Chimiche , Universita' di Napoli Federico II , Napoli 80126 , Italy
| |
Collapse
|
4
|
Naiyer A, Hassan MI, Islam A, Sundd M, Ahmad F. Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques. J Biomol Struct Dyn 2015; 33:2267-84. [PMID: 25586676 DOI: 10.1080/07391102.2014.999354] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR.
Collapse
Affiliation(s)
- Abdullah Naiyer
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi - 110025 , India
| | | | | | | | | |
Collapse
|
5
|
Jain R, Kaur S, Kumar R. Guanidine hydrochloride-induced alkali molten globule model of horse ferrocytochrome c. J Biochem 2012; 153:161-77. [DOI: 10.1093/jb/mvs134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Chang YC, Franch WR, Oas TG. Probing the folding intermediate of Bacillus subtilis RNase P protein by nuclear magnetic resonance. Biochemistry 2011; 49:9428-37. [PMID: 20843005 DOI: 10.1021/bi100287y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein folding intermediates are often imperative for overall folding processes and consequent biological functions. However, the low population and transient nature of the intermediate states often hinder their biochemical and biophysical characterization. Previous studies have demonstrated that Bacillus subtilis ribonuclease P protein (P protein) is conformationally heterogeneous and folds with multiphasic kinetics, indicating the presence of an equilibrium and kinetic intermediate in its folding mechanism. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to study the ensemble corresponding to this intermediate (I). The results indicate that the N-terminal and C-terminal helical regions are mostly unfolded in I. 1H−15N heteronuclear single-quantum coherence NMR spectra collected as a function of pH suggest that the protonation of His 22 may play a major role in the energetics of the equilibria among the unfolded, intermediate, and folded state ensembles of P protein. NMR paramagnetic relaxation enhancement experiments were also used to locate the small anion binding sites in both the intermediate and folded ensembles. The results for the folded protein are consistent with the previously modeled binding regions. These structural insights suggest a possible role for I in the RNase P holoenzyme assembly process.
Collapse
Affiliation(s)
- Yu-Chu Chang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
7
|
Rao JN, Jao CC, Hegde BG, Langen R, Ulmer TS. A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins. J Am Chem Soc 2010; 132:8657-68. [PMID: 20524659 DOI: 10.1021/ja100646t] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partially folded proteins, characterized as exhibiting secondary structure elements with loose or absent tertiary contacts, represent important intermediates in both physiological protein folding and pathological protein misfolding. To aid in the characterization of the structural state(s) of such proteins, a novel structure calculation scheme is presented that combines structural restraints derived from pulsed EPR and NMR spectroscopy. The methodology is established for the protein alpha-synuclein (alphaS), which exhibits characteristics of a partially folded protein when bound to a micelle of the detergent sodium lauroyl sarcosinate (SLAS). By combining 18 EPR-derived interelectron spin label distance distributions with NMR-based secondary structure definitions and bond vector restraints, interelectron distances were correlated and a set of theoretical ensemble basis populations was calculated. A minimal set of basis structures, representing the partially folded state of SLAS-bound alphaS, was subsequently derived by back-calculating correlated distance distributions. A surprising variety of well-defined protein-micelle interactions was thus revealed in which the micelle is engulfed by two differently arranged antiparallel alphaS helices. The methodology further provided the population ratios between dominant ensemble structural states, whereas limitation in obtainable structural resolution arose from spin label flexibility and residual uncertainties in secondary structure definitions. To advance the understanding of protein-micelle interactions, the present study concludes by showing that, in marked contrast to secondary structure stability, helix dynamics of SLAS-bound alphaS correlate with the degree of protein-induced departures from free micelle dimensions.
Collapse
Affiliation(s)
- Jampani Nageswara Rao
- Department of Biochemistry & Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
8
|
Pettersson-Kastberg J, Mossberg AK, Trulsson M, Yong YJ, Min S, Lim Y, O'Brien JE, Svanborg C, Mok KH. α-Lactalbumin, Engineered to be Nonnative and Inactive, Kills Tumor Cells when in Complex with Oleic Acid: A New Biological Function Resulting from Partial Unfolding. J Mol Biol 2009; 394:994-1010. [DOI: 10.1016/j.jmb.2009.09.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/18/2009] [Accepted: 09/14/2009] [Indexed: 11/28/2022]
|
9
|
Bom APDA, Freitas MS, Moreira FS, Ferraz D, Sanches D, Gomes AMO, Valente AP, Cordeiro Y, Silva JL. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure. J Biol Chem 2009; 285:2857-66. [PMID: 19933157 PMCID: PMC2807339 DOI: 10.1074/jbc.m109.075861] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is a transcription factor that maintains genome integrity, and its function is lost in 50% of human cancers. The majority of p53 mutations are clustered within the core domain. Here, we investigate the effects of low pH on the structure of the wild-type (wt) p53 core domain (p53C) and the R248Q mutant. At low pH, the tryptophan residue is partially exposed to the solvent, suggesting a fluctuating tertiary structure. On the other hand, the secondary structure increases, as determined by circular dichroism. Binding of the probe bis-ANS (bis-8-anilinonaphthalene-1-sulfonate) indicates that there is an increase in the exposure of hydrophobic pockets for both wt and mutant p53C at low pH. This behavior is accompanied by a lack of cooperativity under urea denaturation and decreased stability under pressure when p53C is in acidic pH. Together, these results indicate that p53C acquires a partially unfolded conformation (molten-globule state) at low pH (5.0). The hydrodynamic properties of this conformation are intermediate between the native and denatured conformation. 1H-15N HSQC NMR spectroscopy confirms that the protein has a typical molten-globule structure at acidic pH when compared with pH 7.2. Human breast cells in culture (MCF-7) transfected with p53-GFP revealed localization of p53 in acidic vesicles, suggesting that the low pH conformation is present in the cell. Low pH stress also tends to favor high levels of p53 in the cells. Taken together, all of these data suggest that p53 may play physiological or pathological roles in acidic microenvironments.
Collapse
Affiliation(s)
- Ana Paula D Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rösner HI, Redfield C. The human alpha-lactalbumin molten globule: comparison of structural preferences at pH 2 and pH 7. J Mol Biol 2009; 394:351-62. [PMID: 19766656 PMCID: PMC2845811 DOI: 10.1016/j.jmb.2009.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/29/2009] [Accepted: 09/13/2009] [Indexed: 11/25/2022]
Abstract
Structural investigations of molten globules provide an important contribution towards understanding protein folding pathways. A close similarity between equilibrium molten globule states and kinetic species observed during refolding has been reported for several proteins. However, the experimental conditions, and in particular the pH, under which the equilibrium and kinetic species are studied often differ significantly. For human α-lactalbumin (α-LA), the equilibrium molten globule is most often studied at pH 2, the so-called A-state, while kinetic refolding experiments are performed at neutral pH. α-LA contains a large number of acidic amino acid residues that may influence the properties of the molten globule differently at low and neutral pH. In this study, we investigate the structural preferences of the α-LA molten globule at pH 7 at the level of individual residues using nuclear magnetic resonance spectroscopy and compare these data with previous results obtained at pH 2. We show that differences exist in the conformational ensemble that describes the α-LA molten globule at these two pH values. The molten globule at pH 7 is generally less stable than that at the low pH A-state. Most notable are differences in the stability of structure for the C-helix and the calcium-binding loop that precedes it and differences in the contribution of long-range hydrophobic contacts between the N-terminal and C-terminal regions of the α-domain to the stability of the molten globule. Our results are discussed in the context of previous studies of the α-LA molten globule and can be used to reconcile apparent discrepancies in published data relating to the C-helix. In the light of our results, the low pH A-state may not be the best model for the kinetic molten globule observed during refolding of α-LA. The pH-dependent effects reported here for α-LA may be of relevance in comparisons of equilibrium and kinetic molten globules of other proteins.
Collapse
Affiliation(s)
- Heike I Rösner
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
11
|
Bruylants G, Redfield C. (15)N NMR relaxation data reveal significant chemical exchange broadening in the alpha-domain of human alpha-lactalbumin. Biochemistry 2009; 48:4031-9. [PMID: 19309110 DOI: 10.1021/bi900023m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.
Collapse
Affiliation(s)
- Gilles Bruylants
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
12
|
Ramboarina S, Redfield C. Probing the Effect of Temperature on the Backbone Dynamics of the Human α-Lactalbumin Molten Globule. J Am Chem Soc 2008; 130:15318-26. [DOI: 10.1021/ja802967k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stéphanie Ramboarina
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
13
|
Kingston RL, Gay LS, Baase WS, Matthews BW. Structure of the nucleocapsid-binding domain from the mumps virus polymerase; an example of protein folding induced by crystallization. J Mol Biol 2008; 379:719-31. [PMID: 18468621 DOI: 10.1016/j.jmb.2007.12.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
The human pathogen mumps virus, like all paramyxoviruses, encodes a polymerase responsible for virally directed RNA synthesis. The template for the polymerase is the nucleocapsid, a filamentous protein-RNA complex harboring the viral genome. Interaction of the polymerase and the nucleocapsid is mediated by a small domain tethered to the end of the phosphoprotein (P), one of the polymerase subunits. We report the X-ray crystal structure of this region of mumps virus P (the nucleocapsid-binding domain, or NBD, amino acids 343-391). The mumps P NBD forms a compact bundle of three alpha-helices within the crystal, a fold apparently conserved across the Paramyxovirinae. In solution, however, the domain exists in the molten globule state. This is demonstrated through application of differential scanning calorimetry, circular dichroism spectroscopy, NMR spectroscopy, and dynamic light scattering. While the mumps P NBD is compact and has persistent secondary structure, it lacks a well-defined tertiary structure under normal solution conditions. It can, however, be induced to fold by addition of a stabilizing methylamine cosolute. The domain provides a rare example of a molten globule that can be crystallized. The structure that is stabilized in the crystal represents the fully folded state of the domain, which must be transiently realized during binding to the viral nucleocapsid. While the intermolecular forces that govern the polymerase-nucleocapsid interaction appear to be different in measles, mumps, and Sendai viruses, for each of these viruses, polymerase translocation involves the coupled binding and folding of protein domains. In all cases, we suggest that this will result in a weak-affinity protein complex with a short lifetime, which allows the polymerase to take rapid steps forward.
Collapse
Affiliation(s)
- Richard L Kingston
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
14
|
Bhattacharjya S, Xu P, Wang P, Osborne MJ, Ni F. Conformational analyses of a partially-folded bioactive prodomain of human furin. Biopolymers 2007; 86:329-44. [PMID: 17477394 DOI: 10.1002/bip.20748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The 81-residue multifunctional prodomain of human furin adopts only a partially-folded conformational state under near physiological conditions. By use of NMR spectroscopy, we demonstrate that the N-terminal residues 1-46 of the prodomain in 50% trifluoroethanol (TFE) populates backbone conformations containing a short helix, a beta-strand and a helix-loop-helix super-secondary structure with elements of tertiary interactions. (15)N NMR relaxation measurements indicate that the helix-loop-helix region has similar motional characteristics in the fast picosecond to nanosecond timescales. On the other hand, the intervening segment (residues 47-65) is predominantly unstructured with a long and highly flexible region surrounding the protease 'activation loop' followed by a partially helical segment in the C-terminal end. Interestingly, the helix-loop-helix "fold" was found to be populated even when excised out of the full-length prodomain, since a peptide fragment derived from residues Pro16-Arg49 can also form the helix-loop-helix structure in aqueous solution in the absence of TFE. Structure analyses reveal that two helices orient in an antiparallel fashion directed by the sharing of hydrophobic residues involved in helix-capping interactions. Very importantly, a positively-charged Lys residue replacing His43 in the 16-49 fragment imparts stability to the super-secondary structure at both acidic and neutral pH, while a hydrophobic residue Leu at position 43 appears to destabilize the helical conformation in the 31-44 region. As such, this study provides valuable insights into the structural properties of the furin prodomain in relation to its role in the folding of the furin zymogen and its inhibitory action toward furin.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- Biomolecular NMR and Protein Research Laboratory, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
15
|
Kovrigin EL, Kempf JG, Grey MJ, Loria JP. Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 180:93-104. [PMID: 16458551 DOI: 10.1016/j.jmr.2006.01.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 05/06/2023]
Abstract
This work examines the robustness of fitting of parameters describing conformational exchange (k(ex), p(a/b), and Deltaomega) processes from CPMG relaxation dispersion data. We have analyzed the equations describing conformational exchange processes for the intrinsic inter-dependence of their parameters that leads to the existence of multiple equivalent solutions, which equally satisfy the experimental data. We have used Monte-Carlo simulations and fitting to the synthetic data sets as well as the direct 3-D mapping of the parameter space of k(ex), p(a/b), and Deltaomega to quantitatively assess the degree of the parameter inter-dependence. The demonstrated high correlation between parameters can preclude accurate dynamics parameter estimation from NMR spin-relaxation data obtained at a single static magnetic field. The strong parameter inter-dependence can readily be overcome through acquisition of spin-relaxation data at more than one static magnetic field thereby allowing accurate assessment of conformational exchange properties.
Collapse
Affiliation(s)
- Evgenii L Kovrigin
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
16
|
Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wüthrich K. Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc Natl Acad Sci U S A 2005; 102:12748-53. [PMID: 16116078 PMCID: PMC1188259 DOI: 10.1073/pnas.0505642102] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reaction cycle and the major structural states of the molecular chaperone GroEL and its cochaperone, GroES, are well characterized. In contrast, very little is known about the nonnative states of the substrate polypeptide acted on by the chaperonin machinery. In this study, we investigated the substrate protein human dihydrofolate reductase (hDHFR) while bound to GroEL or to a single-ring analog, SR1, by NMR spectroscopy in solution under conditions where hDHFR was efficiently recovered as a folded, enzymatically active protein from the stable complexes upon addition of ATP and GroES. By using the NMR techniques of transverse relaxation-optimized spectroscopy (TROSY), cross-correlated relaxation-induced polarization transfer (CRIPT), and cross-correlated relaxation-enhanced polarization transfer (CRINEPT), bound hDHFR could be observed directly. Measurements of the buildup of hDHFR NMR signals by different magnetization transfer mechanisms were used to characterize the dynamic properties of the NMR-observable parts of the bound substrate. The NMR data suggest that the bound state includes random coil conformations devoid of stable native-like tertiary contacts and that the bound hDHFR might best be described as a dynamic ensemble of randomly structured conformers.
Collapse
Affiliation(s)
- Reto Horst
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- H Jane Dyson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
18
|
Quezada CM, Schulman BA, Froggatt JJ, Dobson CM, Redfield C. Local and global cooperativity in the human alpha-lactalbumin molten globule. J Mol Biol 2004; 338:149-58. [PMID: 15050830 DOI: 10.1016/j.jmb.2004.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 02/10/2004] [Accepted: 02/17/2004] [Indexed: 11/17/2022]
Abstract
NMR spectroscopy has been used to follow the urea-induced unfolding of the low pH molten globule states of a single-disulfide variant of human alpha-lactalbumin ([28-111] alpha-LA) and of two mutants, each with a single proline substitution in a helix. [28-111] alpha-LA forms a molten globule very similar to that formed by the wild-type four-disulfide protein, and this variant has been used as a model for the alpha-lactalbumin (alpha-LA) molten globule in a number of studies. The urea-induced unfolding behavior of [28-111] alpha-LA is similar to that of the four-disulfide form of the protein, except that [28-111] alpha-LA is less stable and has greater cooperativity in the loss of different elements of structure. For one mutant, L11P, the helix containing the mutation is highly destabilized such that it is completely unfolded even in the absence of urea. By contrast, for the other mutant, Q117P, the helix containing the mutation retains its compact structure. Both mutations, however, show significant long-range destabilization of the overall fold showing that the molten globule state has a degree of global cooperativity. The results reveal that different permutations of three of the four major alpha-helices of the protein can form a stable, locally cooperative, compact structural core. Taken together, these findings demonstrate that the molten globule state of alpha-LA is an ensemble of conformations, with different subsets of structures linked by a range of long-range interactions.
Collapse
Affiliation(s)
- Cindy M Quezada
- Chemistry Research Laboratory, Oxford Centre for Molecular Sciences, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | |
Collapse
|
19
|
Dyson HJ, Wright PE. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. ADVANCES IN PROTEIN CHEMISTRY 2004; 62:311-40. [PMID: 12418108 DOI: 10.1016/s0065-3233(02)62012-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- H Jane Dyson
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Characterization of sub-nanosecond dynamics of the molten globule state of α-lactalbumin using quasielastic neutron scattering and molecular dynamics simulations. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00291-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Ramboarina S, Redfield C. Structural characterisation of the human alpha-lactalbumin molten globule at high temperature. J Mol Biol 2003; 330:1177-88. [PMID: 12860137 DOI: 10.1016/s0022-2836(03)00639-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molten globules are partially folded forms of proteins thought to be general intermediates in protein folding. The 15N-1H HSQC NMR spectrum of the human alpha-lactalbumin (alpha-LA) molten globule at pH 2 and 20 degrees C is characterised by broad lines which make direct study by NMR methods difficult; this broadening arises from conformational fluctuations throughout the protein on a millisecond to microsecond timescale. Here, we find that an increase in temperature to 50 degrees C leads to a dramatic sharpening of peaks in the 15N-1H HSQC spectrum of human alpha-LA at pH 2. Far-UV CD and ANS fluorescence experiments demonstrate that under these conditions human alpha-LA maintains a high degree of helical secondary structure and the exposed hydrophobic surfaces that are characteristic of a molten globule. Analysis of the H(alpha), H(N) and 15N chemical shifts of the human alpha-LA molten globule at 50 degrees C leads to the identification of regions of native-like helix in the alpha-domain and of non-native helical propensity in the beta-domain. The latter may be responsible for the observed overshoot in ellipticity at 222 nm in kinetic refolding experiments.
Collapse
Affiliation(s)
- Stephanié Ramboarina
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QH, UK
| | | |
Collapse
|
22
|
Lassalle MW, Li H, Yamada H, Akasaka K, Redfield C. Pressure-induced unfolding of the molten globule of all-Ala alpha-lactalbumin. Protein Sci 2003; 12:66-72. [PMID: 12493829 PMCID: PMC2312399 DOI: 10.1110/ps.0221303] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 09/13/2002] [Accepted: 10/04/2002] [Indexed: 10/27/2022]
Abstract
Pressure-induced unfolding of a molten globule (MG) was studied in a residue-specific manner with (1)H-(15)N two-dimensional NMR spectroscopy using a variant of human alpha-lactalbumin (alpha-LA), in which all eight cysteines had been replaced with alanines (all-Ala alpha-LA). The NMR spectrum underwent a series of changes from 30 to 2000 bar at 20 degrees C and from -18 degrees C to 36 degrees C at 2000 bar, showing a highly heterogeneous unfolding pattern according to the secondary structural elements of the native structure. Unfolding began in the loop part of the beta-domain, and then extended to the remainder of the beta-domain, after which the alpha-domain began to unfold. Within the alpha-domain, the pressure stability decreased in the order: D-helix approximately 3(10)-helix > C-helix approximately B-helix > A-helix. The D-helix, C-terminal 3(10)-helix and a large part of B- and C-helices did not unfold at 2000 bar, even at 36 degrees C or at -18 degrees C. The results verify that the MG state consists of a mixture of variously unfolded conformers from the mostly folded to the nearly totally unfolded that differ in stability and partial molar volume. Not only heat but also cold denaturation was observed, supporting the view that the MG state is stabilized by hydrophobic interactions.
Collapse
Affiliation(s)
- Michael W Lassalle
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
23
|
Chi YH, Kumar TKS, Chiu IM, Yu C. Identification of rare partially unfolded states in equilibrium with the native conformation in an all beta-barrel protein. J Biol Chem 2002; 277:34941-8. [PMID: 12118009 DOI: 10.1074/jbc.m205446200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human acidic fibroblast growth factor 1 (hFGF-1) is an all beta-barrel protein, and the secondary structural elements in the protein include 12 antiparallel beta-strands arranged into a beta-trefoil fold. In the present study, we investigate the stability of hFGF-1 by hydrogen-deuterium exchange as a function of urea concentration. Urea-induced equilibrium unfolding of hFGF-1 monitored by fluorescence and CD spectroscopy suggests that the protein unfolds by a two-state (native to denatured) mechanism. Hydrogen exchange in hFGF-1, under the experimental conditions used, occurs by the EX2 mechanism. In contrast to the equilibrium unfolding events monitored by optical probes, native state hydrogen exchange data show that the beta-trefoil architecture of hFGF-1 does not behave as a single cooperative unit. There are at least two structurally independent units with differing stabilities in hFGF-1. Beta-strands I, II, III, VI, VII, X, XI, and XII fit into the global unfolding isotherm. By contrast, residues in beta-strands IV, V, VIII, and IX exchange by the subfolding isotherm and could be responsible for the occurrence of high-energy partially unfolded state(s) in hFGF-1. There appears to be a broad continuum of stabilities among the four beta-strands (beta-strands IV, V, VIII, and IX) constituting the subglobal folding unit. The slow exchanging residues in hFGF-1 do not represent the folding nucleus of the protein.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
24
|
Engel MFM, van Mierlo CPM, Visser AJWG. Kinetic and structural characterization of adsorption-induced unfolding of bovine alpha -lactalbumin. J Biol Chem 2002; 277:10922-30. [PMID: 11782453 DOI: 10.1074/jbc.m106005200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational changes of bovine alpha-lactalbumin induced by adsorption on a hydrophobic interface are studied by fluorescence and circular dichroism spectroscopy. Adsorption of bovine alpha-lactalbumin on hydrophobic polystyrene nanospheres induces a non-native state of the protein, which is characterized by preserved secondary structure, lost tertiary structure, and release of calcium. This partially denatured state therefore resembles a molten globule state, which is an intermediate in the folding of bovine alpha-lactalbumin. Stopped-flow fluorescence spectroscopy reveals two kinetic phases during adsorption with rate constants k(1) approximately 50 s(-1) and k(2) approximately 8 s(-1). The rate of partial unfolding is remarkably fast and even faster than unfolding induced by the addition of 5.4 m guanidinium hydrochloride to native alpha-lactalbumin. The large unfolding rates exclude the possibility that unfolding of bovine alpha-lactalbumin to the intermediate state occurs before adsorption takes place. Stopped-flow fluorescence anisotropy experiments show that adsorption of bovine alpha-lactalbumin on polystyrene nanospheres occurs within the dead time (15 ms) of the experiment. This shows that the kinetic processes as determined by stopped-flow fluorescence spectroscopy are not affected by diffusion or association processes but are solely caused by unfolding of bovine alpha-lactalbumin induced by adsorption on the polystyrene surface. A scheme is presented that incorporates the results obtained and describes the adsorption of bovine alpha-lactalbumin.
Collapse
Affiliation(s)
- Maarten F M Engel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, Wageningen, The Netherlands.
| | | | | |
Collapse
|
25
|
Palmer AG, Kroenke CD, Loria JP. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 2001; 339:204-38. [PMID: 11462813 DOI: 10.1016/s0076-6879(01)39315-1] [Citation(s) in RCA: 699] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- A G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
26
|
Dyson HJ, Wright PE. Nuclear magnetic resonance methods for elucidation of structure and dynamics in disordered states. Methods Enzymol 2001; 339:258-70. [PMID: 11462815 DOI: 10.1016/s0076-6879(01)39317-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- H J Dyson
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
27
|
Bhattacharjya S, Xu P, Xiang H, Chrétien M, Seidah NG, Ni F. pH-induced conformational transitions of a molten-globule-like state of the inhibitory prodomain of furin: implications for zymogen activation. Protein Sci 2001; 10:934-42. [PMID: 11316873 PMCID: PMC2374204 DOI: 10.1110/ps.41301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2000] [Revised: 02/07/2001] [Accepted: 02/07/2001] [Indexed: 10/14/2022]
Abstract
The endoprotease furin, which belongs to the family of mammalian proprotein convertase (PC), is synthesized as a zymogen with an N-terminal, 81-residue inhibitory prodomain. It has been shown that the proenzyme form of furin undergoes a multistep 'autocatalytic' removal of the prodomain at the C-terminal side of the two consensus sites, R(78)-T-K-R(81) approximately and R(44)-G-V-T-K-R(49) approximately. The furin-mediated cleavage at R(44)-G-V-T-K-R(49) approximately, in particular, is significantly accelerated in an 'acidic' environment. Here, we show that under neutral pH conditions, the inhibitory prodomain of furin is partially folded and undergoes conformational exchanges as indicated by extensive broadening of the NMR spectra. Presence of many ring-current shifted methyl resonances suggests that the partially folded state of the prodomain may still possess a 'semirigid' protein core with specific packing interactions among amino acid side chains. Measurements of the hydrodynamic radii and compaction factors indicate that this partially folded state is significantly more compact than a random chain. The conformational stability of the prodomain appears to be pH sensitive, in that the prodomain undergoes an unfolding transition towards acidic conditions. Our NMR analyses establish that the acid-induced unfolding is mainly experienced by the residues from the C-terminal half of the prodomain (residues R(44)-R(81)) that contains the two furin cleavage sites. A 38-residue peptide fragment derived from the entire pH-sensitive C-terminal region (residues R(44)-R(81)) does not exhibit any exchange-induced line broadening and adopts flexible conformations. We propose that at neutral pH, the cleavage site R(44)-G-V-T-K-R(49) approximately is buried within the protein core that is formed in part by residues from the N-terminal region, and that the cleavage site becomes exposed under acidic conditions, leading to a facile cleavage by the furin enzyme.
Collapse
Affiliation(s)
- S Bhattacharjya
- Biomolecular Nuclear Magnetic Resonance Laboratory, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Bai P, Song J, Luo L, Peng ZY. A model of dynamic side-chain--side-chain interactions in the alpha-lactalbumin molten globule. Protein Sci 2001; 10:55-62. [PMID: 11266594 PMCID: PMC2249850 DOI: 10.1110/ps.34101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Proteins in the molten globule state contain high levels of secondary structure, as well as a rudimentary, nativelike tertiary topology. Thus, the structural similarity between the molten globule and native proteins may have a significant bearing in understanding the protein-folding problem. To explore the nature of side-chain--side-chain interactions in the alpha-lactalbumin (alpha-LA) molten globule, we determined the effective concentration for formation of the 28--111 disulfide bond in 14 double-mutant proteins, each containing two hydrophobic core residues replaced by alanine. We compared our results with those of single-alanine substitutions using the framework of double-mutant cycle analysis and found that, in the majority of cases, the effects of two alanine substitutions are additive. Based on these results, we propose a model of side-chain-side-chain interactions in the alpha-LA molten globule, which takes into consideration the dynamic nature of this partially folded species.
Collapse
Affiliation(s)
- P Bai
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
29
|
Kobashigawa Y, Demura M, Koshiba T, Kumaki Y, Kuwajima K, Nitta K. Hydrogen exchange study of canine milk lysozyme: stabilization mechanism of the molten globule. Proteins 2000; 40:579-89. [PMID: 10899783 DOI: 10.1002/1097-0134(20000901)40:4<579::aid-prot40>3.0.co;2-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The native state (1)H, (15)N resonance assignment of 123 of the 128 nonproline residues of canine milk lysozyme has enabled measurements of the amide hydrogen exchange of over 70 amide hydrogens in the molten globule state. To elucidate the mechanism of protein folding, the molten globule state has been studied as a model of the folding intermediate state. Lysozyme and alpha-lactalbumin are homologous to each other, but their equilibrium unfolding mechanisms differ. Generally, the folding mechanism of lysozyme obeys a two-state model, whereas that of alpha-lactalbumin follows a three-state model. Exceptions to this rule are equine and canine milk lysozymes, which exhibit a partially unfolded state during the equilibrium unfolding; this state resembles the molten globule state of alpha-lactalbumin but with extreme stability. Study of the molten globules of alpha-lactalbumin and equine milk lysozyme showed that the stabilities of their alpha-helices are similar, despite the differences in the thermodynamic stability of their molten globule states. On the other hand, our hydrogen exchange study of the molten globule of canine milk lysozyme showed that the alpha-helices are more stabilized than in alpha-lactalbumin or equine milk lysozyme and that this enhanced stability is caused by the strengthened cooperative interaction between secondary structure elements. Thus, our results underscore the importance of the cooperative interaction in the stability of the molten globule state.
Collapse
Affiliation(s)
- Y Kobashigawa
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|