1
|
Bhujbalrao R, Gavvala K, Singh RK, Singh J, Boudier C, Chakrabarti S, Patwari GN, Mély Y, Anand R. Identification of Allosteric Hotspots regulating the ribosomal RNA-binding by Antibiotic Resistance-Conferring Erm Methyltransferases. J Biol Chem 2022; 298:102208. [PMID: 35772496 PMCID: PMC9386465 DOI: 10.1016/j.jbc.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance via epigenetic methylation of ribosomal RNA is one of the most prevalent strategies adopted by multidrug resistant pathogens. The erythromycin-resistance methyltransferase (Erm) methylates rRNA at the conserved A2058 position and imparts resistance to macrolides such as erythromycin. However, the precise mechanism adopted by Erm methyltransferases for locating the target base within a complicated rRNA scaffold remains unclear. Here, we show that a conserved RNA architecture, including specific bulge sites, present more than 15 Å from the reaction center, is key to methylation at the pathogenic site. Using a set of RNA sequences site-specifically labeled by fluorescent nucleotide surrogates, we show that base flipping is a prerequisite for effective methylation and that distal bases assist in the recognition and flipping at the reaction center. The Erm–RNA complex model revealed that intrinsically flipped-out bases in the RNA serve as a putative anchor point for the Erm. Molecular dynamic simulation studies demonstrated the RNA undergoes a substantial change in conformation to facilitate an effective protein–rRNA handshake. This study highlights the importance of unique architectural features exploited by RNA to impart fidelity to RNA methyltransferases via enabling allosteric crosstalk. Moreover, the distal trigger sites identified here serve as attractive hotspots for the development of combination drug therapy aimed at reversing resistance.
Collapse
Affiliation(s)
- Ruchika Bhujbalrao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Reman Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Juhi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France.
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wellcome Trust DBT Indian Alliance Senior Fellow.
| |
Collapse
|
2
|
Negri A, Werbowy O, Wons E, Dersch S, Hinrichs R, Graumann PL, Mruk I. Regulator-dependent temporal dynamics of a restriction-modification system's gene expression upon entering new host cells: single-cell and population studies. Nucleic Acids Res 2021; 49:3826-3840. [PMID: 33744971 PMCID: PMC8053105 DOI: 10.1093/nar/gkab183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
Restriction-modification (R-M) systems represent a first line of defense against invasive DNAs, such as bacteriophage DNAs, and are widespread among bacteria and archaea. By acquiring a Type II R-M system via horizontal gene transfer, the new hosts generally become more resistant to phage infection, through the action of a restriction endonuclease (REase), which cleaves DNA at or near specific sequences. A modification methyltransferase (MTase) serves to protect the host genome against its cognate REase activity. The production of R-M system components upon entering a new host cell must be finely tuned to confer protective methylation before the REase acts, to avoid host genome damage. Some type II R-M systems rely on a third component, the controller (C) protein, which is a transcription factor that regulates the production of REase and/or MTase. Previous studies have suggested C protein effects on the dynamics of expression of an R-M system during its establishment in a new host cell. Here, we directly examine these effects. By fluorescently labelling REase and MTase, we demonstrate that lack of a C protein reduces the delay of REase production, to the point of being simultaneous with, or even preceding, production of the MTase. Single molecule tracking suggests that a REase and a MTase employ different strategies for their target search within host cells, with the MTase spending much more time diffusing in proximity to the nucleoid than does the REase. This difference may partially ameliorate the toxic effects of premature REase expression.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Olesia Werbowy
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Simon Dersch
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Rebecca Hinrichs
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
3
|
Lukashevich OV, Cherepanova NA, Jurkovska RZ, Jeltsch A, Gromova ES. Conserved motif VIII of murine DNA methyltransferase Dnmt3a is essential for methylation activity. BMC BIOCHEMISTRY 2016; 17:7. [PMID: 27001594 PMCID: PMC4802922 DOI: 10.1186/s12858-016-0064-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dnmt3a is a DNA methyltransferase that establishes de novo DNA methylation in mammals. The structure of the Dnmt3a C-terminal domain is similar to the bacterial M. HhaI enzyme, a well-studied prokaryotic DNA methyltransferase. No X-ray structure is available for the complex of Dnmt3a with DNA and the mechanistic details of DNA recognition and catalysis by mammalian Dnmts are not completely understood. RESULTS Mutant variants of the catalytic domain of the murine Dnmt3a carrying substitutions of highly conserved N167, R200, and R202 have been generated by site directed mutagenesis and purified. Their methylation activity, DNA binding affinity, ability to flip the target cytosine out of the DNA double helix and covalent complex formation with DNA have been examined. Substitutions of N167 lead to reduced catalytic activity and reduced base flipping. Catalytic activity, base flipping, and covalent conjugate formation were almost completely abolished for the mutant enzymes with substitutions of R200 or R202. CONCLUSIONS We conclude that R202 plays a similar role in catalysis in Dnmt3a-CD as R232 in M.SssI and R165 in M.HhaI, which could be positioning of the cytosine for nucleophilic attack by a conserved Cys. R200 of Dnmt3a-CD is important in both catalysis and cytosine flipping. Both conserved R200 and R202 are involved in creating and stabilizing of the transient covalent intermediate of the methylation reaction. N167 might contribute to the positioning of the residues from the motif VI, but does not play a direct role in catalysis.
Collapse
Affiliation(s)
- Olga V Lukashevich
- Department of Chemistry, Moscow State University, 119991, Moscow, Russia
| | | | - Renata Z Jurkovska
- BioMedX Innovation Center, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | | |
Collapse
|
4
|
2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Q Rev Biophys 2015; 48:244-79. [DOI: 10.1017/s0033583514000158] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNearly 50 years since its potential as a fluorescent base analogue was first recognized, 2-aminopurine (2AP) continues to be the most widely used fluorescent probe of DNA structure and the perturbation of that structure by interaction with enzymes and other molecules. In this review, we begin by considering the origin of the dramatic and intriguing difference in photophysical properties between 2AP and its structural isomer, adenine; although 2AP differs from the natural base only in the position of the exocyclic amine group, its fluorescence intensity is one thousand times greater. We then discuss the mechanism of interbase quenching of 2AP fluorescence in DNA, which is the basis of its use as a conformational probe but remains imperfectly understood. There are hundreds of examples in the literature of the use of changes in the fluorescence intensity of 2AP as the basis of assays of conformational change; however, in this review we will consider in detail only a few intensity-based studies. Our primary aim is to highlight the use of time-resolved fluorescence measurements, and the interpretation of fluorescence decay parameters, to explore the structure and dynamics of DNA. We discuss the salient features of the fluorescence decay of 2AP when incorporated in DNA and review the use of decay measurements in studying duplexes, single strands and other structures. We survey the use of 2AP as a probe of DNA-enzyme interaction and enzyme-induced distortion, focusing particularly on its use to study base flipping and the enhanced mechanistic insights that can be gained by a detailed analysis of the decay parameters, rather than merely monitoring changes in fluorescence intensity. Finally we reflect on the merits and shortcomings of 2AP and the prospects for its wider adoption as a fluorescence-decay-based probe.
Collapse
|
5
|
Beuck C, Weinhold E. Reversibly locked thionucleobase pairs in DNA to study base flipping enzymes. Beilstein J Org Chem 2014; 10:2293-306. [PMID: 25298797 PMCID: PMC4187101 DOI: 10.3762/bjoc.10.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022] Open
Abstract
Covalently interstrand cross-linked DNA is an interesting tool to study DNA binding proteins that locally open up the DNA duplex by flipping single bases out of the DNA helix or melting whole stretches of base pairs to perform their function. The ideal DNA cross-link to study protein–DNA interactions should be specific and easy to synthesize, be stable during protein binding experiments, have a short covalent linker to avoid steric hindrance of protein binding, and should be available as a mimic for both A/T and G/C base pairs to cover all possible binding specificities. Several covalent interstrand cross-links have been described in the literature, but most of them fall short of at least one of the above criteria. We developed an efficient method to site-specifically and reversibly cross-link thionucleoside base pairs in synthetic duplex oligodeoxynucleotides by bisalkylation with 1,2-diiodoethane resulting in an ethylene-bridged base pair. Both linked A/T and G/C base pair analogs can conveniently be prepared which allows studying any base pair-opening enzyme regardless of its sequence specificity. The cross-link is stable in the absence of reducing agents but the linker can be quickly and tracelessly removed by the addition of thiol reagents like dithiothreitol. This property makes the cross-linking reaction fully reversible and allows for a switching of the linked base pair from locked to unlocked during biochemical experiments. Using the DNA methyltransferase from Thermus aquaticus (M.TaqI) as example, we demonstrate that the presented cross-linked DNA with an ethylene-linked A/T base pair analog at the target position is a useful tool to determine the base-flipping equilibrium constant of a base-flipping enzyme which lies mostly on the extrahelical side for M.TaqI.
Collapse
Affiliation(s)
- Christine Beuck
- Department of Structural & Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 2-5, D-45141 Essen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
6
|
Bothe JR, Lowenhaupt K, Al-Hashimi HM. Incorporation of CC steps into Z-DNA: interplay between B-Z junction and Z-DNA helical formation. Biochemistry 2012; 51:6871-9. [PMID: 22873788 DOI: 10.1021/bi300785b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The left-handed DNA structure, Z-DNA, is believed to play important roles in gene expression and regulation. Z-DNA forms sequence-specifically with a preference for sequences rich in pyrimidine/purine dinucleotide steps. In vivo, Z-DNA is generated in the presence of negative supercoiling or upon binding proteins that absorb the high energetic cost of the B-to-Z transition, including the creation of distorted junctions between B-DNA and Z-DNA. To date, the sequence preferences for the B-to-Z transition have primarily been studied in the context of sequence repeats lacking B-Z junctions. Here, we develop a method for characterizing sequence-specific preferences for Z-DNA formation and B-Z junction localization within heterogeneous DNA duplexes that is based on combining 2-aminopurine fluorescence measurements with a new quantitative application of circular dichroism spectroscopy for determining the fraction of B- versus Z-DNA. Using this approach, we show that at least three consecutive CC dinucleotide steps, traditionally thought to disfavor Z-DNA, can be incorporated within heterogeneous Z-DNA containing B-Z junctions upon binding to the Zα domain of the RNA adenosine deaminase protein. Our results indicate that the incorporation of CC steps into Z-DNA is driven by favorable sequence-specific Z-Z and B-Z stacking interactions as well as by sequence-specific energetics that localize the distorted B-Z junction at flexible sites. Together, our results expose higher-order complexities in the Z-DNA code within heterogeneous sequences and suggest that Z-DNA can in principle propagate into a wider range of genomic sequence elements than previously thought.
Collapse
Affiliation(s)
- Jameson R Bothe
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
7
|
Albu RF, Zacharias M, Jurkowski TP, Jeltsch A. DNA Interaction of the CcrM DNA Methyltransferase: A Mutational and Modeling Study. Chembiochem 2012; 13:1304-11. [DOI: 10.1002/cbic.201200082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 11/06/2022]
|
8
|
Malygin EG, Hattman S. DNA methyltransferases: mechanistic models derived from kinetic analysis. Crit Rev Biochem Mol Biol 2012; 47:97-193. [PMID: 22260147 DOI: 10.3109/10409238.2011.620942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | |
Collapse
|
9
|
Bonnist EY, Liebert K, Dryden DT, Jeltsch A, Jones AC. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding. Biophys Chem 2012; 160:28-34. [DOI: 10.1016/j.bpc.2011.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/03/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
10
|
Abstract
Fluorescent sensors that make use of DNA structures have become widely useful in monitoring enzymatic activities. Early studies focused primarily on enzymes that naturally use DNA or RNA as the substrate. However, recent advances in molecular design have enabled the development of nucleic acid sensors for a wider range of functions, including enzymes that do not normally bind DNA or RNA. Nucleic acid sensors present some potential advantages over classical small-molecule sensors, including water solubility and ease of synthesis. An overview of the multiple strategies under recent development is presented in this critical review, and expected future developments in microarrays, single molecule analysis, and in vivo sensing are discussed (160 references).
Collapse
Affiliation(s)
- Nan Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Ryazanova AY, Kubareva EA, Grman I, Lavrova NV, Ryazanova EM, Oretskaya TS, Hianik T. The study of the interaction of (cytosine-5)-DNA methyltransferase SsoII with DNA by acoustic method. Analyst 2011; 136:1227-33. [PMID: 21274469 DOI: 10.1039/c0an00545b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of (cytosine-5)-DNA methyltransferase SsoII (M.SsoII) with double-stranded DNA was studied by means of thickness shear mode acoustic method (TSM) and gel electrophoresis. M.SsoII recognizes in double-stranded DNA the methylation site 5'-CCNGG-3' (N=A, C, G, T) and methylates the inner cytosine residue. M.SsoII also acts as a transcription factor via binding to the regulatory site 5'-AGGACAAATTGTCCT-3' in the promoter region of SsoII restriction-modification system. We designed three 60-mer biotinylated DNA duplexes: with the methylation site (60met), with the regulatory site (60reg), and without a specific binding site (60oct). A strong binding of M.SsoII with each one of the studied DNA immobilized on the TSM transducer has been shown. The equilibrium dissociation constants, K(D), of the M.SsoII-DNA complexes decreased in the order 60oct>60reg>60met, suggesting a higher stability of M.SsoII-60met complex in comparison with the others. The association rate constant, k(a), was also higher for 60met, while similar values were obtained for 60reg and 60oct. The difference in the kinetic parameters for 60met and 60reg suggested a possible way of coordination between the two M.SsoII functions in a cell.
Collapse
Affiliation(s)
- A Yu Ryazanova
- Faculty of Bioengineering and Bioinformatics, Chemistry Department, and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
12
|
Bheemanaik S, Sistla S, Krishnamurthy V, Arathi S, Desirazu NR. Kinetics of Methylation by EcoP1I DNA Methyltransferase. Enzyme Res 2010; 2010:302731. [PMID: 21048863 PMCID: PMC2962900 DOI: 10.4061/2010/302731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 06/21/2010] [Indexed: 11/20/2022] Open
Abstract
EcoP1I DNA MTase (M.EcoP1I), an N6-adenine MTase from bacteriophage P1, is a part of the EcoP1I restriction-modification (R-M) system which belongs to the Type III R-M system. It recognizes the sequence 5′-AGACC-3′ and methylates the internal adenine. M.EcoP1I requires Mg2+ for the transfer of methyl groups to DNA. M.EcoP1I is shown to exist as dimer in solution, and even at high salt concentrations (0.5 M) the dimeric M.EcoP1I does not dissociate into monomers suggesting a strong interaction between the monomer subunits. Preincubation and isotope partitioning studies with M.EcoP1I indicate a kinetic mechanism where the duplex DNA binds first followed by AdoMet. Interestingly, M.EcoP1I methylates DNA substrates in the presence of Mn2+ and Ca2+ other than Mg2+ with varying affinities. Amino acid analysis and methylation assays in the presence of metal ions suggest that M.EcoP1I has indeed two metal ion-binding sites [358ID(x)n … ExK401 and 600DxDxD604 motif]. EcoP1I DNA MTase catalyzes the transfer of methyl groups using a distributive mode of methylation on DNA containing more than one recognition site. A chemical modification of EcoP1I DNA MTase using N-ethylmaleimide resulted in an irreversible inactivation of enzyme activity suggesting the possible role of cysteine residues in catalysis.
Collapse
|
13
|
Neely RK, Tamulaitis G, Chen K, Kubala M, Siksnys V, Jones AC. Time-resolved fluorescence studies of nucleotide flipping by restriction enzymes. Nucleic Acids Res 2009; 37:6859-70. [PMID: 19740769 PMCID: PMC2777440 DOI: 10.1093/nar/gkp688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Restriction enzymes Ecl18kI, PspGI and EcoRII-C, specific for interrupted 5-bp target sequences, flip the central base pair of these sequences into their protein pockets to facilitate sequence recognition and adjust the DNA cleavage pattern. We have used time-resolved fluorescence spectroscopy of 2-aminopurine-labelled DNA in complex with each of these enzymes in solution to explore the nucleotide flipping mechanism and to obtain a detailed picture of the molecular environment of the extrahelical bases. We also report the first study of the 7-bp cutter, PfoI, whose recognition sequence (T/CCNGGA) overlaps with that of the Ecl18kI-type enzymes, and for which the crystal structure is unknown. The time-resolved fluorescence experiments reveal that PfoI also uses base flipping as part of its DNA recognition mechanism and that the extrahelical bases are captured by PfoI in binding pockets whose structures are quite different to those of the structurally characterized enzymes Ecl18kI, PspGI and EcoRII-C. The fluorescence decay parameters of all the enzyme-DNA complexes are interpreted to provide insight into the mechanisms used by these four restriction enzymes to flip and recognize bases and the relationship between nucleotide flipping and DNA cleavage.
Collapse
Affiliation(s)
- Robert K Neely
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
14
|
Vogel N, Schiebel K, Humeny A. Technologies in the Whole-Genome Age: MALDI-TOF-Based Genotyping. ACTA ACUST UNITED AC 2009; 36:253-262. [PMID: 21049076 DOI: 10.1159/000225089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
With the decipherment of the human genome, new questions have moved into the focus of today's research. One key aspect represents the discovery of DNA variations capable to influence gene transcription, RNA splicing, or regulating processes, and their link to pathology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for the qualitative investigation and relative quantification of variations like single nucleotide polymorphisms, DNA methylation, microsatellite instability, or loss of heterozygosity. After its introduction into proteomics, efforts were made to adopt this technique to DNA analysis. Initially intended for peptide/protein analysis, it held several difficulties for application to nucleic acids. Today, MALDI-TOF-MS has reached worldwide acceptance and application in nucleic acid research, with a wide spectrum of methods being available. One of the most versatile approaches relies on primer extension to genotype single alleles, microsatellite repeat lengths or the methylation status of a given cytosine. Optimized methods comprising intelligent primer design and proper nucleotide selection for primer extension enabled multiplexing of reactions, rendering the analysis more economic due to parallel genotyping of several alleles in a single experiment. Laboratories equipped with MALDI-TOF-MS possess a universal technical platform for the analysis of a large variety of different molecules.
Collapse
Affiliation(s)
- Nicolas Vogel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
15
|
Sandin P, Stengel G, Ljungdahl T, Börjesson K, Macao B, Wilhelmsson LM. Highly efficient incorporation of the fluorescent nucleotide analogs tC and tCO by Klenow fragment. Nucleic Acids Res 2009; 37:3924-33. [PMID: 19401439 PMCID: PMC2709563 DOI: 10.1093/nar/gkp266] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Studies of the mechanisms by which DNA polymerases select the correct nucleotide frequently employ fluorescently labeled DNA to monitor conformational rearrangements of the polymerase-DNA complex in response to incoming nucleotides. For this purpose, fluorescent base analogs play an increasingly important role because they interfere less with the DNA-protein interaction than do tethered fluorophores. Here we report the incorporation of the 5'-triphosphates of two exceptionally bright cytosine analogs, 1,3-diaza-2-oxo-phenothiazine (tC) and its oxo-homolog, 1,3-diaza-2-oxo-phenoxazine (tC(O)), into DNA by the Klenow fragment. Both nucleotide analogs are polymerized with slightly higher efficiency opposite guanine than cytosine triphosphate and are shown to bind with nanomolar affinity to the DNA polymerase active site, according to fluorescence anisotropy measurements. Using this method, we perform competitive binding experiments and show that they can be used to determine the dissociation constant of any given natural or unnatural nucleotide. The results demonstrate that the active site of the Klenow fragment is flexible enough to tolerate base pairs that are size-expanded in the major groove. In addition, the possibility to enzymatically polymerize a fluorescent nucleotide with high efficiency complements the tool box of biophysical probes available to study DNA replication.
Collapse
Affiliation(s)
- Peter Sandin
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Hashimoto H, Horton JR, Zhang X, Cheng X. UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Epigenetics 2009; 4:8-14. [PMID: 19077538 DOI: 10.4161/epi.4.1.7370] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytosine methylation in DNA is a major epigenetic signal, and plays a central role in propagating chromatin status during cell division. However the mechanistic links between DNA methylation and histone methylation are poorly understood. A multi-domain protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for DNA CpG maintenance methylation at replication forks, and mouse UHRF1-null cells show enhanced susceptibility to DNA replication arrest and DNA damaging agents. Recent data demonstrated that the SET and RING associated (SRA) domain of UHRF1 binds hemimethylated CpG and flips 5-methylcytosine out of the DNA helix, whereas its tandom tudor domain and PHD domain bind the tail of histone H3 in a highly methylation sensitive manner. We hypothesize that UHRF1 brings the two components (histones and DNA) carrying appropriate markers (on the tails of H3 and hemimethylated CpG sites) ready to be assembled into a nucleosome after replication.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
17
|
Schroeder LA, Gries TJ, Saecker RM, Record MT, Harris ME, DeHaseth PL. Evidence for a tyrosine-adenine stacking interaction and for a short-lived open intermediate subsequent to initial binding of Escherichia coli RNA polymerase to promoter DNA. J Mol Biol 2008; 385:339-49. [PMID: 18976666 DOI: 10.1016/j.jmb.2008.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/30/2008] [Accepted: 10/03/2008] [Indexed: 11/18/2022]
Abstract
Bacterial RNA polymerase and a "sigma" transcription factor form an initiation-competent "open" complex at a promoter by disruption of about 14 base pairs. Strand separation is likely initiated at the highly conserved -11 A-T base pair. Amino acids in conserved region 2.3 of the main Escherichia coli sigma factor, sigma(70), are involved in this process, but their roles are unclear. To monitor the fates of particular bases upon addition of RNA polymerase, promoters bearing single substitutions of the fluorescent A-analog 2-aminopurine (2-AP) at -11 and two other positions in promoter DNA were examined. Evidence was obtained for an open intermediate on the pathway to open complex formation, in which these 2-APs are no longer stacked onto their neighboring bases. The tyrosine at residue 430 in region 2.3 of sigma(70) was shown to be involved in quenching the fluorescence of a 2-AP substituted at -11, presumably through a stacking interaction. These data refine the structural model for open complex formation and reveal a novel interaction involved in DNA melting by RNA polymerase.
Collapse
Affiliation(s)
- Lisa A Schroeder
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106-4973, USA
| | | | | | | | | | | |
Collapse
|
18
|
Carpenter MA, Bhagwat AS. DNA base flipping by both members of the PspGI restriction-modification system. Nucleic Acids Res 2008; 36:5417-25. [PMID: 18718929 PMCID: PMC2532716 DOI: 10.1093/nar/gkn528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The PspGI restriction–modification system recognizes the sequence CCWGG. R.PspGI cuts DNA before the first C in the cognate sequence and M.PspGI is thought to methylate N4 of one of the cytosines in the sequence. M.PspGI enhances fluorescence of 2-aminopurine in DNA if it replaces the second C in the sequence, while R.PspGI enhances fluorescence when the fluorophore replaces adenine in the central base pair. This strongly suggests that the methyltransferase flips the second C in the recognition sequence, while the endonuclease flips both bases in the central base pair out of the duplex. M.PspGI is the first N4-cytosine MTase for which biochemical evidence for base flipping has been presented. It is also the first type IIP methyltransferase whose catalytic activity is strongly stimulated by divalent metal ions. However, divalent metal ions are not required for its base-flipping activity. In contrast, these ions are required for both base flipping and catalysis by the endonuclease. The two enzymes have similar temperature profiles for base flipping and optimal flipping occurs at temperatures substantially below the growth temperature of the source organism for PspGI and for the catalytic activity of endonuclease. We discuss the implications of these results for DNA binding by these enzymes and their evolutionary origin.
Collapse
Affiliation(s)
- Michael A Carpenter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | | |
Collapse
|
19
|
Jurkowski TP, Anspach N, Kulishova L, Nellen W, Jeltsch A. The M.EcoRV DNA-(Adenine N6)-methyltransferase Uses DNA Bending for Recognition of an Expanded EcoDam Recognition Site. J Biol Chem 2007; 282:36942-52. [DOI: 10.1074/jbc.m706933200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V. Nucleotide flipping by restriction enzymes analyzed by 2-aminopurine steady-state fluorescence. Nucleic Acids Res 2007; 35:4792-9. [PMID: 17617640 PMCID: PMC1950555 DOI: 10.1093/nar/gkm513] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many DNA modification and repair enzymes require access to DNA bases and therefore flip nucleotides. Restriction endonucleases (REases) hydrolyze the phosphodiester backbone within or in the vicinity of the target recognition site and do not require base extrusion for the sequence readout and catalysis. Therefore, the observation of extrahelical nucleotides in a co-crystal of REase Ecl18kI with the cognate sequence, CCNGG, was unexpected. It turned out that Ecl18kI reads directly only the CCGG sequence and skips the unspecified N nucleotides, flipping them out from the helix. Sequence and structure conservation predict nucleotide flipping also for the complexes of PspGI and EcoRII with their target DNAs (/CCWGG), but data in solution are limited and indirect. Here, we demonstrate that Ecl18kI, the C-terminal domain of EcoRII (EcoRII-C) and PspGI enhance the fluorescence of 2-aminopurines (2-AP) placed at the centers of their recognition sequences. The fluorescence increase is largest for PspGI, intermediate for EcoRII-C and smallest for Ecl18kI, probably reflecting the differences in the hydrophobicity of the binding pockets within the protein. Omitting divalent metal cations and mutation of the binding pocket tryptophan to alanine strongly increase the 2-AP signal in the Ecl18kI–DNA complex. Together, our data provide the first direct evidence that Ecl18kI, EcoRII-C and PspGI flip nucleotides in solution.
Collapse
Affiliation(s)
- Gintautas Tamulaitis
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Roman H. Szczepanowski
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Matthias Bochtler
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland and Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany
- *To whom correspondence should be addressed.+370 5 2602108+370 5 2602116
| |
Collapse
|
21
|
Nikitin D, Mokrishcheva M, Solonin A. 6His-Eco29kI methyltransferase methylation site and kinetic mechanism characterization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1014-9. [PMID: 17604705 DOI: 10.1016/j.bbapap.2007.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 11/28/2022]
Abstract
A new type II 6His-Eco29kI DNA methyltransferase was tested for methylation site (CC(Me)GCGG) and catalytic reaction optimal conditions. With high substrate concentrations, an inhibitory effect of DNA, but not AdoMet, on its activity was observed. Isotope partitioning and substrate preincubation assays showed that the enzyme-AdoMet complex is catalytically active. Considering effect of different concentrations of DNA and AdoMet on initial velocity, ping-pong mechanisms were ruled out. According to data obtained, the enzyme appears to work by preferred ordered bi-bi mechanism with AdoMet as leading substrate.
Collapse
Affiliation(s)
- Dmitri Nikitin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki 5, Pushchino, Moscow Region 142290, Russia.
| | | | | |
Collapse
|
22
|
Lenz T, Bonnist EYM, Pljevaljcić G, Neely RK, Dryden DTF, Scheidig AJ, Jones AC, Weinhold E. 2-Aminopurine Flipped into the Active Site of the Adenine-Specific DNA Methyltransferase M.TaqI: Crystal Structures and Time-Resolved Fluorescence. J Am Chem Soc 2007; 129:6240-8. [PMID: 17455934 DOI: 10.1021/ja069366n] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the crystal structure of the DNA adenine-N6 methyltransferase, M.TaqI, complexed with DNA, showing the fluorescent adenine analog, 2-aminopurine, flipped out of the DNA helix and occupying virtually the same position in the active site as the natural target adenine. Time-resolved fluorescence spectroscopy of the crystalline complex faithfully reports this state: base flipping is accompanied by the loss of the very short ( approximately 50 ps) lifetime component associated with fully base-stacked 2-aminopurine in DNA, and 2-aminopurine is subject to considerable quenching by pi-stacking interactions with Tyr108 in the catalytic motif IV (NPPY). This proves 2-aminopurine to be an excellent probe for studying base flipping by M.TaqI and suggests similar quenching in the active sites of DNA and RNA adenine-N6 as well as DNA cytosine-N4 methyltransferases sharing the conserved motif IV. In solution, the same distinctive fluorescence response confirms complete destacking from DNA and is also observed when the proposed key residue for base flipping by M.TaqI, the target base partner thymine, is substituted by an abasic site analog. The corresponding cocrystal structure shows 2-aminopurine in the active site of M.TaqI, demonstrating that the partner thymine is not essential for base flipping. However, in this structure, a shift of the 3' neighbor of the target base into the vacancy left after base flipping is observed, apparently replicating a stabilizing role of the missing partner thymine. Time-resolved fluorescence and acrylamide quenching measurements of M.TaqI complexes in solution provide evidence for an alternative binding site for the extra-helical target base within M.TaqI and suggest that the partner thymine assists in delivering the target base into the active site.
Collapse
Affiliation(s)
- Thomas Lenz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Walker RK, McCullough AK, Lloyd RS. Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase. Biochemistry 2006; 45:14192-200. [PMID: 17115714 PMCID: PMC2673921 DOI: 10.1021/bi060802s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteriophage T4 pyrimidine dimer glycosylase (T4-Pdg) is a base excision repair protein that incises DNA at cyclobutane pyrimidine dimers that are formed as a consequence of exposure to ultraviolet light. Cocrystallization of T4-Pdg with substrate DNA has shown that the adenosine opposite the 5'-thymine of a thymine-thymine (TT) dimer is flipped into an extrahelical conformation and that the DNA backbone is kinked 60 degrees in the enzyme-substrate (ES) complex. To examine the kinetic details of the precatalytic events in the T4-Pdg reaction mechanism, investigations were designed to separately assess nucleotide flipping and DNA bending. The fluorescent adenine base analogue, 2-aminopurine (2-AP), placed opposite an abasic site analogue, tetrahydrofuran, exhibited a 2.8-fold increase in emission intensity when flipped in the ES complex. Using the 2-AP fluorescence signal for nucleotide flipping, kon and koff pre-steady-state kinetic measurements were determined. DNA bending was assessed by fluorescence resonance energy transfer using fluorescent donor-acceptor pairs located at the 5'-ends of oligonucleotides in duplex DNA. The fluorescence intensity of the donor fluorophore was quenched by 15% in the ES complex as a result of an increased efficiency of energy transfer between the labeled ends of the DNA in the bent conformation. Kinetic analyses of the bending signal revealed an off rate that was 2.5-fold faster than the off rate for nucleotide flipping. These results demonstrate that the nucleotide flipping step can be uncoupled from the bending of DNA in the formation of an ES complex.
Collapse
Affiliation(s)
- Randall K Walker
- PerkinElmer Life and Analytical Sciences, Boston, Massachusetts 02118-2512, USA
| | | | | |
Collapse
|
24
|
Estabrook RA, Reich N. Observing an Induced-fit Mechanism during Sequence-specific DNA Methylation. J Biol Chem 2006; 281:37205-14. [PMID: 17005571 DOI: 10.1074/jbc.m607538200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The characterization of conformational changes that drive induced-fit mechanisms and their quantitative importance to enzyme specificity are essential for a full understanding of enzyme function. Here, we report on M.HhaI, a sequence-specific DNA cytosine C(5) methyltransferase that reorganizes a flexible loop (residues 80-100) upon binding cognate DNA as part of an induced-fit mechanism. To directly observe this approximately 26A conformational rearrangement and provide a basis for understanding its importance to specificity, we replaced loop residues Lys-91 and Glu-94 with tryptophans. The double mutants W41F/K91W and W41F/E94W are relatively unperturbed in kinetic and thermodynamic properties. W41F/E94W shows DNA sequence-dependent changes in fluorescence: significant changes in equilibrium and transient state fluorescence that occur when the enzyme binds cognate DNA are absent with nonspecific DNA. These real-time, solution-based results provide direct evidence that binding to cognate DNA induces loop reorganization into the closed conformer, resulting in the correct assembly of the active site. We propose that M.HhaI scans nonspecific DNA in the loop-open conformer and rearranges to the closed form once the cognate site is recognized. The fluorescence data exclude mechanisms in which loop motion precedes base flipping, and we show loop rearrangements are directly coupled to base flipping, because the sequential removal of single hydrogen bonds within the target guanosine:cytosine base pair results in corresponding changes in loop motion.
Collapse
Affiliation(s)
- R August Estabrook
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
25
|
Bheemanaik S, Reddy Y, Rao D. Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 2006; 399:177-90. [PMID: 16987108 PMCID: PMC1609917 DOI: 10.1042/bj20060854] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylation reaction that is known to occur in eukaryotes. In general, MTases are two-domain proteins comprising one large and one small domain with the DNA-binding cleft located at the domain interface. The striking feature of all the structurally characterized DNA MTases is that they share a common core structure referred to as an 'AdoMet-dependent MTase fold'. DNA methylation has been reported to be essential for bacterial virulence, and it has been suggested that DNA adenine MTases (Dams) could be potential targets for both vaccines and antimicrobials. Drugs that block Dam could slow down bacterial growth and therefore drug-design initiatives could result in a whole new generation of antibiotics. The transfer of larger chemical entities in a MTase-catalysed reaction has been reported and this represents an interesting challenge for bio-organic chemists. In general, amino MTases could therefore be used as delivery systems for fluorescent or other reporter groups on to DNA. This is one of the potential applications of DNA MTases towards developing non-radioactive DNA probes and these could have interesting applications in molecular biology. Being nucleotide-sequence-specific, DNA MTases provide excellent model systems for studies on protein-DNA interactions. The focus of this review is on the chemistry, enzymology and structural aspects of exocyclic amino MTases.
Collapse
Affiliation(s)
| | - Yeturu V. R. Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Abstract
Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Seville 41080, Spain
| | | |
Collapse
|
27
|
Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, Geacintov NE, Gromova ES. Impact of benzo[a]pyrene-2'-deoxyguanosine lesions on methylation of DNA by SssI and HhaI DNA methyltransferases. Biochemistry 2006; 45:6142-59. [PMID: 16681387 DOI: 10.1021/bi0511639] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA damage caused by the binding of the tumorigen 7R,8S-diol 9S,10R-epoxide (B[a]PDE), a metabolite of bezo[a]pyrene, to guanine in CpG dinucleotide sequences could affect DNA methylation and, thus, represent a potential epigenetic mechanism of chemical carcinogenesis. In this work, we investigated the impact of stereoisomeric (+)- and (-)-trans-anti-B[a]P-N(2)-dG adducts (B(+) and B(-)) on DNA methylation by prokaryotic DNA methyltransferases M.SssI and M.HhaI. These two methyltransferases recognize CpG and GCGC sequences, respectively, and transfer a methyl group to the C5 atom of cytosine (C). A series of 18-mer unmethylated or hemimethylated oligodeoxynucleotide duplexes containing trans-anti-B[a]P-N(2)-dG adducts was generated. The B(+) or B(-) residues were introduced either 5' or 3' adjacent or opposite to the target 2'-deoxycytidines. The B[a]PDE lesions practically produced no effect on M.SssI binding to DNA but reduced M.HhaI binding by 1-2 orders of magnitude. In most cases, the benzo[a]pyrenyl residues decreased the methylation efficiency of hemimethylated and unmethylated DNA by M.SssI and M.HhaI. An absence of the methylation of hemimethylated duplexes was observed when either the (+)- or the (-)-trans-anti-B[a]P-N(2)-dG adduct was positioned 5' to the target dC. The effects observed may be related to the minor groove conformation of the bulky benzo[a]pyrenyl residue and to a perturbation of the normal contacts of the methyltransferase catalytic loop with the B[a]PDE-modified DNA. Our results indicate that a trans-anti-B[a]P-N(2)-dG lesion flanking a target dC in the CpG dinucleotide sequence on its 5'-side has a greater adverse impact on methylation than the same lesion when it is 3' adjacent or opposite to the target dC.
Collapse
Affiliation(s)
- Oksana M Subach
- Chemistry Department, Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tang GQ, Patel SS. Rapid binding of T7 RNA polymerase is followed by simultaneous bending and opening of the promoter DNA. Biochemistry 2006; 45:4947-56. [PMID: 16605262 DOI: 10.1021/bi052292s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To form a functional open complex, bacteriophage T7 RNA polymerase (RNAP) binds to its promoter DNA and induces DNA bending and opening. The objective of this study was to elucidate the temporal coupling in DNA binding, bending, and opening processes that occur during initiation. For this purpose, we conducted a combined measurement of stopped-flow fluorescence anisotropy, fluorescence resonance energy transfer (FRET), and 2-aminopurine fluorescence. Stopped-flow anisotropy measurements provided direct evidence of an intermediate resulting from rapid binding of the promoter to T7 RNA polymerase. Stopped-flow FRET measurements showed that promoter bending occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly bent. Similarly, stopped-flow 2-aminopurine fluorescence changes showed that promoter opening occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly melted. The indistinguishable observed rate constants of FRET and 2-aminopurine fluorescence changes indicate that DNA bending and opening processes are temporally coupled and these DNA conformational changes take place after the DNA binding step. The results in this paper are consistent with the mechanism in which the initial binding of T7 RNAP to the promoter results in a closed complex, which is then converted into an open complex in which the promoter is both sharply bent and melted.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
29
|
Horton JR, Zhang X, Maunus R, Yang Z, Wilson GG, Roberts RJ, Cheng X. DNA nicking by HinP1I endonuclease: bending, base flipping and minor groove expansion. Nucleic Acids Res 2006; 34:939-48. [PMID: 16473850 PMCID: PMC1363774 DOI: 10.1093/nar/gkj484] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HinP1I recognizes and cleaves the palindromic tetranucleotide sequence G downward arrowCGC in DNA. We report three structures of HinP1I-DNA complexes: in the presence of Ca(2+) (pre-reactive complex), in the absence of metal ion (binary complex) and in the presence of Mg(2+) (post-reactive complex). HinP1I forms a back-to-back dimer with two active sites and two DNA duplexes bound on the outer surfaces of the dimer facing away from each other. The 10 bp DNA duplexes undergo protein-induced distortions exhibiting features of A-, B- and Z-conformations: bending on one side (by intercalation of a phenylalanine side chain into the major groove), base flipping on the other side of the recognition site (by expanding the step rise distance of the local base pair to Z-form) and a local A-form conformation between the two central C:G base pairs of the recognition site (by binding of the N-terminal helix in the minor groove). In the pre- and post-reactive complexes, two metals (Ca(2+) or Mg(2+)) are found in the active site. The enzyme appears to cleave DNA sequentially, hydrolyzing first one DNA strand, as seen in the post-reactive complex in the crystalline state, and then the other, as supported by the observation that, in solution, a nicked DNA intermediate accumulates before linearization.
Collapse
Affiliation(s)
| | | | - Robert Maunus
- New England Biolabs, Inc.240 County Road, Ipswich, MA 01938-2723, USA
| | | | | | | | - Xiaodong Cheng
- To whom correspondence should be addressed. Tel: +1 404 727 8491; Fax: +1 404 727 3746;
| |
Collapse
|
30
|
Neely RK, Daujotyte D, Grazulis S, Magennis SW, Dryden DTF, Klimašauskas S, Jones AC. Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M.HhaI-DNA complexes. Nucleic Acids Res 2005; 33:6953-60. [PMID: 16340006 PMCID: PMC1310896 DOI: 10.1093/nar/gki995] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
DNA base flipping is an important mechanism in molecular enzymology, but its study is limited by the lack of an accessible and reliable diagnostic technique. A series of crystalline complexes of a DNA methyltransferase, M.HhaI, and its cognate DNA, in which a fluorescent nucleobase analogue, 2-aminopurine (AP), occupies defined positions with respect the target flipped base, have been prepared and their structures determined at higher than 2 Å resolution. From time-resolved fluorescence measurements of these single crystals, we have established that the fluorescence decay function of AP shows a pronounced, characteristic response to base flipping: the loss of the very short (∼100 ps) decay component and the large increase in the amplitude of the long (∼10 ns) component. When AP is positioned at sites other than the target site, this response is not seen. Most significantly, we have shown that the same clear response is apparent when M.HhaI complexes with DNA in solution, giving an unambiguous signal of base flipping. Analysis of the AP fluorescence decay function reveals conformational heterogeneity in the DNA–enzyme complexes that cannot be discerned from the present X-ray structures.
Collapse
Affiliation(s)
- Robert K. Neely
- School of Chemistry, The University of EdinburghWest Mains Road, Edinburgh EH9 3JJ, UK
- Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), The University of EdinburghWest Mains Road, Edinburgh EH9 3JZ, UK
| | - Dalia Daujotyte
- Laboratory of Biological DNA Modification, Institute of BiotechnologyLT-02241 Vilnius, Lithuania
| | - Saulius Grazulis
- Laboratory of DNA–Protein Interactions, Institute of BiotechnologyLT-02241 Vilnius, Lithuania
| | - Steven W. Magennis
- Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), The University of EdinburghWest Mains Road, Edinburgh EH9 3JZ, UK
| | - David T. F. Dryden
- School of Chemistry, The University of EdinburghWest Mains Road, Edinburgh EH9 3JJ, UK
- Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), The University of EdinburghWest Mains Road, Edinburgh EH9 3JZ, UK
| | - Saulius Klimašauskas
- Laboratory of Biological DNA Modification, Institute of BiotechnologyLT-02241 Vilnius, Lithuania
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius UniversityLT-2009 Vilnius, Lithuania
| | - Anita C. Jones
- School of Chemistry, The University of EdinburghWest Mains Road, Edinburgh EH9 3JJ, UK
- Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), The University of EdinburghWest Mains Road, Edinburgh EH9 3JZ, UK
- To whom correspondence should be addressed. Tel: +44 131 6506449; Fax: +44 131 6504743;
| |
Collapse
|
31
|
Zharkov DO, Grollman AP. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Mutat Res 2005; 577:24-54. [PMID: 15939442 DOI: 10.1016/j.mrfmmm.2005.03.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/28/2005] [Accepted: 03/29/2005] [Indexed: 11/24/2022]
Abstract
DNA glycosylases, the pivotal enzymes in base excision repair, are faced with the difficult task of recognizing their substrates in a large excess of unmodified DNA. We present here a kinetic analysis of DNA glycosylase substrate specificity, based on the probability of error. This novel approach to this subject explains many features of DNA surveillance and catalysis of lesion excision by DNA glycosylases. This approach also is applicable to the general issue of substrate specificity. We discuss determinants of substrate specificity in damaged DNA and in the enzyme, as well as methods by which these determinants can be identified.
Collapse
Affiliation(s)
- Dmitry O Zharkov
- Laboratory of Repair Enzymes, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | | |
Collapse
|
32
|
Su TJ, Tock MR, Egelhaaf SU, Poon WCK, Dryden DTF. DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Nucleic Acids Res 2005; 33:3235-44. [PMID: 15942026 PMCID: PMC1143692 DOI: 10.1093/nar/gki618] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The maintenance methyltransferase M.EcoKI recognizes the bipartite DNA sequence 5′-AACNNNNNNGTGC-3′, where N is any nucleotide. M.EcoKI preferentially methylates a sequence already containing a methylated adenine at or complementary to the underlined bases in the sequence. We find that the introduction of a single-stranded gap in the middle of the non-specific spacer, of up to 4 nt in length, does not reduce the binding affinity of M.EcoKI despite the removal of non-sequence-specific contacts between the protein and the DNA phosphate backbone. Surprisingly, binding affinity is enhanced in a manner predicted by simple polymer models of DNA flexibility. However, the activity of the enzyme declines to zero once the single-stranded region reaches 4 nt in length. This indicates that the recognition of methylation of the DNA is communicated between the two methylation targets not only through the protein structure but also through the DNA structure. Furthermore, methylation recognition requires base flipping in which the bases targeted for methylation are swung out of the DNA helix into the enzyme. By using 2-aminopurine fluorescence as the base flipping probe we find that, although flipping occurs for the intact duplex, no flipping is observed upon introduction of a gap. Our data and polymer model indicate that M.EcoKI bends the non-specific spacer and that the energy stored in a double-stranded bend is utilized to force or flip out the bases. This energy is not stored in gapped duplexes. In this way, M.EcoKI can determine the methylation status of two adenine bases separated by a considerable distance in double-stranded DNA and select the required enzymatic response.
Collapse
Affiliation(s)
- Tsueu-Ju Su
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Mark R. Tock
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Stefan U. Egelhaaf
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - Wilson C. K. Poon
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - David T. F. Dryden
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- To whom correspondence should be addressed. Tel: +44 131 650 4735; Fax: +44 131 650 6453;
| |
Collapse
|
33
|
Krosky DJ, Song F, Stivers JT. The origins of high-affinity enzyme binding to an extrahelical DNA base. Biochemistry 2005; 44:5949-59. [PMID: 15835884 DOI: 10.1021/bi050084u] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Base flipping is a highly conserved strategy used by enzymes to gain catalytic access to DNA bases that would otherwise be sequestered in the duplex structure. A classic example is the DNA repair enzyme uracil DNA glycosylase (UDG) which recognizes and excises unwanted uracil bases from DNA using a flipping mechanism. Previous work has suggested that enzymatic base flipping begins with dynamic breathing motions of the enzyme-bound DNA substrate, and then, only very late during the reaction trajectory do strong specific interactions with the extrahelical uracil occur. Here we report that UDG kinetically and thermodynamically prefers substrate sites where the uracil is paired with an unnatural adenine analogue that lacks any Watson-Crick hydrogen-bonding groups. The magnitude of the preference is a striking 43000-fold as compared to an adenine analogue that forms three H-bonds. Transient kinetic and fluorescence measurements suggest that preferential recognition of uracil in the context of a series of incrementally destabilized base pairs arises from two distinct effects: weak or absent hydrogen bonding, which thermodynamically assists extrusion, and, most importantly, increased flexibility of the site which facilitates DNA bending during base flipping. A coupled, stepwise reaction coordinate is implicated in which DNA bending precedes base pair rupture and flipping.
Collapse
Affiliation(s)
- Daniel J Krosky
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
34
|
Mashhoon N, Carroll M, Pruss C, Eberhard J, Ishikawa S, Estabrook RA, Reich N. Functional characterization of Escherichia coli DNA adenine methyltransferase, a novel target for antibiotics. J Biol Chem 2004; 279:52075-81. [PMID: 15456775 DOI: 10.1074/jbc.m408182200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have characterized Escherichia coli DNA adenine methyltransferase, a critical regulator of bacterial virulence. Steady-state kinetics, product inhibition, and isotope exchange studies are consistent with a kinetic mechanism in which the cofactor S-adenosylmethionine binds first, followed by sequence-specific DNA binding and catalysis. The enzyme has a fast methyl transfer step followed by slower product release steps, and we directly demonstrate the competence of the enzyme cofactor complex. Methylation of adjacent GATC sites is distributive with DNA derived from a genetic element that controls the transcription of the adjacent genes. This indicates that the first methylation event is followed by enzyme release. The affinity of the enzyme for both DNA and S-adenosylmethionine was determined. Our studies provide a basis for further structural and functional analysis of this important enzyme and for the identification of inhibitors for potential therapeutic applications.
Collapse
Affiliation(s)
- Neda Mashhoon
- EpiGenX Pharmaceuticals, Pacific Technology Center, Santa Barbara, California 93111, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Liebert K, Hermann A, Schlickenrieder M, Jeltsch A. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase. J Mol Biol 2004; 341:443-54. [PMID: 15276835 DOI: 10.1016/j.jmb.2004.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/22/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
By stopped-flow kinetics using 2-aminopurine as a probe to detect base flipping, we show here that base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase (MTase) is a biphasic process: target base flipping is very fast (k(flip)>240 s(-1)), but binding of the flipped base into the active site pocket of the enzyme is slow (k=0.1-2 s(-1)). Whereas base flipping occurs in the absence of S-adenosyl-l-methionine (AdoMet), binding of the target base in the active site pocket requires AdoMet. Our data suggest that the tyrosine residue in the DPPY motif conserved in the active site of DNA-(adenine-N6)-MTases stacks to the flipped target base. Substitution of the aspartic acid residue of the DPPY motif by alanine abolished base flipping, suggesting that this residue contacts and stabilizes the flipped base. The exchange of Ser188 located in a loop next to the active center by alanine led to a seven- to eightfold reduction of k(flip), which was also reduced with substrates having altered GATC recognition sites and in the absence of AdoMet. These findings provide evidence that the enzyme actively initiates base flipping by stabilizing the transition state of the process. Reduced rates of base flipping in substrates containing the target base in a non-canonical sequence demonstrate that DNA recognition by the MTase starts before base flipping. DNA recognition, cofactor binding and base flipping are correlated and efficient base flipping takes place only if the enzyme has bound to a cognate target site and AdoMet is available.
Collapse
Affiliation(s)
- Kirsten Liebert
- School of Engineering and Science, International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
36
|
Daujotyte D, Serva S, Vilkaitis G, Merkiene E, Venclovas C, Klimasauskas S. HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine. Structure 2004; 12:1047-55. [PMID: 15274924 DOI: 10.1016/j.str.2004.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/25/2004] [Accepted: 04/13/2004] [Indexed: 11/22/2022]
Abstract
Access to a nucleotide by its rotation out of the DNA helix (base flipping) is used by numerous DNA modification and repair enzymes. Despite extensive studies of the paradigm HhaI methyltransferase, initial events leading to base flipping remained elusive. Here we demonstrate that the replacement of the target C:G pair with the 2-aminopurine:T pair in the DNA or shortening of the side chain of Gln237 in the protein severely perturb base flipping, but retain specific DNA binding. Kinetic analyses and molecular modeling suggest that a steric interaction between the protruding side chain of Gln237 and the target cytosine in B-DNA reduces the energy barrier for flipping by 3 kcal/mol. Subsequent stabilization of an open state by further 4 kcal/mol is achieved through specific hydrogen bonding of the side chain to the orphan guanine. Gln237 thus plays a key role in actively opening the target C:G pair by a "push-and-bind" mechanism.
Collapse
Affiliation(s)
- Dalia Daujotyte
- Laboratory of Biological DNA Modification, Institute of Biotechnology, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
37
|
Subach OM, Khoroshaev AV, Gerasimov DN, Baskunov VB, Shchyolkina AK, Gromova ES. 2-Pyrimidinone as a probe for studying the EcoRII DNA methyltransferase-substrate interaction. ACTA ACUST UNITED AC 2004; 271:2391-9. [PMID: 15182354 DOI: 10.1111/j.1432-1033.2004.04158.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
EcoRII DNA methyltransferase (M.EcoRII) recognizes the 5' em leader CC*T/AGG em leader 3' DNA sequence and catalyzes the transfer of the methyl group from S-adenosyl-l-methionine to the C5 position of the inner cytosine residue (C*). Here, we study the mechanism of inhibition of M.EcoRII by DNA containing 2-pyrimidinone, a cytosine analogue lacking an NH(2) group at the C4 position of the pyrimidine ring. Also, DNA containing 2-pyrimidinone was used for probing contacts of M.EcoRII with functional groups of pyrimidine bases of the recognition sequence. 2-Pyrimidinone was incorporated into the 5' em leader CCT/AGG em leader 3' sequence replacing the target and nontarget cytosine and central thymine residues. Study of the DNA stability using thermal denaturation of 2-pyrimidinone containing duplexes pointed to the influence of the bases adjacent to 2-pyrimidinone and to a greater destabilizing influence of 2-pyrimidinone substitution for thymine than that for cytosine. Binding of M.EcoRII to 2-pyrimidinone containing DNA and methylation of these DNA demonstrate that the amino group of the outer cytosine in the EcoRII recognition sequence is not involved in the DNA-M.EcoRII interaction. It is probable that there are contacts between the functional groups of the central thymine exposed in the major groove and M.EcoRII. 2-Pyrimidinone replacing the target cytosine in the EcoRII recognition sequence forms covalent adducts with M.EcoRII. In the absence of the cofactor S-adenosyl-l-methionine, proton transfer to the C5 position of 2-pyrimidinone occurs and in the presence of S-adenosyl-l-methionine, methyl transfer to the C5 position of 2-pyrimidinone occurs.
Collapse
|
38
|
Su TJ, Connolly BA, Darlington C, Mallin R, Dryden DTF. Unusual 2-aminopurine fluorescence from a complex of DNA and the EcoKI methyltransferase. Nucleic Acids Res 2004; 32:2223-30. [PMID: 15107490 PMCID: PMC407817 DOI: 10.1093/nar/gkh531] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The methyltransferase, M.EcoKI, recognizes the DNA sequence 5'-AACNNNNNNGTGC-3' and methylates adenine at the underlined positions. DNA methylation has been shown by crystallography to occur via a base flipping mechanism and is believed to be a general mechanism for all methyltransferases. If no structure is available, the fluorescence of 2-aminopurine is often used as a signal for base flipping as it shows enhanced fluorescence when its environment is perturbed. We find that 2-aminopurine gives enhanced fluorescence emission not only when it is placed at the M.EcoKI methylation sites but also at a location adjacent to the target adenine. Thus it appears that 2-aminopurine fluorescence intensity is not a clear indicator of base flipping but is a more general measure of DNA distortion. Upon addition of the cofactor S-adenosyl-methionine to the M.EcoKI:DNA complex, the 2-aminopurine fluorescence changes to that of a new species showing excitation at 345 nm and emission at 450 nm. This change requires a fully active enzyme, the correct cofactor and the 2-aminopurine located at the methylation site. However, the new fluorescent species is not a covalently modified form of 2-aminopurine and we suggest that it represents a hitherto undetected physicochemical form of 2-aminopurine.
Collapse
Affiliation(s)
- T-J Su
- School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | | | | | | | | |
Collapse
|
39
|
Mruk I, Cichowicz M, Kaczorowski T. Characterization of the LlaCI methyltransferase from Lactococcus lactis subsp. cremoris W15 provides new insights into the biology of type II restriction-modification systems. MICROBIOLOGY-SGM 2004; 149:3331-3341. [PMID: 14600245 DOI: 10.1099/mic.0.26562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene encoding the LlaCI methyltransferase (M.LlaCI) from Lactococcus lactis subsp. cremoris W15 was overexpressed in Escherichia coli. The enzyme was purified to apparent homogeneity using three consecutive steps of chromatography on phosphocellulose, blue-agarose and Superose 12HR, yielding a protein of M(r) 31 300+/-1000 under denaturing conditions. The exact position of the start codon AUG was determined by protein microsequencing. This enzyme recognizes the specific palindromic sequence 5'-AAGCTT-3'. Purified M.LlaCI was characterized. Unlike many other methyltransferases, M.LlaCI exists in solution predominantly as a dimer. It modifies the first adenine residue at the 5' end of the specific sequence to N(6)-methyladenine and thus is functionally identical to the corresponding methyltransferases of the HindIII (Haemophilus influenzae Rd) and EcoVIII (Escherichia coli E1585-68) restriction-modification systems. This is reflected in the identity of M.LlaCI with M.HindIII and M.EcoVIII noted at the amino acid sequence level (50 % and 62 %, respectively) and in the presence of nine sequence motifs conserved among N(6)-adenine beta-class methyltransferases. However, polyclonal antibodies raised against M.EcoVIII cross-reacted with M.LlaCI but not with M.HindIII. Restriction endonucleases require Mg(2+) for phosphodiester bond cleavage. Mg(2+) was shown to be a strong inhibitor of the M.LlaCI enzyme and its isospecific homologues. This observation suggests that sensitivity of the M.LlaCI to Mg(2+) may strengthen the restriction activity of the cognate endonuclease in the bacterial cell. Other biological implications of this finding are also discussed.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Magdalena Cichowicz
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
40
|
Hattman S, Malygin EG. Bacteriophage T2Dam and T4Dam DNA-[N6-adenine]-methyltransferases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY VOLUME 77 2004; 77:67-126. [PMID: 15196891 DOI: 10.1016/s0079-6603(04)77003-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stanley Hattman
- Department of Biology, University of Rochester, Rochester, NY 14627-0211 USA
| | | |
Collapse
|
41
|
Malygin EG, Zinoviev VV, Evdokimov AA, Lindstrom WM, Reich NO, Hattman S. DNA (cytosine-N4-)- and -(adenine-N6-)-methyltransferases have different kinetic mechanisms but the same reaction route. A comparison of M.BamHI and T4 Dam. J Biol Chem 2003; 278:15713-9. [PMID: 12598537 DOI: 10.1074/jbc.m213213200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied the kinetics of methyl group transfer by the BamHI DNA-(cytosine-N(4)-)-methyltransferase (MTase) from Bacillus amyloliquefaciens to a 20-mer oligodeoxynucleotide duplex containing the palindromic recognition site GGATCC. Under steady state conditions the BamHI MTase displayed a simple kinetic behavior toward the 20-mer duplex. There was no apparent substrate inhibition at concentrations much higher than the K(m) for either DNA (100-fold higher) or S-adenosyl-l-methionine (AdoMet) (20-fold higher); this indicates that dead-end complexes did not form in the course of the methylation reaction. The DNA methylation rate was analyzed as a function of both substrate and product concentrations. It was found to exhibit product inhibition patterns consistent with a steady state random bi-bi mechanism in which the dominant order of substrate binding and product release (methylated DNA, DNA(Me), and S-adenosyl-l-homocysteine, AdoHcy) was Ado-Met DNA DNA(Me) AdoHcy. The M.BamHI kinetic scheme was compared with that for the T4 Dam (adenine-N(6)-)-MTase. The two differed with respect to an effector action of substrates and in the rate-limiting step of the reaction (product inhibition patterns are the same for the both MTases). From this we conclude that the common chemical step in the methylation reaction, methyl transfer from AdoMet to a free exocyclic amino group, is not sufficient to dictate a common kinetic scheme even though both MTases follow the same reaction route.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology "Vector," Koltsovo, Novosibirsk Region, 630559 Russia
| | | | | | | | | | | |
Collapse
|
42
|
Bheemanaik S, Chandrashekaran S, Nagaraja V, Rao DN. Kinetic and catalytic properties of dimeric KpnI DNA methyltransferase. J Biol Chem 2003; 278:7863-74. [PMID: 12506109 DOI: 10.1074/jbc.m211458200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KpnI DNA-(N(6)-adenine)-methyltransferase (KpnI MTase) is a member of a restriction-modification (R-M) system in Klebsiella pneumoniae and recognizes the sequence 5'-GGTACC-3'. It modifies the recognition sequence by transferring the methyl group from S-adenosyl-l-methionine (AdoMet) to the N(6) position of adenine residue. KpnI MTase occurs as a dimer in solution as shown by gel filtration and chemical cross-linking analysis. The nonlinear dependence of methylation activity on enzyme concentration indicates that the functionally active form of the enzyme is also a dimer. Product inhibition studies with KpnI MTase showed that S-adenosyl-l-homocysteine is a competitive inhibitor with respect to AdoMet and noncompetitive inhibitor with respect to DNA. The methylated DNA showed noncompetitive inhibition with respect to both DNA and AdoMet. A reduction in the rate of methylation was observed at high concentrations of duplex DNA. The kinetic analysis where AdoMet binds first followed by DNA, supports an ordered bi bi mechanism. After methyl transfer, methylated DNA dissociates followed by S-adenosyl-l-homocysteine. Isotope-partitioning analysis showed that KpnI MTase-AdoMet complex is catalytically active.
Collapse
|
43
|
Humeny A, Beck C, Becker CM, Jeltsch A. Detection and analysis of enzymatic DNA methylation of oligonucleotide substrates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal Biochem 2003; 313:160-6. [PMID: 12576072 DOI: 10.1016/s0003-2697(02)00568-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) mass spectrometry was employed to analyze DNA methylation carried out by the Escherichia coli dam DNA methyltransferase using oligonucleotide substrates with molecular masses of 5000-10,000 Da per strand. The mass spectrometry assay offers several advantages: (i) it directly shows the methylation as the increase in the mass of the substrate DNA, (ii) it is nonradioactive, (iii) it is quantitative, and (iv) it can be automated for high-throughput applications. Since unmethylated and methylated DNA are detected, the ratio of methylation can be determined directly and accurately. Furthermore, the assay allows detection individually of the methylation of several substrates in competition, offering an ideal setup to analyze the specificity of DNA interacting with enzymes. We could not identify methylation at any noncanonical site, indicating that the dam MTase is a very specific enzyme. Finally, MALDI-TOF mass spectrometry permitted assessment of the number of methyl groups incorporated into each DNA strand, thereby, allowing study of mechanistic details such as the processivity of the methylation reaction. We provide evidence that the dam MTase modifies DNA in a processive reaction, confirming earlier findings.
Collapse
Affiliation(s)
- Andreas Humeny
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
45
|
Urig S, Gowher H, Hermann A, Beck C, Fatemi M, Humeny A, Jeltsch A. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol 2002; 319:1085-96. [PMID: 12079349 DOI: 10.1016/s0022-2836(02)00371-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Escherichia coli dam adenine-N6 methyltransferase modifies DNA at GATC sequences. It is involved in post-replicative mismatch repair, control of DNA replication and gene regulation. We show that E. coli dam acts as a functional monomer and methylates only one strand of the DNA in each binding event. The preferred way of ternary complex assembly is that the enzyme first binds to DNA and then to S-adenosylmethionine. The enzyme methylates an oligonucleotide containing two dam sites and a 879 bp PCR product with four sites in a fully processive reaction. On lambda-DNA comprising 48,502 bp and 116 dam sites, E. coli dam scans 3000 dam sites per binding event in a random walk, that on average leads to a processive methylation of 55 sites. Processive methylation of DNA considerably accelerates DNA methylation. The highly processive mechanism of E. coli dam could explain why small amounts of E. coli dam are able to maintain the methylation state of dam sites during DNA replication. Furthermore, our data support the general rule that solitary DNA methyltransferase modify DNA processively whereas methyltransferases belonging to a restriction-modification system show a distributive mechanism, because processive methylation of DNA would interfere with the biological function of restriction-modification systems.
Collapse
Affiliation(s)
- Sabine Urig
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Yokochi T, Robertson KD. Preferential methylation of unmethylated DNA by Mammalian de novo DNA methyltransferase Dnmt3a. J Biol Chem 2002; 277:11735-45. [PMID: 11821381 DOI: 10.1074/jbc.m106590200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methylation is an epigenetic modification of DNA. There are currently three catalytically active mammalian DNA methyltransferases, DNMT1, -3a, and -3b. DNMT1 has been shown to have a preference for hemimethylated DNA and has therefore been termed the maintenance methyltransferase. Although previous studies on DNMT3a and -3b revealed that they act as functional enzymes during development, there is little biochemical evidence about how new methylation patterns are established and maintained. To study this mechanism we have cloned and expressed Dnmt3a using a baculovirus expression system. The substrate specificity of Dnmt3a and molecular mechanism of its methylation reaction were then analyzed using a novel and highly reproducible assay. We report here that Dnmt3a is a true de novo methyltransferase that prefers unmethylated DNA substrates more than 3-fold to hemimethylated DNA. Furthermore, Dnmt3a binds DNA nonspecifically, regardless of the presence of CpG dinucleotides in the DNA substrate. Kinetic analysis supports an Ordered Bi Bi mechanism for Dnmt3a, where DNA binds first, followed by S-adenosyl-l-methionine.
Collapse
Affiliation(s)
- Tomoki Yokochi
- Epigenetic Gene Regulation and Cancer Section, Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
47
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
48
|
Evdokimov AA, Zinoviev VV, Malygin EG, Schlagman SL, Hattman S. Bacteriophage T4 Dam DNA-[N6-adenine]methyltransferase. Kinetic evidence for a catalytically essential conformational change in the ternary complex. J Biol Chem 2002; 277:279-86. [PMID: 11687585 DOI: 10.1074/jbc.m108864200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We carried out a steady state kinetic analysis of the bacteriophage T4 DNA-[N6-adenine]methyltransferase (T4 Dam) mediated methyl group transfer reaction from S-adenosyl-l-methionine (AdoMet) to Ade in the palindromic recognition sequence, GATC, of a 20-mer oligonucleotide duplex. Product inhibition patterns were consistent with a steady state-ordered bi-bi mechanism in which the order of substrate binding and product (methylated DNA, DNA(Me) and S-adenosyl-l-homocysteine, AdoHcy) release was AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. A strong reduction in the rate of methylation was observed at high concentrations of the substrate 20-mer DNA duplex. In contrast, increasing substrate AdoMet concentration led to stimulation in the reaction rate with no evidence of saturation. We propose the following model. Free T4 Dam (initially in conformational form E) randomly interacts with substrates AdoMet and DNA to form a ternary T4 Dam-AdoMet-DNA complex in which T4 Dam has isomerized to conformational state F, which is specifically adapted for catalysis. After the chemical step of methyl group transfer from AdoMet to DNA, product DNA(Me) dissociates relatively rapidly (k(off) = 1.7 x s(-1)) from the complex. In contrast, dissociation of product AdoHcy proceeds relatively slowly (k(off) = 0.018 x s(-1)), indicating that its release is the rate-limiting step, consistent with kcat = 0.015 x s(-1). After AdoHcy release, the enzyme remains in the F conformational form and is able to preferentially bind AdoMet (unlike form E, which randomly binds AdoMet and DNA), and the AdoMet-F binary complex then binds DNA to start another methylation cycle. We also propose an alternative pathway in which the release of AdoHcy is coordinated with the binding of AdoMet in a single concerted event, while T4 Dam remains in the isomerized form F. The resulting AdoMet-F binary complex then binds DNA, and another methylation reaction ensues. This route is preferred at high AdoMet concentrations.
Collapse
Affiliation(s)
- Alexey A Evdokimov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk 630559, Russia
| | | | | | | | | |
Collapse
|
49
|
Beck C, Cranz S, Solmaz M, Roth M, Jeltsch A. How does a DNA interacting enzyme change its specificity during molecular evolution? A site-directed mutagenesis study at the DNA binding site of the DNA-(adenine-N6)-methyltransferase EcoRV. Biochemistry 2001; 40:10956-65. [PMID: 11551190 DOI: 10.1021/bi0155450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The EcoRV DNA-(adenine-N6)-methyltransferase (MTase) recognizes GATATC sequences and modifies the first adenine residue within this site. Parts of its DNA interface show high sequence homology to DNA MTases of the dam family which recognize and modify GATC sequences. A phylogenetic analysis of M.EcoRV and dam-MTases suggests that EcoRV arose in evolution from a primordial dam-MTase in agreement to the finding that M.EcoRV also methylates GATC sites albeit at a strongly reduced rate. GATCTC sites that deviate in only one position from the EcoRV sequence are preferred over general dam sites. We have investigated by site-directed mutagenesis the function of 17 conserved and nonconserved residues within three loops flanking the DNA binding cleft of M.EcoRV. M.EcoRV contacts the GATATC sequence with two highly cooperative recognition modules. The contacts to the GAT-part of the recognition sequence are formed by residues conserved between dam MTases and M.EcoRV. Mutations at these positions lead to an increase in the discrimination between GATATC and GATC substrates. Our data show that the change in sequence specificity from dam (GATC) to EcoRV (GATATC) was accompanied by the generation of a second recognition module that contacts the second half of the target sequence. The new DNA contacts are formed by residues from all three loops that are not conserved between M.EcoRV and dam MTases. Mutagenesis at important residues within this module leads to variants that show a decreased ability to recognize the TC-part of the GATATC sequence.
Collapse
Affiliation(s)
- C Beck
- Institut für Biochemie, Fachbereich 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
50
|
Cheng X, Roberts RJ. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 2001; 29:3784-95. [PMID: 11557810 PMCID: PMC55914 DOI: 10.1093/nar/29.18.3784] [Citation(s) in RCA: 361] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Twenty AdoMet-dependent methyltransferases (MTases) have been characterized structurally by X-ray crystallography and NMR. These include seven DNA MTases, five RNA MTases, four protein MTases and four small molecule MTases acting on the carbon, oxygen or nitrogen atoms of their substrates. The MTases share a common core structure of a mixed seven-stranded beta-sheet (6 downward arrow 7 upward arrow 5 downward arrow 4 downward arrow 1 downward arrow 2 downward arrow 3 downward arrow) referred to as an 'AdoMet-dependent MTase fold', with the exception of a protein arginine MTase which contains a compact consensus fold lacking the antiparallel hairpin strands (6 downward arrow 7 upward arrow). The consensus fold is useful to identify hypothetical MTases during structural proteomics efforts on unannotated proteins. The same core structure works for very different classes of MTase including those that act on substrates differing in size from small molecules (catechol or glycine) to macromolecules (DNA, RNA and protein). DNA MTases use a 'base flipping' mechanism to deliver a specific base within a DNA molecule into a typically concave catalytic pocket. Base flipping involves rotation of backbone bonds in double-stranded DNA to expose an out-of-stack nucleotide, which can then be a substrate for an enzyme-catalyzed chemical reaction. The phenomenon is fully established for DNA MTases and for DNA base excision repair enzymes, and is likely to prove general for enzymes that require access to unpaired, mismatched or damaged nucleotides within base-paired regions in DNA and RNA. Several newly discovered MTase families in eukaryotes (DNA 5mC MTases and protein arginine and lysine MTases) offer new challenges in the MTase field.
Collapse
Affiliation(s)
- X Cheng
- Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|