1
|
Larrea‐Sebal A, Sasiain I, Jebari‐Benslaiman S, Galicia‐Garcia U, Uribe KB, Benito‐Vicente A, Gracia‐Rubio I, Bediaga‐Bañeres H, Arrasate S, Cenarro A, Civeira F, González‐Díaz H, Martín C. OptiMo-LDLr: An Integrated In Silico Model with Enhanced Predictive Power for LDL Receptor Variants, Unraveling Hot Spot Pathogenic Residues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305177. [PMID: 38258479 PMCID: PMC10987110 DOI: 10.1002/advs.202305177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Familial hypercholesterolemia (FH) is an inherited metabolic disease affecting cholesterol metabolism, with 90% of cases caused by mutations in the LDL receptor gene (LDLR), primarily missense mutations. This study aims to integrate six commonly used predictive software to create a new model for predicting LDLR mutation pathogenicity and mapping hot spot residues. Six predictive-software are selected: Polyphen-2, SIFT, MutationTaster, REVEL, VARITY, and MLb-LDLr. Software accuracy is tested with the characterized variants annotated in ClinVar and, by bioinformatic and machine learning techniques all models are integrated into a more accurate one. The resulting optimized model presents a specificity of 96.71% and a sensitivity of 98.36%. Hot spot residues with high potential of pathogenicity appear across all domains except for the signal peptide and the O-linked domain. In addition, translating this information into 3D structure of the LDLr highlights potentially pathogenic clusters within the different domains, which may be related to specific biological function. The results of this work provide a powerful tool to classify LDLR pathogenic variants. Moreover, an open-access guide user interface (OptiMo-LDLr) is provided to the scientific community. This study shows that combination of several predictive software results in a more accurate prediction to help clinicians in FH diagnosis.
Collapse
Affiliation(s)
- Asier Larrea‐Sebal
- Biofisika Institute (UPV/EHU, CSIC)Barrio Sarriena s/n.LeioaBizkaia48940Spain
- Department of Biochemistry and Molecular BiologyUniversidad del País Vasco UPV/EHULeioaBizkaia48940Spain
- Fundación Biofisika BizkaiaBarrio Sarriena s/n.LeioaBizkaia48940Spain
| | - Iñaki Sasiain
- Department of Biochemistry and Molecular BiologyUniversidad del País Vasco UPV/EHULeioaBizkaia48940Spain
| | - Shifa Jebari‐Benslaiman
- Biofisika Institute (UPV/EHU, CSIC)Barrio Sarriena s/n.LeioaBizkaia48940Spain
- Department of Biochemistry and Molecular BiologyUniversidad del País Vasco UPV/EHULeioaBizkaia48940Spain
| | - Unai Galicia‐Garcia
- Biofisika Institute (UPV/EHU, CSIC)Barrio Sarriena s/n.LeioaBizkaia48940Spain
- Department of Biochemistry and Molecular BiologyUniversidad del País Vasco UPV/EHULeioaBizkaia48940Spain
| | - Kepa B. Uribe
- Department of Biochemistry and Molecular BiologyUniversidad del País Vasco UPV/EHULeioaBizkaia48940Spain
| | - Asier Benito‐Vicente
- Biofisika Institute (UPV/EHU, CSIC)Barrio Sarriena s/n.LeioaBizkaia48940Spain
- Department of Biochemistry and Molecular BiologyUniversidad del País Vasco UPV/EHULeioaBizkaia48940Spain
| | - Irene Gracia‐Rubio
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCVUniversidad de ZaragozaZaragoza50009Spain
| | | | - Sonia Arrasate
- Department of Organic and ChemistryUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Ana Cenarro
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCVUniversidad de ZaragozaZaragoza50009Spain
| | - Fernando Civeira
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCVUniversidad de ZaragozaZaragoza50009Spain
| | - Humberto González‐Díaz
- Biofisika Institute (UPV/EHU, CSIC)Barrio Sarriena s/n.LeioaBizkaia48940Spain
- Ikerbasque, Basque Foundation for ScienceBilbaoBizkaia48013Spain
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC)Barrio Sarriena s/n.LeioaBizkaia48940Spain
- Department of Biochemistry and Molecular BiologyUniversidad del País Vasco UPV/EHULeioaBizkaia48940Spain
| |
Collapse
|
2
|
Koerner CM, Roberts BS, Neher SB. Endoplasmic reticulum quality control in lipoprotein metabolism. Mol Cell Endocrinol 2019; 498:110547. [PMID: 31442546 PMCID: PMC6814580 DOI: 10.1016/j.mce.2019.110547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/26/2022]
Abstract
Lipids play a critical role in energy metabolism, and a suite of proteins is required to deliver lipids to tissues. Several of these proteins require an intricate endoplasmic reticulum (ER) quality control (QC) system and unique secondary chaperones for folding. Key examples include apolipoprotein B (apoB), which is the primary scaffold for many lipoproteins, dimeric lipases, which hydrolyze triglycerides from circulating lipoproteins, and the low-density lipoprotein receptor (LDLR), which clears cholesterol-rich lipoproteins from the circulation. ApoB requires specialized proteins for lipidation, dimeric lipases lipoprotein lipase (LPL) and hepatic lipase (HL) require a transmembrane maturation factor for secretion, and the LDLR requires several specialized, domain-specific chaperones. Deleterious mutations in these proteins or their chaperones may result in dyslipidemias, which are detrimental to human health. Here, we review the ER quality control systems that ensure secretion of apoB, LPL, HL, and LDLR with a focus on the specialized chaperones required by each protein.
Collapse
Affiliation(s)
- Cari M Koerner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
3
|
Lu X. Structure and Function of Proprotein Convertase Subtilisin/kexin Type 9 (PCSK9) in Hyperlipidemia and Atherosclerosis. Curr Drug Targets 2019; 20:1029-1040. [DOI: 10.2174/1389450120666190214141626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/01/2023]
Abstract
Background:One of the important factors in Low-Density Lipoprotein (LDL) metabolism is the LDL receptor (LDLR) by its capacity to bind and subsequently clear cholesterol derived from LDL (LDL-C) in the circulation. Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is a newly discovered serine protease that destroys LDLR in the liver and thereby controls the levels of LDL in plasma. Inhibition of PCSK9-mediated degradation of LDLR has, therefore, become a novel target for lipid-lowering therapy.Methods:We review the current understanding of the structure and function of PCSK9 as well as its implications for the treatment of hyperlipidemia and atherosclerosis.Results:New treatments such as monoclonal antibodies against PCSK9 may be useful agents to lower plasma levels of LDL and hence prevent atherosclerosis.Conclusion:PCSK9's mechanism of action is not yet fully clarified. However, treatments that target PCSK9 have shown striking early efficacy and promise to improve the lives of countless patients with hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR, United Kingdom
| |
Collapse
|
4
|
Abstract
Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER), where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the cholinesterase-like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary T4-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occurs spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
Collapse
Affiliation(s)
- Bruno Di Jeso
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Peter Arvan
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
5
|
Martínez-Oliván J, Arias-Moreno X, Hurtado-Guerrero R, Carrodeguas JA, Miguel-Romero L, Marina A, Bruscolini P, Sancho J. The closed conformation of the LDL receptor is destabilized by the low Ca(++) concentration but favored by the high Mg(++) concentration in the endosome. FEBS Lett 2015; 589:3534-40. [PMID: 26526611 DOI: 10.1016/j.febslet.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The LDL receptor (LDLR) internalizes LDL and VLDL particles. In the endosomes, it adopts a closed conformation important for recycling, by interaction of two modules of the ligand binding domain (LR4-5) and a β-propeller motif. Here, we investigate by SPR the interactions between those two modules and the β-propeller. Our results indicate that the two modules cooperate to bind the β-propeller. The binding is favored by low pH and by high [Ca(++)]. Our data show that Mg(++), at high concentration in the endosome, favors the formation of the closed conformation by replacing the structuring effect of Ca(++) in LR5. We propose a sequential model of LDL release where formation of the close conformation follows LDL release.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain; Fundación ARAID, Diputación General de Aragón, Spain
| | - José Alberto Carrodeguas
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Laura Miguel-Romero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | - Pierpaolo Bruscolini
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
6
|
Martínez-Oliván J, Fraga H, Arias-Moreno X, Ventura S, Sancho J. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor. PLoS One 2015; 10:e0132141. [PMID: 26168158 PMCID: PMC4500599 DOI: 10.1371/journal.pone.0132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 01/26/2023] Open
Abstract
The LDL receptor internalizes circulating LDL and VLDL particles for degradation. Its extracellular binding domain contains ten (seven LA and three EGF) cysteine-rich modules, each bearing three disulfide bonds. Despite the enormous number of disulfide combinations possible, LDLR oxidative folding leads to a single native species with 30 unique intradomain disulfides. Previous folding studies of the LDLR have shown that non native disulfides are initially formed that lead to compact species. Accordingly, the folding of the LDLR has been described as a "coordinated nonvectorial” reaction, and it has been proposed that early compaction funnels the reaction toward the native structure. Here we analyze the oxidative folding of LA4 and LA5, the modules critical for ApoE binding, isolated and in the LA45 tandem. Compared to LA5, LA4 folding is slow and inefficient, resembling that of LA5 disease-linked mutants. Without Ca++, it leads to a mixture of many two-disulfide scrambled species and, with Ca++, to the native form plus two three-disulfide intermediates. The folding of the LA45 tandem seems to recapitulate that of the individual repeats. Importantly, although the folding of the LA45 tandem takes place through formation of scrambled isomers, no interdomain disulfides are detected, i.e. the two adjacent modules fold independently without the assistance of interdomain covalent interactions. Reduction of incredibly large disulfide combinatorial spaces, such as that in the LDLR, by intradomain confinement of disulfide bond formation might be also essential for the efficient folding of other homologous disulfide-rich receptors.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Hugo Fraga
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail: (SV); (JS)
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail: (SV); (JS)
| |
Collapse
|
7
|
Schroeder C, Swedberg J, Withka J, Rosengren K, Akcan M, Clayton D, Daly N, Cheneval O, Borzilleri K, Griffor M, Stock I, Colless B, Walsh P, Sunderland P, Reyes A, Dullea R, Ammirati M, Liu S, McClure K, Tu M, Bhattacharya S, Liras S, Price D, Craik D. Design and Synthesis of Truncated EGF-A Peptides that Restore LDL-R Recycling in the Presence of PCSK9 In Vitro. ACTA ACUST UNITED AC 2014; 21:284-94. [DOI: 10.1016/j.chembiol.2013.11.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
|
8
|
Ferri N. Proprotein convertase subtilisin/kexin type 9: from the discovery to the development of new therapies for cardiovascular diseases. SCIENTIFICA 2012; 2012:927352. [PMID: 24278757 PMCID: PMC3820617 DOI: 10.6064/2012/927352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/28/2012] [Indexed: 06/02/2023]
Abstract
The identification of the HMG-CoA reductase inhibitors, statins, has represented a dramatic innovation of the pharmacological modulation of hypercholesterolemia and associated cardiovascular diseases. However, not all patients receiving statins achieve guideline-recommended low density lipoprotein (LDL) cholesterol goals, particularly those at high risk. There remains, therefore, an unmet medical need to develop additional well-tolerated and effective agents to lower LDL cholesterol levels. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a secretory protein that posttranscriptionally regulates levels of low density lipoprotein receptor (LDLR) by inducing its degradation, has opened a new era of pharmacological modulation of cholesterol homeostasis. This paper summarizes the current knowledge of the basic molecular mechanism underlying the regulatory effect of LDLR expression by PCSK9 obtained from in vitro cell-cultured studies and the analysis of the crystal structure of PCSK9. It also describes the epidemiological and experimental evidences of the regulatory effect of PCSK9 on LDL cholesterol levels and cardiovascular diseases and summarizes the different pharmacological approaches under development for inhibiting PCSK9 expression, processing, and the interaction with LDLR.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
9
|
Zhao Z, Michaely P. Role of an intramolecular contact on lipoprotein uptake by the LDL receptor. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:397-408. [PMID: 21511053 DOI: 10.1016/j.bbalip.2011.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/09/2011] [Accepted: 04/01/2011] [Indexed: 01/06/2023]
Abstract
The LDL receptor (LDLR) is an endocytic receptor that plays a major role in the clearance of atherogenic lipoproteins from the circulation. During the endocytic process, the LDLR first binds lipoprotein at the cell surface and then traffics to endosomes, where the receptor releases bound lipoprotein. Release is acid-dependent and correlates with the formation of an intramolecular contact within the receptor. Human mutations at residues that form the contact are associated with familial hypercholesterolemia (FH) and the goal of the present study was to determine the role of contact residues on LDLR function. We show that mutations at nine contact residues reduce the ability of the LDLR to support lipoprotein uptake. Unexpectedly, only four of the mutations (W515A, W541A, H562Y and H586Y) impaired acid-dependent lipoprotein release. The remaining mutations decreased the lipoprotein-binding capacity of the LDLR through either reduction in the number of surface receptors (H190Y, K560W, H562Y and K582W) or reduction in the fraction of surface receptors that were competent to bind lipoprotein (W144A and W193A). We also examined three residues, distal to the contact, which were predicted to be necessary for the LDLR to adopt the acidic conformation. Of the three mutations we tested (G293S, F362A and G375S), one mutation (F362A) reduced lipoprotein uptake. Together, these data suggest that the intramolecular interface plays multiple roles in LDLR function.
Collapse
Affiliation(s)
- Zhenze Zhao
- Department of Cell Biology at the University of Texas Southwestern Medical Center, Dallas, TX 75390-9039 USA
| | | |
Collapse
|
10
|
Pena F, Jansens A, van Zadelhoff G, Braakman I. Calcium as a crucial cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum. J Biol Chem 2010; 285:8656-64. [PMID: 20089850 DOI: 10.1074/jbc.m110.105718] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of low density lipoprotein (LDL) receptors mediate uptake of a plethora of ligands from the circulation and couple this to signaling, thereby performing a crucial role in physiological processes including embryonic development, cancer development, homeostasis of lipoproteins, viral infection, and neuronal plasticity. Structural integrity of individual ectodomain modules in these receptors depends on calcium, and we showed before that the LDL receptor folds its modules late after synthesis via intermediates with abundant non-native disulfide bonds and structure. Using a radioactive pulse-chase approach, we here show that for proper LDL receptor folding, calcium had to be present from the very early start of folding, which suggests at least some native, essential coordination of calcium ions at the still largely non-native folding phase. As long as the protein was in the endoplasmic reticulum (ER), its folding was reversible, which changed only upon both proper incorporation of calcium and exit from the ER. Coevolution of protein folding with the high calcium concentration in the ER may be the basis for the need for this cation throughout the folding process even though calcium is only stably integrated in native repeats at a later stage.
Collapse
Affiliation(s)
- Florentina Pena
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
11
|
Bottomley MJ, Cirillo A, Orsatti L, Ruggeri L, Fisher TS, Santoro JC, Cummings RT, Cubbon RM, Lo Surdo P, Calzetta A, Noto A, Baysarowich J, Mattu M, Talamo F, De Francesco R, Sparrow CP, Sitlani A, Carfí A. Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J Biol Chem 2008; 284:1313-23. [PMID: 19001363 DOI: 10.1074/jbc.m808363200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PCSK9 regulates low density lipoprotein receptor (LDLR) levels and consequently is a target for the prevention of atherosclerosis and coronary heart disease. Here we studied the interaction, of LDLR EGF(A/AB) repeats with PCSK9. We show that PCSK9 binds the EGF(AB) repeats in a pH-dependent manner. Although the PCSK9 C-terminal domain is not involved in LDLR binding, PCSK9 autocleavage is required. Moreover, we report the x-ray structure of the PCSK9DeltaC-EGF(AB) complex at neutral pH. Compared with the low pH PCSK9-EGF(A) structure, the new structure revealed rearrangement of the EGF(A) His-306 side chain and disruption of the salt bridge with PCSK9 Asp-374, thus suggesting the basis for enhanced interaction at low pH. In addition, the structure of PCSK9DeltaC bound to EGF(AB)(H306Y), a mutant associated with familial hypercholesterolemia (FH), reveals that the Tyr-306 side chain forms a hydrogen bond with PCSK9 Asp-374, thus mimicking His-306 in the low pH conformation. Consistently, Tyr-306 confers increased affinity for PCSK9. Importantly, we found that although the EGF(AB)(H306Y)-PCSK9 interaction is pH-independent, LDLR(H306Y) binds PCSK9 50-fold better at low pH, suggesting that factors other than His-306 contribute to the pH dependence of PCSK9-LDLR binding. Further, we determined the structures of EGF(AB) bound to PCSK9DeltaC containing the FH-associated D374Y and D374H mutations, revealing additional interactions with EGF(A) mediated by Tyr-374/His-374 and providing a rationale for their disease phenotypes. Finally, we report the inhibitory properties of EGF repeats in a cellular assay measuring LDL uptake.
Collapse
Affiliation(s)
- Matthew J Bottomley
- Department of Biochemistry, Istituto di Ricerca di Biologia Molecolare "P. Angeletti", Via Pontina Km 30.600, 00040 Pomezia (Rome), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) posttranslationally regulates hepatic low-density lipoprotein receptors (LDLRs) by binding to LDLRs on the cell surface, leading to their degradation. The binding site of PCSK9 has been localized to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. Here, we describe the crystal structure of a complex between PCSK9 and the EGF-A domain of the LDLR. The binding site for the LDLR EGF-A domain resides on the surface of PCSK9's subtilisin-like catalytic domain containing Asp-374, a residue for which a gain-of-function mutation (Asp-374-Tyr) increases the affinity of PCSK9 toward LDLR and increases plasma LDL-cholesterol (LDL-C) levels in humans. The binding surface on PCSK9 is distant from its catalytic site, and the EGF-A domain makes no contact with either the C-terminal domain or the prodomain. Point mutations in PCSK9 that altered key residues contributing to EGF-A binding (Arg-194 and Phe-379) greatly diminished binding to the LDLR's extracellular domain. The structure of PCSK9 in complex with the LDLR EGF-A domain defines potential therapeutic target sites for blocking agents that could interfere with this interaction in vivo, thereby increasing LDLR function and reducing plasma LDL-C levels.
Collapse
|
13
|
Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 2007; 106:1624-71. [PMID: 16683748 DOI: 10.1021/cr040421p] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Virginia A Jarymowycz
- Department of Chemistry and Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405-0001, USA
| | | |
Collapse
|
14
|
Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007; 282:18602-18612. [PMID: 17452316 DOI: 10.1074/jbc.m702027200] [Citation(s) in RCA: 616] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of hepatic low density lipoprotein receptors (LDLR), the major route of clearance of circulating cholesterol. Gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, whereas loss-of-function mutations result in hypocholesterolemia and protection from heart disease. Recombinant human PCSK9 binds the LDLR on the surface of cultured hepatocytes and promotes degradation of the receptor after internalization. Here we localized the site of binding of PCSK9 within the extracellular domain of the LDLR and determined the fate of the receptor after PCSK9 binding. Recombinant human PCSK9 interacted in a sequence-specific manner with the first epidermal growth factor-like repeat (EGF-A) in the EGF homology domain of the human LDLR. Similar binding specificity was observed between PCSK9 and purified EGF-A. Binding to EGF-A was calcium-dependent and increased dramatically with reduction in pH from 7 to 5.2. The addition of PCSK9, but not heat-inactivated PCSK9, to the medium of cultured hepatocytes resulted in redistribution of the receptor from the plasma membrane to lysosomes. These data are consistent with a model in which PCSK9 binding to EGF-A interferes with an acid-dependent conformational change required for receptor recycling. As a consequence, the LDLR is rerouted from the endosome to the lysosome where it is degraded.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Thomas A Lagace
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rita Garuti
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhenze Zhao
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Meghan McDonald
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jay D Horton
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jonathan C Cohen
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| | - Helen H Hobbs
- Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Howard Hughes Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
15
|
Abstract
The low-density lipoprotein receptor (LDLR) is responsible for uptake of cholesterol-carrying lipoprotein particles into cells. The receptor binds lipoprotein particles at the cell surface and releases them in the low-pH environment of the endosome. The focus of the current review is on biochemical and structural studies of the LDLR and its ligands, emphasizing how structural features of the receptor dictate the binding of low-density lipoprotein (LDL) and beta-migrating forms of very low-density lipoprotein (beta-VLDL) particles, how the receptor releases bound ligands at low pH, and how the cytoplasmic tail of the LDLR interfaces with the endocytic machinery.
Collapse
Affiliation(s)
- Hyesung Jeon
- Life Sciences Division, Korea Institute of Science and Technology, Seoul 136-791, Korea.
| | | |
Collapse
|
16
|
Drakenberg T, Ghasriani H, Thulin E, Thämlitz AM, Muranyi A, Annila A, Stenflo J. Solution structure of the Ca2+-Binding EGF3-4 pair from vitamin K-dependent protein S: identification of an unusual fold in EGF3. Biochemistry 2005; 44:8782-9. [PMID: 15952784 DOI: 10.1021/bi050101f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vitamin K-dependent protein S is a cofactor of activated protein C, a serine protease that regulates blood coagulation. Deficiency of protein S can cause venous thrombosis. Protein S has four EGF domains in tandem; domains 2-4 bind calcium with high affinity whereas domains 1-2 mediate interaction with activated protein C. We have now solved the solution structure of the EGF3-4 fragment of protein S. The linker between the two domains is similar to what has been observed in other calcium-binding EGF domains where it provides an extended conformation. Interestingly, a disagreement between NOE and RDC data revealed a conformational heterogeneity within EGF3 due to a hinge-like motion around Glu186 in the Cys-Glu-Cys sequence, the only point in the domain where flexibility is allowed. The dominant, bent conformation of EGF3 in the pair has no precedent among calcium-binding EGF domains. It is characterized by a change in the psi angle of Glu186 from 160 degrees +/- 40 degrees , as seen in ten other EGF domains, to approximately 0 degrees +/- 15 degrees . NOESY data suggest that Tyr193, a residue not conserved in other calcium-binding EGF domains (except in the homologue Gas6), induces the unique fold of EGF3. However, SAXS data, obtained on EGF1-4 and EGF2-4, showed a dominant, extended conformation in these fragments. This may be due to a counterproductive domain-domain interaction between EGF2 and EGF4 if EGF3 is in a bent conformation. We speculate that the ability of EGF3 to adopt different conformations may be of functional significance in protein-protein interactions involving protein S.
Collapse
Affiliation(s)
- Torbjörn Drakenberg
- Department of Biophysical Chemistry, University of Lund, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yang W, Wilkins AL, Li S, Ye Y, Yang JJ. The effects of Ca2+ binding on the dynamic properties of a designed Ca2+-binding protein. Biochemistry 2005; 44:8267-73. [PMID: 15938616 DOI: 10.1021/bi050463n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of Ca(2+) binding on the dynamic properties of Ca(2+)-binding proteins are important in Ca(2+) signaling. To understand the role of Ca(2+) binding, we have successfully designed a Ca(2+)-binding site in the domain 1 of rat CD2 (denoted as Ca.CD2) with the desired structure and retained function. In this study, the backbone dynamic properties of Ca.CD2 have been investigated using (15)N spin relaxation NMR spectroscopy to reveal the effect of Ca(2+) binding on the global and local dynamic properties without the complications of multiple interactive Ca(2+) binding and global conformational change. Like rat CD2 (rCD2) and human CD2 (hCD2), residues involved in the recognition of the target molecule CD48 exhibit high flexibility. Mutations N15D and N17D that introduce the Ca(2+) ligands increase the flexibility of the neighboring residues. Ca(2+)-induced local dynamic changes occur mainly at the residues proximate to the Ca(2+)-binding pocket or the residues in loop regions. The beta-strand B of Ca.CD2 that provides two Asp for the Ca(2+) undergoes an S(2) decrease upon the Ca(2+) binding, while the DE-loop that provides one Asn and one Asp undergoes an S(2) increase. Our study suggests that Ca(2+) binding has a differential effect on the rigidity of the residues depending on their flexibility and location within the secondary structure.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry, Center for Drug Design, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
18
|
Beglova N, Blacklow SC. The LDL receptor: how acid pulls the trigger. Trends Biochem Sci 2005; 30:309-17. [PMID: 15950875 DOI: 10.1016/j.tibs.2005.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/21/2005] [Accepted: 03/23/2005] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor normally carries lipoprotein particles into cells, and releases them upon delivery to the low pH milieu of the endosome. Recent structural and functional studies of the receptor, combined with the plethora of prior knowledge about normal receptor function and the effects of disease-associated mutations that cause familial hypercholesterolemia, reveal a detailed molecular model for how the acidic environment of the endosome triggers the release of bound lipoprotein particles. Remarkably, the receptor dynamically interconverts between open (ligand-active) and closed (ligand-inactive) conformations in response to pH, relying on a specific arrangement of fixed and flexible interdomain connections to facilitate efficient binding and release of its lipoprotein ligands.
Collapse
Affiliation(s)
- Natalia Beglova
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Beglova N, Jeon H, Fisher C, Blacklow SC. Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor. Mol Cell 2004; 16:281-92. [PMID: 15494314 DOI: 10.1016/j.molcel.2004.09.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/27/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
Low-density lipoprotein (LDL) receptors bind lipoprotein particles at the cell surface and release them in the low pH environment of the endosome. The published structure of the receptor determined at endosomal pH reveals an interdomain interface between its beta propeller and its fourth and fifth ligand binding (LA) repeats, suggesting that the receptor adopts a closed conformation at low pH to release LDL. Here, we combine lipoprotein binding and release assays with NMR spectroscopy to examine structural features of the receptor promoting release of LDL at low pH. These studies lead to a model in which the receptor uses a pH-invariant scaffold as an anchor to restrict conformational search space, combining it with flexible linkers between ligand binding repeats to interconvert between open and closed conformations. This finely tuned balance between interdomain rigidity and flexibility is likely to represent a shared structural feature in proteins of the LDL receptor family.
Collapse
Affiliation(s)
- Natalia Beglova
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
20
|
Beglova N, Jeon H, Fisher C, Blacklow SC. Structural features of the low-density lipoprotein receptor facilitating ligand binding and release. Biochem Soc Trans 2004; 32:721-3. [PMID: 15493997 DOI: 10.1042/bst0320721] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The LDLR (low-density lipoprotein receptor) is a modular protein built from several distinct structural units: LA (LDLR type-A), epidermal growth factor-like and β-propeller modules. The low pH X-ray structure of the LDLR revealed long-range intramolecular contacts between the propeller domain and the central LA repeats of the ligand-binding domain, suggesting that the receptor changes its overall shape from extended to closed, in response to pH. Here we discuss how the LDLR uses flexibility and rigidity of linkers between modules to facilitate ligand binding and low-pH ligand release.
Collapse
Affiliation(s)
- N Beglova
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
21
|
Rudenko G, Deisenhofer J. The low-density lipoprotein receptor: ligands, debates and lore. Curr Opin Struct Biol 2003; 13:683-9. [PMID: 14675545 DOI: 10.1016/j.sbi.2003.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Like pieces belonging to a large mosaic, the structures of low-density lipoprotein receptor (LDL-R) modules have been elucidated one by one in recent years. LDL-Rs localized on hepatocytes play an important role in removing cholesterol-transporting LDL particles from the plasma by receptor-mediated endocytosis. Key steps in this process involve the LDL-R binding LDL at neutral pH at the cell surface and, after internalization, releasing it again at acidic pH in the endosomes. How the modules of the LDL-R might interact within the intact receptor to carry out ligand binding and release has been revealed by the recent crystal structure of the extracellular domain of the LDL-R.
Collapse
Affiliation(s)
- Gabby Rudenko
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard Y 4-206, Dallas, TX 75390-9050, USA
| | | |
Collapse
|
22
|
Andersen OM, Vorum H, Honoré B, Thøgersen HC. Ca2+ binding to complement-type repeat domains 5 and 6 from the low-density lipoprotein receptor-related protein. BMC BIOCHEMISTRY 2003; 4:7. [PMID: 12921543 PMCID: PMC194729 DOI: 10.1186/1471-2091-4-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2003] [Accepted: 08/18/2003] [Indexed: 11/23/2022]
Abstract
BACKGROUND The binding of ligands to clusters of complement-type repeat (CR)-domains in proteins of the low-density lipoprotein receptor (LDLR) family is dependent on Ca2+ ions. One reason for this cation requirement was identified from the crystal structure data for a CR-domain from the prototypic LDLR, which showed the burial of a Ca2+ ion as a necessity for correct folding and stabilization of this protein module. Additional Ca2+ binding data to other CR-domains from both LDLR and the LDLR-related protein (LRP) have suggested the presence of a conserved Ca2+ cage within CR-domains from this family of receptors that function in endocytosis and signalling. RESULTS We have previously described the binding of several ligands to a fragment comprising the fifth and the sixth CR-domain (CR56) from LRP, as well as qualitatively described the binding of Ca2+ ions to this CR-domain pair. In the present study we have applied the rate dialysis method to measure the affinity for Ca2+, and show that CR56 binds 2 Ca2+ ions with an average affinity of KD = 10.6 microM, and there is no indication of additional Ca2+ binding sites within this receptor fragment. CONCLUSIONS Both CR-domains of CR56 bind a single Ca2+ ion with an affinity of 10.6 microM within the range of affinities demonstrated for several other CR-domains.
Collapse
Affiliation(s)
- Olav M Andersen
- Laboratory of Gene Expression, Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Henrik Vorum
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Bent Honoré
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Hans C Thøgersen
- Laboratory of Gene Expression, Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Smallridge RS, Whiteman P, Werner JM, Campbell ID, Handford PA, Downing AK. Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1. J Biol Chem 2003; 278:12199-206. [PMID: 12511552 DOI: 10.1074/jbc.m208266200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillin-1 is a mosaic protein mainly composed of 43 calcium binding epidermal growth factor-like (cbEGF) domains arranged as multiple, tandem repeats. Mutations within the fibrillin-1 gene cause Marfan syndrome (MFS), a heritable disease of connective tissue. More than 60% of MFS-causing mutations identified are localized to cbEGFs, emphasizing that the native properties of these domains are critical for fibrillin-1 function. The cbEGF12-13 domain pair is within the longest run of cbEGFs, and many mutations that cluster in this region are associated with severe, neonatal MFS. The NMR solution structure of Ca(2+)-loaded cbEGF12-13 exhibits a near-linear, rod-like arrangement of domains. This observation supports the hypothesis that all fibrillin-1 (cb)EGF-cbEGF pairs, characterized by a single interdomain linker residue, possess this rod-like structure. The domain arrangement of cbEGF12-13 is stabilized by additional interdomain packing interactions to those observed for cbEGF32-33, which may help to explain the previously reported higher calcium binding affinity of cbEGF13. Based on this structure, a model of cbEGF11-15 that encompasses all known neonatal MFS missense mutations has highlighted a potential binding region. Backbone dynamics data confirm the extended structure of cbEGF12-13 and lend support to the hypothesis that a correlation exists between backbone flexibility and cbEGF domain calcium affinity. These results provide important insight into the potential consequences of MFS-associated mutations for the assembly and biomechanical properties of connective tissue microfibrils.
Collapse
Affiliation(s)
- Rachel S Smallridge
- Divisions of Structural Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Study of the LDL receptor as a model system has led to insights into general principles underlying receptor-mediated endocytosis of bound ligands. The recently published structure of the entire LDL receptor ectodomain, determined at pH 5.3, now suggests an elegant model to explain how lipoprotein ligands are released from the receptor by exposure to the low-pH environment of the endosome.
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Rudenko G, Henry L, Henderson K, Ichtchenko K, Brown MS, Goldstein JL, Deisenhofer J. Structure of the LDL receptor extracellular domain at endosomal pH. Science 2002; 298:2353-8. [PMID: 12459547 DOI: 10.1126/science.1078124] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The low-density lipoprotein receptor mediates cholesterol homeostasis through endocytosis of lipoproteins. It discharges its ligand in the endosome at pH < 6. In the crystal structure at pH = 5.3, the ligand-binding domain (modules R2 to R7) folds back as an arc over the epidermal growth factor precursor homology domain (the modules A, B, beta propeller, and C). The modules R4 and R5, which are critical for lipoprotein binding, associate with the beta propeller via their calcium-binding loop. We propose a mechanism for lipoprotein release in the endosome whereby the beta propeller functions as an alternate substrate for the ligand-binding domain, binding in a calcium-dependent way and promoting lipoprotein release.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Calcium/metabolism
- Crystallization
- Crystallography, X-Ray
- Endosomes/metabolism
- Epidermal Growth Factor/chemistry
- Humans
- Hydrogen-Ion Concentration
- Hydrophobic and Hydrophilic Interactions
- Ligands
- Lipoproteins, LDL/metabolism
- Models, Biological
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Precursors/chemistry
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, LDL/chemistry
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Repetitive Sequences, Amino Acid
Collapse
Affiliation(s)
- Gabby Rudenko
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard Y4-206, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Jansens A, van Duijn E, Braakman I. Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 2002; 298:2401-3. [PMID: 12493918 DOI: 10.1126/science.1078376] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The low-density lipoprotein receptor (LDL-R) is a typical example of a multidomain protein, for which in vivo folding is assumed to occur vectorially from the amino terminus to the carboxyl terminus. Using a pulse-chase approach in intact cells, we found instead that newly synthesized LDL-R molecules folded by way of "collapsed" intermediates that contained non-native disulfide bonds between distant cysteines. The most amino-terminal domain acquired its native conformation late in folding instead of during synthesis. Thus, productive LDL-R folding in a cell is not vectorial but is mostly posttranslational, and involves transient long-range non-native disulfide bonds that are isomerized into native short-range cysteine pairs.
Collapse
Affiliation(s)
- Annemieke Jansens
- Department of Bio-Organic Chemistry 1, Bijvoet Center for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 CH Utrecht, Netherlands
| | | | | |
Collapse
|
27
|
Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID, Downing AK. Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. J Mol Biol 2002; 316:113-25. [PMID: 11829507 DOI: 10.1006/jmbi.2001.5329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calcium-binding epidermal growth factor-like (cbEGF) module and the transforming growth factor beta-binding protein-like (TB) module are the two major structural motifs found in fibrillin-1, the extracellular matrix (ECM) protein defective in the Marfan syndrome (MFS). An MFS-causing mutation, N2144S, which removes a calcium ligand in cbEGF32, does not detectably affect fibrillin-1 biosynthesis, rate of secretion, processing, or deposition of reducible fibrillin-1 into the ECM. Since the residue at position 2144 is normally engaged in calcium ligation, it is unable to mediate intermolecular interactions. We have shown previously that this mutation does not affect the folding properties of the TB or cbEGF domains in vitro, but does decrease calcium-binding in cbEGF and TB-cbEGF domain constructs. Here, we use NMR spectroscopy to probe the effects of the N2144S mutation on backbone dynamic properties of TB6-cbEGF32. Analysis of the backbone (15)N relaxation data of wild-type TB6-cbEGF32 has revealed a flexible inter-domain linkage. Parallel dynamics analysis of the N2144S mutant has shown increased flexibility in the region joining the two domains as well as in the calcium-binding site at the N terminus of cbEGF32. This research demonstrates that a small change in peptide backbone flexibility, which does not enhance proteolytic susceptibility of the domain pair, is associated with an MFS phenotype. Flexibility of the TB-cbEGF linkage is likely to contribute to the biomechanical properties of fibrillin-rich connective tissue microfibrils, and may play a role in the microfibril assembly process.
Collapse
Affiliation(s)
- Xuemei Yuan
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|