1
|
Schubert C, Unden G. Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule. Microb Physiol 2024; 34:108-120. [PMID: 38432210 DOI: 10.1159/000538095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION C4-dicarboxylates (C4-DC) have emerged as significant growth substrates and signaling molecules for various Enterobacteriaceae during their colonization of mammalian hosts. Particularly noteworthy is the essential role of fumarate respiration during colonization of pathogenic bacteria. To investigate the regulation of aerobic C4-DC metabolism, the study explored the transcriptional control of the main aerobic C4-DC transporter, dctA, under different carbohydrate conditions. In addition, mutants related to carbon catabolite repression (CCR) and C4-DC regulation (DcuS-DcuR) were examined to better understand the regulatory integration of aerobic C4-DC metabolism into CCR. For initial insight into posttranslational regulation, the interaction between the aerobic C4-DC transporter DctA and EIIAGlc from the glucose-specific phosphotransferase system was investigated. METHODS The expression of dctA was characterized in the presence of various carbohydrates and regulatory mutants affecting CCR. This was accomplished by fusing the dctA promoter (PdctA) to the lacZ reporter gene. Additionally, the interaction between DctA and EIIAGlc of the glucose-specific phosphotransferase system was examined in vivo using a bacterial two-hybrid system. RESULTS The dctA promoter region contains a class I cAMP-CRP-binding site at position -81.5 and a DcuR-binding site at position -105.5. DcuR, the response regulator of the C4-DC-activated DcuS-DcuR two-component system, and cAMP-CRP stimulate dctA expression. The expression of dctA is subject to the influence of various carbohydrates via cAMP-CRP, which differently modulate cAMP levels. Here we show that EIIAGlc of the glucose-specific phosphotransferase system strongly interacts with DctA, potentially resulting in the exclusion of C4-DCs when preferred carbon substrates, such as sugars, are present. In contrast to the classical inducer exclusion known for lactose permease LacY, inhibition of C4-DC uptake into the cytoplasm affects only its role as a substrate, but not as an inducer since DcuS detects C4-DCs in the periplasmic space ("substrate exclusion"). The work shows an interplay between cAMP-CRP and the DcuS-DcuR regulatory system for the regulation of dctA at both transcriptional and posttranslational levels. CONCLUSION The study highlights a hierarchical interplay between global (cAMP-CRP) and specific (DcuS-DcuR) regulation of dctA at the transcriptional and posttranslational levels. The integration of global and specific transcriptional regulation of dctA, along with the influence of EIIAGlc on DctA, fine-tunes C4-DC catabolism in response to the availability of other preferred carbon sources. It attributes DctA a central role in the control of aerobic C4-DC catabolism and suggests a new role to EIIAGlc on transporters (control of substrate uptake by substrate exclusion).
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Gottfried Unden
- Institute for Molecular Physiology (IMP), Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany,
| |
Collapse
|
2
|
cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor. J Microbiol 2023; 61:277-287. [PMID: 36892777 DOI: 10.1007/s12275-023-00028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcription factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.
Collapse
|
3
|
Amin MR, Korchinski L, Yoneda JK, Thakkar R, Sanson CLA, Fitzgerald SF, Kelln RA, Cameron ADS. A mutation in the putative CRP binding site of the dctA promoter of Salmonella enterica serovar Typhimurium enables growth with low orotate concentrations. Can J Microbiol 2022; 68:615-621. [PMID: 35921682 DOI: 10.1139/cjm-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella enterica and Escherichia coli use the inner membrane transporter DctA to import the pyrimidine biosynthetic pathway intermediate orotate from the environment. To study the regulation of dctA expression, we used a S. enterica serovar Typhimurium pyrimidine auxotroph to select a mutant that could grow in an otherwise non-permissive culture medium containing glucose and a low concentration of orotate. Whole genome sequencing revealed a point mutation upstream of dctA in the putative cyclic AMP receptor protein (CRP) binding site. The C->T transition converted the least-favourable base to the most-favourable base for CRP-DNA affinity. A dctA::lux transcriptional fusion confirmed that the mutant dctA promoter gained responsiveness to CRP even in the presence of glucose. Moreover, dctA expression was higher in the mutant than the wild type in the presence of alternative carbon sources that activate CRP.
Collapse
Affiliation(s)
- Mohammad R Amin
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Lisa Korchinski
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada;
| | - Joshua K Yoneda
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Rishi Thakkar
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Carla L A Sanson
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada.,Government of Saskatchewan Ministry of Labour Relations and Workplace Safety, 359189, Occupational Health and Safety Branch, Regina, Saskatchewan, Canada;
| | - Stephen F Fitzgerald
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,Moredun Research Institute, 6485, Penicuik, United Kingdom of Great Britain and Northern Ireland;
| | - Rod A Kelln
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada;
| | - Andrew D S Cameron
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| |
Collapse
|
4
|
Singh RK, Mukherjee A. Molecular Mechanism of Dual Intercalation in Sac7d–DNA Complexation. J Phys Chem B 2022; 126:1682-1690. [DOI: 10.1021/acs.jpcb.1c09355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Reman Kumar Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Department of Chemistry, Indian Institute of Technology, Bombay 400076, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
5
|
Søndberg E, Sinha AK, Gerdes K, Semsey S. CRP Interacts Specifically With Sxy to Activate Transcription in Escherichia coli. Front Microbiol 2019; 10:2053. [PMID: 31543875 PMCID: PMC6728893 DOI: 10.3389/fmicb.2019.02053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Horizontal gene transfer through natural competence is an important driving force of bacterial evolution and antibiotic resistance development. In several Gram-negative pathogens natural competence is regulated by the concerted action of cAMP receptor protein (CRP) and the transcriptional co-regulator Sxy through a subset of CRP-binding sites (CRP-S sites) at genes encoding competence factors. Despite the wealth of knowledge on CRP’s structure and function it is not known how CRP and Sxy act together to activate transcription. In order to get an insight into the regulatory mechanism by which these two proteins activate gene expression, we performed a series of mutational analyses on CRP and Sxy. We found that CRP contains a previously uncharacterized region necessary for Sxy dependent induction of CRP-S sites, here named “Sxy Interacting Region” (SIR) encompassing residues Q194 and L196. Lost promoter induction in SIR mutants could be restored in the presence of specific complementary Sxy mutants, presenting evidence for a direct interaction of CRP and Sxy proteins in transcriptional activation. Moreover, we identified constitutive mutants of Sxy causing higher levels of CRP-S site promoter activation than wild-type Sxy. Both suppressor and constitutive mutations are located within the same area of Sxy.
Collapse
Affiliation(s)
- Emilie Søndberg
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anurag Kumar Sinha
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Szabolcs Semsey
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Sandmann A, Sticht H. Probing the role of intercalating protein sidechains for kink formation in DNA. PLoS One 2018; 13:e0192605. [PMID: 29432448 PMCID: PMC5809078 DOI: 10.1371/journal.pone.0192605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/28/2018] [Indexed: 11/18/2022] Open
Abstract
Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.
Collapse
Affiliation(s)
- Achim Sandmann
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
7
|
Yella VR, Bansal M. DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio 2017; 7:324-334. [PMID: 28286728 PMCID: PMC5337902 DOI: 10.1002/2211-5463.12166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic genes can be broadly classified as TATA‐containing and TATA‐less based on the presence of TATA box in their promoters. Experiments on both classes of genes have revealed a disparity in the regulation of gene expression and cellular functions between the two classes. In this study, we report characteristic differences in promoter sequences and associated structural properties of the two categories of genes in six different eukaryotes. We have analyzed three structural features, DNA duplex stability, bendability, and curvature along with the distribution of A‐tracts, G‐quadruplex motifs, and CpG islands. The structural feature analyses reveal that while the two classes of gene promoters are distinctly different from each other, the properties are also distinguishable across the six organisms.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Molecular Biophysics Unit Indian Institute of Science Bangalore India; Present address: Department of Biotechnology K L University, Vaddeswaram Guntur 522502 India
| | - Manju Bansal
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
8
|
Turaga G, Edmondson SP, Smith K, Shriver JW. Insights into the Structure of Sulfolobus Nucleoid Using Engineered Sac7d Dimers with a Defined Orientation. Biochemistry 2016; 55:6230-6237. [PMID: 27766846 DOI: 10.1021/acs.biochem.6b00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of Archaeal chromatin or nucleoid is believed to have characteristics similar to that found in both eukaryotes and bacteria. Recent comparative studies have suggested that DNA compaction in Archaea requires a bridging protein (e.g., Alba) along with either a wrapping protein (e.g., a histone) or a bending protein such as Sac7d. While X-ray crystal structures demonstrate that Sac7d binds as a monomer to create a significant kink in duplex DNA, the structure of a multiprotein-DNA complex has not been established. Using cross-linked dimers of Sac7d with a defined orientation, we present evidence that indicates that Sac7d is able to largely coat duplex DNA in vivo by binding in alternating head-to-head and tail-to-tail orientations. Although each Sac7d monomer promotes a significant kink of nearly 70°, coated DNA is expected to be largely extended because of compensation of repetitive kinks with helical symmetry.
Collapse
Affiliation(s)
- Gokul Turaga
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Stephen P Edmondson
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Kelley Smith
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - John W Shriver
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| |
Collapse
|
9
|
Konda SK, Wang H, Cutts SM, Phillips DR, Collins JG. Binding of pixantrone to DNA at CpA dinucleotide sequences and bulge structures. Org Biomol Chem 2016; 13:5972-82. [PMID: 25929194 DOI: 10.1039/c5ob00526d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The binding of the anti-cancer drug pixantrone to three oligonucleotide sequences, d(TCATATGA)2, d(CCGAGAATTCCGG)2 {double bulge = DB} and the non-self complementary d(TACGATGAGTA) : d(TACCATCGTA) {single bulge = SB}, has been studied by NMR spectroscopy and molecular modelling. The upfield shifts observed for the aromatic resonances of pixantrone upon addition of the drug to each oligonucleotide confirmed the drug bound by intercalation. For the duplex sequence d(TCATATGA)2, NOEs were observed from the pixantrone aromatic H7/8 and aliphatic Ha/Hb protons to the H6/H8 and H1' protons of the C2, A3, T6 and G7 nucleotides, demonstrating that pixantrone preferentially binds at the symmetric CpA sites. However, weaker NOEs observed to various protons from the T4 and A5 residues indicated alternative minor binding sites. NOEs from the H7/H8 and Ha/Hb protons to both major (H6/H8) and minor groove (H1') protons indicated approximately equal proportions of intercalation was from the major and minor groove at the CpA sites. Intermolecular NOEs were observed between the H7/H8 and H4 protons of pixantrone and the A4H1' and G3H1' protons of the oligonucleotide that contains two symmetrically related bulge sites (DB), indicative of binding at the adenine bulge sites. For the oligonucleotide that only contains a single bulge site (SB), NOEs were observed from pixantrone protons to the SB G7H1', A8H1' and G9H1' protons, confirming that the drug bound selectively at the adenine bulge site. A molecular model of pixantrone-bound SB could be constructed with the drug bound from the minor groove at the A8pG9 site that was consistent with the observed NMR data. The results demonstrate that pixantrone preferentially intercalates at adenine bulge sites, compared to duplex DNA, and predominantly from the minor groove.
Collapse
Affiliation(s)
- Shyam K Konda
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Northcott Drive, Campbell, ACT 2600, Australia.
| | | | | | | | | |
Collapse
|
10
|
AlQuraishi M, Tang S, Xia X. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system. BMC Bioinformatics 2015; 16:390. [PMID: 26586237 PMCID: PMC4653904 DOI: 10.1186/s12859-015-0819-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022] Open
Abstract
Background Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. Description We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Conclusions This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA. .,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA.
| | - Shengdong Tang
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Xide Xia
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Harris LA, Williams LD, Koudelka GB. Specific minor groove solvation is a crucial determinant of DNA binding site recognition. Nucleic Acids Res 2014; 42:14053-9. [PMID: 25429976 PMCID: PMC4267663 DOI: 10.1093/nar/gku1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein.
Collapse
Affiliation(s)
- Lydia-Ann Harris
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Gerald B Koudelka
- Department of Biological Sciences, 607 Cooke Hall, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Whitley DC, Runfola V, Cary P, Nazlamova L, Guille M, Scarlett G. APTE: identification of indirect read-out A-DNA promoter elements in genomes. BMC Bioinformatics 2014; 15:288. [PMID: 25158845 PMCID: PMC4159511 DOI: 10.1186/1471-2105-15-288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022] Open
Abstract
Background Transcriptional regulation is normally based on the recognition by a transcription factor of a defined base sequence in a process of direct read-out. However, the nucleic acid secondary and tertiary structure can also act as a recognition site for the transcription factor in a process known as indirect read-out, although this is much less understood. We have previously identified such a transcriptional control mechanism in early Xenopus development where the interaction of the transcription factor ilf3 and the gata2 promoter requires the presence of both an unusual A-form DNA structure and a CCAAT sequence. Rapid identification of such promoters elsewhere in the Xenopus and other genomes would provide insight into a less studied area of gene regulation, although currently there are few tools to analyse genomes in such ways. Results In this paper we report the implementation of a novel bioinformatics approach that has identified 86 such putative promoters in the Xenopus genome. We have shown that five of these sites are A-form in solution, bind to transcription factors and fully validated one of these newly identified promoters as interacting with the ilf3 containing complex CBTF. This interaction regulates the transcription of a previously uncharacterised downstream gene that is active in early development. Conclusions A Perl program (APTE) has located a number of potential A-form DNA promotor elements in the Xenopus genome, five of these putative targets have been experimentally validated as A-form and as targets for specific DNA binding proteins; one has also been shown to interact with the A-form binding transcription factor ilf3. APTE is available from http://www.port.ac.uk/research/cmd/software/ under the terms of the GNU General Public License.
Collapse
Affiliation(s)
| | | | | | | | | | - Garry Scarlett
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK.
| |
Collapse
|
13
|
Huang J, Liu J, Tao W, Yang Z, Qiu R, Yu S, Ji C. Crystallization and preliminary X-ray analysis of the CRP-cAMP-DNA (full length) complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:562-5. [PMID: 23695578 DOI: 10.1107/s1744309113009925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/10/2013] [Indexed: 11/10/2022]
Abstract
The Escherichia coli cyclic AMP receptor protein (CRP) is a well known transcription activator protein. In this study, CRP was overexpressed, purified and cocrystallized with cAMP and a 38 bp full-length double-stranded DNA fragment. The full-length segment differed from the half-site fragments used in previous crystallization experiments and is more similar to the environment in vivo. CRP-cAMP-DNA crystals were obtained and diffracted to 2.9 Å resolution. The crystals belonged to space group P3121, with unit-cell parameters a = b = 76.03, c = 144.00 Å. The asymmetric unit was found to contain one protein molecule and half a 38 bp full-length double-stranded DNA fragment, with a Matthews coefficient of 2.62 Å(3) Da(-1) and a solvent content of 53.14%.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
AlQuraishi M, McAdams HH. Three enhancements to the inference of statistical protein-DNA potentials. Proteins 2012; 81:426-42. [PMID: 23042633 DOI: 10.1002/prot.24201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/17/2012] [Accepted: 10/02/2012] [Indexed: 12/28/2022]
Abstract
The energetics of protein-DNA interactions are often modeled using so-called statistical potentials, that is, energy models derived from the atomic structures of protein-DNA complexes. Many statistical protein-DNA potentials based on differing theoretical assumptions have been investigated, but little attention has been paid to the types of data and the parameter estimation process used in deriving the statistical potentials. We describe three enhancements to statistical potential inference that significantly improve the accuracy of predicted protein-DNA interactions: (i) incorporation of binding energy data of protein-DNA complexes, in conjunction with their X-ray crystal structures, (ii) use of spatially-aware parameter fitting, and (iii) use of ensemble-based parameter fitting. We apply these enhancements to three widely-used statistical potentials and use the resulting enhanced potentials in a structure-based prediction of the DNA binding sites of proteins. These enhancements are directly applicable to all statistical potentials used in protein-DNA modeling, and we show that they can improve the accuracy of predicted DNA binding sites by up to 21%.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
15
|
Yu S, Maillard RA, Gribenko AV, Lee JC. The N-terminal capping propensities of the D-helix modulate the allosteric activation of the Escherichia coli cAMP receptor protein. J Biol Chem 2012; 287:39402-11. [PMID: 23035121 DOI: 10.1074/jbc.m112.404806] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transduction of biological signals at the molecular level involves the activation and/or inhibition of allosteric proteins. In the transcription factor cAMP receptor protein (CRP) from Escherichia coli, the allosteric activation, or apo-holo transition, involves rigid body motions of domains and structural rearrangements within the hinge region connecting the cAMP- and DNA-binding domains. During this apo-holo transition, residue 138 is converted as part of the elongated D-helix to the position of the N-terminal capping residue of a shorter D-helix. The goal of the current study is to elucidate the role of residue 138 in modulating the allostery between cAMP and DNA binding. By systematically mutating residue 138, we found that mutants with higher N-terminal capping propensities lead to increased cooperativity of cAMP binding and a concomitant increase in affinity for lac-DNA. Furthermore, mutants with higher N-terminal capping propensity correlate with properties characteristic of holo-CRP, particularly, increase in protein structural dynamics. Overall, our results provide a quantitative characterization of the role of residue 138 in the isomerization equilibrium between the apo and holo forms of CRP, and in turn the thermodynamic underpin to the molecular model of allostery revealed by the high resolution structural studies.
Collapse
Affiliation(s)
- Shaoning Yu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1055, USA
| | | | | | | |
Collapse
|
16
|
Leuze MR, Karpinets TV, Syed MH, Beliaev AS, Uberbacher EC. Binding Motifs in Bacterial Gene Promoters Modulate Transcriptional Effects of Global Regulators CRP and ArcA. GENE REGULATION AND SYSTEMS BIOLOGY 2012; 6:93-107. [PMID: 22701314 PMCID: PMC3370831 DOI: 10.4137/grsb.s9357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.
Collapse
Affiliation(s)
- Michael R. Leuze
- Computer Science and Mathematics Division, Oak Ridge National
Laboratory, Oak Ridge, TN, USA
| | - Tatiana V. Karpinets
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN,
USA
- Department of Plant Sciences, University of Tennessee, Knoxville,
TN, USA
| | - Mustafa H. Syed
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN,
USA
| | - Alexander S. Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory,
Richland, WA, USA
| | | |
Collapse
|
17
|
Abstract
Escherichia coli has homologues of the competence genes other species use for DNA uptake and processing, but natural competence and transformation have never been detected. Although we previously showed that these genes are induced by the competence regulator Sxy as in other gamma-proteobacteria, no conditions are known that naturally induce sxy expression. We have now tested whether the competence gene homologues encode a functional DNA uptake machinery and whether DNA uptake leads to recombination, by investigating the effects of plasmid-borne sxy expression on natural competence in a wide variety of E. coli strains. High- and low-level sxy expression alone did not induce transformation in any of the strains tested, despite varying the transforming DNA, its concentration, and the incubation conditions used. Direct measurements of uptake of radiolabelled DNA were below the limit of detection, however transformants were readily detected when recombination functions were provided by the lambda Red recombinase. This is the first demonstration that E. coli sxy expression can induce natural DNA uptake and that E. coli's competence genes do encode a functional uptake machinery. However, the amount of transformation cells undergo is limited both by low levels of DNA uptake and by inefficient DNA processing/recombination.
Collapse
Affiliation(s)
- Sunita Sinha
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
18
|
Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS. Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res 2011; 39:7400-14. [PMID: 21653552 PMCID: PMC3177182 DOI: 10.1093/nar/gkr375] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
DevR regulon function is believed to be crucial for the survival of Mycobacterium tuberculosis during dormancy. In this study, we undertook a comprehensive analysis of the DevR regulon. All the regulon promoters were assigned to four classes based on the number of DevR binding sites (Dev boxes). A minimum of two boxes are essential for complete interaction and their tandem arrangement is an architectural hallmark at all promoters. Initial interaction of DevR with the conserved box is essential for its cooperative binding to adjacent sites bearing low to very poor sequence conservation and is the universal mechanism underlying DevR-mediated transcriptional induction. The functional importance of tandem arrangement was established by analyzing promoter variants harboring Dev boxes with altered spacing. Conserved sequence logos were generated from 47 binding sequences which included 24 newly discovered Dev boxes. In each half site of an 18-bp binding motif, G5 and C7 are essential for DevR binding. Finally, we show that DevR regulon induction occurs in a temporal manner and genes that are induced early are also usually powerfully induced. The information theory-based approach along with binding and temporal expression studies provide us with comprehensive insights into the complex pattern of DevR regulon activation.
Collapse
Affiliation(s)
- Santosh Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | |
Collapse
|
19
|
Marathe A, Bansal M. An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression. BMC STRUCTURAL BIOLOGY 2011; 11:1. [PMID: 21208404 PMCID: PMC3031206 DOI: 10.1186/1472-6807-11-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/05/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. RESULTS In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. CONCLUSIONS Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique 'template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.
Collapse
Affiliation(s)
- Arvind Marathe
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| |
Collapse
|
20
|
Mapping conformational transitions in cyclic AMP receptor protein: crystal structure and normal-mode analysis of Mycobacterium tuberculosis apo-cAMP receptor protein. Biophys J 2010; 98:305-14. [PMID: 20338852 DOI: 10.1016/j.bpj.2009.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/11/2009] [Accepted: 10/07/2009] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP (cAMP) receptor protein, which acts as the sensor of cAMP levels in cells, is a well-studied transcription factor that is best known for allosteric changes effected by the binding of cAMP. Although genetic and biochemical data on the protein are available from several sources, structural information about the cAMP-free protein has been lacking. Therefore, the precise atomic events that take place upon binding of cAMP, leading to conformational changes in the protein and its activation to bind DNA, have been elusive. In this work we solved the cAMP-free crystal structure of the Mycobacterium tuberculosis homolog of cAMP receptor protein at 2.9 A resolution, and carried out normal-mode analysis to map conformational transitions among its various conformational states. In our structure, the cAMP-binding domain holds onto the DNA-binding domain via strong hydrophobic interactions, thereby freezing the latter in a conformation that is not competent to bind DNA. The two domains release each other in the presence of cAMP, making the DNA-binding domain more flexible and allowing it to bind its cognate DNA via an induced-fit mechanism. The structure of the cAMP-free protein and results of the normal-mode analysis therefore highlight an elegant mechanism of the allosteric changes effected by the binding of cAMP.
Collapse
|
21
|
Hugouvieux-Cotte-Pattat N, Charaoui-Boukerzaza S. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. J Bacteriol 2009; 191:6960-7. [PMID: 19734309 PMCID: PMC2772473 DOI: 10.1128/jb.00594-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi (Dickeya dadantii) is a plant pathogenic bacterium that has a large capacity to degrade the plant cell wall polysaccharides. The present study reports the metabolic pathways used by E. chrysanthemi to assimilate the oligosaccharides sucrose and raffinose, which are particularly abundant plant sugars. E. chrysanthemi is able to use sucrose, raffinose, or melibiose as a sole carbon source for growth. The two gene clusters scrKYABR and rafRBA are necessary for their catabolism. The phenotypic analysis of scr and raf mutants revealed cross-links between the assimilation pathways of these oligosaccharides. Sucrose catabolism is mediated by the genes scrKYAB. While the raf cluster is sufficient to catabolize melibiose, it is incomplete for raffinose catabolism, which needs two additional steps that are provided by scrY and scrB. The scr and raf clusters are controlled by specific repressors, ScrR and RafR, respectively. Both clusters are controlled by the global activator of carbohydrate catabolism, the cyclic AMP receptor protein (CRP). E. chrysanthemi growth with lactose is possible only for mutants with a derepressed nonspecific lactose transport system, which was identified as RafB. RafR inactivation allows the bacteria to the assimilate the novel substrates lactose, lactulose, stachyose, and melibionic acid. The raf genes also are involved in the assimilation of alpha- and beta-methyl-D-galactosides. Mutations in the raf or scr genes did not significantly affect E. chrysanthemi virulence. This could be explained by the large variety of carbon sources available in the plant tissue macerated by E. chrysanthemi.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, Microbiologie Adaptation et Pathogénie UMR5240, batiment Lwoff, 10 rue Dubois, Domaine Scientifique de la Doua, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
22
|
Keene FR, Smith JA, Collins JG. Metal complexes as structure-selective binding agents for nucleic acids. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Chen X, Zhan CG. First-principles determination of molecular conformations of cyclic adenosine 3',5'-monophosphate in gas phase and aqueous solution. J Phys Chem B 2009; 112:16851-9. [PMID: 19367986 DOI: 10.1021/jp806702d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extensive first-principles electronic structure calculations were performed in this study to explore the possible molecular structures and their concentration distribution of an intracellular second messenger, that is, cyclic adenosine 3',5'-monophosphate (cAMP), and its protonated form (cAMPH) in the gas phase and aqueous solution. The calculations resulted in prediction of four different stable conformers of cAMP and eight different stable conformers of cAMPH and their relative Gibbs free energies in the gas phase and aqueous solution. All of the computational results consistently demonstrate that the predominant conformers of cAMP and cAMPH are always the cAMP-chair-anti and cAMPH-chair2-syn conformers, respectively, in both the gas phase and aqueous solution. It has been demonstrated that the free energy barriers calculated for the intertransformation reactions between different conformers are very low (below approximately 6 kcal/mol) such that the intertransformation reactions between different conformers are very fast so that the concentration distribution of the system can quickly reach the thermodynamic equilibration during the process of binding with a protein. The calculated phenomenological pKa of 3.66 is in good agreement with the experimental pKa of 3.9 reported in literature, suggesting that the computational predictions resulted from this study are reasonable.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | | |
Collapse
|
24
|
Babic AC, Little EJ, Manohar VM, Bitinaite J, Horton NC. DNA distortion and specificity in a sequence-specific endonuclease. J Mol Biol 2008; 383:186-204. [PMID: 18762194 PMCID: PMC2605692 DOI: 10.1016/j.jmb.2008.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/04/2008] [Accepted: 08/12/2008] [Indexed: 11/30/2022]
Abstract
Five new structures of the Q138F HincII enzyme bound to a total of three different DNA sequences and three different metal ions (Ca(2+), Mg(2+), and Mn(2+)) are presented. While previous structures were produced from soaking Ca(2+) into preformed Q138F HincII/DNA crystals, the new structures are derived from cocrystallization with Ca(2+), Mg(2+), or Mn(2+). The Mn(2)(+)-bound structure provides the first view of a product complex of Q138F HincII with cleaved DNA. Binding studies and a crystal structure show how Ca(2+) allows trapping of a Q138F HincII complex with noncognate DNA in a catalytically incompetent conformation. Many Q138F HincII/DNA structures show asymmetry, despite the binding of a symmetric substrate by a symmetric enzyme. The various complexes are fit into a model describing the different conformations of the DNA-bound enzyme and show how DNA conformational energetics determine DNA-cleavage rates by the Q138F HincII enzyme.
Collapse
Affiliation(s)
- Andrea C. Babic
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | - Elizabeth J. Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | - Veena M. Manohar
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| | | | - Nancy C. Horton
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
25
|
CRP binding and transcription activation at CRP-S sites. J Mol Biol 2008; 383:313-23. [PMID: 18761017 DOI: 10.1016/j.jmb.2008.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 12/27/2022]
Abstract
In Haemophilus influenzae, as in Escherichia coli, the cAMP receptor protein (CRP) activates transcription from hundreds of promoters by binding symmetrical DNA sites with the consensus half-site 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11). We have previously identified 13 H. influenzae CRP sites that differ from canonical (CRP-N) sites in the following features: (1) Both half-sites of these noncanonical (CRP-S) sites have C(6) instead of T(6), although they otherwise have an unusually high level of identity with the binding site consensus. (2) Only promoters with CRP-S sites require both the CRP and Sxy proteins for transcription activation. To study the functional significance of CRP-S site sequences, we purified H. influenzae (Hi)CRP and compared its DNA binding properties to those of the well-characterized E. coli (Ec)CRP. All EcCRP residues that contact DNA are conserved in HiCRP, and both proteins demonstrated a similar high affinity for the CRP-N consensus sequence. However, whereas EcCRP bound specifically to CRP-S sites in vitro, HiCRP did not. By systematically substituting base pairs in native promoters and in the CRP-N consensus sequence, we confirmed that HiCRP is highly specific for the perfect core sequence T(4)G(5)T(6)G(7)A(8) and is more selective than EcCRP at other positions in CRP sites. Even though converting C(6)-->T(6) greatly enhanced HiCRP binding to a CRP-S site, this had the unexpected effect of nearly abolishing promoter activity. A+T-rich sequences upstream of CRP-S sites were also found to be required for promoter activation, raising the possibility that Sxy binds these A+T sequences to simultaneously enable CRP-DNA binding and assist in RNA polymerase recruitment.
Collapse
|
26
|
Lindemose S, Nielsen PE, Møllegaard NE. Dissecting direct and indirect readout of cAMP receptor protein DNA binding using an inosine and 2,6-diaminopurine in vitro selection system. Nucleic Acids Res 2008; 36:4797-807. [PMID: 18653536 PMCID: PMC2504297 DOI: 10.1093/nar/gkn452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA interaction of the Escherichia coli cyclic AMP receptor protein (CRP) represents a typical example of a dual recognition mechanism exhibiting both direct and indirect readout. We have dissected the direct and indirect components of DNA recognition by CRP employing in vitro selection of a random library of DNA-binding sites containing inosine (I) and 2,6-diaminopurine (D) instead of guanine and adenine, respectively. Accordingly, the DNA helix minor groove is structurally altered due to the ‘transfer’ of the 2-amino group of guanine (now I) to adenine (now D), whereas the major groove is functionally intact. The majority of the selected sites contain the natural consensus sequence TGTGAN6TCACA (i.e. TITIDN6TCDCD). Thus, direct readout of the consensus sequence is independent of minor groove conformation. Consequently, the indirect readout known to occur in the TG/CA base pair step (primary kink site) in the consensus sequence is not affected by I–D substitutions. In contrast, the flanking regions are selected as I/C rich sequences (mostly I-tracts) instead of A/T rich sequences which are known to strongly increase CRP binding, thereby demonstrating almost exclusive indirect readout of helix structure/flexibility in this region through (anisotropic) flexibility of I-tracts.
Collapse
Affiliation(s)
- Søren Lindemose
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
27
|
Fujii S, Kono H, Takenaka S, Go N, Sarai A. Sequence-dependent DNA deformability studied using molecular dynamics simulations. Nucleic Acids Res 2007; 35:6063-74. [PMID: 17766249 PMCID: PMC2094071 DOI: 10.1093/nar/gkm627] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology (KIT) 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Advanced Technology Institute, Inc. (ATI), 2-3-13-103 Tate, Shiki, Saitama 353-0006, Computational Biology Group, Neutron Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency 8-1 Umemidai, Kizu, Souraku, Kyoto, 619-0215, PRESTO, Japan Science and Technology Agency (JST) 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012 and Department of Materials Science, Faculty of Engineering Kyushu Institute of Technology (KIT), 1-1 Sensui, Tobata, Kita-kyushu, Fukuoka 804-8550 Japan
| | - Hidetoshi Kono
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology (KIT) 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Advanced Technology Institute, Inc. (ATI), 2-3-13-103 Tate, Shiki, Saitama 353-0006, Computational Biology Group, Neutron Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency 8-1 Umemidai, Kizu, Souraku, Kyoto, 619-0215, PRESTO, Japan Science and Technology Agency (JST) 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012 and Department of Materials Science, Faculty of Engineering Kyushu Institute of Technology (KIT), 1-1 Sensui, Tobata, Kita-kyushu, Fukuoka 804-8550 Japan
- *To whom correspondence should be addressed. + 81-774-71-3465 + 81-774-71-3460
| | - Shigeori Takenaka
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology (KIT) 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Advanced Technology Institute, Inc. (ATI), 2-3-13-103 Tate, Shiki, Saitama 353-0006, Computational Biology Group, Neutron Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency 8-1 Umemidai, Kizu, Souraku, Kyoto, 619-0215, PRESTO, Japan Science and Technology Agency (JST) 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012 and Department of Materials Science, Faculty of Engineering Kyushu Institute of Technology (KIT), 1-1 Sensui, Tobata, Kita-kyushu, Fukuoka 804-8550 Japan
| | - Nobuhiro Go
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology (KIT) 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Advanced Technology Institute, Inc. (ATI), 2-3-13-103 Tate, Shiki, Saitama 353-0006, Computational Biology Group, Neutron Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency 8-1 Umemidai, Kizu, Souraku, Kyoto, 619-0215, PRESTO, Japan Science and Technology Agency (JST) 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012 and Department of Materials Science, Faculty of Engineering Kyushu Institute of Technology (KIT), 1-1 Sensui, Tobata, Kita-kyushu, Fukuoka 804-8550 Japan
| | - Akinori Sarai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology (KIT) 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Advanced Technology Institute, Inc. (ATI), 2-3-13-103 Tate, Shiki, Saitama 353-0006, Computational Biology Group, Neutron Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency 8-1 Umemidai, Kizu, Souraku, Kyoto, 619-0215, PRESTO, Japan Science and Technology Agency (JST) 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012 and Department of Materials Science, Faculty of Engineering Kyushu Institute of Technology (KIT), 1-1 Sensui, Tobata, Kita-kyushu, Fukuoka 804-8550 Japan
| |
Collapse
|
28
|
Liu W, Vierke G, Wenke AK, Thomm M, Ladenstein R. Crystal structure of the archaeal heat shock regulator from Pyrococcus furiosus: a molecular chimera representing eukaryal and bacterial features. J Mol Biol 2007; 369:474-88. [PMID: 17434531 DOI: 10.1016/j.jmb.2007.03.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/15/2007] [Accepted: 03/18/2007] [Indexed: 11/25/2022]
Abstract
We report here the crystal structure of a protein from Pyrococcus furiosus (Phr) that represents the first characterized heat shock transcription factor in archaea. Phr specifically represses the expression of heat shock genes at physiological temperature in vitro and in vivo but is released from the promoters upon heat shock response. Structure analysis revealed a stable homodimer, each subunit consisting of an N-terminal winged helix DNA-binding domain (wH-DBD) and a C-terminal antiparallel coiled coil helical domain. The overall structure shows as a molecular chimera with significant folding similarity of its DBD to the bacterial SmtB/ArsR family, while its C-terminal part was found to be a remote homologue of the eukaryotic BAG domain. The dimeric protein recognizes a palindromic DNA sequence. Molecular docking and mutational analyses suggested a novel binding mode in which the major specific contacts occur at the minor groove interacting with the strongly basic wing containing a cluster of three arginine residues.
Collapse
Affiliation(s)
- Wei Liu
- Karolinska Institutet NOVUM, Center for Structural Biochemistry, 141 57 Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Aeling KA, Steffen NR, Johnson M, Hatfield GW, Lathrop RH, Senear DF. DNA deformation energy as an indirect recognition mechanism in protein-DNA interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2007; 4:117-25. [PMID: 17277419 DOI: 10.1109/tcbb.2007.1000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proteins that bind to specific locations in genomic DNA control many basic cellular functions. Proteins detect their binding sites using both direct and indirect recognition mechanisms. Deformation energy, which models the energy required to bend DNA from its native shape to its shape when bound to a protein, has been shown to be an indirect recognition mechanism for one particular protein, Integration Host Factor (IHF). This work extends the analysis of deformation to two other DNA-binding proteins, CRP and SRF, and two endonucleases, I-CreI and I-PpoI. Known binding sites for all five proteins showed statistically significant differences in mean deformation energy as compared to random sequences. Binding sites for the three DNA-binding proteins and one of the endonucleases had mean deformation energies lower than random sequences. Binding sites for I-PpoI had mean deformation energy higher than random sequences. Classifiers that were trained using the deformation energy at each base pair step showed good cross-validated accuracy when classifying unseen sequences as binders or nonbinders. These results support DNA deformation energy as an indirect recognition mechanism across a wider range of DNA-binding proteins. Deformation energy may also have a predictive capacity for the underlying catalytic mechanism of DNA-binding enzymes.
Collapse
MESH Headings
- Algorithms
- Animals
- Base Sequence
- Binding Sites
- Cyclic AMP Receptor Protein/chemistry
- Cyclic AMP Receptor Protein/metabolism
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- DNA Restriction Enzymes/chemistry
- DNA Restriction Enzymes/metabolism
- DNA, Algal/chemistry
- DNA, Algal/genetics
- DNA, Algal/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Endodeoxyribonucleases/chemistry
- Endodeoxyribonucleases/metabolism
- Humans
- Integration Host Factors/chemistry
- Integration Host Factors/metabolism
- Models, Chemical
- Models, Molecular
- Protein Binding
- Serum Response Factor/chemistry
- Serum Response Factor/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Kimberly A Aeling
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 92697-3425, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Das R, Esposito V, Abu-Abed M, Anand GS, Taylor SS, Melacini G. cAMP activation of PKA defines an ancient signaling mechanism. Proc Natl Acad Sci U S A 2006; 104:93-8. [PMID: 17182741 PMCID: PMC1765484 DOI: 10.1073/pnas.0609033103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
cAMP and the cAMP binding domain (CBD) constitute a ubiquitous regulatory switch that translates an extracellular signal into a biological response. The CBD contains alpha- and beta-subdomains with cAMP binding to a phosphate binding cassette (PBC) in the beta-sandwich. The major receptors for cAMP in mammalian cells are the regulatory subunits (R-subunits) of PKA where cAMP and the catalytic subunit compete for the same CBD. The R-subunits inhibit kinase activity, whereas cAMP releases that inhibition. Here, we use NMR to map at residue resolution the cAMP-dependent interaction network of the CBD-A domain of isoform Ialpha of the R-subunit of PKA. Based on H/D, H/H, and N(z) exchange data, we propose a molecular model for the allosteric regulation of PKA by cAMP. According to our model, cAMP binding causes long-range perturbations that propagate well beyond the immediate surroundings of the PBC and involve two key relay sites located at the C terminus of beta(2) (I163) and N terminus of beta(3) (D170). The I163 site functions as one of the key triggers of global unfolding, whereas the D170 locus acts as an electrostatic switch that mediates the communication between the PBC and the B-helix. Removal of cAMP not only disrupts the cap for the B' helix within the PBC, but also breaks the circuitry of cooperative interactions stemming from the PBC, thereby uncoupling the alpha- and beta-subdomains. The proposed model defines a signaling mechanism, conserved in every genome, where allosteric binding of a small ligand disrupts a large protein-protein interface.
Collapse
Affiliation(s)
- Rahul Das
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Veronica Esposito
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Mona Abu-Abed
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Ganesh S. Anand
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- To whom correspondence may be addressed. E-mail:
or
| | - Giuseppe Melacini
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
31
|
Das R, Melacini G. A model for agonism and antagonism in an ancient and ubiquitous cAMP-binding domain. J Biol Chem 2006; 282:581-93. [PMID: 17074757 DOI: 10.1074/jbc.m607706200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-binding domain (CBD) is an ancient and conserved regulatory motif that allosterically modulates the function of a group of diverse proteins, thereby translating the cAMP signal into a controlled biological response. The main receptor for cAMP in mammals is the ubiquitous regulatory (R) subunit of protein kinase A. Despite the recognized significant potential for pharmacological applications of CBDs, currently only one group of competitive inhibitor antagonists is known: the (R(p))-cAMPS family of phosphorothioate cAMP analogs, in which the equatorial exocyclic oxygen of cAMP is replaced by sulfur. It is also known that the diastereoisomer (S(p))-cAMPS with opposite phosphorous chirality is a cAMP agonist, but the molecular mechanism of action of these analogs is currently not fully understood. Previous crystallographic and unfolding investigations point to the enhanced CBD dynamics as a key determinant of antagonism. Here, we investigate the (R(p))- and (S(p))-cAMPS-bound states of R(CBD-A) using a comparative NMR approach that reveals a clear chemical shift and dynamic NMR signature, differentiating the (S(p))-cAMPS agonist from the (R(p))-cAMPS antagonist. Based on these data, we have proposed a model for the (R(p)/S(p))-cAMPS antagonism and agonism in terms of steric and electronic effects on two main allosteric relay sites, Ile(163) and Asp(170), respectively, affecting the stability of a ternary inhibitory complex formed by the effector ligand, the regulatory and the catalytic subunits of protein kinase A. The proposed model not only rationalizes the existing data on the phosphorothioate analogs, but it will also facilitate the design of novel cAMP antagonists and agonists.
Collapse
Affiliation(s)
- Rahul Das
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | |
Collapse
|
32
|
Cameron ADS, Redfield RJ. Non-canonical CRP sites control competence regulons in Escherichia coli and many other gamma-proteobacteria. Nucleic Acids Res 2006; 34:6001-14. [PMID: 17068078 PMCID: PMC1635313 DOI: 10.1093/nar/gkl734] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli's cAMP receptor protein (CRP), the archetypal bacterial transcription factor, regulates over a hundred promoters by binding 22 bp symmetrical sites with the consensus core half-site TGTGA. However, Haemophilus influenzae has two types of CRP sites, one like E.coli's and one with the core sequence TGCGA that regulates genes required for DNA uptake (natural competence). Only the latter 'CRP-S' sites require both CRP and the coregulator Sxy for activation. To our knowledge, the TGTGA and TGCGA motifs are the first example of one transcription factor having two distinct binding-site motifs. Here we show that CRP-S promoters are widespread in the gamma-proteobacteria and demonstrate their Sxy-dependence in E.coli. Orthologs of most H.influenzae CRP-S-regulated genes are ubiquitous in the five best-studied gamma-proteobacteria families, Enterobacteriaceae, Pasteurellaceae, Pseudomonadaceae, Vibrionaceae and Xanthomonadaceae. Phylogenetic footprinting identified CRP-S sites in the promoter regions of the Enterobacteriaceae, Pasteurellaceae and Vibrionaceae orthologs, and canonical CRP sites in orthologs of genes known to be Sxy-independent in H.influenzae. Bandshift experiments confirmed that E.coli CRP-S sequences are low affinity binding sites for CRP, and mRNA analysis showed that they require CRP, cAMP (CRP's allosteric effector) and Sxy for gene induction. This work suggests not only that the gamma-proteobacteria share a common DNA uptake mechanism, but also that, in the three best studied families, their competence regulons share both CRP-S specificity and Sxy dependence.
Collapse
Affiliation(s)
- Andrew D. S. Cameron
- Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| | - Rosemary J. Redfield
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- To whom correspondence should be addressed at Life Sciences Centre (Zoology), 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3. Tel: +604 822 3744; Fax: +604 827 4135;
| |
Collapse
|
33
|
Joshi HK, Etzkorn C, Chatwell L, Bitinaite J, Horton NC. Alteration of sequence specificity of the type II restriction endonuclease HincII through an indirect readout mechanism. J Biol Chem 2006; 281:23852-69. [PMID: 16675462 DOI: 10.1074/jbc.m512339200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional and structural consequences of a mutation of the DNA intercalating residue of HincII, Q138F, are presented. Modeling has suggested that the DNA intercalation by Gln-138 results in DNA distortions potentially used by HincII in indirect readout of its cognate DNA, GTYRAC (Y = C or T, R = A or G) (Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47). Kinetic data presented here indicate that the mutation of glutamine 138 to phenylalanine (Q138F) results in a change in sequence specificity at the center two base pairs of the cognate recognition site. We show that the preference of HincII for cutting, but not binding, the three cognate sites differing in the center two base pairs has been altered by the mutation Q138F. Five new crystal structures are presented including Q138F HincII bound to GTTAAC and GTCGAC both with and without Ca2+ as well as the structure of wild type HincII bound to GTTAAC. The Q138F HincII/DNA structures show conformational changes in the protein, bound DNA, and at the protein-DNA interface, consistent with the formation of adaptive complexes. Analysis of these structures and the effect of Ca2+ binding on the protein-DNA interface illuminates the origin of the altered specificity by the mutation Q138F in the HincII enzyme.
Collapse
Affiliation(s)
- Hemant K Joshi
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
34
|
Napoli AA, Lawson CL, Ebright RH, Berman HM. Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: recognition of pyrimidine-purine and purine-purine steps. J Mol Biol 2006; 357:173-83. [PMID: 16427082 PMCID: PMC1479893 DOI: 10.1016/j.jmb.2005.12.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
The catabolite activator protein (CAP) bends DNA in the CAP-DNA complex, typically introducing a sharp DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site, 5'-A1A2A3T4G5T6G7A8T9C10T11 -3' ("primary kink"). In previous work, we showed that CAP recognizes the nucleotide immediately 5' to the primary-kink site, T6, through an "indirect-readout" mechanism involving sequence effects on energetics of primary-kink formation. Here, to understand further this example of indirect readout, we have determined crystal structures of CAP-DNA complexes containing each possible nucleotide at position 6. The structures show that CAP can introduce a DNA kink at the primary-kink site with any nucleotide at position 6. The DNA kink is sharp with the consensus pyrimidine-purine step T6G7 and the non-consensus pyrimidine-purine step C6G7 (roll angles of approximately 42 degrees, twist angles of approximately 16 degrees ), but is much less sharp with the non-consensus purine-purine steps A6G7 and G6G7 (roll angles of approximately 20 degrees, twist angles of approximately 17 degrees). We infer that CAP discriminates between consensus and non-consensus pyrimidine-purine steps at positions 6-7 solely based on differences in the energetics of DNA deformation, but that CAP discriminates between the consensus pyrimidine-purine step and non-consensus purine-purine steps at positions 6-7 both based on differences in the energetics of DNA deformation and based on qualitative differences in DNA deformation. The structures further show that CAP can achieve a similar, approximately 46 degrees per DNA half-site, overall DNA bend through a sharp DNA kink, a less sharp DNA kink, or a smooth DNA bend. Analysis of these and other crystal structures of CAP-DNA complexes indicates that there is a large, approximately 28 degrees per DNA half-site, out-of-plane component of CAP-induced DNA bending in structures not constrained by end-to-end DNA lattice interactions and that lattice contacts involving CAP tend to involve residues in or near biologically functional surfaces.
Collapse
Affiliation(s)
- Andrew A Napoli
- Department of Chemistry and Chemical Biology and Waksman Institute Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
35
|
Weihofen WA, Cicek A, Pratto F, Alonso JC, Saenger W. Structures of omega repressors bound to direct and inverted DNA repeats explain modulation of transcription. Nucleic Acids Res 2006; 34:1450-8. [PMID: 16528102 PMCID: PMC1401508 DOI: 10.1093/nar/gkl015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Repressor omega regulates transcription of genes required for copy number control, accurate segregation and stable maintenance of inc18 plasmids hosted by Gram-positive bacteria. omega belongs to homodimeric ribbon-helix-helix (RHH2) repressors typified by a central, antiparallel beta-sheet for DNA major groove binding. Homodimeric omega2 binds cooperatively to promotors with 7 to 10 consecutive non-palindromic DNA heptad repeats (5'-(A)/(T)ATCAC(A)/(T)-3', symbolized by -->) in palindromic inverted, converging (--><--) or diverging (<---->) orientation and also, unique to omega2 and contrasting other RHH2 repressors, to non-palindromic direct (-->-->) repeats. Here we investigate with crystal structures how omega2 binds specifically to heptads in minimal operators with (-->-->) and (--><--) repeats. Since the pseudo-2-fold axis relating the monomers in omega(2) passes the central C-G base pair of each heptad with approximately 0.3 A downstream offset, the separation between the pseudo-2-fold axes is exactly 7 bp in (-->-->), approximately 0.6 A shorter in (--><--) but would be approximately 0.6 A longer in (<---->). These variations grade interactions between adjacent omega2 and explain modulations in cooperative binding affinity of omega2 to operators with different heptad orientations.
Collapse
Affiliation(s)
| | | | - Florencia Pratto
- Departamento de Biotecnología Microbiana, Centro Nacional de BiotecnologíaCSIC, 28049 Madrid, Spain
| | - Juan Carlos Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de BiotecnologíaCSIC, 28049 Madrid, Spain
| | - Wolfram Saenger
- To whom correspondence should be addressed. Tel: +49 30 838 53412; Fax: +49 30 838 56702;
| |
Collapse
|
36
|
Little EJ, Horton NC. DNA-induced conformational changes in type II restriction endonucleases: the structure of unliganded HincII. J Mol Biol 2005; 351:76-88. [PMID: 15993893 DOI: 10.1016/j.jmb.2005.05.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/23/2005] [Accepted: 05/27/2005] [Indexed: 11/23/2022]
Abstract
The 2.1A crystal structure of the unliganded type II restriction endonuclease, HincII, is described. Although the asymmetric unit contains only a single monomer, crystal lattice contacts bring two monomers together to form a dimer very similar to that found in the DNA bound form. Comparison with the published DNA bound structure reveals that the DNA binding pocket is expanded in the unliganded structure. Comparison of the unliganded and DNA liganded structures reveals a simple rotation of subunits by 11 degrees each, or 22 degrees total, to a more closed structure around the bound DNA. Comparison of this conformational change to that observed in the other type II restriction endonucleases where DNA bound and unliganded forms have both been characterized, shows considerable variation in the types of conformational changes that can occur. The conformational changes in three can be described by a simple rotation of subunits, while in two others both rotation and translation of subunits relative to one another occurs. In addition, the endonucleases having subunits that undergo the greatest amount of rotation upon DNA binding are found to be those that distort the bound DNA the least, suggesting that DNA bending may be less facile in dimers possessing greater flexibility.
Collapse
Affiliation(s)
- Elizabeth J Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
37
|
Abstract
Structural data on protein-DNA complexes provide clues for understanding the mechanism of protein-DNA recognition. Although the structures of a large number of protein-DNA complexes are known, the mechanisms underlying their specific binding are still only poorly understood. Analysis of these structures has shown that there is no simple one-to-one correspondence between bases and amino acids within protein-DNA complexes; nevertheless, the observed patterns of interaction carry important information on the mechanisms of protein-DNA recognition. In this review, we show how the patterns of interaction, either observed in known structures or derived from computer simulations, confer recognition specificity, and how they can be used to examine the relationship between structure and specificity and to predict target DNA sequences used by regulatory proteins.
Collapse
Affiliation(s)
- Akinori Sarai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8520, Japan.
| | | |
Collapse
|
38
|
Redfield RJ, Cameron ADS, Qian Q, Hinds J, Ali TR, Kroll JS, Langford PR. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol 2005; 347:735-47. [PMID: 15769466 DOI: 10.1016/j.jmb.2005.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/23/2004] [Accepted: 01/05/2005] [Indexed: 01/19/2023]
Abstract
Natural competence for DNA uptake is common among bacteria but its evolutionary function is controversial. Resolving the dispute requires a detailed understanding of both how cells decide to take up DNA and how the DNA is processed during and after uptake. We have used whole-genome microarrays to follow changes in gene expression during competence development in wild-type Haemophilus influenzae cells, and to characterize dependence of competence-induced transcription on known regulatory factors. This analysis confirmed the existence of a postulated competence regulon, characterized by a promoter-associated 22 bp competence regulatory element (CRE) closely related to the cAMP receptor protein (CRP) binding consensus. This CRE regulon contains 25 genes in 13 transcription units, only about half of which have been previously associated with competence. The new CRE genes encode a periplasmic ATP-dependent DNA ligase, homologs of SSB, RadC and the Bacillus subtilis DNA uptake protein ComEA, and eight genes of unknown function. Competence-induced transcription of genes in the CRE regulon is strongly dependent on cAMP, consistent with the known role of catabolite regulation in competence. Electrophoretic mobility-shift assays confirmed that CRE sequences are a new class of CRP-binding site. The essential competence gene sxy is induced early in competence development and is required for competence-induced transcription of CRE-regulon genes but not other CRP-regulated genes, suggesting that Sxy may act as an accessory factor directing CRP to CRE sites. Natural selection has united these 25 genes under a common regulatory mechanism. Elucidating this mechanism, and the functions of the genes, will provide a valuable window into the evolutionary function of natural competence.
Collapse
Affiliation(s)
- Rosemary J Redfield
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.
| | | | | | | | | | | | | |
Collapse
|
39
|
Dixit SB, Andrews DQ, Beveridge DL. Induced fit and the entropy of structural adaptation in the complexation of CAP and lambda-repressor with cognate DNA sequences. Biophys J 2005; 88:3147-57. [PMID: 15731390 PMCID: PMC1305465 DOI: 10.1529/biophysj.104.053843] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics (MD) simulations of 5 ns on protein-DNA complexes of catabolite-activator protein (CAP), lambda-repressor, and their corresponding uncomplexed protein and DNA, are reported. These cases represent two extremes of DNA bending, with CAP DNA bent severely and the lambda-operator nearly straight when complexed with protein. The calculations were performed using the AMBER suite of programs and the parm94 force field, validated for these studies by good agreement with experimental nuclear magnetic resonance data on DNA. An explicit computational model of structural adaptation and computation of the quasiharmonic entropy of association were obtained from the MD. The results indicate that, with respect to canonical B-form DNA, the extreme bending of the DNA in the complex with CAP is approximately 60% protein-induced and 40% intrinsic to the sequence-dependent structure of the free oligomer. The DNA in the complex is an energetically strained form, and the MD results are consistent with a conformational-capture mechanism. The calculated quasiharmonic entropy change accounts for the entropy difference between the two cases. The calculated entropy was decomposed into contributions from protein adaptation, DNA adaptation, and protein-DNA structural correlations. The origin of the entropy difference between CAP and lambda-repressor complexation arises more from the additional protein adaptation in the case of lambda, than to DNA bending and entropy contribution from DNA bending. The entropy arising from protein DNA cross-correlations, a contribution not previously discussed, is surprisingly large.
Collapse
Affiliation(s)
- Surjit B Dixit
- Chemistry Department and Molecular Biophysics Program, Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06457-0280, USA
| | | | | |
Collapse
|
40
|
Peters WB, Edmondson SP, Shriver JW. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d. J Mol Biol 2004; 343:339-60. [PMID: 15451665 DOI: 10.1016/j.jmb.2004.08.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 11/28/2022]
Abstract
Sac7d is a hyperthermophile chromatin protein which binds non-specifically to the minor groove of duplex DNA and induces a sharp kink of 66 degrees with intercalation of valine and methionine side-chains. We have utilized the thermal stability of Sac7d and the lack of sequence specificity to define the thermodynamics of DNA binding over a wide temperature range. The binding affinity for poly(dGdC) was moderate at 25 degrees C (Ka = 3.5(+/-1.6) x 10(6) M(-1)) and increased by nearly an order of magnitude from 10 degrees C to 80 degrees C. The enthalpy of binding was unfavorable at 25 degrees C, and decreased linearly from 5 degrees C to 60 degrees C. A positive binding heat at 25 degrees C is attributed in part to the energy of distorting DNA, and ensures that the temperature of maximal binding affinity (75.1+/-5.6 degrees C) is near the growth temperature of Sulfolobus acidocaldarius. Truncation of the two intercalating residues to alanine led to a decreased ability to bend and unwind DNA at 25 degrees C with a small decrease in binding affinity. The energy gained from intercalation is slightly greater than the free energy penalty of bending duplex DNA. Surprisingly, reduced distortion from the double alanine substitution did not lead to a significant decrease in the heat of binding at 25 degrees C. In addition, an anomalous positive DeltaCp of binding was observed for the double alanine mutant protein which could not be explained by the change in polar and apolar accessible surface areas. Both the larger than expected binding enthalpy and the positive heat capacity can be explained by a temperature dependent structural transition in the protein-DNA complex with a Tm of 15-20 degrees C and a DeltaH of 15 kcal/mol. Data are discussed which indicate that the endothermic transition in the complex is consistent with DNA distortion.
Collapse
Affiliation(s)
- William B Peters
- Laboratory for Structural Biology, Graduate Program in Biotechnology Science and Engineering, Department of Chemistry, Materials Science Building, John Wright Drive University of Alabama in Huntsville, 35899, USA
| | | | | |
Collapse
|
41
|
Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH. Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 2004; 14:10-20. [PMID: 15102444 PMCID: PMC2765107 DOI: 10.1016/j.sbi.2004.01.012] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently determined structures of the Escherichia coli catabolite activator protein (CAP) in complex with DNA, and in complex with the RNA polymerase alpha subunit C-terminal domain (alphaCTD) and DNA, have yielded insights into how CAP binds DNA and activates transcription. Comparison of multiple structures of CAP-DNA complexes has revealed the contributions of direct and indirect readout to DNA binding by CAP. The structure of the CAP-alphaCTD-DNA complex has provided the first structural description of interactions between a transcription activator and its functional target within the general transcription machinery. Using the structure of the CAP-alphaCTD-DNA complex, the structure of an RNA polymerase-DNA complex, and restraints from biophysical, biochemical and genetic experiments, it has been possible to construct detailed three-dimensional models of intact class I and class II transcription activation complexes.
Collapse
Affiliation(s)
- Catherine L Lawson
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Lankas F, Sponer J, Langowski J, Cheatham TE. DNA basepair step deformability inferred from molecular dynamics simulations. Biophys J 2004; 85:2872-83. [PMID: 14581192 PMCID: PMC1303568 DOI: 10.1016/s0006-3495(03)74710-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The sequence-dependent DNA deformability at the basepair step level was investigated using large-scale atomic resolution molecular dynamics simulation of two 18-bp DNA oligomers: d(GCCTATAAACGCCTATAA) and d(CTAGGTGGATGACTCATT). From an analysis of the structural fluctuations, the harmonic potential energy functions for all 10 unique steps with respect to the six step parameters have been evaluated. In the case of roll, three distinct groups of steps have been identified: the flexible pyrimidine-purine (YR) steps, intermediate purine-purine (RR), and stiff purine-pyrimidine (RY). The YR steps appear to be the most flexible in tilt and partially in twist. Increasing stiffness from YR through RR to RY was observed for rise, whereas shift and slide lack simple trends. A proposed measure of the relative importance of couplings identifies the slide-rise, twist-roll, and twist-slide couplings to play a major role. The force constants obtained are of similar magnitudes to those based on a crystallographic ensemble. However, the current data have a less complicated and less pronounced sequence dependence. A correlation analysis reveals concerted motions of neighboring steps and thus exposes limitations in the dinucleotide model. The comparison of DNA deformability from this and other studies with recent quantum-chemical stacking energy calculations suggests poor correlation between the stacking and flexibility.
Collapse
Affiliation(s)
- Filip Lankas
- German Cancer Research Centre, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
43
|
Reddy SY, Obika S, Bruice TC. Conformations and dynamics of Ets-1 ETS domain-DNA complexes. Proc Natl Acad Sci U S A 2003; 100:15475-80. [PMID: 14673097 PMCID: PMC307592 DOI: 10.1073/pnas.1936251100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics studies have been performed for 3.5 ns on the ETS domain of Ets-1 transcription factor bound to the 14-bp DNA, d(AGTGCCGGAAATGT), comprising the core sequence of high-affinity (GGAA), ETS-GGAA. In like manner, molecular dynamics simulations have been carried out for 3.9 ns on the mutant low-affinity core sequence, GGAG (ETS-GGAG). Analyses of the DNA backbone of ETS-GGAG show conformational interconversions from BI to BII substates. Also, crank shaft motions are noticed at the mutated nucleotide base pair step after 1500 ps of dynamics. The corresponding nucleotide of ETS-GGAA is characteristic of a BI conformation and no crank shaft motions are observed. The single mutation of ETS-GGAA to ETS-GGAG also results in variations of helical parameters and solvent-accessible surface area around the major and minor grooves of the DNA. The presence of water contacts during the entire simulation proximal to the fourth base pair step of core DNA sequence is a characteristic feature of ETS-GGAA. Such waters are more mobile in ETS-GGAG at 100 ps and distant after 1500 ps. Anticorrelated motions between certain amino acids of Ets-1 protein are predominant in ETS-GGAA but less so or absent in the mutant. These motions are reflected in the flexibility of amino acid residues of the protein backbone. We consider that these conformational features and water contacts are involved in stabilizing the hydrogen bond interactions between helix-3 residues of Ets-1 and DNA during the transcription process.
Collapse
Affiliation(s)
- Swarnalatha Y Reddy
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
44
|
Obika S, Reddy SY, Bruice TC. Sequence specific DNA binding of Ets-1 transcription factor: molecular dynamics study on the Ets domain--DNA complexes. J Mol Biol 2003; 331:345-59. [PMID: 12888343 DOI: 10.1016/s0022-2836(03)00726-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular dynamics (MD) simulations for Ets-1 ETS domain-DNA complexes were performed to investigate the mechanism of sequence-specific recognition of the GGAA DNA core by the ETS domain. Employing the crystal structure of the Ets-1 ETS domain-DNA complex as a starting structure we carried out MD simulations of: (i). the complex between Ets-1 ETS domain and a 14 base-pair DNA containing GGAA core sequence (ETS-GGAA); (ii). the complex between the ETS domain and a DNA having single base-pair mutation, GGAG sequence (ETS-GGAG); and (iii). the 14 base-pair DNA alone (GGAA). Comparative analyses of the MD structures of ETS-GGAA and ETS-GGAG reveal that the DNA bending angles and the ETS domain-DNA phosphate interactions are similar in these complexes. These results support that the GGAA core sequence is distinguished from the mutated GGAG sequence by a direct readout mechanism in the Ets-1 ETS domain-DNA complex. Further analyses of the direct contacts in the interface between the helix-3 region of Ets-1 and the major groove of the core DNA sequence clearly show that the highly conserved arginine residues, Arg391 and Arg394, play a critical role in binding to the GGAA core sequence. These arginine residues make bidentate contacts with the nucleobases of GG dinucleotides in GGAA core sequence. In ETS-GGAA, the hydroxyl group of Tyr395 is hydrogen bonded to N7 nitrogen of A(3) (the third adenosine in the GGAA core), while the hydroxyl group makes a contact with N4 nitrogen of C(4') (the complementary nucleotide of the fourth guanosine G(4) in the GGAG sequence) in the ETS-GGAG complex. We have found that this difference in behavior of Tyr395 results in the relatively large motion of helix-3 in the ETS-GGAG complex, causing the collapse of bidentate contacts between Arg391/Arg394 and the GG dinucleotides in the GGAG sequence.
Collapse
Affiliation(s)
- Satoshi Obika
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
45
|
Lynch TW, Read EK, Mattis AN, Gardner JF, Rice PA. Integration host factor: putting a twist on protein-DNA recognition. J Mol Biol 2003; 330:493-502. [PMID: 12842466 DOI: 10.1016/s0022-2836(03)00529-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Integration host factor (IHF) is a DNA-bending protein that recognizes its cognate sites through indirect readout. Previous studies have shown that binding of wild-type (WT)-IHF is disrupted by a T to A mutation at the center position of a conserved TTR motif in its binding site, and that substitution of betaGlu44 with Ala prevented IHF from discriminating between A and T at this position. We have determined the crystal structures and relative binding affinities for all combinations of WT-IHF and IHF-betaGlu44Ala bound to the WT and mutant DNAs. Comparison of these structures reveals that DNA twist plays a major role in DNA recognition by IHF, and that this geometric parameter is dependent on the dinucleotide step and not on the bound IHF variant.
Collapse
Affiliation(s)
- Thomas W Lynch
- Department of Biochemistry and Molecular Biology, The University of Chicago, 920 E 58th Street CLSC 221, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
46
|
Poon GMK, Macgregor RB. Base coupling in sequence-specific site recognition by the ETS domain of murine PU.1. J Mol Biol 2003; 328:805-19. [PMID: 12729756 DOI: 10.1016/s0022-2836(03)00362-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ETS domain of murine PU.1 tolerates a large number of DNA cognates bearing a central consensus 5'-GGAA-3' that is flanked by a diverse combination of bases on both sides. Previous attempts to define the sequence selectivity of this DNA binding domain by combinatorial methods have not successfully predicted observed patterns among in vivo promoter sequences in the genome, and have led to the hypothesis that energetic coupling occurs among the bases in the flanking sequences. To test this hypothesis, we determined, using thermodynamic cycles, the complex stabilities and base coupling energies of the PU.1 ETS domain for a set of 26 cognate variants (based on the lambdaB site of the Ig(lambda)2-4 enhancer, 5'-AATAAAAGGAAGTGAAACCAA-3') in which flanking sequences up to three bases upstream and/or two bases downstream of the core consensus are substituted. We observed that both cooperative and anticooperative coupling occurs commonly among the flanking sequences at all the positions investigated. This phenomenon extends at least three bases in the 5' side and is, at least on our experimental data, due exclusively to pairwise interactions between the flanking bases, and not changes in the local environment of the DNA groove floor. Energetic coupling also occurs between the flanking sides across the core consensus, suggesting long-range conformational effects along the DNA target and/or in the protein. Our data provide an energetic explanation for the pattern of flanking bases observed among in vivo promoter sequences and reconcile the apparent discrepancies raised by the combinatorial experiments. We also discuss the significance of base coupling in light of an indirect readout mechanism in ETS/DNA site recognition.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ont., Canada
| | | |
Collapse
|
47
|
Luscombe NM, Thornton JM. Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity. J Mol Biol 2002; 320:991-1009. [PMID: 12126620 DOI: 10.1016/s0022-2836(02)00571-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigate the conservation of amino acid residue sequences in 21 DNA-binding protein families and study the effects that mutations have on DNA-sequence recognition. The observations are best understood by assigning each protein family to one of three classes: (i) non-specific, where binding is independent of DNA sequence; (ii) highly specific, where binding is specific and all members of the family target the same DNA sequence; and (iii) multi-specific, where binding is also specific, but individual family members target different DNA sequences. Overall, protein residues in contact with the DNA are better conserved than the rest of the protein surface, but there is a complex underlying trend of conservation for individual residue positions. Amino acid residues that interact with the DNA backbone are well conserved across all protein families and provide a core of stabilising contacts for homologous protein-DNA complexes. In contrast, amino acid residues that interact with DNA bases have variable levels of conservation depending on the family classification. In non-specific families, base-contacting residues are well conserved and interactions are always found in the minor groove where there is little discrimination between base types. In highly specific families, base-contacting residues are highly conserved and allow member proteins to recognise the same target sequence. In multi-specific families, base-contacting residues undergo frequent mutations and enable different proteins to recognise distinct target sequences. Finally, we report that interactions with bases in the target sequence often follow (though not always) a universal code of amino acid-base recognition and the effects of amino acid mutations can be most easily understood for these interactions.
Collapse
Affiliation(s)
- Nicholas M Luscombe
- Biomolecular Structures and Modelling Unit, Department of Biochemistry and Molecular Biology, University College, London, UK.
| | | |
Collapse
|
48
|
Thayer KM, Beveridge DL. Hidden Markov models from molecular dynamics simulations on DNA. Proc Natl Acad Sci U S A 2002; 99:8642-7. [PMID: 12072566 PMCID: PMC124344 DOI: 10.1073/pnas.132148699] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An enhanced bioinformatics tool incorporating the participation of molecular structure as well as sequence in protein DNA recognition is proposed and tested. Boltzmann probability models of sequence-dependent DNA structure from all-atom molecular dynamics simulations were obtained and incorporated into hidden Markov models (HMMs) that can recognize molecular structural signals as well as sequence in protein-DNA binding sites on a genome. The binding of catabolite activator protein (CAP) to cognate DNA sequences was used as a prototype case for implementation and testing of the method. The results indicate that even HMMs based on probabilistic roll/tilt dinucleotide models of sequence-dependent DNA structure have some capability to discriminate between known CAP binding and nonbinding sites and to predict putative CAP binding sites in unknowns. Restricting HMMs to sequence only in regions of strong consensus in which the protein makes base specific contacts with the cognate DNA further improved the discriminatory capabilities of the HMMs. Comparison of results with controls based on sequence only indicates that extending the definition of consensus from sequence to structure improves the transferability of the HMMs, and provides further supportive evidence of a role for dynamical molecular structure as well as sequence in genomic regulatory mechanisms.
Collapse
Affiliation(s)
- Kelly M Thayer
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| | | |
Collapse
|
49
|
Gollmick FA, Lorenz M, Dornberger U, von Langen J, Diekmann S, Fritzsche H. Solution structure of dAATAA and dAAUAA DNA bulges. Nucleic Acids Res 2002; 30:2669-77. [PMID: 12060684 PMCID: PMC117287 DOI: 10.1093/nar/gkf375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NMR structure analysis is described for two DNA molecules of identical stem sequences with a five base loop containing a pyrimidine, thymin or uracil, in between purines. These five unpaired nucleotides are bulged out and are known to induce a kink in the duplex structure. The dAATAA bulge DNA is kinked between the third and the fourth nucleotide. This contrasts with the previously studied dAAAAA bulge DNA where we found a kink between the fourth and fifth nucleotide. The total kinking angle is approximately 104 degrees for the dAATAA bulge. The findings were supported by electrophoretic data and fluorescence resonance energy transfer measurements of a similar DNA molecule end-labeled by suitable fluorescent dyes. For the dAAUAA bulge the NMR data result in a similar structure as reported for the dAATAA bulge with a kinking angle of approximately 87 degrees. The results are discussed in comparison with a rAAUAA RNA bulge found in a group I intron. Generally, the sequence-dependent structure of bulges is important to understand the role of DNA bulges in protein recognition.
Collapse
Affiliation(s)
- Friedrich A Gollmick
- Institut für Molekularbiologie, Friedrich-Schiller-Universität, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Hardwidge PR, Zimmerman JM, Maher LJ. Charge neutralization and DNA bending by the Escherichia coli catabolite activator protein. Nucleic Acids Res 2002; 30:1879-85. [PMID: 11972323 PMCID: PMC113849 DOI: 10.1093/nar/30.9.1879] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We are interested in the role of asymmetric phosphate neutralization in DNA bending induced by proteins. We describe an experimental estimate of the actual electrostatic contribution of asymmetric phosphate neutralization to the bending of DNA by the Escherichia coli catabolite activator protein (CAP), a prototypical DNA-bending protein. Following assignment of putative electrostatic interactions between CAP and DNA phosphates based on X-ray crystal structures, appropriate phosphates in the CAP half-site DNA were chemically neutralized by methylphosphonate substitution. DNA shape was then evaluated using a semi-synthetic DNA electrophoretic phasing assay. Our results confirm that the unmodified CAP DNA half-site sequence is intrinsically curved by 26 degrees in the direction enhanced in the complex with protein. In the absence of protein, neutralization of five appropriate phosphates increases DNA curvature to 32 degrees (approximately 23% increase), in the predicted direction. Shifting the placement of the neutralized phosphates changes the DNA shape, suggesting that sequence-directed DNA curvature can be modified by the asymmetry of phosphate neutralization. We suggest that asymmetric phosphate neutralization contributes favorably to DNA bending by CAP, but cannot account for the full DNA deformation.
Collapse
Affiliation(s)
- Philip R Hardwidge
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|