1
|
Empagliflozin Preserves Skeletal Muscle Function in a HFpEF Rat Model. Int J Mol Sci 2022; 23:ijms231910989. [PMID: 36232292 PMCID: PMC9570453 DOI: 10.3390/ijms231910989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Besides structural alterations in the myocardium, heart failure with preserved ejection fraction (HFpEF) is also associated with molecular and physiological alterations of the peripheral skeletal muscles (SKM) contributing to exercise intolerance often seen in HFpEF patients. Recently, the use of Sodium-Glucose-Transporter 2 inhibitors (SGLT2i) in clinical studies provided evidence for a significant reduction in the combined risk of cardiovascular death or hospitalization for HFpEF. The present study aimed to further elucidate the impact of Empagliflozin (Empa) on: (1) SKM function and metabolism and (2) mitochondrial function in an established HFpEF rat model. At the age of 24 weeks, obese ZSF1 rats were randomized either receiving standard care or Empa in the drinking water. ZSF1 lean animals served as healthy controls. After 8 weeks of treatment, echocardiography and SKM contractility were performed. Mitochondrial function was assessed in saponin skinned fibers and SKM tissue was snap frozen for molecular analyses. HFpEF was evident in the obese animals when compared to lean—increased E/é and preserved left ventricular ejection fraction. Empa treatment significantly improved E/é and resulted in improved SKM contractility with reduced intramuscular lipid content. Better mitochondrial function (mainly in complex IV) with only minor modulation of atrophy-related proteins was seen after Empa treatment. The results clearly documented a beneficial effect of Empa on SKM function in the present HFpEF model. These effects were accompanied by positive effects on mitochondrial function possibly modulating SKM function.
Collapse
|
2
|
Findings of limb-girdle muscular dystrophy R7 telethonin-related patients from a Chinese neuromuscular center. Neurogenetics 2022; 23:37-44. [PMID: 34982307 DOI: 10.1007/s10048-021-00681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022]
Abstract
Limb-girdle muscular dystrophy (LGMD) is a group of clinically and genetically heterogeneous neuromuscular disorders. LGMD-R7, which is caused by telethonin gene (TCAP) mutations, is one of the rarest forms of LGMD, and only a small number of LGMD-R7 cases have been described and mostly include patients from Brazil. A total of two LGMD-R7 patients were enrolled at a Chinese neuromuscular center. Demographic and clinical data were collected. Laboratory investigations and electromyography were performed. Routine and immunohistochemistry staining of muscle specimens was performed, and a next-generation sequencing panel array for genes associated with hereditary neuromuscular disorders was used for analysis. The patients exhibited predominant muscle weakness. Electromyography revealed myopathic changes. The muscle biopsy showed myopathic features, such as increased fiber size variation, muscle fiber atrophy and regeneration, slight hyperplasia of the connective tissue, and disarray of the myofibrillar network. Two patients were confirmed to have mutations in the open reading frame of TCAP by next-generation sequencing. One patient had compound heterozygous mutations, and the other patient harbored a novel homozygous mutation. Western blotting analysis of the skeletal muscle lysate confirmed the absence of telethonin in the patients. We described two LGMD-R7 patients presenting a classical LGMD phenotype and a novel homozygous TCAP mutation. Our research expands the spectrum of LGMD-R7 due to TCAP mutations based on patients from a Chinese neuromuscular center.
Collapse
|
3
|
Lewis HR, Eminaga S, Gautel M, Avkiran M. Phosphorylation at Serines 157 and 161 Is Necessary for Preserving Cardiac Expression Level and Functions of Sarcomeric Z-Disc Protein Telethonin. Front Physiol 2021; 12:732020. [PMID: 34566695 PMCID: PMC8455888 DOI: 10.3389/fphys.2021.732020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: In cardiac myocytes, the sarcomeric Z-disc protein telethonin is constitutively bis-phosphorylated at C-terminal residues S157 and S161; however, the functional significance of this phosphorylation is not known. We sought to assess the significance of telethonin phosphorylation in vivo, using a novel knock-in (KI) mouse model generated to express non-phosphorylatable telethonin (Tcap S157/161A). Methods and Results: Tcap S157/161A and wild-type (WT) littermates were characterized by echocardiography at baseline and after sustained β-adrenergic stimulation via isoprenaline infusion. Heart tissues were collected for gravimetric, biochemical, and histological analyses. At baseline, Tcap S157/161A mice did not show any variances in cardiac structure or function compared with WT littermates and mutant telethonin remained localized to the Z-disc. Ablation of telethonin phosphorylation sites resulted in a gene-dosage dependent decrease in the cardiac telethonin protein expression level in mice carrying the S157/161A alleles, without any alteration in telethonin mRNA levels. The proteasome inhibitor MG132 significantly increased the expression level of S157/161A telethonin protein in myocytes from Tcap S157/161A mice, but not telethonin protein in myocytes from WT mice, indicating a role for the ubiquitin-proteasome system in the regulation of telethonin protein expression level. Tcap S157/161A mice challenged with sustained β-adrenergic stimulation via isoprenaline infusion developed cardiac hypertrophy accompanied by mild systolic dysfunction. Furthermore, the telethonin protein expression level was significantly increased in WT mice following isoprenaline stimulation but this response was blunted in Tcap S157/161A mice. Conclusion: Overall, these data reveal that telethonin protein turnover in vivo is regulated in a novel phosphorylation-dependent manner and suggest that C-terminal phosphorylation may protect telethonin against proteasomal degradation and preserve cardiac function during hemodynamic stress. Given that human telethonin C-terminal mutations have been associated with cardiac and skeletal myopathies, further research on their potential impact on phosphorylation-dependent regulation of telethonin protein expression could provide valuable mechanistic insight into those myopathies.
Collapse
Affiliation(s)
- Hannah R. Lewis
- School of Cardiovascular Medicine and Sciences, St Thomas’ Hospital, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- School of Cardiovascular Medicine and Sciences, St Thomas’ Hospital, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Mathias Gautel
- School of Basic and Medical Biosciences, Guy’s Hospital, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- School of Cardiovascular Medicine and Sciences, St Thomas’ Hospital, King’s College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
- *Correspondence: Metin Avkiran,
| |
Collapse
|
4
|
Lisewski U, Köhncke C, Schleussner L, Purfürst B, Lee SM, De Silva A, Manville RW, Abbott GW, Roepke TK. Hypochlorhydria reduces mortality in heart failure caused by Kcne2 gene deletion. FASEB J 2020; 34:10699-10719. [PMID: 32584506 DOI: 10.1096/fj.202000013rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022]
Abstract
Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel β subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.
Collapse
Affiliation(s)
| | - Clemens Köhncke
- Experimental and Clinical Research Center, Berlin, Germany.,Department of Cardiology, Campus Virchow - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Bettina Purfürst
- Electron Microscopy Core Facility, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Soo Min Lee
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Angele De Silva
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Torsten K Roepke
- Experimental and Clinical Research Center, Berlin, Germany.,Department of Cardiology and Angiology, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Savio-Galimberti E, Argenziano M, Antzelevitch C. Cardiac Arrhythmias Related to Sodium Channel Dysfunction. Handb Exp Pharmacol 2018; 246:331-354. [PMID: 28965168 DOI: 10.1007/164_2017_43] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The voltage-gated cardiac sodium channel (Nav1.5) is a mega-complex comprised of a pore-forming α subunit and 4 ancillary β-subunits together with numerous protein partners. Genetic defects in the form of rare variants in one or more sodium channel-related genes can cause a loss- or gain-of-function of sodium channel current (INa) leading to the manifestation of various disease phenotypes, including Brugada syndrome, long QT syndrome, progressive cardiac conduction disease, sick sinus syndrome, multifocal ectopic Purkinje-related premature contractions, and atrial fibrillation. Some sodium channelopathies have also been shown to be responsible for sudden infant death syndrome (SIDS). Although these genetic defects often present as pure electrical diseases, recent studies point to a contribution of structural abnormalities to the electrocardiographic and arrhythmic manifestation in some cases, such as dilated cardiomyopathy. The same rare variants in SCN5A or related genes may present with different clinical phenotypes in different individuals and sometimes in members of the same family. Genetic background and epigenetic and environmental factors contribute to the expression of these overlap syndromes. Our goal in this chapter is to review and discuss what is known about the clinical phenotype and genotype of each cardiac sodium channelopathy, and to briefly discuss the underlying mechanisms.
Collapse
Affiliation(s)
| | - Mariana Argenziano
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA.
| |
Collapse
|
6
|
He H, Hu ZG, Tserennadmid S, Chen S, Liu XL. Novel Muscle-Specific Genes TCAP, TNNI1, and FHL1 in Cattle: SNVs, Linkage Disequilibrium, Combined Genotypes, Association Analysis of Growth Performance, and Carcass Quality Traits and Expression Studies. Anim Biotechnol 2017; 29:259-268. [PMID: 29095095 DOI: 10.1080/10495398.2017.1377084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TCAP, TNNI1, and FHL1 regulate muscle growth and development. In this study, four single nucleotide variants (SNVs) were discovered in almost all of the exon and intron regions of the TCAP, TNNI1, and FHL1 genes using DNA pooled sequencing, polymerase chain reaction (PCR)-RFLP, and forced-PCR-RFLP methods in 576 cattle. Four SNVs were significantly associated with the growth performance and carcass quality traits of the cattle. In addition, the haplotype, haplotype frequency, and linkage disequilibrium coefficient of three sequence variants were also evaluated in the cattle population. Haplotype analysis demonstrated that eight haplotypes were present in the Qinchuan cattle population and no haplotypes were present in the Chinese Holstein population; haplotype 1 had the highest frequency in the Qinchuan (42.7%) population. Statistical analyses of 12 combined genotypes indicated that some were significantly associated with the growth performance and carcass quality traits of the Qinchuan cattle population. Moreover, the quantitative real-time polymerase chain reaction results demonstrated that the bovine TCAP, TNNI1, and FHL1 genes were exclusively expressed in muscle tissue. These data support the high potentials of the TCAP, TNNI1, and FHL1 as marker genes to improve the growth performance and carcass quality traits of Qinchuan cattle or other animals selection programs.
Collapse
Affiliation(s)
- Hua He
- a College of Veterinary Medicine , Northwest Agriculture and Forestry University , Yangling , Shaanxi , China.,b Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest Agriculture and Forestry University , Yangling , Shaanxi , China
| | - Zhi-Gang Hu
- b Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest Agriculture and Forestry University , Yangling , Shaanxi , China
| | - Sodnompil Tserennadmid
- b Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest Agriculture and Forestry University , Yangling , Shaanxi , China
| | - Si Chen
- b Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest Agriculture and Forestry University , Yangling , Shaanxi , China
| | - Xiao-Lin Liu
- b Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest Agriculture and Forestry University , Yangling , Shaanxi , China
| |
Collapse
|
7
|
Jiang M, Wang Y, Tseng GN. Adult Ventricular Myocytes Segregate KCNQ1 and KCNE1 to Keep the IKs Amplitude in Check Until When Larger IKs Is Needed. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005084. [PMID: 28611207 DOI: 10.1161/circep.117.005084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND KCNQ1 and KCNE1 assemble to form the slow delayed rectifier (IKs) channel critical for shortening ventricular action potentials during high β-adrenergic tone. However, too much IKs under basal conditions poses an arrhythmogenic risk. Our objective is to understand how adult ventricular myocytes regulate the IKs amplitudes under basal conditions and in response to stress. METHODS AND RESULTS We express fluorescently tagged KCNQ1 and KCNE1 in adult ventricular myocytes and follow their biogenesis and trafficking paths. We also study the distribution patterns of native KCNQ1 and KCNE1, and their relationship to IKs amplitudes, in chronically stressed ventricular myocytes, and use COS-7 cell expression to probe the underlying mechanism. We show that KCNQ1 and KCNE1 are both translated in the perinuclear region but traffic by different routes, independent of each other, to their separate subcellular locations. KCNQ1 mainly resides in the jSR (junctional sarcoplasmic reticulum), whereas KCNE1 resides on the cell surface. Under basal conditions, only a small portion of KCNQ1 reaches the cell surface to support the IKs function. However, in response to chronic stress, KCNQ1 traffics from jSR to the cell surface to boost the IKs amplitude in a process depending on Ca binding to CaM (calmodulin). CONCLUSIONS In adult ventricular myocytes, KCNE1 maintains a stable presence on the cell surface, whereas KCNQ1 is dynamic in its localization. KCNQ1 is largely in an intracellular reservoir under basal conditions but can traffic to the cell surface and boost the IKs amplitude in response to stress.
Collapse
Affiliation(s)
- Min Jiang
- From the Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond (M.J., Y.W., G.-N.T.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (M.J.)
| | - Yuhong Wang
- From the Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond (M.J., Y.W., G.-N.T.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (M.J.)
| | - Gea-Ny Tseng
- From the Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond (M.J., Y.W., G.-N.T.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (M.J.).
| |
Collapse
|
8
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Barbuti A, Benzoni P, Campostrini G, Dell'Era P. Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 2016; 245:1145-1158. [DOI: 10.1002/dvdy.24455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Benzoni
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Giulia Campostrini
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine; Università degli Studi di Brescia; Brescia Italy
| |
Collapse
|
10
|
Liu J, Laksman Z, Backx PH. The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev 2016; 96:253-73. [PMID: 26788696 DOI: 10.1016/j.addr.2015.12.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
The generation of human cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) has become an important resource for modeling human cardiac disease and for drug screening, and also holds significant potential for cardiac regeneration. Many challenges remain to be overcome however, before innovation in this field can translate into a change in the morbidity and mortality associated with heart disease. Of particular importance for the future application of this technology is an improved understanding of the electrophysiologic characteristics of CMs, so that better protocols can be developed and optimized for generating hPSC-CMs. Many different cell culture protocols are currently utilized to generate CMs from hPSCs and all appear to yield relatively “developmentally” immature CMs with highly heterogeneous electrical properties. These hPSC-CMs are characterized by spontaneous beating at highly variable rates with a broad range of depolarization-repolarization patterns, suggestive of mixed populations containing atrial, ventricular and nodal cells. Many recent studies have attempted to introduce approaches to promote maturation and to create cells with specific functional properties. In this review, we summarize the studies in which the electrical properties of CMs derived from stem cells have been examined. In order to place this information in a useful context, we also review the electrical properties of CMs as they transition from the developing embryo to the adult human heart. The signal pathways involved in the regulation of ion channel expression during development are also briefly considered.
Collapse
|
11
|
|
12
|
Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ Res 2015; 116:1462-1476. [PMID: 25858069 PMCID: PMC4394185 DOI: 10.1161/circresaha.116.304937] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 01/10/2023]
Abstract
Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load. However, under prolonged and abnormal loading conditions, the remodeling processes can become maladaptive, leading to altered physiological function and the development of pathological cardiac hypertrophy and heart failure. Although the mechanisms underlying mechanotransduction are far from being fully elucidated, human and mouse genetic studies have highlighted various cytoskeletal and sarcolemmal structures in cardiac myocytes as the likely candidates for load transducers, based on their link to signaling molecules and architectural components important in disease pathogenesis. In this review, we summarize recent developments that have uncovered specific protein complexes linked to mechanotransduction and mechanotransmission within the sarcomere, the intercalated disc, and at the sarcolemma. The protein structures acting as mechanotransducers are the first step in the process that drives physiological and pathological cardiac hypertrophy and remodeling, as well as the transition to heart failure, and may provide better insights into mechanisms driving mechanotransduction-based diseases.
Collapse
Affiliation(s)
- Robert C. Lyon
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fabian Zanella
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jeffrey H. Omens
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Bogomolovas J, Gasch A, Simkovic F, Rigden DJ, Labeit S, Mayans O. Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line. Open Biol 2015; 4:140041. [PMID: 24850911 PMCID: PMC4042850 DOI: 10.1098/rsob.140041] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Striated muscle tissues undergo adaptive remodelling in response to mechanical load. This process involves the myofilament titin and, specifically, its kinase domain (TK; titin kinase) that translates mechanical signals into regulatory pathways of gene expression in the myofibril. TK mechanosensing appears mediated by a C-terminal regulatory tail (CRD) that sterically inhibits its active site. Allegedly, stretch-induced unfolding of this tail during muscle function releases TK inhibition and leads to its catalytic activation. However, the cellular pathway of TK is poorly understood and substrates proposed to date remain controversial. TK's best-established substrate is Tcap, a small structural protein of the Z-disc believed to link TK to myofibrillogenesis. Here, we show that TK is a pseudokinase with undetectable levels of catalysis and, therefore, that Tcap is not its substrate. Inactivity is the result of two atypical residues in TK's active site, M34 and E147, that do not appear compatible with canonical kinase patterns. While not mediating stretch-dependent phospho-transfers, TK binds the E3 ubiquitin ligase MuRF1 that promotes sarcomeric ubiquitination in a stress-induced manner. Given previous evidence of MuRF2 interaction, we propose that the cellular role of TK is to act as a conformationally regulated scaffold that functionally couples the ubiquitin ligases MuRF1 and MuRF2, thereby coordinating muscle-specific ubiquitination pathways and myofibril trophicity. Finally, we suggest that an evolutionary dichotomy of kinases/pseudokinases has occurred in TK-like kinases, where invertebrate members are active enzymes but vertebrate counterparts perform their signalling function as pseudokinase scaffolds.
Collapse
Affiliation(s)
- Julijus Bogomolovas
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Alexander Gasch
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Felix Simkovic
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Olga Mayans
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
14
|
Francis A, Sunitha B, Vinodh K, Polavarapu K, Katkam SK, Modi S, Bharath MMS, Gayathri N, Nalini A, Thangaraj K. Novel TCAP mutation c.32C>A causing limb girdle muscular dystrophy 2G. PLoS One 2014; 9:e102763. [PMID: 25055047 PMCID: PMC4108395 DOI: 10.1371/journal.pone.0102763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo-distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G.
Collapse
Affiliation(s)
| | - Balaraju Sunitha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Sailesh Modi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - M. M. Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- * E-mail: (KT); (AN)
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail: (KT); (AN)
| |
Collapse
|
15
|
Moench I, Lopatin AN. Ca(2+) homeostasis in sealed t-tubules of mouse ventricular myocytes. J Mol Cell Cardiol 2014; 72:374-83. [PMID: 24787472 DOI: 10.1016/j.yjmcc.2014.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
We have recently shown that in mouse ventricular myocytes, t-tubules can be quickly and tightly sealed during the resolution of hyposmotic shock of physiologically relevant magnitude. Sealing of t-tubules is associated with trapping extracellular solution inside the myocytes but the ionic homeostasis of sealed t-tubules and the consequences of potential transtubular ion fluxes remain unknown. In this study we investigated the dynamics of Ca(2+) movements associated with sealing of t-tubules. The data show that under normal conditions sealed t-tubules contain Ca(2+) at concentrations below 100μM. However, blockade of voltage-dependent Ca(2+) channels with 10μM nicardipine, or increasing extracellular concentration of K(+) from 5.4mM to 20mM led to several fold increase in concentration of t-tubular Ca(2+). Alternatively, the release of Ca(2+) from sarcoplasmic reticulum using 10mM caffeine led to the restoration of t-tubular Ca(2+) towards extracellular levels within few seconds. Sealing of t-tubules in the presence of extracellular 1.5mM Ca(2+) and 5.4mM extracellular K(+) led to occasional and sporadic intracellular Ca(2+) transients. In contrast, sealing of t-tubules in the presence of 10mM caffeine was characterized by a significant long lasting increase in intracellular Ca(2+). The effect was completely abolished in the absence of extracellular Ca(2+) and significantly reduced in pre-detubulated myocytes but was essentially preserved in the presence of mitochondrial decoupler dinitrophenol. This study shows that sealed t-tubules are capable of highly regulated transport of Ca(2+) and present a major route for Ca(2+) influx into the cytosol during sealing process.
Collapse
Affiliation(s)
- I Moench
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - A N Lopatin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Qiao M, Huang J, Wu H, Wu J, Peng X, Mei S. Molecular characterization, transcriptional regulation and association analysis with carcass traits of porcine TCAP gene. Gene 2014; 538:273-9. [PMID: 24462753 DOI: 10.1016/j.gene.2014.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 01/15/2023]
Abstract
TCAP (also known as titin-cap or telethonin) is one of the titin interacting Z-disk proteins involved in the regulation and development of normal sarcomeric structure. In this study, we cloned the cDNA and promoter sequences of porcine TCAP gene, which contained a 504 bp full-length coding region. Quantitative real-time PCR (qRT-PCR) analyses showed that porcine TCAP was highly expressed in the skeletal muscle, heart, and kidney. During postnatal muscle development, TCAP expression was down-regulated from 30 days to 120 days in Large White and Meishan pigs. One single nucleotide polymorphism c.334 G>A in exon 2 of the TCAP gene was identified and detected by allele-specific primer-polymerase chain reaction (ASP-PCR). Association analysis revealed that the polymorphism had significant associations (P<0.05 and P<0.01) with some carcass traits. Analysis of the porcine TCAP promoter in different cell lines demonstrated that it is a muscle-specific promoter. In addition, we found that the porcine TCAP promoter can be activated by MyoD, MyoG and MEF2 in myotubes, which indicated that TCAP may play a role in the regulation of porcine skeletal muscle development. These findings provide useful information for the further investigation of the function of TCAP in porcine skeletal muscle.
Collapse
Affiliation(s)
- Mu Qiao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jingshu Huang
- Animal Husbandry and Veterinary Bureau of Hubei Province, Wuhan 430064, China
| | - Huayu Wu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
17
|
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Heart failure, which contributes significantly to the incidence and prevalence of cardiovascular-related diseases, can be the result of a myriad of diverse aetiologies including viral infections, coronary heart disease and genetic abnormalities—just to name a few. Interestingly, almost every type of heart failure is characterized by the loss of cardiac myocytes, either via necrosis, apoptosis or autophagy. While the former for a long time mainly has been characterized by passive loss of cells and only the latter two have been regarded as active processes, a new view is now emerging, whereby all three forms of cell death are regarded as different types of programmed cell death which can be induced via different stimuli and pathways, most of which are probably not well understood (Kung et al., Circulation Research 108(8):1017–1036, 2011). Here, we focus on the sarcomeric Z-disc, Z-disc transcriptional coupling and its role in pro-survival pathways as well as in striated muscle specific forms of cell death (sarcomeroptosis) and mechanically induced apoptosis or mechanoptosis.
Collapse
Affiliation(s)
- Ralph Knöll
- Myocardial Genetics, British Heart Foundation-Centre of Research Excellence, National Heart & Lung Institute, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
18
|
Candasamy AJ, Haworth RS, Cuello F, Ibrahim M, Aravamudhan S, Krüger M, Holt MR, Terracciano CMN, Mayr M, Gautel M, Avkiran M. Phosphoregulation of the titin-cap protein telethonin in cardiac myocytes. J Biol Chem 2013; 289:1282-93. [PMID: 24280220 PMCID: PMC3894314 DOI: 10.1074/jbc.m113.479030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telethonin (also known as titin-cap or t-cap) is a muscle-specific protein whose mutation is associated with cardiac and skeletal myopathies through unknown mechanisms. Our previous work identified cardiac telethonin as an interaction partner for the protein kinase D catalytic domain. In this study, kinase assays used in conjunction with MS and site-directed mutagenesis confirmed telethonin as a substrate for protein kinase D and Ca(2+)/calmodulin-dependent kinase II in vitro and identified Ser-157 and Ser-161 as the phosphorylation sites. Phosphate affinity electrophoresis and MS revealed endogenous telethonin to exist in a constitutively bis-phosphorylated form in isolated adult rat ventricular myocytes and in mouse and rat ventricular myocardium. Following heterologous expression in myocytes by adenoviral gene transfer, wild-type telethonin became bis-phosphorylated, whereas S157A/S161A telethonin remained non-phosphorylated. Nevertheless, both proteins localized predominantly to the sarcomeric Z-disc, where they partially replaced endogenous telethonin. Such partial replacement with S157A/S161A telethonin disrupted transverse tubule organization and prolonged the time to peak of the intracellular Ca(2+) transient and increased its variance. These data reveal, for the first time, that cardiac telethonin is constitutively bis-phosphorylated and suggest that such phosphorylation is critical for normal telethonin function, which may include maintenance of transverse tubule organization and intracellular Ca(2+) transients.
Collapse
Affiliation(s)
- Alexandra J Candasamy
- From the Cardiovascular Division, King's College London British Heart Foundation Centre, London SE1 7EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Y, Zankov DP, Jiang M, Zhang M, Henderson SC, Tseng GN. [Ca2+]i elevation and oxidative stress induce KCNQ1 protein translocation from the cytosol to the cell surface and increase slow delayed rectifier (IKs) in cardiac myocytes. J Biol Chem 2013; 288:35358-71. [PMID: 24142691 DOI: 10.1074/jbc.m113.504746] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca(2+)]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes.
Collapse
Affiliation(s)
- Yuhong Wang
- From the Department of Physiology and Biophysics and
| | | | | | | | | | | |
Collapse
|
20
|
Pancheva MV, Panchev VS, Pancheva AV. Mitochondria, Mb, and Hb have electrical, mechanical, thermal, and CO2 positive feedbacks from the contracting sarcomeres for the ATP, PCR, and O2 supply. J Appl Physiol (1985) 2013; 115:150. [PMID: 23818493 DOI: 10.1152/japplphysiol.00407.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Ibrahim M, Terracciano CM. Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovasc Res 2013; 98:225-32. [PMID: 23345265 DOI: 10.1093/cvr/cvt016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The T-tubule system in ventricular cardiomyocytes is essential for synchronous Ca(2+) handling, and, therefore, efficient contraction. T-tubular remodelling is a common feature of heart disease. In this review, we discuss whether t-tubular remodelling can be reversed and which factors may be implicated in this process. In particular, we focus on the interaction between mechanical load variation and T-tubule structure and function. What is the evidence of this relationship? What is the role of different degrees and durations of mechanical load variation? In what settings might mechanical load variation have detrimental or beneficial effects on T-tubule structure and function? What are the molecular determinants of this interaction? Ultimately this discussion is used to address the question of whether mechanical load variation can provide an understanding to underpin attempts to induce recovery of the T-tubule system. In reviewing these questions, we define what remains to be discovered in understanding T-tubule recovery.
Collapse
Affiliation(s)
- Michael Ibrahim
- Laboratory of Cell Electrophysiology, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
22
|
Ibrahim M, Siedlecka U, Buyandelger B, Harada M, Rao C, Moshkov A, Bhargava A, Schneider M, Yacoub MH, Gorelik J, Knöll R, Terracciano CM. A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet 2012; 22:372-83. [PMID: 23100327 DOI: 10.1093/hmg/dds434] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transverse (t)-tubule system plays an essential role in healthy and diseased heart muscle, particularly in Ca(2+)-induced Ca(2+) release (CICR), and its structural disruption is an early event in heart failure. Both mechanical overload and unloading alter t-tubule structure, but the mechanisms mediating the normally tight regulation of the t-tubules in response to load variation are poorly understood. Telethonin (Tcap) is a stretch-sensitive Z-disc protein that binds to proteins in the t-tubule membrane. To assess its role in regulating t-tubule structure and function, we used Tcap knockout (KO) mice and investigated cardiomyocyte t-tubule and cell structure and CICR over time and following mechanical overload. In cardiomyocytes from 3-month-old KO (3mKO), there were isolated t-tubule defects and Ca(2+) transient dysynchrony without whole heart and cellular dysfunction. Ca(2+) spark frequency more than doubled in 3mKO. At 8 months of age (8mKO), cardiomyocytes showed progressive loss of t-tubules and remodelling of the cell surface, with prolonged and dysynchronous Ca(2+) transients. Ca(2+) spark frequency was elevated and the L-type Ca(2+) channel was depressed at 8 months only. After mechanical overload obtained by aortic banding constriction, the Ca(2+) transient was prolonged in both wild type and KO. Mechanical overload increased the Ca(2+) spark frequency in KO alone, where there was also significantly more t-tubule loss, with a greater deterioration in t-tubule regularity. In conjunction, Tcap KO showed severe loss of cell surface ultrastructure. These data suggest that Tcap is a critical, load-sensitive regulator of t-tubule structure and function.
Collapse
Affiliation(s)
- Michael Ibrahim
- Laboratory of Cell Electrophysiology, Heart Science Centre, Harefield Hospital, London UB9 6JH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Savio-Galimberti E, Gollob MH, Darbar D. Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front Pharmacol 2012; 3:124. [PMID: 22798951 PMCID: PMC3394224 DOI: 10.3389/fphar.2012.00124] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/11/2012] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell adhesion molecules. In vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”. This review will outline the structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field.
Collapse
Affiliation(s)
- Eleonora Savio-Galimberti
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
24
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
25
|
The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study. J Negat Results Biomed 2011; 10:12. [PMID: 21967835 PMCID: PMC3204304 DOI: 10.1186/1477-5751-10-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. RESULTS The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls.Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. CONCLUSIONS Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmia.
Collapse
|
26
|
Zelinka L, McCann S, Budde J, Sethi S, Guidos M, Giles R, Walker GR. Characterization of the in vitro expressed autoimmune rippling muscle disease immunogenic domain of human titin encoded by TTN exons 248-249. Biochem Biophys Res Commun 2011; 411:501-505. [PMID: 21741357 DOI: 10.1016/j.bbrc.2011.06.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes to screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: EU428784) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.
Collapse
Affiliation(s)
- L Zelinka
- Biomedical Sciences Program, Kent State University, Kent, OH, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Knöll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, Ku CH, Neef S, Bug M, Schäfer K, Knöll G, Felkin LE, Wessels J, Toischer K, Hagn F, Kessler H, Didié M, Quentin T, Maier LS, Teucher N, Unsöld B, Schmidt A, Birks EJ, Gunkel S, Lang P, Granzier H, Zimmermann WH, Field LJ, Faulkner G, Dobbelstein M, Barton PJR, Sattler M, Wilmanns M, Chien KR. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res 2011; 109:758-69. [PMID: 21799151 DOI: 10.1161/circresaha.111.245787] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Telethonin (also known as titin-cap or t-cap) is a 19-kDa Z-disk protein with a unique β-sheet structure, hypothesized to assemble in a palindromic way with the N-terminal portion of titin and to constitute a signalosome participating in the process of cardiomechanosensing. In addition, a variety of telethonin mutations are associated with the development of several different diseases; however, little is known about the underlying molecular mechanisms and telethonin's in vivo function. OBJECTIVE Here we aim to investigate the role of telethonin in vivo and to identify molecular mechanisms underlying disease as a result of its mutation. METHODS AND RESULTS By using a variety of different genetically altered animal models and biophysical experiments we show that contrary to previous views, telethonin is not an indispensable component of the titin-anchoring system, nor is deletion of the gene or cardiac specific overexpression associated with a spontaneous cardiac phenotype. Rather, additional titin-anchorage sites, such as actin-titin cross-links via α-actinin, are sufficient to maintain Z-disk stability despite the loss of telethonin. We demonstrate that a main novel function of telethonin is to modulate the turnover of the proapoptotic tumor suppressor p53 after biomechanical stress in the nuclear compartment, thus linking telethonin, a protein well known to be present at the Z-disk, directly to apoptosis ("mechanoptosis"). In addition, loss of telethonin mRNA and nuclear accumulation of this protein is associated with human heart failure, an effect that may contribute to enhanced rates of apoptosis found in these hearts. CONCLUSIONS Telethonin knockout mice do not reveal defective heart development or heart function under basal conditions, but develop heart failure following biomechanical stress, owing at least in part to apoptosis of cardiomyocytes, an effect that may also play a role in human heart failure.
Collapse
Affiliation(s)
- Ralph Knöll
- Imperial College, National Heart & Lung Institute, British Heart Foundation, Centre for Research Excellence, Myocardial Genetics, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mechanosensation (the ultimate conversion of a mechanical stimulus into a biochemical signal) as well as mechanotransduction (transmission of mechanically induced signals) belong to the most fundamental processes in biology. These effects, because of their dynamic nature, are particularly important for the cardiovascular system. Therefore, it is not surprising that defects in cardiac mechanosensation, are associated with various types of cardiomyopathy and heart failure. However, our current knowledge regarding the genetic basis of impaired mechanosensation in the cardiovascular system is beginning to shed light on this subject and is at the centre of this brief review.
Collapse
|
29
|
Transcriptional analysis of the titin cap gene. Mol Genet Genomics 2011; 285:261-72. [PMID: 21305318 DOI: 10.1007/s00438-011-0603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
Mutations in titin cap (Tcap), also known as telethonin, cause limb-girdle muscular dystrophy type 2G (LGMD2G). Tcap is one of the titin interacting Z-disc proteins involved in the regulation and development of normal sarcomeric structure. Given the essential role of Tcap in establishing and maintaining normal skeletal muscle architecture, we were interested in determining the regulatory elements required for expression of this gene in myoblasts. We have defined a highly conserved 421 bp promoter proximal promoter fragment that contains two E boxes and multiple putative Mef2 binding sequences. This promoter can be activated by MyoD and myogenin in NIH3T3 fibroblast cells, and maintains the differentiated cell-specific expression pattern of the endogenous Tcap in C2C12 cells. We find that while both E boxes are required for full activation by MyoD or myogenin in NIH3T3 cells, the promoter proximal E box has a greater contribution to activation of this promoter in C2C12 cells and to activation by MyoD in NIH3T3 cells. Together, the data suggest an important role for MyoD in activating Tcap expression through the promoter proximal E box. We also show that myogenin is required for normal expression in vivo and physically binds to the Tcap promoter during embryogenesis.
Collapse
|
30
|
Abstract
Since the sentinel discovery of long QT syndrome as a channelopathy in 1995, many significant strides have been made related to exposing the pathogenic mechanisms underlying sudden cardiac death. However, elucidating the most influential genetic and environmental determinants that underlie the variable penetrance and expressivity of the primary syndrome-associated mutation remains a daunting task.
Collapse
Affiliation(s)
- Matteo Vatta
- Department of Pediatrics Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
31
|
Abstract
During the last 15 years, the perception of the cardiac z-disc has undergone substantial changes. Initially viewed as a structural component at the lateral boundaries of the sarcomere, the cardiac z-disc has increasingly become recognized as a nodal point in cardiomyocyte signal transduction and disease. This minireview thus focuses on novel components and recent developments in z-disc biology and their role in cardiac signaling and disease.
Collapse
Affiliation(s)
- Derk Frank
- Internal Medicine III/Cardiology, University of Kiel, 24105 Kiel, Germany
| | | |
Collapse
|
32
|
|
33
|
Sadikot T, Hammond CR, Ferrari MB. Distinct roles for telethonin N-versus C-terminus in sarcomere assembly and maintenance. Dev Dyn 2010; 239:1124-35. [PMID: 20235223 DOI: 10.1002/dvdy.22263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminus of telethonin forms a unique structure linking two titin N-termini at the Z-disc. While a specific role for the C-terminus has not been established, several studies indicate it may have a regulatory function. Using a morpholino approach in Xenopus, we show that telethonin knockdown leads to embryonic paralysis, myocyte defects, and sarcomeric disruption. These myopathic defects can be rescued by expressing full-length telethonin mRNA in morpholino background, indicating that telethonin is required for myofibrillogenesis. However, a construct missing C-terminal residues is incapable of rescuing motility or sarcomere assembly in cultured myocytes. We, therefore, tested two additional constructs: one where four C-terminal phosphorylatable residues were mutated to alanines and another where terminal residues were randomly replaced. Data from these experiments support that the telethonin C-terminus is required for assembly, but in a context-dependent manner, indicating that factors and forces present in vivo can compensate for C-terminal truncation or mutation.
Collapse
Affiliation(s)
- Takrima Sadikot
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Martin M LeWinter
- Cardiology Unit, Fletcher Allen Health Care, 111 Colchester Ave, Burlington, VT 05401, USA.
| | | |
Collapse
|
35
|
Forbes JG, Flaherty DB, Ma K, Qadota H, Benian GM, Wang K. Extensive and modular intrinsically disordered segments in C. elegans TTN-1 and implications in filament binding, elasticity and oblique striation. J Mol Biol 2010; 398:672-89. [PMID: 20346955 PMCID: PMC2908218 DOI: 10.1016/j.jmb.2010.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/26/2022]
Abstract
TTN-1, a titin like protein in Caenorhabditis elegans, is encoded by a single gene and consists of multiple Ig and fibronectin 3 domains, a protein kinase domain and several regions containing tandem short repeat sequences. We have characterized TTN-1's sarcomere distribution, protein interaction with key myofibrillar proteins as well as the conformation malleability of representative motifs of five classes of short repeats. We report that two antibodies developed to portions of TTN-1 detect an approximately 2-MDa polypeptide on Western blots. In addition, by immunofluorescence staining, both of these antibodies localize to the I-band and may extend into the outer edge of the A-band in the obliquely striated muscle of the nematode. Six different 300-residue segments of TTN-1 were shown to variously interact with actin and/or myosin in vitro. Conformations of synthetic peptides of representative copies of each of the five classes of repeats--39-mer PEVT, 51-mer CEEEI, 42-mer AAPLE, 32-mer BLUE and 30-mer DispRep--were investigated by circular dichroism at different temperatures, ionic strengths and solvent polarities. The PEVT, CEEEI, DispRep and AAPLE peptides display a combination of a polyproline II helix and an unordered structure in aqueous solution and convert in trifluoroethanol to alpha-helix (PEVT, CEEEI, DispRep) and beta-turn (AAPLE) structures, respectively. The octads in BLUE motifs form unstable alpha-helix-like structures coils in aqueous solution and negligible heptad-based, alpha-helical coiled-coils. The alpha-helical structure, as modeled by threading and molecular dynamics simulations, tends to form helical bundles and crosses based on its 8-4-2-2 hydrophobic helical patterns and charge arrays on its surface. Our finding indicates that APPLE, PEVT, CEEEI and DispRep regions are all intrinsically disordered and highly reminiscent of the conformational malleability and elasticity of vertebrate titin PEVK segments. The proposed presence of long, modular and unstable alpha-helical oligomerization domains in the BLUE region of TTN-1 could bundle TTN-1 and stabilize oblique striation of the sarcomere.
Collapse
Affiliation(s)
- Jeffrey G. Forbes
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Denise B. Flaherty
- Department of Pathology, Emory University, Whitehead Biomedical Research Building, Atlanta, GA 30332, USA
- Collegium of the Natural Sciences, Eckerd College, St. Petersburg, FL 33711
| | - Kan Ma
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Whitehead Biomedical Research Building, Atlanta, GA 30332, USA
| | - Guy M. Benian
- Department of Pathology, Emory University, Whitehead Biomedical Research Building, Atlanta, GA 30332, USA
| | - Kuan Wang
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
Abraham T, Allan SE, Levings MK. Deconvolution and chromatic aberration corrections in quantifying colocalization of a transcription factor in three-dimensional cellular space. Micron 2010; 41:633-40. [PMID: 20392647 DOI: 10.1016/j.micron.2010.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/06/2010] [Accepted: 03/15/2010] [Indexed: 01/09/2023]
Abstract
In the realm of multi-dimensional confocal microscopy, colocalization analysis of fluorescent emission signals has proven to be an invaluable tool for detecting molecular interactions between biological macromolecules at the subcellular level. We show here that image processing operations such as the deconvolution and chromatic corrections play a crucial role in the accurate determination of colocalization between biological macromolecules particularly when the fluorescent signals are faint, and when the fluorescent signals are in the blue and red emission regions. The cellular system presented here describes quantification of an activated forkhead box P3 (FOXP3) transcription factor in three-dimensional (3D) cellular space. 293T cells transfected with a conditionally active form of FOXP3 were stained for anti-FOXP3 conjugated to a fluorescent red dye (Phycoerythrin), and counterstained for DNA (nucleus) with fluorescent blue dye (Hoechst). Due to the broad emission spectra of these dyes, the fluorescent signals were collected only from peak regions and were acquired sequentially. Since the PE signal was weak, a confocal pinhole size of two Airy size was used to collect the 3D image data sets. The raw images supplemented with the spectral data show the preferential association of activated FOXP3 molecules with the nucleus. However, the PE signals were found to be highly diffusive and colocalization quantification from these raw images was not possible. In order to deconvolve the 3D raw image data set, point spread functions (PSFs) of these emissions were measured. From the measured PSF, we found that chromatic shifts between the blue and red colors were quite considerable. Followed by the applications of both the axial and lateral chromatic corrections, colocalization analysis performed on the deconvolved-chromatic corrected-3D image data set showed that 98% of DNA molecules were associated with FOXP3 molecules, whereas only 66% of FOXP3 molecules were colocalized with DNA molecules. In conclusion, our studies clearly demonstrate the importance of PSF measurements, chromatic aberration corrections followed by deconvolution in the accurate determination of transcription factors in the 3D cellular space. The reported imaging and processing methods can be a practical guide for quantitative fluorescence imaging of similar cellular systems and can provide a basis for further development.
Collapse
Affiliation(s)
- Thomas Abraham
- The James Hogg Research Centre, Heart+Lung Institute at St. Paul's Hospital - University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
37
|
Markert CD, Meaney MP, Voelker KA, Grange RW, Dalley HW, Cann JK, Ahmed M, Bishwokarma B, Walker SJ, Yu SX, Brown M, Lawlor MW, Beggs AH, Childers MK. Functional muscle analysis of the Tcap knockout mouse. Hum Mol Genet 2010; 19:2268-83. [PMID: 20233748 DOI: 10.1093/hmg/ddq105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autosomal recessive limb-girdle muscular dystrophy type 2G (LGMD2G) is an adult-onset myopathy characterized by distal lower limb weakness, calf hypertrophy and progressive decline in ambulation. The disease is caused by mutations in Tcap, a z-disc protein of skeletal muscle, although the precise mechanisms resulting in clinical symptoms are unknown. To provide a model for preclinical trials and for mechanistic studies, we generated knockout (KO) mice carrying a null mutation in the Tcap gene. Here we present the first report of a Tcap KO mouse model for LGMD2G and the results of an investigation into the effects of Tcap deficiency on skeletal muscle function in 4- and 12-month-old mice. Muscle histology of Tcap-null mice revealed abnormal myofiber size variation with central nucleation, similar to findings in the muscles of LGMD2G patients. An analysis of a Tcap binding protein, myostatin, showed that deletion of Tcap was accompanied by increased protein levels of myostatin. Our Tcap-null mice exhibited a decline in the ability to maintain balance on a rotating rod, relative to wild-type controls. No differences were detected in force or fatigue assays of isolated extensor digitorum longus (EDL) and soleus (SOL) muscles. Finally, a mechanical investigation of EDL and SOL indicated an increase in muscle stiffness in KO animals. We are the first to establish a viable KO mouse model of Tcap deficiency and our model mice demonstrate a dystrophic phenotype comparable to humans with LGMD2G.
Collapse
Affiliation(s)
- C D Markert
- Department of Neurology, Wake Forest University, Winston-Salem, NC 27101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ottenheijm CAC, Granzier H. Role of titin in skeletal muscle function and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 682:105-22. [PMID: 20824522 DOI: 10.1007/978-1-4419-6366-6_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers recent developments in the titin field. Most recent reviews have discussed titin's role in cardiac function: here we will mainly focus on skeletal muscle, and discuss recent advances in the understanding of titin's role in skeletal muscle function and disease.
Collapse
|
39
|
Abstract
The heart is a force-generating organ that responds to self-generated electrical stimuli from specialized cardiomyocytes. This function is modulated by sympathetic and parasympathetic activity. In order to contract and accommodate the repetitive morphological changes induced by the cardiac cycle, cardiomyocytes depend on their highly evolved and specialized cytoskeletal apparatus. Defects in components of the cytoskeleton affect the ability of the cell to compensate at both functional and structural levels in the long term. In addition to structural remodeling, the myocardium becomes increasingly susceptible to altered electrical activity, leading to arrhythmogenesis. The development of arrhythmias secondary to structural remodeling defects has been noted, although the detailed molecular mechanisms are still elusive. Here, the author reviews the current knowledge of the molecular and functional relationships between the cytoskeleton and ion channels, and discusses the future impact of new data on molecular cardiology research and clinical practice.
Collapse
Affiliation(s)
- Matteo Vatta
- Baylor College of Medicine, Pediatrics (Cardiology), Texas Children's Hospital, 6621 Fannin St, FC 430.09, Houston, TX 77030, USA.
| | | |
Collapse
|
40
|
Fatini C, Sticchi E, Marcucci R, Verdiani V, Nozzoli C, Vassallo C, Emdin M, Abbate R, Gensini GF. S38G single-nucleotide polymorphism at the KCNE1 locus is associated with heart failure. Heart Rhythm 2009; 7:363-7. [PMID: 20185111 DOI: 10.1016/j.hrthm.2009.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 11/29/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prolongation of the action potential duration, whose major determinants are the delayed-rectifier potassium currents, is a hallmark of failing ventricular myocardium. Genetic variants in the KCNE1 gene, encoding for the beta-subunit (minK) of a slowly activated cardiac potassium channel (I(ks)), may impair myocardial repolarization. Experimental data demonstrated a higher KCNE1 expression in heart failure (HF). OBJECTIVE The purpose of this study was to investigate the association between a KCNE1 S38G single-nucleotide polymorphism (SNP) and HF. METHODS We genotyped 197 out of 323 previously investigated patients and 352 healthy controls comparable for age and sex. This study was replicated in 186 HF patients and in 200 healthy subjects comparable for age and sex and recruited from the Department of Cardiovascular Medicine of the National Research Council, Pisa, Italy. RESULTS A significant difference in genotype distribution and allele frequency between patients and controls was observed for the KCNE1 S38G SNP (P = .002 and P = .0008, respectively). The KCNE1 38G variant was associated with a significant predisposition to HF under a dominant (odds ratio [OR] = 2.22 [1.23-3.28]; P = .008) and additive (OR = 2.13 [1.09-4.15]; P = .03) model, after adjustment for age, sex, and traditional cardiovascular risk factors. No difference in genotype distribution and allele frequency for the KCNE1 S38G SNP according to functional New York Heart Association class was found (P = .4 and P = .3, respectively). In the HF replication study, the KCNE1 38G allele frequency was significantly higher in comparison with that observed in the control population (38G = 0.59 vs. 0.49; P = .004). The 38G allele was associated with HF predisposition under the recessive (OR [95% confidence interval (CI)] = 2.49 [1.45-4.29]; P = .001) and additive models (OR [95% CI] = 2.63 [1.29-5.35]; P = .008), after adjustment for traditional risk factors. CONCLUSION KCNE1 S38G SNP is associated with HF predisposition in two study populations. Nevertheless, further studies performed in larger populations and aimed to better define the role of this locus are required.
Collapse
Affiliation(s)
- Cinzia Fatini
- Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Otey CA, Dixon R, Stack C, Goicoechea SM. Cytoplasmic Ig-domain proteins: cytoskeletal regulators with a role in human disease. ACTA ACUST UNITED AC 2009; 66:618-34. [PMID: 19466753 DOI: 10.1002/cm.20385] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Carol A Otey
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|
42
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
43
|
Abriel H. Cardiac sodium channel Na(v)1.5 and interacting proteins: Physiology and pathophysiology. J Mol Cell Cardiol 2009; 48:2-11. [PMID: 19744495 DOI: 10.1016/j.yjmcc.2009.08.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/12/2009] [Accepted: 08/31/2009] [Indexed: 12/19/2022]
Abstract
The cardiac voltage-gated Na(+) channel Na(v)1.5 generates the cardiac Na(+) current (INa). Mutations in SCN5A, the gene encoding Na(v)1.5, have been linked to many cardiac phenotypes, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. The mutations in SCN5A define a sub-group of Na(v)1.5/SCN5A-related phenotypes among cardiac genetic channelopathies. Several research groups have proposed that Na(v)1.5 may be part of multi-protein complexes composed of Na(v)1.5-interacting proteins which regulate channel expression and function. The genes encoding these regulatory proteins have also been found to be mutated in patients with inherited forms of cardiac arrhythmias. The proteins that associate with Na(v)1.5 may be classified as (1) anchoring/adaptor proteins, (2) enzymes interacting with and modifying the channel, and (3) proteins modulating the biophysical properties of Na(v)1.5 upon binding. The aim of this article is to review these Na(v)1.5 partner proteins and to discuss how they may regulate the channel's biology and function. These recent investigations have revealed that the expression level, cellular localization, and activity of Na(v)1.5 are finely regulated by complex molecular and cellular mechanisms that we are only beginning to understand.
Collapse
Affiliation(s)
- Hugues Abriel
- Department of Clinical Research, University of Bern, Murtenstrasse, 35, 3010 Bern, Switzerland.
| |
Collapse
|
44
|
Zhang R, Yang J, Zhu J, Xu X. Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere-membrane interaction, not sarcomere assembly. Hum Mol Genet 2009; 18:4130-40. [PMID: 19679566 DOI: 10.1093/hmg/ddp362] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tcap/telethonin encodes a Z-disc protein that plays important roles in sarcomere assembly, sarcomere-membrane interaction and stretch sensing. It remains unclear why mutations in Tcap lead to limb-girdle muscular dystrophy 2G (LGMD2G) in human patients. Here, we cloned tcap in zebrafish and conducted genetic studies. We show that tcap is functionally conserved, as the Tcap protein appears in the sarcomeric Z-disc and reduction of Tcap resulted in muscular dystrophy-like phenotypes including deformed muscle structure and impaired swimming ability. However, the observations that Tcap integrates into the sarcomere at a stage after the Z-disc becomes periodic, and that the sarcomere remains intact in tcap morphants, suggest that defective sarcomere assembly does not contribute to this particular type of muscular dystrophy. Instead, a defective interaction between the sarcomere and plasma membrane was detected, which was further underscored by the disrupted development of the T-tubule system. Pertinent to a potential function in stretch sensor signaling, zebrafish tcap exhibits a variable expression pattern during somitogenesis. The variable expression is inducible by stretch force, and the expression level of Tcap is negatively regulated by integrin-link kinase (ILK), a protein kinase that is involved in stretch sensing signaling. Together, our genetic studies of tcap in zebrafish suggested that pathogenesis in LGMD2G is due to a disruption of sarcomere-T-tubular interaction, but not of sarcomere assembly per se. In addition, our data prompted a novel hypothesis that predicts that the transcription level of Tcap can be regulated by the stretch force to ensure proper sarcomere-membrane interaction in striated muscles.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
45
|
Molecular cloning and expression profile analysis of porcine TCAP gene. Mol Biol Rep 2009; 37:1641-7. [PMID: 19488834 DOI: 10.1007/s11033-009-9577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 08/26/2008] [Indexed: 10/20/2022]
Abstract
The gradually discovered sarcomeric proteins play important roles for structural integrity and signal transduction of sarcomere during myofibril genesis. TCAP (also described as telethonin, T-cap), one of the sarcomeric protein genes, is regulated developmentally. In this study, we reported the molecular characteristics of porcine TCAP gene. A 979 bp TCAP cDNA nucleotide sequence was obtained in pig and the deduced amino acid sequence had 92 and 91% identity to those of human and mouse homologous genes, respectively. One SNP was discovered and the allele frequency analysis showed that G allele frequency was low among 221 unrelated pigs from seven breeds. The tissue distribution patterns revealed that TCAP mRNA was expressed abundantly in skeletal and heart muscle tissue. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) results displayed TCAP mRNA was up-regulated in both Tongcheng and Landrace pigs during prenatal skeletal muscle development stages. This study suggested that TCAP gene might be a prospective candidate gene affecting muscle mass and meat quality traits in the pig, and also implicated the possible significance of TCAP on sarcomere assembly.
Collapse
|
46
|
Seebohm G, Strutz-Seebohm N, Ureche ON, Henrion U, Baltaev R, Mack AF, Korniychuk G, Steinke K, Tapken D, Pfeufer A, Kääb S, Bucci C, Attali B, Merot J, Tavare JM, Hoppe UC, Sanguinetti MC, Lang F. Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels. Circ Res 2008; 103:1451-7. [PMID: 19008479 DOI: 10.1161/circresaha.108.177360] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serum- and glucocorticoid-inducible kinase (SGK)1, which in turn stimulates I(Ks), a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in I(Ks) channel alpha (KCNQ1, KvLQT1, Kv7.1) or beta (KCNE1, IsK, minK) subunits cause long QT syndrome (LQTS), an inherited cardiac arrhythmia associated with increased risk of sudden death. Together with the GTPases RAB5 and RAB11, SGK1 facilitates membrane recycling of KCNQ1 channels. Here, we show altered SGK1-dependent regulation of LQTS-associated mutant I(Ks) channels. Whereas some mutant KCNQ1 channels had reduced basal activity but were still activated by SGK1, currents mediated by KCNQ1(Y111C) or KCNQ1(L114P) were paradoxically reduced by SGK1. Heteromeric channels coassembled of wild-type KCNQ1 and the LQTS-associated KCNE1(D76N) mutant were similarly downregulated by SGK1 because of a disrupted RAB11-dependent recycling. Mutagenesis experiments indicate that stimulation of I(Ks) channels by SGK1 depends on residues H73, N75, D76, and P77 in KCNE1. Identification of the I(Ks) recycling pathway and its modulation by stress-stimulated SGK1 provides novel mechanistic insight into potentially fatal cardiac arrhythmias triggered by physical or psychological stress.
Collapse
|
47
|
Kang C, Tian C, Sönnichsen FD, Smith JA, Meiler J, George AL, Vanoye CG, Kim HJ, Sanders CR. Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry 2008; 47:7999-8006. [PMID: 18611041 DOI: 10.1021/bi800875q] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
KCNE1 is a single-span membrane protein that modulates the voltage-gated potassium channel KCNQ1 (K V7.1) by slowing activation and enhancing channel conductance to generate the slow delayed rectifier current ( I Ks) that is critical for the repolarization phase of the cardiac action potential. Perturbation of channel function by inherited mutations in KCNE1 or KCNQ1 results in increased susceptibility to cardiac arrhythmias and sudden death with or without accompanying deafness. Here, we present the three-dimensional structure of KCNE1. The transmembrane domain (TMD) of KCNE1 is a curved alpha-helix and is flanked by intra- and extracellular domains comprised of alpha-helices joined by flexible linkers. Experimentally restrained docking of the KCNE1 TMD to a closed state model of KCNQ1 suggests that KCNE1 slows channel activation by sitting on and restricting the movement of the S4-S5 linker that connects the voltage sensor to the pore domain. We postulate that this is an adhesive interaction that must be disrupted before the channel can be opened in response to membrane depolarization. Docking to open KCNQ1 indicates that the extracellular end of the KCNE1 TMD forms an interface with an intersubunit cleft in the channel that is associated with most known gain-of-function disease mutations. Binding of KCNE1 to this "gain-of-function cleft" may explain how it increases conductance and stabilizes the open state. These working models for the KCNE1-KCNQ1 complexes may be used to formulate testable hypotheses for the molecular bases of disease phenotypes associated with the dozens of known inherited mutations in KCNE1 and KCNQ1.
Collapse
Affiliation(s)
- Congbao Kang
- Department of Biochemitry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
TCAP knockdown by RNA interference inhibits myoblast differentiation in cultured skeletal muscle cells. Neuromuscul Disord 2008; 18:413-22. [PMID: 18440815 DOI: 10.1016/j.nmd.2008.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/29/2008] [Accepted: 03/11/2008] [Indexed: 11/20/2022]
Abstract
Null mutation of titin-cap (TCAP) causes limb-girdle muscular dystrophy type 2G (LGMD2G). LGMD2G patients develop muscle atrophy, and lose the ability to walk by their third decade. Previous findings suggest that TCAP regulates myostatin, a key regulator of muscle growth. We tested the hypothesis that TCAP knockdown with RNA interference will lead to differential expression of genes involved in muscle proliferation and differentiation, impairing muscle cell growth. mRNA from cultured cells treated with TCAP siRNA duplex constructs was analyzed using Northern blots and real-time RT-PCR. siRNA treatment decreased TCAP mRNA expression in differentiating muscle cells. Significant (p<0.05) decreases in mRNA were observed for myogenic regulatory factors. siRNA treatment also prevented development of the normal phenotype of muscle cells. Our findings suggest that TCAP knockdown with RNA interference alters normal muscle cell differentiation.
Collapse
|
49
|
Mazzone A, Strege PR, Tester DJ, Bernard CE, Faulkner G, De Giorgio R, Makielski JC, Stanghellini V, Gibbons SJ, Ackerman MJ, Farrugia G. A mutation in telethonin alters Nav1.5 function. J Biol Chem 2008; 283:16537-44. [PMID: 18408010 DOI: 10.1074/jbc.m801744200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Excitable cells express a variety of ion channels that allow rapid exchange of ions with the extracellular space. Opening of Na(+) channels in excitable cells results in influx of Na(+) and cellular depolarization. The function of Na(v)1.5, an Na(+) channel expressed in the heart, brain, and gastrointestinal tract, is altered by interacting proteins. The pore-forming alpha-subunit of this channel is encoded by SCN5A. Genetic perturbations in SCN5A cause type 3 long QT syndrome and type 1 Brugada syndrome, two distinct heritable arrhythmia syndromes. Mutations in SCN5A are also associated with increased prevalence of gastrointestinal symptoms, suggesting that the Na(+) channel plays a role in normal gastrointestinal physiology and that alterations in its function may cause disease. We collected blood from patients with intestinal pseudo-obstruction (a disease associated with abnormal motility in the gut) and screened for mutations in SCN5A and ion channel-interacting proteins. A 42-year-old male patient was found to have a mutation in the gene TCAP, encoding for the small protein telethonin. Telethonin was found to be expressed in the human gastrointestinal smooth muscle, co-localized with Na(v)1.5, and co-immunoprecipitated with sodium channels. Expression of mutated telethonin, when co-expressed with SCN5A in HEK 293 cells, altered steady state activation kinetics of SCN5A, resulting in a doubling of the window current. These results suggest a new role for telethonin, namely that telethonin is a sodium channel-interacting protein. Also, mutations in telethonin can alter Na(v)1.5 kinetics and may play a role in intestinal pseudo-obstruction.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nicolas CS, Park KH, El Harchi A, Camonis J, Kass RS, Escande D, Mérot J, Loussouarn G, Le Bouffant F, Baró I. IKs response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules. Cardiovasc Res 2008; 79:427-35. [PMID: 18390900 DOI: 10.1093/cvr/cvn085] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.
Collapse
|