1
|
Furlanetto V, Kalyani DC, Kostelac A, Puc J, Haltrich D, Hällberg BM, Divne C. Structural and Functional Characterization of a Gene Cluster Responsible for Deglycosylation of C-glucosyl Flavonoids and Xanthonoids by Deinococcus aerius. J Mol Biol 2024; 436:168547. [PMID: 38508304 DOI: 10.1016/j.jmb.2024.168547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+β subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2β2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).
Collapse
Affiliation(s)
- Valentina Furlanetto
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Dayanand C Kalyani
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Anja Kostelac
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria; Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Jolanta Puc
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christina Divne
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| |
Collapse
|
2
|
Siriatcharanon AK, Sutheeworapong S, Baramee S, Waeonukul R, Pason P, Kosugi A, Uke A, Ratanakhanokchai K, Tachaapaikoon C. Discovery of a Novel Cellobiose Dehydrogenase from Cellulomonas palmilytica EW123 and Its Sugar Acids Production. J Microbiol Biotechnol 2024; 34:457-466. [PMID: 38044713 PMCID: PMC10940743 DOI: 10.4014/jmb.2307.07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.
Collapse
Affiliation(s)
- Ake-kavitch Siriatcharanon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sawannee Sutheeworapong
- Division of Bioinformatics and Systems Biology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sirilak Baramee
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Ayaka Uke
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| |
Collapse
|
3
|
Motycka B, Csarman F, Rupp M, Schnabel K, Nagy G, Karnpakdee K, Scheiblbrandner S, Tscheliessnig R, Oostenbrink C, Hammel M, Ludwig R. Amino Acid Residues Controlling Domain Interaction and Interdomain Electron Transfer in Cellobiose Dehydrogenase. Chembiochem 2023; 24:e202300431. [PMID: 37768852 PMCID: PMC10726044 DOI: 10.1002/cbic.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Indexed: 09/30/2023]
Abstract
The function of cellobiose dehydrogenase (CDH) in biosensors, biofuel cells, and as a physiological redox partner of lytic polysaccharide monooxygenase (LPMO) is based on its role as an electron donor. Before donating electrons to LPMO or electrodes, an interdomain electron transfer from the catalytic FAD-containing dehydrogenase domain to the electron shuttling cytochrome domain of CDH is required. This study investigates the role of two crucial amino acids located at the dehydrogenase domain on domain interaction and interdomain electron transfer by structure-based engineering. The electron transfer kinetics of wild-type Myriococcum thermophilum CDH and its variants M309A, R698S, and M309A/R698S were analyzed by stopped-flow spectrophotometry and structural effects were studied by small-angle X-ray scattering. The data show that R698 is essential to pull the cytochrome domain close to the dehydrogenase domain and orient the heme propionate group towards the FAD, while M309 is an integral part of the electron transfer pathway - its mutation reducing the interdomain electron transfer 10-fold. Structural models and molecular dynamics simulations pinpoint the action of these two residues on the domain interaction and interdomain electron transfer.
Collapse
Affiliation(s)
- Bettina Motycka
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
- University of Natural Resources and Life Sciences, ViennaDepartment of BiotechnologyInstitute of Bioprocess Science and EngineeringMuthgasse 181190ViennaAustria
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryCyclotron road 194720BerkeleyCaliforniaUSA
| | - Florian Csarman
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Melanie Rupp
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Karoline Schnabel
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Gabor Nagy
- Max Planck Institut für Multidisciplinary SciencesDepartment of Theoretical and Computational BiophysicsAm Fassberg 1137077GöttingenGermany
| | - Kwankao Karnpakdee
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Stefan Scheiblbrandner
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| | - Rupert Tscheliessnig
- University of Natural Resources and Life Sciences, ViennaDepartment of BiotechnologyInstitute of Bioprocess Science and EngineeringMuthgasse 181190ViennaAustria
- Division of BiophysicsGottfried-Schatz-Research-CenterMedical University of GrazNeue Stiftingtalstraße 68010GrazAustria
| | - Chris Oostenbrink
- University of Natural Resources and Life SciencesViennaDepartment of Material Sciences and Process EngineeringInstitute of Molecular Modeling and SimulationMuthgasse 181190ViennaAustria
| | - Michal Hammel
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryCyclotron road 194720BerkeleyCaliforniaUSA
| | - Roland Ludwig
- University of Natural Resources and Life SciencesViennaDepartment of Food Science and TechnologyInstitute of Food TechnologyMuthgasse 181190ViennaAustria
| |
Collapse
|
4
|
Motycka B, Csarman F, Tscheliessnig R, Hammel M, Ludwig R. Resolving domain positions of cellobiose dehydrogenase by small angle X-ray scattering. FEBS J 2023; 290:4726-4743. [PMID: 37287434 PMCID: PMC10592539 DOI: 10.1111/febs.16885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
The interdomain electron transfer (IET) between the catalytic flavodehydrogenase domain and the electron-transferring cytochrome domain of cellobiose dehydrogenase (CDH) plays an essential role in biocatalysis, biosensors and biofuel cells, as well as in its natural function as an auxiliary enzyme of lytic polysaccharide monooxygenase. We investigated the mobility of the cytochrome and dehydrogenase domains of CDH, which is hypothesised to limit IET in solution by small angle X-ray scattering (SAXS). CDH from Myriococcum thermophilum (syn. Crassicarpon hotsonii, syn. Thermothelomyces myriococcoides) was probed by SAXS to study the CDH mobility at different pH and in the presence of divalent cations. By comparison of the experimental SAXS data, using pair-distance distribution functions and Kratky plots, we show an increase in CDH mobility at higher pH, indicating alterations of domain mobility. To further visualise CDH movement in solution, we performed SAXS-based multistate modelling. Glycan structures present on CDH partially masked the resulting SAXS shapes, we diminished these effects by deglycosylation and studied the effect of glycoforms by modelling. The modelling shows that with increasing pH, the cytochrome domain adopts a more flexible state with significant separation from the dehydrogenase domain. On the contrary, the presence of calcium ions decreases the mobility of the cytochrome domain. Experimental SAXS data, multistate modelling and previously reported kinetic data show how pH and divalent ions impact the closed state necessary for the IET governed by the movement of the CDH cytochrome domain.
Collapse
Affiliation(s)
- Bettina Motycka
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Technology, Muthgasse 18, 1190 Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190 Vienna, Austria
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkely, California, USA
| | - Florian Csarman
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Technology, Muthgasse 18, 1190 Vienna, Austria
| | - Rupert Tscheliessnig
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190 Vienna, Austria
- Division of Biophysics, Gottfried-Schatz-Research-Center, Medical University of Graz, Graz, Austria
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkely, California, USA
| | - Roland Ludwig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Technology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
5
|
Samaniego LVB, Higasi PMR, de Mello Capetti CC, Cortez AA, Pratavieira S, de Oliveira Arnoldi Pellegrini V, Dabul ANG, Segato F, Polikarpov I. Staphylococcus aureus microbial biofilms degradation using cellobiose dehydrogenase from Thermothelomyces thermophilus M77. Int J Biol Macromol 2023; 247:125822. [PMID: 37451383 DOI: 10.1016/j.ijbiomac.2023.125822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
This work reports biochemical characterization of Thermothelomyces thermophilus cellobiose dehydrogenase (TthCDHIIa) and its application as an antimicrobial and antibiofilm agent. We demonstrate that TthCDHIIa is thermostable in different ionic solutions and is capable of oxidizing multiple mono and oligosaccharide substrates and to continuously produce H2O2. Kinetics measurements depict the enzyme catalytic characteristics consistent with an Ascomycota class II CDH. Our structural analyses show that TthCDHIIa substrate binding pocket is spacious enough to accommodate larger cello and xylooligosaccharides. We also reveal that TthCDHIIa supplemented with cellobiose reduces the viability of S. aureus ATCC 25923 up to 32 % in a planktonic growth model and also inhibits its biofilm growth on 62.5 %. Furthermore, TthCDHIIa eradicates preformed S. aureus biofilms via H2O2 oxidative degradation of the biofilm matrix, making these bacteria considerably more susceptible to gentamicin and tetracycline.
Collapse
Affiliation(s)
| | - Paula Miwa Rabelo Higasi
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Caio Cesar de Mello Capetti
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Anelyse Abreu Cortez
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Sebastião Pratavieira
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | | | - Andrei Nicoli Gebieluca Dabul
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Fernando Segato
- Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, 12602-810 Lorena, SP, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Ma X, Tang Z, Ding W, Liu T, Yang D, Liu W, Ma M. Structure-Based Mechanistic Insights into ColB1, a Flavoprotein Functioning in-trans in the 2,2'-Bipyridine Assembly Line for Cysteine Dehydrogenation. ACS Chem Biol 2023; 18:18-24. [PMID: 36603145 DOI: 10.1021/acschembio.2c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recruitment of trans-acting enzymes by nonribosomal peptide synthetase (NRPS) assembly line is rarely reported. ColB1 is a flavin-dependent dehydrogenase that is recruited by an NRPS terminal condensation domain (Ct domain) and catalyzes peptidyl carrier protein (PCP)-tethered cysteine dehydrogenation in collismycin biosynthesis. We here report the crystal structure of ColB1 complexed with FAD and reveal a typical structural fold of acyl-CoA dehydrogenases (ACADs). However, ColB1 shows distinct structural features from ACADs in substrate recognition both at the entrance of and inside the active site. Site-directed mutagenesis and substrate modeling establish a Glu393-mediated catalytic mechanism, by which the cysteine substrate is sandwiched between Glu393 and FAD to facilitate Cα proton abstraction and Cβ hydride migration. A ColB1-PCP-Ct complex model is generated, providing structural basis for the unique recruitment interactions between ColB1 and the associated NRPS. These results add insights into the mechanisms by which trans-acting enzymes function in an assembly line.
Collapse
Affiliation(s)
- Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenping Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
7
|
Gacias-Amengual N, Wohlschlager L, Csarman F, Ludwig R. Fluorescent Imaging of Extracellular Fungal Enzymes Bound onto Plant Cell Walls. Int J Mol Sci 2022; 23:ijms23095216. [PMID: 35563607 PMCID: PMC9105846 DOI: 10.3390/ijms23095216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Lignocelluloytic enzymes are industrially applied as biocatalysts for the deconstruction of recalcitrant plant biomass. To study their biocatalytic and physiological function, the assessment of their binding behavior and spatial distribution on lignocellulosic material is a crucial prerequisite. In this study, selected hydrolases and oxidoreductases from the white rot fungus Phanerochaete chrysosporium were localized on model substrates as well as poplar wood by confocal laser scanning microscopy. Two different detection approaches were investigated: direct tagging of the enzymes and tagging specific antibodies generated against the enzymes. Site-directed mutagenesis was employed to introduce a single surface-exposed cysteine residue for the maleimide site-specific conjugation. Specific polyclonal antibodies were produced against the enzymes and were labeled using N-hydroxysuccinimide (NHS) ester as a cross-linker. Both methods allowed the visualization of cell wall-bound enzymes but showed slightly different fluorescent yields. Using native poplar thin sections, we identified the innermost secondary cell wall layer as the preferential attack point for cellulose-degrading enzymes. Alkali pretreatment resulted in a partial delignification and promoted substrate accessibility and enzyme binding. The methods presented in this study are suitable for the visualization of enzymes during catalytic biomass degradation and can be further exploited for interaction studies of lignocellulolytic enzymes in biorefineries.
Collapse
|
8
|
Iyer A, Reis RAG, Agniswamy J, Weber IT, Gadda G. Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase. Arch Biochem Biophys 2022; 715:109100. [PMID: 34864048 DOI: 10.1016/j.abb.2021.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) catalyzes the flavin-dependent oxidation of d-arginine and other d-amino acids. Here, we report the crystal structure at 1.29 Å resolution for PaDADH-Y249F expressed and co-crystallized with d-arginine. The overall structure of PaDADH-Y249F resembled PaDADH-WT, but the electron density for the flavin cofactor was ambiguous, suggesting the presence of modified flavins. Electron density maps and mass spectrometric analysis confirmed the presence of both N5-(4-guanidino-oxobutyl)-FAD and 6-OH-FAD in a single crystal of PaDADH-Y249F and helped with the further refinement of the X-ray crystal structure. The versatility of the reduced flavin is apparent in the PaDADH-Y249F structure and is evidenced by the multiple functions it can perform in the same active site.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
9
|
Švecová L, Østergaard LH, Skálová T, Schnorr KM, Koval’ T, Kolenko P, Stránský J, Sedlák D, Dušková J, Trundová M, Hašek J, Dohnálek J. Crystallographic fragment screening-based study of a novel FAD-dependent oxidoreductase from Chaetomium thermophilum. Acta Crystallogr D Struct Biol 2021; 77:755-775. [PMID: 34076590 PMCID: PMC8171062 DOI: 10.1107/s2059798321003533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
The FAD-dependent oxidoreductase from Chaetomium thermophilum (CtFDO) is a novel thermostable glycoprotein from the glucose-methanol-choline (GMC) oxidoreductase superfamily. However, CtFDO shows no activity toward the typical substrates of the family and high-throughput screening with around 1000 compounds did not yield any strongly reacting substrate. Therefore, protein crystallography, including crystallographic fragment screening, with 42 fragments and 37 other compounds was used to describe the ligand-binding sites of CtFDO and to characterize the nature of its substrate. The structure of CtFDO reveals an unusually wide-open solvent-accessible active-site pocket with a unique His-Ser amino-acid pair putatively involved in enzyme catalysis. A series of six crystal structures of CtFDO complexes revealed five different subsites for the binding of aryl moieties inside the active-site pocket and conformational flexibility of the interacting amino acids when adapting to a particular ligand. The protein is capable of binding complex polyaromatic substrates of molecular weight greater than 500 Da.
Collapse
Affiliation(s)
- Leona Švecová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | | | - Tereza Skálová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | | | - Tomáš Koval’
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Jan Stránský
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jindřich Hašek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
10
|
Geiss A, Reichhart TMB, Pejker B, Plattner E, Herzog PL, Schulz C, Ludwig R, Felice AKG, Haltrich D. Engineering the Turnover Stability of Cellobiose Dehydrogenase toward Long-Term Bioelectronic Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:7086-7100. [PMID: 34306835 PMCID: PMC8296668 DOI: 10.1021/acssuschemeng.1c01165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/16/2021] [Indexed: 05/09/2023]
Abstract
Cellobiose dehydrogenase (CDH) is an attractive oxidoreductase for bioelectrochemical applications. Its two-domain structure allows the flavoheme enzyme to establish direct electron transfer to biosensor and biofuel cell electrodes. Yet, the application of CDH in these devices is impeded by its limited stability under turnover conditions. In this work, we aimed to improve the turnover stability of CDH by semirational, high-throughput enzyme engineering. We screened 13 736 colonies in a 96-well plate setup for improved turnover stability and selected 11 improved variants. Measures were taken to increase the reproducibility and robustness of the screening setup, and the statistical evaluation demonstrates the validity of the procedure. The selected CDH variants were expressed in shaking flasks and characterized in detail by biochemical and electrochemical methods. Two mechanisms contributing to turnover stability were found: (i) replacement of methionine side chains prone to oxidative damage and (ii) the reduction of oxygen reactivity achieved by an improved balance of the individual reaction rates in the two CDH domains. The engineered CDH variants hold promise for the application in continuous biosensors or biofuel cells, while the deduced mechanistic insights serve as a basis for future enzyme engineering approaches addressing the turnover stability of oxidoreductases in general.
Collapse
Affiliation(s)
- Andreas
F. Geiss
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Thomas M. B. Reichhart
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Barbara Pejker
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Esther Plattner
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Peter L. Herzog
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Christopher Schulz
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Roland Ludwig
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
| | - Alfons K. G. Felice
- DirectSens
Biosensors GmbH, Am Rosenbühel
38, 3400 Klosterneuburg, Austria
- E-mail: . Telephone: +436505000167
| | - Dietmar Haltrich
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU − University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
11
|
Felice AKG, Schuster C, Kadek A, Filandr F, Laurent CVFP, Scheiblbrandner S, Schwaiger L, Schachinger F, Kracher D, Sygmund C, Man P, Halada P, Oostenbrink C, Ludwig R. Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase. ACS Catal 2021; 11:517-532. [PMID: 33489432 PMCID: PMC7818652 DOI: 10.1021/acscatal.0c05294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/11/2020] [Indexed: 12/11/2022]
Abstract
![]()
The natural function of cellobiose
dehydrogenase (CDH) to donate
electrons from its catalytic flavodehydrogenase (DH) domain via its
cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO)
is an example of a highly efficient extracellular electron transfer
chain. To investigate the function of the CYT domain movement in the
two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain
swapping were studied in combination with the fungus’ own LPMOs
(NcLPMO9C and NcLPMO9F). Kinetic
and electrochemical methods and hydrogen/deuterium exchange mass spectrometry
were used to study the domain movement, interaction, and electron
transfer kinetics. Molecular docking provided insights into the protein–protein
interface, the orientation of domains, and binding energies. We find
that the first, interdomain electron transfer step from the catalytic
site in the DH domain to the CYT domain depends on steric and electrostatic
interface complementarity and the length of the protein linker between
both domains but not on the redox potential difference between the
FAD and heme b cofactors. After CYT reduction, a
conformational change of CDH from its closed state to an open state
allows the second, interprotein electron transfer (IPET) step from
CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor
the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface
complementarity and the heme b redox potential, is
very efficient with bimolecular rates between 2.9 × 105 and 1.1 × 106 M–1 s–1.
Collapse
Affiliation(s)
- Alfons K. G. Felice
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Schuster
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alan Kadek
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Frantisek Filandr
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Christophe V. F. P. Laurent
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Department of Material Sciences and Process Engineering, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Scheiblbrandner
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Lorenz Schwaiger
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Franziska Schachinger
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Daniel Kracher
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Sygmund
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Petr Man
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Petr Halada
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
12
|
Quaye JA, Gadda G. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. Biochemistry 2020; 59:4833-4844. [PMID: 33301690 DOI: 10.1021/acs.biochem.0c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-2-Hydroxyglutarate dehydrogenase from Pseudomonas aeruginosa PAO1 (PaD2HGDH) catalyzes the oxidation of d-2-hydroxyglutarate to 2-ketoglutarate, which is a necessary step in the serine biosynthetic pathway. The dependence of P. aeruginosa on PaD2HGDH makes the enzyme a potential therapeutic target against P. aeruginosa. In this study, recombinant His-tagged PaD2HGDH was expressed and purified to high levels from gene PA0317, which was previously annotated as an FAD-binding PCMH-type domain-containing protein. The enzyme cofactor was identified as FAD with fluorescence emission after phosphodiesterase treatment and with mass spectrometry analysis. PaD2HGDH had a kcat value of 11 s-1 and a Km value of 60 μM with d-2-hydroxyglutarate at pH 7.4 and 25 °C. The enzyme was also active with d-malate but did not react with molecular oxygen. Steady-state kinetics with d-malate and phenazine methosulfate as an electron acceptor established a mechanism that was consistent with ping-pong bi-bi steady-state kinetics at pH 7.4. A comparison of the kcat/Km values with d-2-hydroxyglutarate and d-malate suggested that the C5 carboxylate of d-2-hydroxyglutarate is important for the substrate specificity of the enzyme. Other homologues of the enzyme have been previously grouped in the VAO/PMCH family of flavoproteins. PaD2HGDH shares fully conserved residues with other α-hydroxy acid oxidizing enzymes, and these conserved residues are found in the active site of the PaD2HDGH homology model. An Enzyme Function Initiative-Enzyme Similarity Tool Sequence Similarity Network analysis suggests a functional difference between PaD2HGDH and human D2HGDH, and no relationship with VAO. A phylogenetic tree analysis of PaD2HGDH, VAO, and human D2HGDH establishes genetic diversity among these enzymes.
Collapse
|
13
|
Abstract
Aryl-alcohol oxidases (AAO) constitute a family of FAD-containing enzymes, included in the glucose-methanol-choline oxidase/dehydrogenase superfamily of proteins. They are commonly found in fungi, where their eco-physiological role is to produce hydrogen peroxide that activates ligninolytic peroxidases in white-rot (lignin-degrading) basidiomycetes or to trigger the Fenton reactions in brown-rot (carbohydrate-degrading) basidiomycetes. These enzymes catalyze the oxidation of a plethora of aromatic, and some aliphatic, polyunsaturated alcohols bearing conjugated primary hydroxyl group. Besides, the enzymes show activity on the hydrated forms of the corresponding aldehydes. Some AAO features, such as the broad range of substrates that it can oxidize (with the only need of molecular oxygen as co-substrate) and its stereoselective mechanism, confer good properties to these enzymes as industrial biocatalysts. In fact, AAO can be used for different biotechnological applications, such as flavor synthesis, secondary alcohol deracemization and oxidation of furfurals for the production of furandicarboxylic acid as a chemical building block. Also, AAO can participate in processes of interest in the wood biorefinery and textile industries as an auxiliary enzyme providing hydrogen peroxide to ligninolytic or dye-decolorizing peroxidases. Both rational design and directed molecular evolution have been employed to engineer AAO for some of the above biotechnological applications.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
| | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
| |
Collapse
|
14
|
Igarashi K, Kaneko S, Kitaoka M, Samejima M. Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium. J Appl Glycosci (1999) 2020; 67:51-57. [PMID: 34354528 PMCID: PMC8293687 DOI: 10.5458/jag.jag.jag-2020_0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 12/02/2022] Open
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar Km and kcat values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher Km value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,2 VTT Technical Research Centre of Finland Ltd
| | - Satoshi Kaneko
- 3 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Motomitsu Kitaoka
- 4 Faculty of Agriculture, Niigata University.,5 Food Research Institute, National Agriculture and Food Research Organization
| | - Masahiro Samejima
- 1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,6 Faculty of Engineering, Shinshu University
| |
Collapse
|
15
|
Cellobiose dehydrogenase. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:457-489. [DOI: 10.1016/bs.enz.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry 2019; 131:107345. [PMID: 31494387 DOI: 10.1016/j.bioelechem.2019.107345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome with a history of bioelectrochemical research dating back to 1992. During the years, it has been shown to be capable of mediated electron transfer (MET) and direct electron transfer (DET) to a variety of electrodes. This versatility of CDH originates from the separation of the catalytic flavodehydrogenase domain and the electron transferring cytochrome domain. This uncoupling of the catalytic reaction from the electron transfer process allows the application of CDH on many different electrode materials and surfaces, where it shows robust DET. Recent X-ray diffraction and small angle scattering studies provided insights into the structure of CDH and its domain mobility, which can change between a closed-state and an open-state conformation. This structural information verifies the electron transfer mechanism of CDH that was initially established by bioelectrochemical methods. A combination of DET and MET experiments has been used to investigate the catalytic mechanism and the electron transfer process of CDH and to deduce a protein structure comprising of mobile domains. Even more, electrochemical methods have been used to study the redox potentials of the FAD and the haem b cofactors of CDH or the electron transfer rates. These electrochemical experiments, their results and the application of the characterised CDHs in biosensors, biofuel cells and biosupercapacitors are combined with biochemical and structural data to provide a thorough overview on CDH as versatile bioelectrocatalyst.
Collapse
Affiliation(s)
- Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
17
|
Balaž AM, Stevanović J, Ostafe R, Blazić M, Ilić Đurđić K, Fischer R, Prodanović R. Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide. Mol Divers 2019; 24:593-601. [PMID: 31154590 DOI: 10.1007/s11030-019-09965-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
Abstract
Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.
Collapse
Affiliation(s)
- Ana Marija Balaž
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11000, Belgrade, Serbia
| | - Jelena Stevanović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12 - 16, 11000, Belgrade, Serbia
| | - Raluca Ostafe
- Hall for Discovery and Learning Research, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Marija Blazić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11000, Belgrade, Serbia
| | - Karla Ilić Đurđić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12 - 16, 11000, Belgrade, Serbia
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.,Single Cell Analytics Center, Indiana Bioscience Research Institute, 1345 W. 16th St. Suite 300, Indianapolis, IN, 46202, USA
| | - Radivoje Prodanović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12 - 16, 11000, Belgrade, Serbia.
| |
Collapse
|
18
|
Structural insights of a cellobiose dehydrogenase enzyme from the basidiomycetes fungus Termitomyces clypeatus. Comput Biol Chem 2019; 82:65-73. [PMID: 31272063 DOI: 10.1016/j.compbiolchem.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023]
Abstract
Filamentous fungi secrete various oxidative enzymes to degrade the glycosidic bonds of polysaccharides. Cellobiose dehydrogenase (CDH) (E.C.1.1.99.18) is one of the important lignocellulose degrading enzymes produced by various filamentous fungi. It contains two stereo specific ligand binding domains, cytochrome and dehydrogenase - one for heme and the other for flavin adenine dinucleotide (FAD) respectively. The enzyme is of commercial importance for its use in amperometric biosensor, biofuel production, lactose determination in food, bioremediation etc. Termitomyces clypeatus, an edible fungus belonging to the basidiomycetes group, is a good producer of CDH. In this paper we have analyzed the structural properties of this enzyme from T. clypeatus and identified a distinct carbohydrate binding module (CBM) which is not present in most fungi belonging to the basidiomycetes group. In addition, the dehydrogenase domain of T. clypeatus CDH exhibited the absence of cellulose binding residues which is in contrast to the dehydrogenase domains of CDH of other basidiomycetes. Sequence analysis of cytochrome domain showed that the important residues of this domain were conserved like in other fungal CDHs. Phylogenetic tree, constructed using basidiomycetes and ascomycetes CDH sequences, has shown that very surprisingly the CDH from T. clypeatus, which is classified as a basidiomycetes fungus, is clustered with the ascomycetes group. A homology model of this protein has been constructed using the CDH enzyme of ascomycetes fungus Myricoccum thermophilum as a template since it has been found to be the best match sequence with T. clypeatus CDH. We also have modelled the protein with its substrate, cellobiose, which has helped us to identify the substrate interacting residues (L354, P606, T629, R631, Y649, N732, H733 and N781) localized within its dehydrogenase domain. Our computational investigation revealed for the first time the presence of all three domains - cytochrome, dehydrogenase and CBM - in the CDH of T. clypeatus, a basidiomycetes fungus. In addition to discovering the unique structural attributes of this enzyme from T. clypeatus, our study also discusses the possible phylogenetic status of this fungus.
Collapse
|
19
|
Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:118. [PMID: 31168323 PMCID: PMC6509819 DOI: 10.1186/s13068-019-1457-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The glucose-methanol-choline (GMC) superfamily is a large and functionally diverse family of oxidoreductases that share a common structural fold. Fungal members of this superfamily that are characterised and relevant for lignocellulose degradation include aryl-alcohol oxidoreductase, alcohol oxidase, cellobiose dehydrogenase, glucose oxidase, glucose dehydrogenase, pyranose dehydrogenase, and pyranose oxidase, which together form family AA3 of the auxiliary activities in the CAZy database of carbohydrate-active enzymes. Overall, little is known about the extant sequence space of these GMC oxidoreductases and their phylogenetic relations. Although some individual forms are well characterised, it is still unclear how they compare in respect of the complete enzyme class and, therefore, also how generalizable are their characteristics. RESULTS To improve the understanding of the GMC superfamily as a whole, we used sequence similarity networks to cluster large numbers of fungal GMC sequences and annotate them according to functionality. Subsequently, different members of the GMC superfamily were analysed in detail with regard to their sequences and phylogeny. This allowed us to define the currently characterised sequence space and show that complete clades of some enzymes have not been studied in any detail to date. Finally, we interpret our results from an evolutionary perspective, where we could show, for example, that pyranose dehydrogenase evolved from aryl-alcohol oxidoreductase after a change in substrate specificity and that the cytochrome domain of cellobiose dehydrogenase was regularly lost during evolution. CONCLUSIONS This study offers new insights into the sequence variation and phylogenetic relationships of fungal GMC/AA3 sequences. Certain clades of these GMC enzymes identified in our phylogenetic analyses are completely uncharacterised to date, and might include enzyme activities of varying specificities and/or activities that are hitherto unstudied.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gabriel Foley
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
20
|
Rafighi P, Bollella P, Pankratova G, Peterbauer CK, Conghaile PÓ, Leech D, Haghighi B, Gorton L. Substrate Preference Pattern ofAgaricus meleagrisPyranose Dehydrogenase Evaluated through Bioelectrochemical Flow Injection Amperometry. ChemElectroChem 2018. [DOI: 10.1002/celc.201801194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parvin Rafighi
- College of ChemistryInstitute for Advanced Studies in Basic Sciences P.O. Box 45195-1159 Gava Zang, Zanjan Iran
| | - Paolo Bollella
- Department of Chemistry and Drug TechnologiesSapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Galina Pankratova
- Department of Biochemistry and Structural BiologyLund University PO Box 124 221 00 Lund Sweden
| | - Clemens K. Peterbauer
- BOKU-University of Natural Resources and Applied Life Sciences Vienna Muthgasse 18 A-1190 Wien Austria
| | - Peter Ó Conghaile
- School of Chemistry & Ryan InstituteNational University of Ireland Galway Galway Ireland
| | - Dónal Leech
- School of Chemistry & Ryan InstituteNational University of Ireland Galway Galway Ireland
| | - Behzad Haghighi
- College of ChemistryInstitute for Advanced Studies in Basic Sciences P.O. Box 45195-1159 Gava Zang, Zanjan Iran
- Department of Chemistry College of SciencesShiraz University Shiraz 71454 Iran
| | - Lo Gorton
- Department of Biochemistry and Structural BiologyLund University PO Box 124 221 00 Lund Sweden
| |
Collapse
|
21
|
Ito K, Okuda-Shimazaki J, Mori K, Kojima K, Tsugawa W, Ikebukuro K, Lin CE, La Belle J, Yoshida H, Sode K. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer. Biosens Bioelectron 2018; 123:114-123. [PMID: 30057265 DOI: 10.1016/j.bios.2018.07.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/16/2023]
Abstract
Fungi-derived flavin adenine dinucleotide glucose dehydrogenases (FADGDHs) are currently the most popular and advanced enzymes for self-monitoring of blood glucose sensors; however, the achievement of direct electron transfer (DET) with FADGDHs is difficult. In this study, a designer FADGDH was constructed by fusing Aspergillus flavus derived FADGDH (AfGDH) and a Phanerochaete chrisosporium CDH (PcCDH)-derived heme b-binding cytochrome domain to develop a novel FADGDH that is capable of direct electron transfer with an electrode. A structural prediction suggested that the heme in the CDH may exist in proximity to the FAD of AfGDH if the heme b-binding cytochrome domain is fused to the AfGDH N-terminal region. Spectroscopic observations of recombinantly produced designer FADGDH confirmed the intramolecular electron transfer between FAD and the heme. A decrease in pH and the presence of a divalent cation improved the intramolecular electron transfer. An enzyme electrode with the immobilized designer FADGDH showed an increase in current immediately after the addition of glucose in a glucose concentration-dependent manner, whereas those with wild-type AfGDH did not show an increase in current. Therefore, the designer FADGDH was confirmed to be a novel GDH that possesses electrode DET ability. The difference in the surface electrostatic potentials of AfGDH and the catalytic domain of PcCDH might be why their intramolecular electron transfer ability is inferior to that of CDH. These relevant and consistent findings provide us with a novel strategic approach for the improvement of the DET properties of designer FADGDH. (241 words).
Collapse
Affiliation(s)
- Kohei Ito
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | - Kazushige Mori
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan
| | - Katsuhiro Kojima
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Chi-En Lin
- School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA
| | - Jeffrey La Belle
- School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9719, USA
| | - Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Carro J, Amengual-Rigo P, Sancho F, Medina M, Guallar V, Ferreira P, Martínez AT. Multiple implications of an active site phenylalanine in the catalysis of aryl-alcohol oxidase. Sci Rep 2018; 8:8121. [PMID: 29802285 PMCID: PMC5970180 DOI: 10.1038/s41598-018-26445-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/11/2018] [Indexed: 01/15/2023] Open
Abstract
Aryl-alcohol oxidase (AAO) has demonstrated to be an enzyme with a bright future ahead due to its biotechnological potential in deracemisation of chiral compounds, production of bioplastic precursors and other reactions of interest. Expanding our understanding on the AAO reaction mechanisms, through the investigation of its structure-function relationships, is crucial for its exploitation as an industrial biocatalyst. In this regard, previous computational studies suggested an active role for AAO Phe397 at the active-site entrance. This residue is located in a loop that partially covers the access to the cofactor forming a bottleneck together with two other aromatic residues. Kinetic and affinity spectroscopic studies, complemented with computational simulations using the recently developed adaptive-PELE technology, reveal that the Phe397 residue is important for product release and to help the substrates attain a catalytically relevant position within the active-site cavity. Moreover, removal of aromaticity at the 397 position impairs the oxygen-reduction activity of the enzyme. Experimental and computational findings agree very well in the timing of product release from AAO, and the simulations help to understand the experimental results. This highlights the potential of adaptive-PELE to provide answers to the questions raised by the empirical results in the study of enzyme mechanisms.
Collapse
Affiliation(s)
- Juan Carro
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Pep Amengual-Rigo
- Barcelona Supercomputing Center, Jordi Girona 31, E-08034, Barcelona, Spain
| | - Ferran Sancho
- Barcelona Supercomputing Center, Jordi Girona 31, E-08034, Barcelona, Spain
| | - Milagros Medina
- Department of Biochemistry and Cellular and Molecular Biology, and BIFI, University of Zaragoza, E-50009, Zaragoza, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 31, E-08034, Barcelona, Spain. .,ICREA, Passeig Lluís Companys 23, E-08010, Barcelona, Spain.
| | - Patricia Ferreira
- Department of Biochemistry and Cellular and Molecular Biology, and BIFI, University of Zaragoza, E-50009, Zaragoza, Spain.
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
23
|
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
Abstract
Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
24
|
Bodenheimer AM, O'Dell WB, Oliver RC, Qian S, Stanley CB, Meilleur F. Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms. Biochim Biophys Acta Gen Subj 2018; 1862:1031-1039. [DOI: 10.1016/j.bbagen.2018.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023]
|
25
|
Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Chem Rev 2018; 118:2593-2635. [PMID: 29155571 PMCID: PMC5982588 DOI: 10.1021/acs.chemrev.7b00421] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural carbohydrate polymers such as starch, cellulose, and chitin provide renewable alternatives to fossil fuels as a source for fuels and materials. As such, there is considerable interest in their conversion for industrial purposes, which is evidenced by the established and emerging markets for products derived from these natural polymers. In many cases, this is achieved via industrial processes that use enzymes to break down carbohydrates to monomer sugars. One of the major challenges facing large-scale industrial applications utilizing natural carbohydrate polymers is rooted in the fact that naturally occurring forms of starch, cellulose, and chitin can have tightly packed organizations of polymer chains with low hydration levels, giving rise to crystalline structures that are highly recalcitrant to enzymatic degradation. The topic of this review is oxidative cleavage of carbohydrate polymers by lytic polysaccharide mono-oxygenases (LPMOs). LPMOs are copper-dependent enzymes (EC 1.14.99.53-56) that, with glycoside hydrolases, participate in the degradation of recalcitrant carbohydrate polymers. Their activity and structural underpinnings provide insights into biological mechanisms of polysaccharide degradation.
Collapse
Affiliation(s)
- Katlyn K. Meier
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M. Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thijs Kaper
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Martijn J. Koetsier
- DuPont Industrial Biosciences, Netherlands, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Bradley Kelemen
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| |
Collapse
|
26
|
Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D. Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 2018; 102:2477-2492. [PMID: 29411063 PMCID: PMC5847212 DOI: 10.1007/s00253-018-8784-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 11/29/2022]
Abstract
The CAZy auxiliary activity family 3 (AA3) comprises enzymes from the glucose-methanol-choline (GMC) family of oxidoreductases, which assist the activity of other AA family enzymes via their reaction products or support the action of glycoside hydrolases in lignocellulose degradation. The AA3 family is further divided into four subfamilies, which include cellobiose dehydrogenase, glucose oxidoreductases, aryl-alcohol oxidase, alcohol (methanol) oxidase, and pyranose oxidoreductases. These different enzymes catalyze a wide variety of redox reactions with respect to substrates and co-substrates. The common feature of AA3 family members is the formation of key metabolites such as H2O2 or hydroquinones, which are required by other AA enzymes. The multiplicity of enzymatic functions in the AA3 family is reflected by the multigenicity of AA3 genes in fungi, which also depends on their lifestyle. We provide an overview of the phylogenetic, molecular, and catalytic properties of AA3 enzymes and discuss their interactions with other carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Christophe V F P Laurent
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Annabelle T Abrera
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- University of the Philippines Los Baños, College Laguna, Los Baños, Philippines
| | - Georg Schütz
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria.
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria.
| |
Collapse
|
27
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017; 41:941-962. [PMID: 29088355 PMCID: PMC5812493 DOI: 10.1093/femsre/fux049] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Swiderska-Burek
- Department of Botany and Mycology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkolazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Paszczynski
- School of Food Science, Food Research Center, Room 103, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
28
|
Algov I, Grushka J, Zarivach R, Alfonta L. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain. J Am Chem Soc 2017; 139:17217-17220. [PMID: 28915057 DOI: 10.1021/jacs.7b07011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Flavin-adenine dinucleotide (FAD) dependent glucose dehydrogenase (GDH) is a thermostable, oxygen insensitive redox enzyme used in bioelectrochemical applications. The FAD cofactor of the enzyme is buried within the proteinaceous matrix of the enzyme, which makes it almost unreachable for a direct communication with an electrode. In this study, FAD dependent glucose dehydrogenase was fused to a natural minimal cytochrome domain in its c-terminus to achieve direct electron transfer. We introduce a fusion enzyme that can communicate with an electrode directly, without the use of a mediator molecule. The new fusion enzyme, with its direct electron transfer abilities displays superior activity to that of the native enzyme, with a kcat that is ca. 3 times higher than that of the native enzyme, a kcat/KM that is more than 3 times higher than that of GDH and 5 to 7 times higher catalytic currents with an onset potential of ca. (-) 0.15 V vs Ag/AgCl, affording higher glucose sensing selectivity. Taking these parameters into consideration, the fusion enzyme presented can serve as a good candidate for blood glucose monitoring and for other glucose based bioelectrochemical systems.
Collapse
Affiliation(s)
- Itay Algov
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Jennifer Grushka
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Raz Zarivach
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| |
Collapse
|
29
|
Petrović D, Frank D, Kamerlin SCL, Hoffmann K, Strodel B. Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase. ACS Catal 2017; 7:6188-6197. [PMID: 29291138 PMCID: PMC5745072 DOI: 10.1021/acscatal.7b01575] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Indexed: 12/17/2022]
Abstract
![]()
Glucose oxidase has
wide applications in the pharmaceutical, chemical,
and food industries. Many recent studies have enhanced key properties
of this enzyme using directed evolution, yet without being able to
reveal why these mutations are actually beneficial. This work presents
a synergistic combination of experimental and computational methods,
indicating how mutations, even when distant from the active site,
positively affect glucose oxidase catalysis. We have determined the
crystal structures of glucose oxidase mutants containing molecular
oxygen in the active site. The catalytically important His516 residue
has been previously shown to be flexible in the wild-type enzyme.
The molecular dynamics simulations performed in this work allow us
to quantify this floppiness, revealing that His516 exists in two states:
catalytic and noncatalytic. The relative populations of these two
substates are almost identical in the wild-type enzyme, with His516
readily shuffling between them. In the glucose oxidase mutants, on
the other hand, the mutations enrich the catalytic His516 conformation
and reduce the flexibility of this residue, leading to an enhancement
in their catalytic efficiency. This study stresses the benefit of
active site preorganization with respect to enzyme conversion rates
by reducing molecular reorientation needs. We further suggest that
the computational approach based on Hamiltonian replica exchange molecular
dynamics, used in this study, may be a general approach to screening
in silico for improved enzyme variants involving flexible catalytic
residues.
Collapse
Affiliation(s)
- Dušan Petrović
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - David Frank
- Institute
of Molecular Biotechnology, RWTH Aachen University, Worringerweg
1, 52074 Aachen, Germany
| | | | - Kurt Hoffmann
- Institute
of Molecular Biotechnology, RWTH Aachen University, Worringerweg
1, 52074 Aachen, Germany
| | - Birgit Strodel
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Chen K, Liu X, Long L, Ding S. Cellobiose dehydrogenase from Volvariella volvacea and its effect on the saccharification of cellulose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim Biophys Acta Gen Subj 2017; 1861:157-167. [DOI: 10.1016/j.bbagen.2016.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
|
32
|
Analysis of Agaricus meleagris pyranose dehydrogenase N-glycosylation sites and performance of partially non-glycosylated enzymes. Enzyme Microb Technol 2017; 99:57-66. [PMID: 28193332 DOI: 10.1016/j.enzmictec.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Pyranose Dehydrogenase 1 from the basidiomycete Agaricus meleagris (AmPDH1) is an oxidoreductase capable of oxidizing a broad variety of sugars. Due to this and its ability of dioxidation of substrates and no side production of hydrogen peroxide, it is studied for use in enzymatic bio-fuel cells. In-vitro deglycosylated AmPDH1 as well as knock-out mutants of the N-glycosylation sites N75 and N175, near the active site entrance, were previously shown to improve achievable current densities of graphite electrodes modified with AmPDH1 and an osmium redox polymer acting as a redox mediator, up to 10-fold. For a better understanding of the role of N-glycosylation of AmPDH1, a systematic set of N-glycosylation site mutants was investigated in this work, regarding expression efficiency, enzyme activity and stability. Furthermore, the site specific extend of N-glycosylation was compared between native and recombinant wild type AmPDH1. Knocking out the site N252 prevented the attachment of significantly extended N-glycan structures as detected on polyacrylamide gel electrophoresis, but did not significantly alter enzyme performance on modified electrodes. This suggests that not the molecule size but other factors like accessibility of the active site improved performance of deglycosylated AmPDH1/osmium redox polymer modified electrodes. A fourth N-glycosylation site of AmPDH1 could be confirmed by mass spectrometry at N319, which appeared to be conserved in related fungal pyranose dehydrogenases but not in other members of the glucose-methanol-choline oxidoreductase structural family. This site was shown to be the only one that is essential for functional recombinant expression of the enzyme.
Collapse
|
33
|
An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase. Sci Rep 2017; 7:40517. [PMID: 28098177 PMCID: PMC5241826 DOI: 10.1038/srep40517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.
Collapse
|
34
|
Vonck J, Parcej DN, Mills DJ. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. PLoS One 2016; 11:e0159476. [PMID: 27458710 PMCID: PMC4961394 DOI: 10.1371/journal.pone.0159476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023] Open
Abstract
The first step in methanol metabolism in methylotrophic yeasts, the oxidation of methanol and higher alcohols with molecular oxygen to formaldehyde and hydrogen peroxide, is catalysed by alcohol oxidase (AOX), a 600-kDa homo-octamer containing eight FAD cofactors. When these yeasts are grown with methanol as the carbon source, AOX forms large crystalline arrays in peroxisomes. We determined the structure of AOX by cryo-electron microscopy at a resolution of 3.4 Å. All residues of the 662-amino acid polypeptide as well as the FAD are well resolved. AOX shows high structural homology to other members of the GMC family of oxidoreductases, which share a conserved FAD binding domain, but have different substrate specificities. The preference of AOX for small alcohols is explained by the presence of conserved bulky aromatic residues near the active site. Compared to the other GMC enzymes, AOX contains a large number of amino acid inserts, the longest being 75 residues. These segments are found at the periphery of the monomer and make extensive inter-subunit contacts which are responsible for the very stable octamer. A short surface helix forms contacts between two octamers, explaining the tendency of AOX to form crystals in the peroxisomes.
Collapse
Affiliation(s)
- Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- * E-mail:
| | - David N. Parcej
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Barad S, Sela N, Kumar D, Kumar-Dubey A, Glam-Matana N, Sherman A, Prusky D. Fungal and host transcriptome analysis of pH-regulated genes during colonization of apple fruits by Penicillium expansum. BMC Genomics 2016; 17:330. [PMID: 27146851 PMCID: PMC4855365 DOI: 10.1186/s12864-016-2665-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022] Open
Abstract
Background Penicillium expansum is a destructive phytopathogen that causes decay in deciduous fruits during postharvest handling and storage. During colonization the fungus secretes D-gluconic acid (GLA), which modulates environmental pH and regulates mycotoxin accumulation in colonized tissue. Till now no transcriptomic analysis has addressed the specific contribution of the pathogen's pH regulation to the P. expansum colonization process. For this purpose total RNA from the leading edge of P. expansum-colonized apple tissue of cv. 'Golden Delicious' and from fungal cultures grown under pH 4 or 7 were sequenced and their gene expression patterns were compared. Results We present a large-scale analysis of the transcriptome data of P. expansum and apple response to fungal colonization. The fungal analysis revealed nine different clusters of gene expression patterns that were divided among three major groups in which the colonized tissue showed, respectively: (i) differing transcript expression patterns between mycelial growth at pH 4 and pH 7; (ii) similar transcript expression patterns of mycelial growth at pH 4; and (iii) similar transcript expression patterns of mycelial growth at pH 7. Each group was functionally characterized in order to decipher genes that are important for pH regulation and also for colonization of apple fruits by Penicillium. Furthermore, comparison of gene expression of healthy apple tissue with that of colonized tissue showed that differentially expressed genes revealed up-regulation of the jasmonic acid and mevalonate pathways, and also down-regulation of the glycogen and starch biosynthesis pathways. Conclusions Overall, we identified important genes and functionalities of P. expansum that were controlled by the environmental pH. Differential expression patterns of genes belonging to the same gene family suggest that genes were selectively activated according to their optimal environmental conditions (pH, in vitro or in vivo) to enable the fungus to cope with varying conditions and to make optimal use of available enzymes. Comparison between the activation of the colonized host's gene responses by alkalizing Colletotrichum gloeosporioides and acidifying P. expansum pathogens indicated similar gene response patterns, but stronger responses to P. expansum, suggesting the importance of acidification by P. expansum as a factor in its increased aggressiveness. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2665-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel.,Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, the Volcani Center, Bet Dagan, 50250, Israel
| | - Dilip Kumar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel
| | - Amit Kumar-Dubey
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel
| | - Nofar Glam-Matana
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel.,Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Amir Sherman
- Genomics Unit, ARO, the Volcani Center, Bet Dagan, 50250, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel.
| |
Collapse
|
36
|
Kameshwar AKS, Qin W. Lignin Degrading Fungal Enzymes. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Schulz C, Kittl R, Ludwig R, Gorton L. Direct Electron Transfer from the FAD Cofactor of Cellobiose Dehydrogenase to Electrodes. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Schulz
- Department of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Roman Kittl
- Department of Food Sciences and Technology, Food Biotechnology Laboratory, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Roland Ludwig
- Department of Food Sciences and Technology, Food Biotechnology Laboratory, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
38
|
A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes. Biosens Bioelectron 2015; 79:515-21. [PMID: 26748369 DOI: 10.1016/j.bios.2015.12.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022]
Abstract
A novel application of cellobiose dehydrogenase (CDH) as sensing element for a Bioelectronic Tongue (BioET) system has been tested. In this work CDHs from various fungi, which exhibit different substrate specificities, were used to discriminate between lactose and glucose in presence of the interfering matrix compound Ca(2+) in various mixtures. This work exploits the advantage of an electronic tongue system with practically zero pre-treatment of samples and operation at low voltages in a direct electron transfer mode. The Artificial Neural Network (ANN) used in the BioET system to interpret the voltammetric data was able to provide a correct prediction of the concentrations of the analytes considered. Correlation coefficients in the comparison of obtained vs. expected concentrations were highly significant, especially for lactose (R(2)=0.975) and Ca(2+) (R(2)=0.945). This BioET application has a high potential especially for the food and dairy industry and also, if further miniaturised in screen printed format, for its in-situ use.
Collapse
|
39
|
Bozorgzadeh S, Hamidi H, Ortiz R, Ludwig R, Gorton L. Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes. Phys Chem Chem Phys 2015; 17:24157-65. [PMID: 26323551 DOI: 10.1039/c5cp03812j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.
Collapse
Affiliation(s)
- Somayyeh Bozorgzadeh
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Abstract
SUMMARY Biomass is constructed of dense recalcitrant polymeric materials: proteins, lignin, and holocellulose, a fraction constituting fibrous cellulose wrapped in hemicellulose-pectin. Bacteria and fungi are abundant in soil and forest floors, actively recycling biomass mainly by extracting sugars from holocellulose degradation. Here we review the genome-wide contents of seven Aspergillus species and unravel hundreds of gene models encoding holocellulose-degrading enzymes. Numerous apparent gene duplications followed functional evolution, grouping similar genes into smaller coherent functional families according to specialized structural features, domain organization, biochemical activity, and genus genome distribution. Aspergilli contain about 37 cellulase gene models, clustered in two mechanistic categories: 27 hydrolyze and 10 oxidize glycosidic bonds. Within the oxidative enzymes, we found two cellobiose dehydrogenases that produce oxygen radicals utilized by eight lytic polysaccharide monooxygenases that oxidize glycosidic linkages, breaking crystalline cellulose chains and making them accessible to hydrolytic enzymes. Among the hydrolases, six cellobiohydrolases with a tunnel-like structural fold embrace single crystalline cellulose chains and cooperate at nonreducing or reducing end termini, splitting off cellobiose. Five endoglucanases group into four structural families and interact randomly and internally with cellulose through an open cleft catalytic domain, and finally, seven extracellular β-glucosidases cleave cellobiose and related oligomers into glucose. Aspergilli contain, on average, 30 hemicellulase and 7 accessory gene models, distributed among 9 distinct functional categories: the backbone-attacking enzymes xylanase, mannosidase, arabinase, and xyloglucanase, the short-side-chain-removing enzymes xylan α-1,2-glucuronidase, arabinofuranosidase, and xylosidase, and the accessory enzymes acetyl xylan and feruloyl esterases.
Collapse
|
41
|
Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun 2015; 6:7542. [PMID: 26151670 PMCID: PMC4507011 DOI: 10.1038/ncomms8542] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.
Collapse
Affiliation(s)
- Tien-Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, Stockholm S-10691, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelelaboratoriet, Scheeles väg 2, Stockholm S-17177, Sweden
| | - Daniel Kracher
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Rosaria Gandini
- School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, Stockholm S-10691, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelelaboratoriet, Scheeles väg 2, Stockholm S-17177, Sweden
| | - Christoph Sygmund
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Roman Kittl
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - B. Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm S-17177, Sweden
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22603, Germany; and Centre for Structural Systems Biology (CSSB), DESY-Campus, Hamburg 22603, Germany
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, Vienna Institute of Biotechnology (VIBT), BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, Stockholm S-10691, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheelelaboratoriet, Scheeles väg 2, Stockholm S-17177, Sweden
| |
Collapse
|
42
|
Kracher D, Zahma K, Schulz C, Sygmund C, Gorton L, Ludwig R. Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations. FEBS J 2015; 282:3136-48. [PMID: 25913436 PMCID: PMC4676925 DOI: 10.1111/febs.13310] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/02/2015] [Accepted: 04/22/2015] [Indexed: 10/30/2022]
Abstract
The flavocytochrome cellobiose dehydrogenase (CDH) is secreted by wood-decomposing fungi, and is the only known extracellular enzyme with the characteristics of an electron transfer protein. Its proposed function is reduction of lytic polysaccharide mono-oxygenase for subsequent cellulose depolymerization. Electrons are transferred from FADH2 in the catalytic flavodehydrogenase domain of CDH to haem b in a mobile cytochrome domain, which acts as a mediator and transfers electrons towards the active site of lytic polysaccharide mono-oxygenase to activate oxygen. This vital role of the cytochrome domain is little understood, e.g. why do CDHs exhibit different pH optima and rates for inter-domain electron transfer (IET)? This study uses kinetic techniques and docking to assess the interaction of both domains and the resulting IET with regard to pH and ions. The results show that the reported elimination of IET at neutral or alkaline pH is caused by electrostatic repulsion, which prevents adoption of the closed conformation of CDH. Divalent alkali earth metal cations are shown to exert a bridging effect between the domains at concentrations of > 3 mm, thereby neutralizing electrostatic repulsion and increasing IET rates. The necessary high ion concentration, together with the docking results, show that this effect is not caused by specific cation binding sites, but by various clusters of Asp, Glu, Asn, Gln and the haem b propionate group at the domain interface. The results show that a closed conformation of both CDH domains is necessary for IET, but the closed conformation also increases the FAD reduction rate by an electron pulling effect.
Collapse
Affiliation(s)
- Daniel Kracher
- Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kawah Zahma
- Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christopher Schulz
- Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden
| | - Christoph Sygmund
- Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lo Gorton
- Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, Sweden
| | - Roland Ludwig
- Department of Food Sciences and Technology, Food Biotechnology Laboratory, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
43
|
Kielb P, Sezer M, Katz S, Lopez F, Schulz C, Gorton L, Ludwig R, Wollenberger U, Zebger I, Weidinger IM. Spectroscopic Observation of Calcium-Induced Reorientation of Cellobiose Dehydrogenase Immobilized on Electrodes and its Effect on Electrocatalytic Activity. Chemphyschem 2015; 16:1960-8. [PMID: 25908116 DOI: 10.1002/cphc.201500112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/12/2015] [Indexed: 12/31/2022]
Abstract
Cellobiose dehydrogenase catalyzes the oxidation of various carbohydrates and is considered as a possible anode catalyst in biofuel cells. It has been shown that the catalytic performance of this enzyme immobilized on electrodes can be increased by presence of calcium ions. To get insight into the Ca(2+) -induced changes in the immobilized enzyme we employ surface-enhanced vibrational (SERR and SEIRA) spectroscopy together with electrochemistry. Upon addition of Ca(2+) ions electrochemical measurements show a shift of the catalytic turnover signal to more negative potentials while SERR measurements reveal an offset between the potential of heme reduction and catalytic current. Comparing SERR and SEIRA data we propose that binding of Ca(2+) to the heme induces protein reorientation in a way that the electron transfer pathway of the catalytic FAD center to the electrode can bypass the heme cofactor, resulting in catalytic activity at more negative potentials.
Collapse
Affiliation(s)
- Patrycja Kielb
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Murat Sezer
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Francesca Lopez
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund (Sweden)
| | - Christopher Schulz
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund (Sweden)
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund (Sweden)
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU - University of Natural Resources and Life Science, Muthgasse 18, 1190 Vienna (Austria)
| | - Ulla Wollenberger
- Institüt für Biochemie und Biologie, Universität Potsdam, Karl Liebknecht Strasse 24-25, 14476 Golm (Germany)
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
| | - Inez M Weidinger
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany).
| |
Collapse
|
44
|
Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase. FEBS Lett 2015; 589:1194-9. [PMID: 25862501 DOI: 10.1016/j.febslet.2015.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 11/24/2022]
Abstract
Cellobiose dehydrogenase (CDH) from wood degrading fungi represents a subclass of oxidoreductases with unique properties. Consisting of two domains exhibiting interdomain electron transfer, this is the only known flavocytochrome involved in wood degradation. High resolution structures of the separated domains were solved, but the overall architecture of the intact protein and the exact interface of the two domains is unknown. Recently, it was shown that divalent cations modulate the activity of CDH and its pH optimum and a possible mechanism involving bridging of negative charges by calcium ions was proposed. Here we provide a structural explanation of this phenomenon confirming the interaction between negatively charged surface patches and calcium ions at the domain interface.
Collapse
|
45
|
Costa A, Barbaro MR, Sicilia F, Preger V, Krieger-Liszkay A, Sparla F, De Lorenzo G, Trost P. AIR12, a b-type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:32-43. [PMID: 25711811 DOI: 10.1016/j.plantsci.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/27/2014] [Accepted: 01/03/2015] [Indexed: 05/27/2023]
Abstract
AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. Recombinant AIR12 from Arabidopsis accepted electrons from ascorbate or superoxide, and donated electrons to either monodehydroascorbate or oxygen. AIR12 was found associated in vivo to the plasma membrane. Though linked to the membrane by a glycophosphatidylinositol anchor, AIR12 is a hydrophilic and glycosylated protein predicted to be fully exposed to the apoplast. The expression pattern of AIR12 in Arabidopsis is developmentally regulated and correlated to sites of controlled cell separation (e.g. micropilar endosperm during germination, epidermal cells surrounding the emerging lateral root) and cells around wounds. Arabidopsis (Landsberg erecta-0) mutants with altered levels of AIR12 did not show any obvious phenotype. However, AIR12-overexpressing plants accumulated ROS (superoxide, hydrogen peroxide) and lipid peroxides in leaves, indicating that AIR12 may alter the redox state of the apoplast under particular conditions. On the other hand, AIR12-knock out plants displayed a strongly decreased susceptibility to Botrytis cinerea infection, which in turn induced AIR12 expression in susceptible wild type plants. Altogether, the results suggest that AIR12 plays a role in the regulation of the apoplastic redox state and in the response to necrotrophic pathogens. Possible relationships between these functions are discussed.
Collapse
Affiliation(s)
- Alex Costa
- Dipartimento di Bioscienze, Università di Milano, Via G. Celoria 24, 20133 Milano, Italy
| | - Maria Raffaella Barbaro
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Francesca Sicilia
- Dipartimento di Biologia e Biotecnologia "C. Darwin," Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Valeria Preger
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) Saclay, Institut de Biologie et Technologie de Saclay, Centre National de la Recherche Scientifique UMR 8221, 91191 Gif-sur-Yvette Cedex, France
| | - Francesca Sparla
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologia "C. Darwin," Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy.
| | - Paolo Trost
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
46
|
Ferreira P, Hernández-Ortega A, Lucas F, Carro J, Herguedas B, Borrelli KW, Guallar V, Martínez AT, Medina M. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. FEBS J 2015; 282:3091-106. [PMID: 25639975 DOI: 10.1111/febs.13221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/10/2015] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Aryl-alcohol oxidase (AAO, EC 1.1.3.7) generates H2 O2 for lignin degradation at the expense of benzylic and other π system-containing primary alcohols, which are oxidized to the corresponding aldehydes. Ligand diffusion studies on Pleurotus eryngii AAO showed a T-shaped stacking interaction between the Tyr92 side chain and the alcohol substrate at the catalytically competent position for concerted hydride and proton transfers. Bi-substrate kinetics analysis revealed that reactions with 3-chloro- or 3-fluorobenzyl alcohols (halogen substituents) proceed via a ping-pong mechanism. However, mono- and dimethoxylated substituents (in 4-methoxybenzyl and 3,4-dimethoxybenzyl alcohols) altered the mechanism and a ternary complex was formed. Electron-withdrawing substituents resulted in lower quantum mechanics stacking energies between aldehyde and the tyrosine side chain, contributing to product release, in agreement with the ping-pong mechanism observed in 3-chloro- and 3-fluorobenzyl alcohol kinetics analysis. In contrast, the higher stacking energies when electron donor substituents are present result in reaction of O2 with the flavin through a ternary complex, in agreement with the kinetics of methoxylated alcohols. The contribution of Tyr92 to the AAO reaction mechanism was investigated by calculation of stacking interaction energies and site-directed mutagenesis. Replacement of Tyr92 by phenylalanine does not alter the AAO kinetic constants (on 4-methoxybenzyl alcohol), most probably because the stacking interaction is still possible. However, introduction of a tryptophan residue at this position strongly reduced the affinity for the substrate (i.e. the pre-steady state Kd and steady-state Km increase by 150-fold and 75-fold, respectively), and therefore the steady-state catalytic efficiency, suggesting that proper stacking is impossible with this bulky residue. The above results confirm the role of Tyr92 in substrate binding, thus governing the kinetic mechanism in AAO.
Collapse
Affiliation(s)
- Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| | - Aitor Hernández-Ortega
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fátima Lucas
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Herguedas
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| | - Kenneth W Borrelli
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Victor Guallar
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| |
Collapse
|
47
|
Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Biotechnol Lett 2015; 37:1091-9. [DOI: 10.1007/s10529-015-1774-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
|
48
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
49
|
Tan TC, Spadiut O, Gandini R, Haltrich D, Divne C. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion. PLoS One 2014; 9:e86736. [PMID: 24466218 PMCID: PMC3897772 DOI: 10.1371/journal.pone.0086736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022] Open
Abstract
Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.
Collapse
Affiliation(s)
- Tien Chye Tan
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oliver Spadiut
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christina Divne
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden ; School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
50
|
Mulla D, Kracher D, Ludwig R, Nagy G, Grandits M, Holzer W, Saber Y, Gabra N, Viernstein H, Unger FM. Azido derivatives of cellobiose: oxidation at C1 with cellobiose dehydrogenase from Sclerotium rolfsii. Carbohydr Res 2013; 382:86-94. [DOI: 10.1016/j.carres.2013.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
|