1
|
Lei L, Zhao L, Hou Y, Yue C, Liu P, Zheng Y, Peng W, Yang J. An Inferred Ancestral CotA Laccase with Improved Expression and Kinetic Efficiency. Int J Mol Sci 2023; 24:10901. [PMID: 37446078 DOI: 10.3390/ijms241310901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Laccases are widely used in industrial production due to their broad substrate availability and environmentally friendly nature. However, the pursuit of laccases with superior stability and increased heterogeneous expression to meet industry demands appears to be an ongoing challenge. To address this challenge, we resurrected five ancestral sequences of laccase BsCotA and their homologues. All five variants were successfully expressed in soluble and functional forms with improved expression levels in Escherichia coli. Among the five variants, three exhibited higher catalytic rates, thermal stabilities, and acidic stabilities. Notably, AncCotA2, the best-performing variant, displayed a kcat/KM of 7.5 × 105 M-1·s-1, 5.2-fold higher than that of the wild-type BsCotA, an improved thermo- and acidic stability, and better dye decolorization ability. This study provides a laccase variant with high application potential and presents a new starting point for future enzyme engineering.
Collapse
Affiliation(s)
- Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lijun Zhao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiqia Hou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chen Yue
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pulin Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanli Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jiangke Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Hou WR, Hou YL, Wu GF, Song Y, Su XL, Sun B, Li J. cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca). GENETICS AND MOLECULAR RESEARCH 2012; 10:1576-88. [PMID: 21863553 DOI: 10.4238/vol10-3gmr1159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ribosomal protein L9 (RPL9), a component of the large subunit of the ribosome, has an unusual structure, comprising two compact globular domains connected by an α-helix; it interacts with 23 S rRNA. To obtain information about rpL9 of Ailuropoda melanoleuca (the giant panda) we designed primers based on the known mammalian nucleotide sequence. RT-PCR and PCR strategies were employed to isolate cDNA and the rpL9 gene from A. melanoleuca; these were sequenced and analyzed. We overexpressed cDNA of the rpL9 gene in Escherichia coli BL21. The cloned cDNA fragment was 627 bp in length, containing an open reading frame of 579 bp. The deduced protein is composed of 192 amino acids, with an estimated molecular mass of 21.86 kDa and an isoelectric point of 10.36. The length of the genomic sequence is 3807 bp, including six exons and five introns. Based on alignment analysis, rpL9 has high similarity among species; we found 85% agreement of DNA and amino acid sequences with the other species that have been analyzed. Based on topology predictions, there are two N-glycosylation sites, five protein kinase C phosphorylation sites, one casein kinase II phosphorylation site, two tyrosine kinase phosphorylation sites, three N-myristoylation sites, one amidation site, and one ribosomal protein L6 signature 2 in the L9 protein of A. melanoleuca. The rpL9 gene can be readily expressed in E. coli; it fuses with the N-terminal GST-tagged protein, giving rise to the accumulation of an expected 26.51-kDa polypeptide, which is in good agreement with the predicted molecular weight. This expression product could be used for purification and further study of its function.
Collapse
Affiliation(s)
- W R Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, College of Life Science, China West Normal University, Nanchong.
| | | | | | | | | | | | | |
Collapse
|
3
|
Bloom JD, Nayak JS, Baltimore D. A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One 2011; 6:e22201. [PMID: 21799795 PMCID: PMC3140507 DOI: 10.1371/journal.pone.0022201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/16/2011] [Indexed: 12/31/2022] Open
Abstract
The His274→Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1.
Collapse
MESH Headings
- Computational Biology
- Drug Resistance, Viral/genetics
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- HEK293 Cells
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Models, Molecular
- Mutation
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Oseltamivir/pharmacology
- Pandemics
- Protein Conformation
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Jesse D. Bloom
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jagannath S. Nayak
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
4
|
Bloom JD, Glassman MJ. Inferring stabilizing mutations from protein phylogenies: application to influenza hemagglutinin. PLoS Comput Biol 2009; 5:e1000349. [PMID: 19381264 PMCID: PMC2664478 DOI: 10.1371/journal.pcbi.1000349] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/05/2009] [Indexed: 01/08/2023] Open
Abstract
One selection pressure shaping sequence evolution is the requirement that a
protein fold with sufficient stability to perform its biological functions. We
present a conceptual framework that explains how this requirement causes the
probability that a particular amino acid mutation is fixed during evolution to
depend on its effect on protein stability. We mathematically formalize this
framework to develop a Bayesian approach for inferring the stability effects of
individual mutations from homologous protein sequences of known phylogeny. This
approach is able to predict published experimentally measured mutational
stability effects (ΔΔG values) with an accuracy
that exceeds both a state-of-the-art physicochemical modeling program and the
sequence-based consensus approach. As a further test, we use our phylogenetic
inference approach to predict stabilizing mutations to influenza hemagglutinin.
We introduce these mutations into a temperature-sensitive influenza virus with a
defect in its hemagglutinin gene and experimentally demonstrate that some of the
mutations allow the virus to grow at higher temperatures. Our work therefore
describes a powerful new approach for predicting stabilizing mutations that can
be successfully applied even to large, complex proteins such as hemagglutinin.
This approach also makes a mathematical link between phylogenetics and
experimentally measurable protein properties, potentially paving the way for
more accurate analyses of molecular evolution. Mutating a protein frequently causes a change in its stability. As scientists, we
often care about these changes because we would like to engineer a
protein's stability or understand how its stability is impacted by a
naturally occurring mutation. Evolution also cares about mutational stability
changes, because a basic evolutionary requirement is that proteins remain
sufficiently stable to perform their biological functions. Our work is based on
the idea that it should be possible to use the fact that evolution selects for
stability to infer from related proteins the effects of specific mutations. We
show that we can indeed use protein evolutionary histories to computationally
predict previously measured mutational stability changes more accurately than
methods based on either of the two main existing strategies. We then test
whether we can predict mutations that increase the stability of hemagglutinin,
an influenza protein whose rapid evolution is partly responsible for the ability
of this virus to cause yearly epidemics. We experimentally create viruses
carrying predicted stabilizing mutations and find that several do in fact
improve the virus's ability to grow at higher temperatures. Our
computational approach may therefore be of use in understanding the evolution of
this medically important virus.
Collapse
Affiliation(s)
- Jesse D Bloom
- Division of Biology, California Institute of Technology, Pasadena, California, USA.
| | | |
Collapse
|
5
|
Sato S, Raleigh DP. Kinetic isotope effects reveal the presence of significant secondary structure in the transition state for the folding of the N-terminal domain of L9. J Mol Biol 2007; 370:349-55. [PMID: 17512540 DOI: 10.1016/j.jmb.2007.02.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/26/2022]
Abstract
Our present understanding of the nature of the transition state for protein folding depends predominantly on studies where individual side-chain contributions are mapped out by mutational analysis (phi value analysis). This approach, although extremely powerful, does not in general provide direct information about the formation of backbone hydrogen bonds. Here, we report the results of amide H/D isotope effect studies that probe the development of hydrogen bonded interactions in the transition state for the folding of a small alpha-beta protein, the N-terminal domain of L9. Replacement of amide protons by deuterons in a solvent of constant isotopic composition destabilized the domain, decreasing both its T(m) and Delta G(0) of unfolding. The folding rate also decreased. The parameter Phi(H/D), defined as the ratio of the effect of isotopic substitution upon the activation free energy to the equilibrium free energy was determined to be 0.6 in a D(2)O background and 0.75 in a H(2)O background, indicating that significant intraprotein hydrogen bond interactions are developed in the transition state for the folding of NTL9. The value is in remarkably good agreement with more traditional measures of the position of the transition state, which report on the relative burial of surface area. The results provide a picture of a compact folding transition state containing significant secondary structure. Indirect analysis argues that the bulk of the kinetic isotope effect arises from the beta-sheet-rich region of the protein, and suggests that the development of intraprotein hydrogen bonds in this region plays a critical role in the folding of NTL9.
Collapse
Affiliation(s)
- Satoshi Sato
- Okayama Research Park Incubation Center, 5303 Haga Okayama 701-1223, Japan.
| | | |
Collapse
|
6
|
Maxwell KL, Wildes D, Zarrine-Afsar A, De Los Rios MA, Brown AG, Friel CT, Hedberg L, Horng JC, Bona D, Miller EJ, Vallée-Bélisle A, Main ERG, Bemporad F, Qiu L, Teilum K, Vu ND, Edwards AM, Ruczinski I, Poulsen FM, Kragelund BB, Michnick SW, Chiti F, Bai Y, Hagen SJ, Serrano L, Oliveberg M, Raleigh DP, Wittung-Stafshede P, Radford SE, Jackson SE, Sosnick TR, Marqusee S, Davidson AR, Plaxco KW. Protein folding: defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci 2005; 14:602-16. [PMID: 15689503 PMCID: PMC2279278 DOI: 10.1110/ps.041205405] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a "consensus" set of experimental conditions (25 degrees C at pH 7.0, 50 mM buffer), data analysis methods, and data reporting standards that we hope will provide a benchmark for experimental studies. We take the first step in this initiative by describing the folding kinetics of 30 apparently two-state proteins or protein domains under the consensus conditions. The goal of our efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process.
Collapse
Affiliation(s)
- Karen L Maxwell
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Muralidharan V, Cho J, Trester-Zedlitz M, Kowalik L, Chait BT, Raleigh DP, Muir TW. Domain-specific incorporation of noninvasive optical probes into recombinant proteins. J Am Chem Soc 2004; 126:14004-12. [PMID: 15506763 DOI: 10.1021/ja0466199] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An integrated approach is described that allows the domain-specific incorporation of optical probes into large recombinant proteins. The strategy is the combination of two existing techniques, expressed protein ligation (EPL) and in vivo amino acid replacement of tryptophans with tryptophan (Trp) analogues. The Src homology 3 (SH3) domain from the c-Crk-I adaptor protein has been labeled with a Trp analogue, 7-azatryptophan (7AW), using Escherichia coli Trp auxotrophs. Structural, biochemical, and thermodynamic studies show that incorporation of 7AW does not significantly perturb the structure or function of the isolated domain. Ligation of the 7AW-labeled SH3 domain to the c-Crk-I Src homology 2 (SH2) domain, via EPL, generated the multidomain protein, c-Crk-I, with a domain-specific label. Studies of this labeled protein show that the biochemical and thermodynamic properties of the SH3 domain do not change within the context of a larger multidomain protein. The technology described here is likely to be a useful tool in enhancing our understanding of the behavior of modular domains in their natural context, within multidomain proteins.
Collapse
Affiliation(s)
- Vasant Muralidharan
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
England JL, Shakhnovich EI. Structural determinant of protein designability. PHYSICAL REVIEW LETTERS 2003; 90:218101. [PMID: 12786593 DOI: 10.1103/physrevlett.90.218101] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Indexed: 05/24/2023]
Abstract
Here we present an approximate analytical theory for the relationship between a protein structure's contact matrix and the shape of its energy spectrum in amino acid sequence space. We demonstrate a dependence of the number of sequences of low energy in a structure on the eigenvalues of the structure's contact matrix, and then use a Monte Carlo simulation to test the applicability of this analytical result to cubic lattice proteins. We find that the lattice structures with the most low-energy sequences are the same as those predicted by the theory. We argue that, given sufficiently strict requirements for foldability, these structures are the most designable, and we propose a simple means to test whether the results in this paper hold true for real proteins.
Collapse
Affiliation(s)
- Jeremy L England
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
9
|
Miller EJ, Fischer KF, Marqusee S. Experimental evaluation of topological parameters determining protein-folding rates. Proc Natl Acad Sci U S A 2002; 99:10359-63. [PMID: 12149462 PMCID: PMC124919 DOI: 10.1073/pnas.162219099] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work suggests that structural topology plays a key role in determining protein-folding rates and pathways. The refolding rates of small proteins that fold without intermediates are found to correlate with simple structural parameters such as relative contact order, long-range order, or the fraction of short-range contacts. To test and evaluate the role of structural topology experimentally, a set of circular permutants of the ribosomal protein S6 from Thermus thermophilus was analyzed. Despite a wide range of relative contact order, the permuted proteins all fold with similar rates. These results suggest that alternative topological parameters may better describe the role of topology in protein-folding rates.
Collapse
Affiliation(s)
- Erik J Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
10
|
Sato S, Raleigh DP. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J Mol Biol 2002; 318:571-82. [PMID: 12051860 DOI: 10.1016/s0022-2836(02)00015-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|