1
|
George S, Waldron C, Thompson C, Ouyang Z. Analysis of bb0556 Expression and Its Role During Borrelia burgdorferi Mammalian Infection. Mol Microbiol 2024; 122:831-846. [PMID: 39305042 DOI: 10.1111/mmi.15319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 12/21/2024]
Abstract
In Borrelia burgdorferi, BB0556 was annotated as a conserved hypothetical protein. We herein investigated gene expression and the importance of this protein during infection. Our data support that bb0556 forms an operon with five other genes. A transcriptional start site and the associated σ70-type promoter were identified in the sequences upstream of bb0554, and luciferase reporter assays indicated that this promoter is functional in B. burgdorferi. Furthermore, the sequences upstream of bb0556 contain an internal promoter to drive gene expression. bb0556 expression was affected by various environmental factors such as changes in temperature, pH, and cell density when B. burgdorferi was grown in vitro. Surprisingly, significant differences were observed for bb0556 expression between B. burgdorferi strains B31-A3 and CE162, likely due to the different cis- and trans-acting factors in these strains. Moreover, bb0556 was found to be highly expressed by B. burgdorferi in infected mice tissues, suggesting that this gene plays an important role during animal infection. To test this hypothesis, we generated a bb0556 deletion mutant in a virulent bioluminescent B. burgdorferi strain. The mutant grew normally in the medium and displayed no defect in the resistance to environmental stresses such as reactive oxygen species, reactive nitrogen species, and osmotic stress. However, when the infectivity was compared between the mutant and its parental strain using in vivo bioluminescence imaging as well as analyses of spirochete recovery and bacterial burdens in animal tissues, our data showed that, contrary to the parental strain, the mutant was unable to infect mice. Complementation of bb0556 in cis fully restored the infectious phenotype to wild-type levels. Taken together, our study demonstrates that the hypothetical protein BB0556 is a novel virulence factor essential for B. burgdorferi mammalian infection.
Collapse
Affiliation(s)
- Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Moura JJG. The History of Desulfovibrio gigas Aldehyde Oxidoreductase-A Personal View. Molecules 2023; 28:4229. [PMID: 37241969 PMCID: PMC10223205 DOI: 10.3390/molecules28104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
A story going back almost 40 years is presented in this manuscript. This is a different and more challenging way of reporting my research and I hope it will be useful to and target a wide-ranging audience. When preparing the manuscript and collecting references on the subject of this paper-aldehyde oxidoreductase from Desulfovibrio gigas-I felt like I was travelling back in time (and space), bringing together the people that have contributed most to this area of research. I sincerely hope that I can give my collaborators the credit they deserve. This study is not presented as a chronologic narrative but as a grouping of topics, the development of which occurred over many years.
Collapse
Affiliation(s)
- José J G Moura
- LAQV, NOVA School of Science and Technology|FCT NOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Hille R, Niks D. Application of EPR and related methods to molybdenum-containing enzymes. Methods Enzymol 2022; 666:373-412. [PMID: 35465925 DOI: 10.1016/bs.mie.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A description is provided of the contributions made to our understanding of molybdenum-containing enzymes through the application of electron paramagnetic resonance spectroscopy and related methods, by way of illustrating how these can be applied to better understand enzyme structure and function. An emphasis is placed on the use of EPR to identify both the coordination environment of the molybdenum coordination sphere as well as the structures of paramagnetic intermediates observed transiently in the course of reaction that have led to the elucidation of reaction mechanism.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA, United States.
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, CA, United States
| |
Collapse
|
5
|
Kozono I, Hibi M, Takeuchi M, Ogawa J. Purification and characterization of molybdenum-containing aldehyde dehydrogenase that oxidizes benzyl maltol derivative from Pseudomonas nitroreducens SB32154. Biosci Biotechnol Biochem 2020; 84:2390-2400. [PMID: 32729393 DOI: 10.1080/09168451.2020.1799749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Maltol derivatives are used in a variety of fields due to their metal-chelating abilities. In the previous study, it was found that cytochrome P450 monooxygenase, P450nov, which has the ability to effectively convert the 2-methyl group in a maltol derivative, transformed 3-benzyloxy-2-methyl-4-pyrone (BMAL) to 2-(hydroxymethyl)-3-(phenylmethoxy)-4H-pyran-4-one (BMAL-OH) and slightly to 3-benzyloxy-4-oxo-4 H-pyran-2-carboxaldehyde (BMAL-CHO). We isolated Pseudomonas nitroreducens SB32154 with the ability to convert BMAL-CHO to BMAL-COOH from soil. The enzyme responsible for aldehyde oxidation, a BMAL-CHO dehydrogenase, was purified from P. nitroreducens SB32154 and characterized. The purified BMAL-CHO dehydrogenase was found to be a xanthine oxidase family enzyme with unique structure of heterodimer composed of 75 and 15 kDa subunits containing a molybdenum cofactor and [Fe-S] clusters, respectively. The enzyme showed broad substrate specificity toward benzaldehyde derivatives. Furthermore, one-pot conversion of BMAL to BMAL-COOH via BMAL-CHO by the combination of the BMAL-CHO dehydrogenase with P450nov was achieved.
Collapse
Affiliation(s)
- Iori Kozono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan.,Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd ., Osaka, Japan
| | - Makoto Hibi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University , Kyoto, Japan.,Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University , Toyama, Japan
| | - Michiki Takeuchi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan.,Research Unit for Physiological Chemistry, Kyoto University , Kyoto, Japan
| |
Collapse
|
6
|
Dahl TW, Chappaz A, Hoek J, McKenzie CJ, Svane S, Canfield DE. Evidence of molybdenum association with particulate organic matter under sulfidic conditions. GEOBIOLOGY 2017; 15:311-323. [PMID: 27997756 DOI: 10.1111/gbi.12220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/28/2016] [Indexed: 05/28/2023]
Abstract
The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented by sulfate-reducing bacteria). Molybdenum was immobilized at the surface of both living cells and dead/lysed cells, but not in cell-free control experiments. Experiments were carried out at four different Mo concentrations (0.1 to 2 mm) to yield cell-associated Mo precipitates with little or no Fe, consisting of mainly Mo(IV)-sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non-Fe-assisted pathway that requires particulate organic matter (dead or living sulfate-reducing bacteria). This pathway has implications for global marine Mo cycling and the current use of Mo-based proxies for paleo-environmental investigations.
Collapse
Affiliation(s)
- T W Dahl
- Nordic Center for Earth Evolution and University of Southern Denmark, Odense M, Denmark
| | - A Chappaz
- Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, MI, USA
| | - J Hoek
- Nordic Center for Earth Evolution and University of Southern Denmark, Odense M, Denmark
| | - C J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - S Svane
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - D E Canfield
- Nordic Center for Earth Evolution and University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
7
|
Theoretical exploration of the mechanism of formylmethanofuran dehydrogenase: the first reductive step in CO2 fixation by methanogens. J Biol Inorg Chem 2016; 21:703-13. [DOI: 10.1007/s00775-016-1377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
8
|
Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess. J Biol Inorg Chem 2014; 20:311-22. [PMID: 25488518 DOI: 10.1007/s00775-014-1224-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
The activity of sulfate-reducing bacteria (SRB) intensifies the problems associated to corrosion of metals and the solution entails significant economic costs. Although molybdate can be used to control the negative effects of these organisms, the mechanisms triggered in the cells exposed to Mo-excess are poorly understood. In this work, the effects of molybdate ions on the growth and morphology of the SRB Desulfovibrio alaskensis G20 (DaG20) were investigated. In addition, the cellular localization, ion uptake and regulation of protein expression were studied. We found that molybdate concentrations ranging between 50 and 150 µM produce a twofold increase in the doubling time with this effect being more significant at 200 µM molybdate (five times increase in the doubling time). It was also observed that 500 µM molybdate completely inhibits the cellular growth. On the context of protein regulation, we found that several enzymes involved in energy metabolism, cellular division and metal uptake processes were particularly influenced under the conditions tested. An overall description of some of the mechanisms involved in the DaG20 adaptation to molybdate-stress conditions is discussed.
Collapse
|
9
|
Alvarez S, Menjón B, Falceto A, Casanova D, Alemany P. Stereochemistry of Complexes with Double and Triple Metal–Ligand Bonds: A Continuous Shape Measures Analysis. Inorg Chem 2014; 53:12151-63. [DOI: 10.1021/ic5021077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Babil Menjón
- Instituto de Síntesis
Química y Catálisis Homogénea, CSIC−Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| | | | - David Casanova
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K: 1072, 20080 Donostia, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | | |
Collapse
|
10
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Magalon A, Fedor JG, Walburger A, Weiner JH. Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.12.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
|
13
|
The role of system-specific molecular chaperones in the maturation of molybdoenzymes in bacteria. Biochem Res Int 2010; 2011:850924. [PMID: 21151514 PMCID: PMC2997495 DOI: 10.1155/2011/850924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/31/2010] [Indexed: 11/18/2022] Open
Abstract
Biogenesis of prokaryotic molybdoenzymes is a complex process with the final step representing the insertion of a matured molybdenum cofactor (Moco) into a folded apoenzyme. Usually, specific chaperones of the XdhC family are required for the maturation of molybdoenzymes of the xanthine oxidase family in bacteria. Enzymes of the xanthine oxidase family are characterized to contain an equatorial sulfur ligand at the molybdenum center of Moco. This sulfur ligand is inserted into Moco while bound to the XdhC-like protein and before its insertion into the target enzyme. In addition, enzymes of the xanthine oxidase family bind either the molybdopterin (Mo-MPT) form of Moco or the modified molybdopterin cytosine dinucleotide cofactor (MCD). In both cases, only the matured cofactor is inserted by a proofreading process of XdhC. The roles of these specific XdhC-like chaperones during the biogenesis of enzymes of the xanthine oxidase family in bacteria are described.
Collapse
|
14
|
Pushie MJ, George GN. Active-site dynamics and large-scale domain motions of sulfite oxidase: a molecular dynamics study. J Phys Chem B 2010; 114:3266-75. [PMID: 20158265 DOI: 10.1021/jp908731f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiologically vital enzyme sulfite oxidase employs rapid intramolecular electron transfer between a molybdenum ion in the C-terminal domain (the site of sulfite oxidation) and a heme moeity in the N-terminal domain to complete its catalytic cycle. Crystal structures of the enzyme show C- and N-terminal domain orientations that are not consistent with rapid intramolecular electron transfer. Domain motion has been postulated to explain this discrepancy. In the present work we employ molecular dynamics simulations to understand the large-scale domain motions of the enzyme. We observe motion of the N-terminal domain into an orientation similar to that postulated for rapid electron transfer. Our simulations also probe the dynamics of the active site and surrounding residues, adding a further level of structural and thermodynamic detail in understanding sulfite oxidase function.
Collapse
Affiliation(s)
- M Jake Pushie
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | | |
Collapse
|
15
|
Abstract
Nicotinate dehydrogenase (NDH) from Eubacterium barkeri is a molybdoenzyme catalyzing the hydroxylation of nicotinate to 6-hydroxynicotinate. Reactivity of NDH critically depends on the presence of labile (nonselenocysteine) selenium with an as-yet-unidentified form and function. We have determined the crystal structure of NDH and analyzed its active site by multiple wavelengths anomalous dispersion methods. We show that selenium is bound as a terminal Mo=Se ligand to molybdenum and that it occupies the position of the terminal sulfido ligand in other molybdenum hydroxylases. The role of selenium in catalysis has been assessed by model calculations, which indicate an acceleration of the critical hydride transfer from the substrate to the selenido ligand in the course of substrate hydroxylation when compared with an active site containing a sulfido ligand. The MoO(OH)Se active site of NDH shows a novel type of utilization and reactivity of selenium in nature.
Collapse
|
16
|
Eierhoff D, Tung WC, Hammerschmidt A, Krebs B. Molybdenum complexes with O,N,S donor ligands as models for active sites in oxotransferases and hydroxylases. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Reduction of molybdate by sulfate-reducing bacteria. Biometals 2009; 22:131-9. [DOI: 10.1007/s10534-008-9198-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
|
18
|
Affiliation(s)
- Maria João Romão
- REQUIMTE-CQFB, Departamento de Química, FCT-Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
19
|
Groysman S, Wang JJ, Tagore R, Lee SC, Holm RH. A Biomimetic Approach to Oxidized Sites in the Xanthine Oxidoreductase Family: Synthesis and Stereochemistry of Tungsten(VI) Analogue Complexes. J Am Chem Soc 2008; 130:12794-807. [DOI: 10.1021/ja804000k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stanislav Groysman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Jun-Jieh Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ranitendranath Tagore
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Sonny C. Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
20
|
Johannes J, Unciuleac MC, Friedrich T, Warkentin E, Ermler U, Boll M. Inhibitors of the Molybdenum Cofactor Containing 4-Hydroxybenzoyl-CoA Reductase. Biochemistry 2008; 47:4964-72. [DOI: 10.1021/bi800137v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jörg Johannes
- Institute of Biochemistry, University of Leipzig, D-04103 Leipzig, Germany, Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg, Germany, and Max-Planck-Institute for Biophysics, Frankfurt, Germany
| | - Mihaela-Carmen Unciuleac
- Institute of Biochemistry, University of Leipzig, D-04103 Leipzig, Germany, Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg, Germany, and Max-Planck-Institute for Biophysics, Frankfurt, Germany
| | - Thorsten Friedrich
- Institute of Biochemistry, University of Leipzig, D-04103 Leipzig, Germany, Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg, Germany, and Max-Planck-Institute for Biophysics, Frankfurt, Germany
| | - Eberhard Warkentin
- Institute of Biochemistry, University of Leipzig, D-04103 Leipzig, Germany, Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg, Germany, and Max-Planck-Institute for Biophysics, Frankfurt, Germany
| | - Uli Ermler
- Institute of Biochemistry, University of Leipzig, D-04103 Leipzig, Germany, Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg, Germany, and Max-Planck-Institute for Biophysics, Frankfurt, Germany
| | - Matthias Boll
- Institute of Biochemistry, University of Leipzig, D-04103 Leipzig, Germany, Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, Institute of Organic Chemistry and Biochemistry, University of Freiburg, Freiburg, Germany, and Max-Planck-Institute for Biophysics, Frankfurt, Germany
| |
Collapse
|
21
|
Zdunek-Zastocka E. Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:19-28. [PMID: 18006324 DOI: 10.1016/j.plaphy.2007.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Indexed: 05/25/2023]
Abstract
Aldehyde oxidase (AO, EC 1.2.3.1) is a molybdenohydroxylase that is considered to catalyze the last step of abscisic acid (ABA) and indole-3-acetic acid (IAA) synthesis. Three cDNAs encoding aldehyde oxidase proteins in Pisum sativum (cv. Little Marvel) were obtained based on RT-PCR (reverse transcriptase-polymerase chain reaction) strategy. The cloned genes, designated as PsAO1, PsAO2 and PsAO3, are 4630, 4347, 4600 bp in length, respectively, and show high sequence identity to each other and to aldehyde oxidases from other plant species. The deduced PsAO1, PsAO2, and PsAO3 proteins are 1373, 1367, 1367 amino acids in length, respectively, and contain consensus sequences for two iron-sulfur centers, a FAD binding domain, and a molybdenum cofactor (Moco) binding domain. PsAO1 and PsAO2 were mainly expressed in leaves of seedlings and young leaves of adult plants, while the highest PsAO3 transcript level was observed in aging leaves and matured seeds. PsAO2 mRNA was not affected by salinity or ammonium treatment, whereas the transcript level of PsAO3 increased significantly under both stress conditions, with the most pronounced changes in aging leaves, fully expanded leaves and roots. The PsAO1 transcript level was enhanced only in the presence of ammonium in the nutrient medium, but not under salinity. Based on the molecular mass of the deduced proteins and on organ-specific gene expression, studied both under control and stress conditions, the contribution of each PsAO cDNA in the formation of the previously described three dimeric pea AO isoforms and the possible involvement of the PsAO3 in abscisic acid (ABA) synthesis is discussed.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw Agricultural University, Nowoursynowska 159, Warsaw, Poland.
| |
Collapse
|
22
|
Kappl R, Sielker S, Ranguelova K, Wegner J, Parschat K, Hüttermann J, Fetzner S. Spectroscopic and biochemical studies on protein variants of quinaldine 4-oxidase: Role of E736 in catalysis and effects of serine ligands on the FeSI and FeSII clusters. Biochemistry 2007; 45:14853-68. [PMID: 17144679 DOI: 10.1021/bi061185a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinaldine 4-oxidase (Qox), which catalyzes the hydroxylation of quinaldine to 1H-4-oxoquinaldine, is a heterotrimeric (LMS)2 molybdo-iron/sulfur flavoprotein belonging to the xanthine oxidase family. Variants of Qox were generated by site-directed mutagenesis. Replacement in the large subunit at E736, which is presumed to be located close to the molybdenum, by aspartate (QoxLE736D) resulted in a marked decrease in kcat app for quinaldine, while Km app was largely unaffected. Although a minor reduction of the glutamine substituted variant QoxLE736Q by quinaldine occurred, its activity was below detection, indicating that the carboxylate group of E736 is crucial for catalysis. Replacement of cysteine ligands C40, C45, or C60 (FeSII) and of the C120 or C154 ligands to FeSI in the small subunit of Qox by serine led to decreased iron contents of the protein preparations. Substitutions C40S and C45S (Fe1 of FeSII) suppressed the characteristic FeSII EPR signals and significantly reduced catalytic activity. In QoxSC154S (Fe1 of FeSI), the g-factor components of FeSI were drastically changed. In contrast, Qox proteins with substitutions of C48 and C60 (Fe2 of FeSII), and of the C120 ligand at Fe2 of FeSI, retained considerable activity and showed less pronounced changes in their EPR parameters. Taken together, the properties of the Qox variants suggest that Fe1 of both FeSI and FeSII are the reducible iron sites, whereas the Fe2 ions remain in the ferric state. The location of the reducible iron sites of FeSI and FeSII appears to be conserved in enzymes of the xanthine oxidase family.
Collapse
Affiliation(s)
- Reinhard Kappl
- Institut für Biophysik, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Inscore FE, Knottenbelt SZ, Rubie ND, Joshi HK, Kirk ML, Enemark JH. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase. Inorg Chem 2007; 45:967-76. [PMID: 16441102 DOI: 10.1021/ic0506815] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray crystallography and resonance Raman (rR) spectroscopy have been used to further characterize (Tp*)MoO(qdt) (Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate and qdt is 2,3-quinoxalinedithiolene), which represents an important benchmark oxomolybdenum mono-dithiolene model system relevant to various pyranopterin Mo enzyme active sites, including sulfite oxidase. The compound (Tp*)MoO(qdt) crystallizes in the triclinic space group, P1, where a = 9.8424 (7) A, b = 11.2323 (8) A, c = 11.9408 (8) A, alpha = 92.7560 (10) degrees, beta = 98.9530 (10) degrees, and gamma = 104.1680 (10) degrees. The (Tp*)MoO(qdt) molecule exhibits the distorted six-coordinate geometry characteristic of related oxo-Mo(V) systems possessing a single coordinated dithiolene ligand. The first coordination sphere bond lengths and angles in (Tp*)MoO(qdt) are very similar to the corresponding structural parameters for (Tp*)MoO(bdt) (bdt is 1,2-benzenedithiolene). The relatively small inner-sphere structural variations observed between (Tp*)MoO(qdt) and (Tp*)MoO(bdt) strongly suggest that geometric effects are not a major contributor to the significant electronic structural differences reported for these two oxo-Mo(V) dithiolenes. Therefore, the large differences observed in the reduction potential and first ionization energy between the two molecules appear to derive primarily from differences in the effective nuclear charges of their respective sulfur donors. However, a subtle perturbation to Mo-S bonding is implied by the nonplanarity of the dithiolene chelate ring, which is defined by the fold angle. This angular distortion (theta = 29.5 degrees in (Tp*)MoO(qdt); 21.3 degrees in (Tp*)MoO(bdt)) observed between the MoS2 and S-C=C-S planes may contribute to the electronic structure of these oxo-Mo dithiolene systems by controlling the extent of S p-Mo d orbital overlap. In enzymes, the fold angle may be dynamically modulated by the pyranopterin, thereby functioning as a transducer of vibrational energy associated with protein conformational changes directly to the active site via changes in the fold angle. This process could effectively mediate charge redistribution at the active site during the course of atom- and electron-transfer processes. The rR spectrum shows bands at 348 and 407 cm(-1). From frequency analysis of the normal modes of the model, [(NH3)3MoO(qdt)]1+, using the Gaussian03 suite of programs, these bands are assigned as mixed-mode Mo-S vibrations of the five-membered Mo-ditholene core structure. Raman spectroscopy has also provided additional evidence for an in-plane pseudo-sigma dithiolene S-Mo d(xy) covalent bonding interaction in (Tp*)MoO(qdt) and related oxo-Mo-dithiolenes that has implications for electron-transfer regeneration of the active site in sulfite oxidase involving the pyranopterin dithiolene.
Collapse
Affiliation(s)
- Frank E Inscore
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
24
|
Thapper A, Boer DR, Brondino CD, Moura JJG, Romão MJ. Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase. J Biol Inorg Chem 2006; 12:353-66. [PMID: 17139522 DOI: 10.1007/s00775-006-0191-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
Two arsenite-inhibited forms of each of the aldehyde oxidoreductases from Desulfovibrio gigas and Desulfovibrio desulfuricans have been studied by X-ray crystallography and electron paramagnetic resonance (EPR) spectroscopy. The molybdenum site of these enzymes shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. Arsenite addition to active as-prepared enzyme or to a reduced desulfo form yields two different species called A and B, respectively, which show different Mo(V) EPR signals. Both EPR signals show strong hyperfine and quadrupolar couplings with an arsenic nucleus, which suggests that arsenic interacts with molybdenum through an equatorial ligand. X-ray data of single crystals prepared from EPR-active samples show in both inhibited forms that the arsenic atom interacts with the molybdenum ion through an oxygen atom at the catalytic labile site and that the sulfido ligand is no longer present. EPR and X-ray data indicate that the main difference between both species is an equatorial ligand to molybdenum which was determined to be an oxo ligand in species A and a hydroxyl/water ligand in species B. The conclusion that the sulfido ligand is not essential to determine the EPR properties in both Mo-As complexes is achieved through EPR measurements on a substantial number of randomly oriented chemically reduced crystals immediately followed by X-ray studies on one of those crystals. EPR saturation studies show that the electron transfer pathway, which is essential for catalysis, is not modified upon inhibition.
Collapse
Affiliation(s)
- Anders Thapper
- REQUIMTE-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | |
Collapse
|
25
|
Brondino CD, Rivas MG, Romão MJ, Moura JJG, Moura I. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria. Acc Chem Res 2006; 39:788-96. [PMID: 17042479 DOI: 10.1021/ar050104k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molybdenum and tungsten are found in biological systems in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen-atom-transfer reactions. The metal atom (Mo or W) is coordinated to one or two pyranopterin molecules and to a variable number of ligands such as oxygen (oxo, hydroxo, water, serine, aspartic acid), sulfur (cysteines), and selenium (selenocysteines) atoms. In addition, these proteins contain redox cofactors such as iron-sulfur clusters and heme groups. All of these metal cofactors are along an electron-transfer pathway that mediates the electron exchange between substrate and an external electron acceptor (for oxidative reactions) or donor (for reductive reactions). We describe in this Account a combination of structural and electronic paramagnetic resonance studies that were used to reveal distinct aspects of these enzymes.
Collapse
Affiliation(s)
- Carlos D Brondino
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
26
|
Fieseler L, Quaiser A, Schleper C, Hentschel U. Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics. Environ Microbiol 2006; 8:612-24. [PMID: 16584473 DOI: 10.1111/j.1462-2920.2005.00937.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The novel candidate phylum Poribacteria is specifically associated with several marine demosponge genera. Because no representatives of Poribacteria have been cultivated, an environmental genomic approach was used to gain insights into genomic properties and possibly physiological/functional features of this elusive candidate division. In a large-insert library harbouring an estimated 1.1 Gb of microbial community DNA from Aplysina aerophoba, a Poribacteria-positive 16S rRNA gene locus was identified. Sequencing and sequence annotation of the 39 kb size insert revealed 27 open reading frames (ORFs) and two genes for stable RNAs. The fragment exhibited an overall G+C content of 50.5% and a coding density of 86.1%. The 16S rRNA gene was unlinked from a conventional rrn operon. Its flanking regions did not show any synteny to other 16S rRNA encoding loci from microorganisms with unlinked rrn operons. Two of the predicted hypothetical proteins were highly similar to homologues from Rhodopirellula baltica. Furthermore, a novel kind of molybdenum containing oxidoreductase was predicted as well as a series of eight ORFs encoding for unusual transporters, channel or pore forming proteins. This environmental genomics approach provides, for the first time, genomic and, by inference, functional information on the so far uncultivated, sponge-associated candidate division Poribacteria.
Collapse
Affiliation(s)
- Lars Fieseler
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | |
Collapse
|
27
|
Yasuhara A, Akiba-Goto M, Aisaka K. Cloning and sequencing of the aldehyde oxidase gene from Methylobacillus sp. KY4400. Biosci Biotechnol Biochem 2006; 69:2435-8. [PMID: 16377905 DOI: 10.1271/bbb.69.2435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aldehyde oxidase genes (aods) from Methylobacillus sp. KY4400 were cloned, and sequenced. The sequences for small (aodS, 489 bp), medium (aodM, 993 bp), and large (aodL, 2,328 bp) subunit genes were determined. At least one additional ORF was indispensable for the expression of enzyme activity. The structural genes contained two [2Fe-2S] centers, an FAD binding site, and a molybdenum cofactor binding site.
Collapse
Affiliation(s)
- Akinori Yasuhara
- BioFrontier Laboratories, Kyowa Hakko Kogyo Co., Ltd., Tokyo, Japan
| | | | | |
Collapse
|
28
|
Brondino CD, Romão MJ, Moura I, Moura JJG. Molybdenum and tungsten enzymes: the xanthine oxidase family. Curr Opin Chem Biol 2006; 10:109-14. [PMID: 16480912 DOI: 10.1016/j.cbpa.2006.01.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 01/26/2006] [Indexed: 10/25/2022]
Abstract
Mononuclear molybdenum and tungsten are found in the active site of a diverse group of enzymes that, in general, catalyze oxygen atom transfer reactions. Enzymes of the xanthine oxidase family are the best-characterized mononuclear Mo-containing enzymes. Several 3D structures of diverse members of this family are known. Recently, the structures of substrate-bound and arsenite-inhibited forms of two members of this family have also been reported. In addition, spectroscopic studies have been utilized to elucidate fine details that complement the structural information. Altogether, these studies have provided an important amount of information on the characteristics of the active site and the electron transfer pathways.
Collapse
Affiliation(s)
- Carlos D Brondino
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Campus Universitario, 3000 Santa Fe, Argentina.
| | | | | | | |
Collapse
|
29
|
Bonin I, Martins BM, Purvanov V, Fetzner S, Huber R, Dobbek H. Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase. Structure 2005; 12:1425-35. [PMID: 15296736 DOI: 10.1016/j.str.2004.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/06/2004] [Accepted: 05/07/2004] [Indexed: 11/30/2022]
Abstract
The soil bacterium Pseudomonas putida 86 uses quinoline as a sole source of carbon and energy. Quinoline 2-oxidoreductase (Qor) catalyzes the first metabolic step converting quinoline to 2-oxo-1,2-dihydroquinoline. Qor is a member of the molybdenum hydroxylases. The molybdenum ion is coordinated by two ene-dithiolate sulfur atoms, two oxo-ligands, and a catalytically crucial sulfido-ligand, whose position in the active site was controversial. The 1.8 A resolution crystal structure of Qor indicates that the sulfido-ligand occupies the equatorial position at the molybdenum ion. The structural comparison of Qor with the allopurinol-inhibited xanthine dehydrogenase from Rhodobacter capsulatus allows direct insight into the mechanism of substrate recognition and the identification of putative catalytic residues. The active site protein variants QorE743V and QorE743D were analyzed to assess the catalytic role of E743.
Collapse
Affiliation(s)
- Irena Bonin
- Abteilung für Strukturforschung, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Boer DR, Müller A, Fetzner S, Lowe DJ, Romão MJ. On the purification and preliminary crystallographic analysis of isoquinoline 1-oxidoreductase from Brevundimonas diminuta 7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:137-40. [PMID: 16508115 PMCID: PMC1952400 DOI: 10.1107/s1744309104032105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 12/03/2004] [Indexed: 01/07/2023]
Abstract
Isoquinoline 1-oxidoreductase (IOR) from Brevundimonas diminuta is a mononuclear molybdoenzyme of the xanthine-dehydrogenase family of proteins and catalyzes the conversion of isoquinoline to isoquinoline-1-one. Its primary sequence and behaviour, specifically in its substrate specificity and lipophilicity, differ from other members of the family. A crystal structure of the enzyme is expected to provide an explanation for these differences. This paper describes the crystallization and preliminary X-ray diffraction experiments as well as an optimized purification protocol for IOR. Crystallization of IOR was achieved using two different crystallization buffers. Streak-seeding and cross-linking were essential to obtain well diffracting crystals. Suitable cryo-conditions were found and a structure solution was obtained by molecular replacement. However, phases need to be improved in order to obtain a more interpretable electron-density map.
Collapse
Affiliation(s)
- D. Roeland Boer
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Axel Müller
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Susanne Fetzner
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany
| | - David J. Lowe
- Biological Chemistry Department, John Innes Centre, Colney, Norwich NR4 7UH, England
| | - Maria João Romão
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
31
|
Abstract
Comparison of two protein structures often results in not only a global alignment but also a number of distinct local alignments; the latter, referred to as alternative alignments, are however usually ignored in existing protein structure comparison analyses. Here, we used a novel method of protein structure comparison to extensively identify and characterize the alternative alignments obtained for structure pairs of a fold classification database. We showed that all alternative alignments can be classified into one of just a few types, and with which illustrated the potential of using alternative alignments to identify recurring protein substructures, including the internal structural repeats of a protein. Furthermore, we showed that among the alternative alignments obtained, permuted alignments, which included both circular and scrambled permutations, are as prevalent as topological alignments. These results demonstrated that the so far largely unattended alternative alignments of protein structures have implications and applications for research of protein classification and evolution.
Collapse
Affiliation(s)
- Edward S C Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
32
|
Boer DR, Thapper A, Brondino CD, Romão MJ, Moura JJG. X-ray Crystal Structure and EPR Spectra of “Arsenite-Inhibited” Desulfovibrio gigas Aldehyde Dehydrogenase: A Member of the Xanthine Oxidase Family. J Am Chem Soc 2004; 126:8614-5. [PMID: 15250689 DOI: 10.1021/ja0490222] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray crystallography has been used to determine the structure of arsenite-inhibited aldehyde dehydrogenase from Desulfovibrio gigas, a member of the xanthine oxidase family of mononuclear molybdenum enzymes. The structure shows an AsO3 moiety bound to the molybdenum atom of the active site through one of the oxygen atoms. A reduced sample of arsenite-inhibited aldehyde dehydrogenase has a Mo(V) signal that shows anisotropic hyperfine and quadrupole coupling to one arsenic atom. This signal has a strong resemblance with a previously reported signal for arsenite-inhibited xanthine oxidase.
Collapse
Affiliation(s)
- D Roeland Boer
- REQUIMTE-Departamento de Química, CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
33
|
McNaughton RL, Helton ME, Cosper MM, Enemark JH, Kirk ML. Nature of the Oxomolybdenum−Thiolate π-Bond: Implications for Mo−S Bonding in Sulfite Oxidase and Xanthine Oxidase. Inorg Chem 2004; 43:1625-37. [PMID: 14989655 DOI: 10.1021/ic034206n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electronic structure of cis,trans-(L-N(2)S(2))MoO(X) (where L-N(2)S(2) = N,N'-dimethyl-N,N'-bis(2-mercaptophenyl)ethylenediamine and X = Cl, SCH(2)C(6)H(5), SC(6)H(4)-OCH(3), or SC(6)H(4)CF(3)) has been probed by electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies to determine the nature of oxomolybdenum-thiolate bonding in complexes possessing three equatorial sulfur ligands. One of the phenyl mercaptide sulfur donors of the tetradentate L-N(2)S(2) chelating ligand, denoted S(180), coordinates to molybdenum in the equatorial plane such that the OMo-S(180)-C(phenyl) dihedral angle is approximately 180 degrees, resulting in a highly covalent pi-bonding interaction between an S(180) p orbital and the molybdenum d(xy) orbital. This highly covalent bonding scheme is the origin of an intense low-energy S --> Mo d(xy) bonding-to-antibonding LMCT transition (E(max) approximately 16000 cm(-)(1), epsilon approximately 4000 M(-)(1) cm(-)(1)). Spectroscopically calibrated bonding calculations performed at the DFT level of theory reveal that S(180) contributes approximately 22% to the HOMO, which is predominantly a pi antibonding molecular orbital between Mo d(xy) and the S(180) p orbital oriented in the same plane. The second sulfur donor of the L-N(2)S(2) ligand is essentially nonbonding with Mo d(xy) due to an OMo-S-C(phenyl) dihedral angle of approximately 90 degrees. Because the formal Mo d(xy) orbital is the electroactive or redox orbital, these Mo d(xy)-S 3p interactions are important with respect to defining key covalency contributions to the reduction potential in monooxomolybdenum thiolates, including the one- and two-electron reduced forms of sulfite oxidase. Interestingly, the highly covalent Mo-S(180) pi bonding interaction observed in these complexes is analogous to the well-known Cu-S(Cys) pi bond in type 1 blue copper proteins, which display electronic absorption and resonance Raman spectra that are remarkably similar to these monooxomolybdenum thiolate complexes. Finally, the presence of a covalent Mo-S pi interaction oriented orthogonal to the MOO bond is discussed with respect to electron-transfer regeneration in sulfite oxidase and Mo=S(sulfido) bonding in xanthine oxidase.
Collapse
Affiliation(s)
- Rebecca L McNaughton
- Departments of Chemistry, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
34
|
Enemark JH, Cooney JJA, Wang JJ, Holm RH. Synthetic Analogues and Reaction Systems Relevant to the Molybdenum and Tungsten Oxotransferases. Chem Rev 2003; 104:1175-200. [PMID: 14871153 DOI: 10.1021/cr020609d] [Citation(s) in RCA: 424] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John H Enemark
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
35
|
Uchida H, Kondo D, Yamashita A, Nagaosa Y, Sakurai T, Fujii Y, Fujishiro K, Aisaka K, Uwajima T. Purification and characterization of an aldehyde oxidase fromPseudomonassp. KY 4690. FEMS Microbiol Lett 2003; 229:31-6. [PMID: 14659539 DOI: 10.1016/s0378-1097(03)00781-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.
Collapse
Affiliation(s)
- Hiroyuki Uchida
- Applied Chemistry and Biotechnology, Faculty of Engineering, Fukui University, 9-1, Bunkyo 3-Chome, Fukui-shi 910-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Partyka DV, Staples RJ, Holm RH. Nucleophilic Reactivity and Oxo/Sulfido Substitution Reactions of MVIO3 Groups (M = Mo, W). Inorg Chem 2003; 42:7877-86. [PMID: 14632504 DOI: 10.1021/ic030185l] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleophilic reactivity of oxo ligands in the groups M(VI)O(3) in the trigonal complexes [(Me(3)tacn)MO(3)] (M = Mo (1), W (10)) and [(Bu(t)(3)tach)MO(3)] (M = Mo (5), W (14)) has been investigated. Complexes 1/10 can be alkylated with MeOTf to give [(Me(3)tacn)MO(2)(OMe)](1+) (2/11), silylated with Pr(i)(3)SiOTf to form [(Me(3)tacn)MO(2)(OSiPr(i)(3))](+) (3/12), and protonated with HOTf to yield [(Me(3)tacn)MoO(2)(OH)](+) (4). Similarly, complexes 5/14 can be silylated to [(Bu(t)(3)tach)MO(2)(OSiPr(i)(3))](+) (6/15) and protonated to [(Bu(t)(3)tach)MO(2)(OH)](+) (7/16). Products were isolated as triflate salts in yields exceeding 70%. When excess acid was used, the dinuclear mu-oxo species [(Bu(t)(3)tach)(2)M(2)O(5)](2+) (8/17) were obtained. X-ray structures are reported for 2-4, 6-8, 12, and 15-17. All mononuclear complexes have dominant trigonal symmetry with a rhombic distortion owing to a M[bond]OR bond (R = Me, SiPr(i)(3), H), which is longer than M[double bond]O oxo interactions; the latter exert a substantial trans influence on M[bond]N bond lengths. Oxo ligands in 5/14 undergo replacement with sulfide. Lawesson's reagent effects formation of [(Bu(t)(3)tach)MS(3)] (9/18), 14 with excess B(2)S(3) yields incompletely substituted [(Bu(t)(3)tach)WOS(2)] (20), and 5 with excess B(2)S(3) yields [(Bu(t)(3)tach)Mo(IV)O(S(4))] (19). The structures of 9, 19, and 20 are reported. Precedents for M(VI)S(3) groups in five- and six-coordinate molecules are limited. This investigation is the first detailed study of the behavior of M(VI)O(3) groups in nucleophilic and oxo/sulfido substitution reactions and should be useful in synthetic approaches to the active sites of the xanthine oxidase enzyme family and of certain tungstoenzymes. (Bu(t)(3)tach = 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane, Me(3)tacn = 1,4,7-trimethyl-1,4,7-triazacyclonane; OTf = triflate).
Collapse
Affiliation(s)
- David V Partyka
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
37
|
Jalilehvand F, Lim BS, Holm RH, Hedman B, Hodgson KO. X-ray absorption spectroscopy of a structural analogue of the oxidized active sites in the sulfite oxidase enzyme family and related molybdenum(V) complexes. Inorg Chem 2003; 42:5531-6. [PMID: 12950200 DOI: 10.1021/ic030039f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-ray absorption spectroscopy (XAS) (edge and extended X-ray absorption fine structure (EXAFS)) has been applied to the characterization of three molybdenum(V,VI) monodithiolene complexes with unidentate coligands, [MoO(SC(6)H(2)-2,4,6-Pr(i)()(3))(2)(bdt)](-) (1), [MoOCl(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](-) (2), and [MoO(2)(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](-) (3) (bdt = benzene-1,2-dithiolate). These complexes are related to the active site in the xanthine oxidase and sulfite oxidase families and, as in the enzyme sites, bind monodentate thiolate. By comparison to the data of crystalline oxidized chicken sulfite oxidase, it is shown that complex 3, whose thiolate simulates binding by the highly conserved cysteine, is an accurate structural analogue of the oxidized site of this enzyme. Normalized edge spectra, EXAFS data, Fourier transforms, and GNXAS-based fit results are presented. As in earlier studies, this provides characterization of new analogue complexes by XAS to facilitate identification of related sites in proteins.
Collapse
Affiliation(s)
- Farideh Jalilehvand
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309, USA
| | | | | | | | | |
Collapse
|
38
|
Parschat K, Hauer B, Kappl R, Kraft R, Huttermann J, Fetzner S. Gene cluster of Arthrobacter ilicis Ru61a involved in the degradation of quinaldine to anthranilate: characterization and functional expression of the quinaldine 4-oxidase qoxLMS genes. J Biol Chem 2003; 278:27483-94. [PMID: 12730200 DOI: 10.1074/jbc.m301330200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A genetic analysis of the anthranilate pathway of quinaldine degradation was performed. A 23-kb region of DNA from Arthrobacter ilicis Rü61a was cloned into the cosmid pVK100. Although Escherichia coli clones containing the recombinant cosmid did not transform quinaldine, cosmids harboring the 23-kb region, or a 10.8-kb stretch of this region, conferred to Pseudomonas putida KT2440 the ability to cometabolically convert quinaldine to anthranilate. The 10.8-kb fragment thus contains the genes coding for quinaldine 4-oxidase (Qox), 1H-4-oxoquinaldine 3-monooxygenase, 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, and N-acetylanthranilate amidase. The qoxLMS genes coding for the molybdopterin cytosine dinucleotide-(MCD-), FeSI-, FeSII-, and FAD-containing Qox were inserted into the expression vector pJB653, generating pKP1. Qox is the first MCD-containing enzyme to be synthesized in a catalytically fully competent form by a heterologous host, P. putida KT2440 pKP1; the catalytic properties and the UV-visible and EPR spectra of Qox purified from P. putida KT2440 pKP1 were essentially like those of wild-type Qox. This provides a starting point for the construction of protein variants of Qox by site-directed mutagenesis. Downstream of the qoxLMS genes, a putative gene whose deduced amino acid sequence showed 37% similarity to the cofactor-inserting chaperone XdhC was located. Additional open reading frames identified on the 23-kb segment may encode further enzymes (a glutamyl tRNA synthetase, an esterase, two short-chain dehydrogenases/reductases, an ATPase belonging to the AAA family, a 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase/5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase-like protein, and an enzyme of the mandelate racemase group) and hypothetical proteins involved in transcriptional regulation, and metabolite transport.
Collapse
Affiliation(s)
- Katja Parschat
- AG Mikrobiologie, Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Frerichs-Deeken U, Goldenstedt B, Gahl-Janssen R, Kappl R, Hüttermann J, Fetzner S. Functional expression of the quinoline 2-oxidoreductase genes (qorMSL) in Pseudomonas putida KT2440 pUF1 and in P. putida 86-1 deltaqor pUF1 and analysis of the Qor proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1567-77. [PMID: 12654012 DOI: 10.1046/j.1432-1033.2003.03526.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The availability of a system for the functional expression of genes coding for molybdenum hydroxylases is a prerequisite for the construction of enzyme variants by mutagenesis. For the expression cloning of quinoline 2-oxidoreductase (Qor) from Pseudomonas putida 86--that contains the molybdopterin cytosine dinucleotide molybdenum cofactor (Mo-MCD), two distinct [2Fe-2S] clusters and FAD--the qorMSL genes were inserted into the broad host range vector, pJB653, generating pUF1. P. putida KT2440 and P. putida 86-1 deltaqor were used as recipients for pUF1. Whereas Qor from the wild-type strain showed a specific activity of 19-23 U x mg(-1), the specific activity of Qor purified from P. putida KT2440 pUF1 was only 0.8-2.5 U x mg(-1), and its apparent k(cat) (quinoline) was about ninefold lower than that of wild-type Qor. The apparent Km values for quinoline were similar for both proteins. UV/visible and EPR spectroscopy indicated the presence of the full set of [2Fe-2S] clusters and FAD in Qor from P. putida KT2440 pUF1, however, the very low intensity of the Mo(V)-rapid signal, that occurs in the presence of quinoline, as well as metal analysis indicated a deficiency of the molybdenum center. In contrast, the metal content, and the spectroscopic and catalytic properties of Qor produced by P. putida 86-1 deltaqor pUF1 were essentially like those of wild-type Qor. Release of CMP upon acidic hydrolysis of the Qor proteins suggested the presence of the MCD form of the pyranopterin cofactor; the CMP contents of the three enzymes were similar.
Collapse
Affiliation(s)
- Ursula Frerichs-Deeken
- AG Mikrobiologie, Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Xanthine oxidoreductase (XOR) is a complex molybdoflavoenzyme, present in milk and many other tissues, which has been studied for over 100 years. While it is generally recognized as a key enzyme in purine catabolism, its structural complexity and specialized tissue distribution suggest other functions that have never been fully identified. The publication, just over 20 years ago, of a hypothesis implicating XOR in ischemia-reperfusion injury focused research attention on the enzyme and its ability to generate reactive oxygen species (ROS). Since that time a great deal more information has been obtained concerning the tissue distribution, structure, and enzymology of XOR, particularly the human enzyme. XOR is subject to both pre- and post-translational control by a range of mechanisms in response to hormones, cytokines, and oxygen tension. Of special interest has been the finding that XOR can catalyze the reduction of nitrates and nitrites to nitric oxide (NO), acting as a source of both NO and peroxynitrite. The concept of a widely distributed and highly regulated enzyme capable of generating both ROS and NO is intriguing in both physiological and pathological contexts. The details of these recent findings, their pathophysiological implications, and the requirements for future research are addressed in this review.
Collapse
Affiliation(s)
- Roger Harrison
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
41
|
Wang XB, Inscore FE, Yang X, Cooney JJA, Enemark JH, Wang LS. Probing the electronic structure of [MoOS(4)](-) centers using anionic photoelectron spectroscopy. J Am Chem Soc 2002; 124:10182-91. [PMID: 12188683 DOI: 10.1021/ja0265557] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using photodetachment photoelectron spectroscopy (PES) in the gas phase, we investigated the electronic structure and chemical bonding of six anionic [Mo(V)O](3+) complexes, [MoOX(4)](-) (where X = Cl (1), SPh (2), and SPh-p-Cl (3)), [MoO(edt)(2)](-) (4), [MoO(bdt)(2)](-) (5), and [MoO(bdtCl(2))(2)](-) (6) (where edt = ethane-1,2-dithiolate, bdt = benzene-1,2-dithiolate, and bdtCl(2) = 3,6-dichlorobenzene-1,2-dithiolate). The gas-phase PES data revealed a wealth of new electronic structure information about the [Mo(V)O](3+) complexes. The energy separations between the highest occupied molecular orbital (HOMO) and HOMO-1 were observed to be dependent on the O-Mo-S-C(alpha) dihedral angles and ligand types, being relatively large for the monodentate ligands, 1.32 eV for Cl and 0.78 eV for SPh and SPhCl, compared to those of the bidentate dithiolate complexes, 0.47 eV for edt and 0.44 eV for bdt and bdtCl(2). The threshold PES feature in all six species is shown to have the same origin and is due to detaching the single unpaired electron in the HOMO, mainly of Mo 4d character. This result is consistent with previous theoretical calculations and is verified by comparison with the PES spectra of two d(0) complexes, [VO(bdt)(2)](-) and [VO(bdtCl(2))(2)](-). The observed PES features are interpreted on the basis of theoretical calculations and previous spectroscopic studies in the condensed phase.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Physics, Washington State University, 2710 University Drive, Richland 99352, USA
| | | | | | | | | | | |
Collapse
|
42
|
Inscore FE, Joshi HK, McElhaney AE, Enemark JH. Remote ligand substituent effects on the properties of oxo-Mo(V) centers with a single ene-1,2-dithiolate ligand. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(01)00817-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Schindelin H, Kisker C, Rajagopalan KV. Molybdopterin from molybdenum and tungsten enzymes. ADVANCES IN PROTEIN CHEMISTRY 2002; 58:47-94. [PMID: 11665493 DOI: 10.1016/s0065-3233(01)58002-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H Schindelin
- Department of Biochemistry, Center for Structural Biology, SUNY Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
44
|
Akinori Y, Miho AG, Kinya F, Hiroyuki U, Takayuki U, Kazuo A. Production of aldehyde oxidases by microorganisms and their enzymatic properties. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80131-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Yasuhara A, Akiba-Goto M, Fujishiro K, Uchida H, Uwajima T, Aisaka K. Production of Aldehyde Oxidases by Microorganisms and Their Enzymatic Properties. J Biosci Bioeng 2002; 94:124-9. [PMID: 16233281 DOI: 10.1263/jbb.94.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2002] [Accepted: 05/17/2002] [Indexed: 11/17/2022]
Abstract
In order to establish an efficient process to decompose environmentally toxic aldehydes, dioxygen-dependent aldehyde oxidase (ALOD) from microorganisms was first sought, and some bacteria and actinomycetes were found to produce the enzyme in their cells. Methylobacillus sp., Pseudomonas sp. and Streptomyces moderates were selected as the representative ALOD-producing strains and their enzymes were partially purified and characterized. The three ALODs could oxidize a wide range of aldehydes including formaldehyde, aliphatic aldehydes, and aromatic aldehydes, though their preferences differ depending on their producing strains. The other enzymatic properties were also determined with regard to their producing strains. Methylobacillus sp. ALOD had the most acidic optimum pH for its activity and stability and Pseudomonas sp. ALOD had the highest stability against heat treatment. Three native ALODs had molecular weights ranging from 140 to 148 kDa and were composed of three subunits of different sizes: large (85 to 88 kDa), medium-sized (37 to 39 kDa) and small (18 to 23 kDa).
Collapse
Affiliation(s)
- Akinori Yasuhara
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Terao M, Kurosaki M, Marini M, Vanoni MA, Saltini G, Bonetto V, Bastone A, Federico C, Saccone S, Fanelli R, Salmona M, Garattini E. Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 2001; 276:46347-63. [PMID: 11562361 DOI: 10.1074/jbc.m105744200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning of the AOH1 and AOH2 genes, which encode two novel mammalian molybdo-flavoproteins. We have purified the AOH1 protein to homogeneity in its catalytically active form from mouse liver. Twenty tryptic peptides, identified or directly sequenced by mass spectrometry, confirm the primary structure of the polypeptide deduced from the AOH1 gene. The enzyme contains one molecule of FAD, one atom of molybdenum, and four atoms of iron per subunit and shows spectroscopic features similar to those of the prototypic molybdo-flavoprotein xanthine oxidoreductase. The AOH1 and AOH2 genes are 98 and 60 kilobases long, respectively, and consist of 35 coding exons. The AOH1 gene has the potential to transcribe an extra leader non-coding exon, which is located downstream of exon 26, and is transcribed in the opposite orientation relative to all the other exons. AOH1 and AOH2 map to chromosome 1 in close proximity to each other and to the aldehyde oxidase gene, forming a molybdo-flavoenzyme gene cluster. Conservation in the position of exon/intron junctions among the mouse AOH1, AOH2, aldehyde oxidase, and xanthine oxidoreductase loci indicates that these genes are derived from the duplication of an ancestral precursor.
Collapse
Affiliation(s)
- M Terao
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche "Mario Negri," via Eritrea, 62, Milano 20157, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Terao M, Kurosaki M, Saltini G, Demontis S, Marini M, Salmona M, Garattini E. Cloning of the cDNAs coding for two novel molybdo-flavoproteins showing high similarity with aldehyde oxidase and xanthine oxidoreductase. J Biol Chem 2000; 275:30690-700. [PMID: 10893244 DOI: 10.1074/jbc.m005355200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cDNAs coding for two novel mouse molybdo-flavoproteins, AOH1 and AOH2 (aldehyde oxidase homolog 1 and 2), were isolated. The AOH1 and AOH2 cDNAs code for polypeptides of 1336 amino acids. The two proteins have similar primary structure and show striking amino acid identity with aldehyde oxidase and xanthine oxidoreductase, two other molybdo-flavoenzymes. AOH1 and AOH2 contain consensus sequences for a molybdopterin-binding site and two distinct 2Fe-2S redox centers. In its native conformation, AOH1 has a molecular weight consistent with a homotetrameric structure. Transfection of the AOH1 and AOH2 cDNAs results in the production of proteins with phenanthridine but not hypoxanthine oxidizing activity. Furthermore, the AOH1 protein has benzaldehyde oxidizing activity with electrophoretic characteristics identical to those of a previously identified aldehyde oxidase isoenzyme (Holmes, R. S. (1979) Biochem. Genet. 17, 517-528). The AOH1 transcript is expressed in the hepatocytes of the adult and fetal liver and in spermatogonia. In liver, the AOH1 protein is synthesized in a gender-specific fashion. The expression of AOH2 is limited to keratinized epithelia and the basal layer of the epidermis and hair folliculi. The selective cell and tissue distribution of AOH1 and AOH2 mRNAs is consistent with the localization of the respective protein products.
Collapse
Affiliation(s)
- M Terao
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche "Mario Negri," via Eritrea, 62, 20157 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Hänzelmann P, Dobbek H, Gremer L, Huber R, Meyer O. The effect of intracellular molybdenum in Hydrogenophaga pseudoflava on the crystallographic structure of the seleno-molybdo-iron-sulfur flavoenzyme carbon monoxide dehydrogenase. J Mol Biol 2000; 301:1221-35. [PMID: 10966817 DOI: 10.1006/jmbi.2000.4023] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystal structures of carbon monoxide dehydrogenase (CODH), a seleno-molybdo-iron-sulfur flavoprotein from the aerobic carbon monoxide utilizing carboxidotrophic eubacterium Hydrogenophaga pseudoflava, have been determined from the enzyme synthesized at high (Mo(plus) CODH) and low intracellular molybdenum content (Mo(minus) CODH) at 2.25 A and 2.35 A resolution, respectively. The structures were solved by Patterson search methods utilizing the enzyme from Oligotropha carboxidovorans as the initial model. The CODHs from both sources are structurally very much conserved and show the same overall fold, architecture and arrangements of the molybdopterin-cytosine dinucleotide-type of molybdenum cofactor, the type I and type II [2Fe-2S] clusters and the flavin-adenine dinucleotide. Unlike the CODH from O. carboxidovorans, the enzyme from H. pseudoflava reveals a unique post-translationally modified C(gamma)-hydroxy-Arg384 residue which precedes the catalytically essential S-selanyl-Cys385 in the active-site loop. In addition, the Trp193 which shields the isoalloxazine ring of the flavin-adenine dinucleotide in the M subunit of the H. pseudoflava CODH is a Tyr193 in the O. carboxidovorans CODH. The hydrogen bonding interaction pattern of the molybdenum cofactor involves 27 hydrogen bonds with the surrounding protein. Of these, eight are with the cytosine moiety, eight with the pyrophosphate, six with the pyranopterin, and five with the ligands of the Mo ion. The structure of the catalytically inactive Mo(minus) CODH indicates that an intracellular Mo-deficiency affects exclusively the active site of the enzyme as an incomplete non-functional molybdenum cofactor was synthesized. The 5'-CDP residue was present in Mo(minus) CODH, whereas the Mo-pyranopterin moiety was absent. In Mo(plus) CODH the selenium faces the Mo ion and flips away from the Mo site in Mo(minus) CODH. The different side-chain conformations of the active-site residues S-selanyl-Cys385 and Glu757 in Mo(plus) and Mo(minus) CODH indicate a side-chain flexibility and a function of the Mo ion in the proper orientation of both residues.
Collapse
Affiliation(s)
- P Hänzelmann
- Lehrstuhl für Mikrobiologie, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, D-95440, Germany
| | | | | | | | | |
Collapse
|
49
|
Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klaucke W, Huber R. The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol Chem 2000; 381:865-76. [PMID: 11076018 DOI: 10.1515/bc.2000.108] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
CO dehydrogenase (EC 1.2.99.2) catalyzes the oxidation of CO according to the following equation: CO + H2O-->CO2 + 2 e- + 2 H+. It is a selenium-containing molybdo-iron-sulfur-flavoenzyme, which has been crystallized and structurally characterized in its oxidized state from the aerobic CO utilizing bacteria Oligotropha carboxidovorans and Hydrogenophaga pseudoflava. Both CO dehydrogenase structures show only minor differences, and the enzymes are dimers of two heterotrimers. Each heterotrimer is composed of a molybdoprotein, a flavoprotein, and an iron-sulfur protein. CO oxidation takes place at the molybdoprotein which contains a 1:1 mononuclear complex of molybdopterin-cytosine dinucleotide and a Mo-ion, along with a catalytically essential S-selanylcysteine. The latter is appropriately positioned in the SeMo-active site by a unique VAYRCSFR active site loop. In H. pseudoflava the arginine preceeding the cysteine in the active site loop is modified to a Cgamma-hydroxy arginine residue which has no obvious function. The substituents in the first coordination sphere of the Mo-ion are the enedithiolate sulfur atoms of the molybdopterin-cytosine dinucleotide, two oxo- and a sulfido-group. Extended X-ray absorption fine structure spectroscopy (EXAFS), along with the crystal structure of CO dehydrogenase (23.2 U mg(-1)) at 1.85 A resolution, have identified a sulfur atom at 2.3 A from the Mo-ion. The sulfur reacts with cyanide yielding thiocyanate. The corresponding inactive desulfo-CO dehydrogenase shows a typical desulfo inhibited-type of Mo-electron paramagnetic resonance (EPR) spectrum. Structural changes at the SeMo-site during catalysis are suggested by the Mo to Se distance of 3.7 A and the Mo-S-Se angle of 113 degrees in the oxidized enzyme which increase to 4.1 A, and 121 degrees, respectively, in the reduced enzyme. The intramolecular electron transport chain in CO dehydrogenase involves the following prosthetic groups and minimal distances: CO-->[Mo of the molybdenum cofactor] - 14.6 A - [2Fe-2S]I - 12.4 A - [2Fe-2S]II - 8.7 A - [FAD].
Collapse
Affiliation(s)
- O Meyer
- Lehrstuhl für Mikrobiologie, Universität Bayreuth, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Andrade SL, Brondino CD, Feio MJ, Moura I, Moura JJ. Aldehyde oxidoreductase activity in Desulfovibrio alaskensis NCIMB 13491 EPR assignment of the proximal [2Fe-2S] cluster to the Mo site. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2054-61. [PMID: 10727945 DOI: 10.1046/j.1432-1327.2000.01209.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensis AOR is closely related to other AORs isolated from the Desulfovibrio genus. The protein is a 97-kDa homodimer, with 0.6 +/- 0.1 Mo, 3.6 +/- 0.1 Fe and 0.9 +/- 0.1 pterin cytosine dinucleotides per monomer. The enzyme catalyses the oxidation of aldehydes to their carboxylic acid form, following simple Michaelis-Menten kinetics, with the following parameters (for benzaldehyde): K(app/m)= 6.65 microM; V app = 13.12 microM.min(-1); k(app/cat) = 0.96 s(-1). Three different EPR signals were recorded upon long reduction of the protein with excess dithionite: an almost axial signal split by hyperfine interaction with one proton associated with Mo(V) species and two rhombic signals with EPR parameters and relaxation behavior typical of [2Fe-2S] clusters termed Fe/S I and Fe/S II, respectively. EPR results reveal the existence of magnetic interactions between Mo(V) and one of the Fe/S clusters, as well as between the two Fe/S clusters. Redox titration monitored by EPR yielded midpoint redox potentials of -275 and -325 mV for the Fe/S I and Fe/S II, respectively. The redox potential gap between the two clusters is large enough to obtain differentiated populations of these paramagnetic centers. This fact, together with the observed interactions among paramagnetic centers, was used to assign the EPR-distinguishable Fe/S I and Fe/S II to those seen in the reported crystal structures of homologous enzymes.
Collapse
Affiliation(s)
- S L Andrade
- Departamento de Química (Centro de Química Fina e Biotecnologia), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, Portugal
| | | | | | | | | |
Collapse
|