1
|
Regmi D, Shen F, Stanic A, Islam M, Du D. Effect of phospholipid liposomes on prion fragment (106-128) amyloid formation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184199. [PMID: 37454869 DOI: 10.1016/j.bbamem.2023.184199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Misfolding and aggregation of cellular prion protein (PrPc) is a major molecular process involved in the pathogenesis of prion diseases. Here, we studied the aggregation properties of a prion fragment peptide PrP(106-128). The results show that the peptide aggregates in a concentration-dependent manner in an aqueous solution and that the aggregation is sensitive to pH and the preformed amyloid seeds. Furthermore, we show that the zwitterionic POPC liposomes moderately inhibit the aggregation of PrP(106-128), whereas POPC/cholesterol (8:2) vesicles facilitate peptide aggregation likely due to the increase of the lipid packing order and membrane rigidity in the presence of cholesterol. In addition, anionic lipid vesicles of POPG and POPG/cholesterol above a certain concentration accelerate the aggregation of the peptide remarkably. The strong electrostatic interactions between the N-terminal region of the peptide and POPG may constrain the conformational plasticity of the peptide, preventing insertion of the peptide into the inner side of the membrane and thus promoting fibrillation on the membrane surface. The results suggest that the charge properties of the membrane, the composition of the liposomes, and the rigidity of lipid packing are critical in determining peptide adsorption on the membrane surface and the efficiency of the membrane in catalyzing peptide oligomeric nucleation and amyloid formation. The peptide could be used as an improved model molecule to investigate the mechanistic role of the crucial regions of PrP in aggregation in a membrane-rich environment and to screen effective inhibitors to block key interactions between these regions and membranes for preventing PrP aggregation.
Collapse
Affiliation(s)
- Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aleksander Stanic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
2
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Serpa JJ, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH. Structure of prion β-oligomers as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. Proteomics 2021; 21:e2000298. [PMID: 34482645 PMCID: PMC9285417 DOI: 10.1002/pmic.202000298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
The conversion of the native monomeric cellular prion protein (PrPC ) into an aggregated pathological β-oligomeric form (PrPβ ) and an infectious form (PrPSc ) is the central element in the development of prion diseases. The structure of the aggregates and the molecular mechanisms of the conformational changes involved in the conversion are still unknown. We applied mass spectrometry combined with chemical crosslinking, hydrogen/deuterium exchange, limited proteolysis, and surface modification for the differential characterization of the native and the urea+acid-converted prion β-oligomer structures to obtain insights into the mechanisms of conversion and aggregation. For the determination of the structure of the monomer and the dimer unit of the β-oligomer, we applied a recently-developed approach for de novo protein structure determination which is based on the incorporation of zero-length and short-distance crosslinking data as intra- and inter-protein constraints in discrete molecular dynamics simulations (CL-DMD). Based on all of the structural-proteomics experimental data and the computationally predicted structures of the monomer units, we propose the potential mode of assembly of the β-oligomer. The proposed β-oligomer assembly provides a clue on the β-sheet nucleation site, and how template-based conversion of the native prion molecule occurs, growth of the prion aggregates, and maturation into fibrils may occur.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria -Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Bandyopadhyay A, Sannigrahi A, Chattopadhyay K. Membrane composition and lipid to protein ratio modulate amyloid kinetics of yeast prion protein. RSC Chem Biol 2021; 2:592-605. [PMID: 34458802 PMCID: PMC8341755 DOI: 10.1039/d0cb00203h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding of prion aggregation in a membrane environment may help to ameliorate neurodegenerative complications caused by the amyloid forms of prions. Here, we investigated the membrane binding-induced aggregation of yeast prion protein Sup35. Using the combination of fluorescence correlation spectroscopy (FCS) at single molecule resolution and other biophysical studies, we establish that lipid composition and lipid/protein ratio are key modulators of the aggregation kinetics of Sup35. In the presence of a zwitterionic membrane (DMPC), Sup35 exhibited novel biphasic aggregation kinetics at lipid/protein ratios ranging between 20 : 1 and 70 : 1 (termed here as the optimum lipid concentration, OLC). In ratios below (low lipid concentration, LLC) and above (ELC, excess lipid concentration) that range, the aggregation was found to be monophasic. In contrast, in the presence of negatively charged membranes, we did not observe any bi-phasic aggregation kinetics in the entire range of protein to lipid ratios. Our results provide a mechanistic description of the role that membrane concentration/composition-modulated aggregation may play in neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
5
|
Grigolato F, Arosio P. The role of surfaces on amyloid formation. Biophys Chem 2021; 270:106533. [PMID: 33529995 DOI: 10.1016/j.bpc.2020.106533] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Interfaces can strongly accelerate or inhibit protein aggregation, destabilizing proteins that are stable in solution or, conversely, stabilizing proteins that are aggregation-prone. Although this behaviour is well-known, our understanding of the molecular mechanisms underlying surface-induced protein aggregation is still largely incomplete. A major challenge is represented by the high number of physico-chemical parameters involved, which are highly specific to the considered combination of protein, surface properties, and solution conditions. The key aspect determining the role of interfaces is the relative propensity of the protein to aggregate at the surface with respect to bulk. In this review, we discuss the multiple molecular determinants that regulate this balance. We summarize current experimental techniques aimed at characterizing protein aggregation at interfaces, and highlight the need to complement experimental analysis with theoretical modelling. In particular, we illustrate how chemical kinetic analysis can be combined with experimental methods to provide insights into the molecular mechanisms underlying surface-induced protein aggregation, under both stagnant and agitation conditions. We summarize recent progress in the study of important amyloids systems, focusing on selected relevant interfaces.
Collapse
Affiliation(s)
- Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
6
|
Hackl S, Ng XW, Lu D, Wohland T, Becker CFW. Cytoskeleton-dependent clustering of membrane-bound prion protein on the cell surface. J Biol Chem 2021; 296:100359. [PMID: 33539927 PMCID: PMC7988330 DOI: 10.1016/j.jbc.2021.100359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Prion diseases are a group of neurodegenerative disorders that infect animals and humans with proteinaceous particles called prions. Prions consist of scrapie prion protein (PrPSc), a misfolded version of the cellular prion protein (PrPC). During disease progression, PrPSc replicates by interacting with PrPC and inducing its conversion to PrPSc. Attachment of PrPC to cellular membranes via a glycosylphosphatidylinositol (GPI) anchor is critical for the conversion of PrPC into PrPSc. However, the mechanisms governing PrPC conversion and replication on the membrane remain largely unclear. Here, a site-selectively modified PrP variant equipped with a fluorescent GPI anchor mimic (PrP-GPI) was employed to directly observe PrP at the cellular membrane in neuronal SH-SY5Y cells. PrP-GPI exhibits a cholesterol-dependent membrane accumulation and a cytoskeleton-dependent mobility. More specifically, inhibition of actin polymerization reduced the diffusion of PrP-GPI indicating protein clustering, which resembles the initial step of PrP aggregation and conversion into its pathogenic isoform. An intact actin cytoskeleton might therefore prevent conversion of PrPC into PrPSc and offer new therapeutic angles.
Collapse
Affiliation(s)
- Stefanie Hackl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Xue Wen Ng
- Departments of Biological Sciences and Chemistry and Centre for Bioimaging Sciences (CBIS), National University of Singapore (NUS), Singapore
| | - Danqin Lu
- Departments of Biological Sciences and Chemistry and Centre for Bioimaging Sciences (CBIS), National University of Singapore (NUS), Singapore; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry and Centre for Bioimaging Sciences (CBIS), National University of Singapore (NUS), Singapore
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Tange H, Ishibashi D, Nakagaki T, Taguchi Y, Kamatari YO, Ozawa H, Nishida N. Liquid-liquid phase separation of full-length prion protein initiates conformational conversion in vitro. J Biol Chem 2021; 296:100367. [PMID: 33545172 PMCID: PMC8289115 DOI: 10.1016/j.jbc.2021.100367] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Prion diseases are characterized by the accumulation of amyloid fibrils. The causative agent is an infectious amyloid that comprises solely misfolded prion protein (PrPSc). Prions can convert normal cellular prion protein (PrPC) to protease K-resistance prion protein fragment (PrP-res) in vitro; however, the intermediate steps involved in this spontaneous conversion still remain unknown. We investigated whether recombinant prion protein (rPrP) can directly convert into PrP-res via liquid-liquid phase separation (LLPS) in the absence of PrPSc. We found that rPrP underwent LLPS at the interface of the aqueous two-phase system of polyethylene glycol and dextran, whereas single-phase conditions were not inducible. Fluorescence recovery assay after photobleaching revealed that the liquid-solid phase transition occurred within a short time. The aged rPrP-gel acquired a proteinase-resistant amyloid accompanied by β-sheet conversion, as confirmed by Western blotting, Fourier transform infrared spectroscopy, and Congo red staining. The reactions required both the N-terminal region of rPrP (amino acids 23-89) and kosmotropic salts, suggesting that the kosmotropic anions may interact with the N-terminal region of rPrP to promote LLPS. Thus, structural conversion via LLPS and liquid-solid phase transition could be the intermediate steps in the conversion of prions.
Collapse
Affiliation(s)
- Hiroya Tange
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Neuropsychiatry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuzuru Taguchi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Hiroki Ozawa
- Department of Neuropsychiatry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Life (Basel) 2020; 10:life10080144. [PMID: 32784399 PMCID: PMC7459996 DOI: 10.3390/life10080144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Aβ, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins’ family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer’s, Type II Diabetes Mellitus, Parkinson’s, and Creutzfeldt–Jakob’s diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.
Collapse
|
9
|
Prion Protein in Stem Cells: A Lipid Raft Component Involved in the Cellular Differentiation Process. Int J Mol Sci 2020; 21:ijms21114168. [PMID: 32545192 PMCID: PMC7312503 DOI: 10.3390/ijms21114168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
The prion protein (PrP) is an enigmatic molecule with a pleiotropic effect on different cell types; it is localized stably in lipid raft microdomains and it is able to recruit downstream signal transduction pathways by its interaction with various biochemical partners. Since its discovery, this lipid raft component has been involved in several functions, although most of the publications focused on the pathological role of the protein. Recent studies report a key role of cellular prion protein (PrPC) in physiological processes, including cellular differentiation. Indeed, the PrPC, whose expression is modulated according to the cell differentiation degree, appears to be part of the multimolecular signaling pathways of the neuronal differentiation process. In this review, we aim to summarize the main findings that report the link between PrPC and stem cells.
Collapse
|
10
|
Israeli R, Kolusheva S, Hadad U, Jelinek R. Imaging Flow Cytometry Illuminates New Dimensions of Amyloid Peptide-Membrane Interactions. Biophys J 2020; 118:1270-1278. [PMID: 32053776 PMCID: PMC7091230 DOI: 10.1016/j.bpj.2020.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Membrane interactions of amyloidogenic proteins constitute central determinants both in protein aggregation as well as in amyloid cytotoxicity. Most reported studies of amyloid peptide-membrane interactions have employed model membrane systems combined with application of spectroscopy methods or microscopy analysis of individual binding events. Here, we applied for the first time, to our knowledge, imaging flow cytometry for investigating interactions of representative amyloidogenic peptides, namely, the 106-126 fragment of prion protein (PrP(106-126)) and the human islet amyloid polypeptide (hIAPP), with giant lipid vesicles. Imaging flow cytometry was also applied to examine the inhibition of PrP(106-126)-membrane interactions by epigallocatechin gallate, a known modulator of amyloid peptide aggregation. We show that imaging flow cytometry provided comprehensive population-based statistical information upon morphology changes of the vesicles induced by PrP(106-126) and hIAPP. Specifically, the experiments reveal that both PrP(106-126) and hIAPP induced dramatic transformations of the vesicles, specifically disruption of the spherical shapes, reduction of vesicle circularity, lobe formation, and modulation of vesicle compactness. Interesting differences, however, were apparent between the impact of the two peptides upon the model membranes. The morphology analysis also showed that epigallocatechin gallate ameliorated vesicle disruption by PrP(106-126). Overall, this study demonstrates that imaging flow cytometry provides powerful means for disclosing population-based morphological membrane transformations induced by amyloidogenic peptides and their inhibition by aggregation modulators.
Collapse
Affiliation(s)
- Reut Israeli
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sofiya Kolusheva
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uzi Hadad
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel.
| |
Collapse
|
11
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
12
|
Agarwal A, Das D, Banerjee T, Mukhopadhyay S. Energy migration captures membrane-induced oligomerization of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140324. [DOI: 10.1016/j.bbapap.2019.140324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
|
13
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
14
|
Mohapatra M, Mishra AK. Excited state proton transfer based fluorescent molecular probes and their application in studying lipid bilayer membranes. Photochem Photobiol Sci 2019; 18:2830-2848. [DOI: 10.1039/c9pp00294d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The distribution and prototropic equilibria of 1-naphthol (NpOH) in lipid bilayer membrane.
Collapse
Affiliation(s)
| | - Ashok Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
15
|
Wang LJ, Gu XD, Yu GH, Shen L, Ji HF. Different effects of lipid on conformational conversion of chicken and murine prion proteins. Vet Microbiol 2018; 224:1-7. [PMID: 30269782 DOI: 10.1016/j.vetmic.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Prion diseases are characterized by the conformational conversion of the cellular prion protein (PrPC) to the pathogenic isoform (PrPSc). Lipids have been found to interact with PrPC and contribute to the efficient formation of PrPSc. Non-mammalian PrPs are not readily to undergo the conversion process into an infectious isoform, yet the effect of lipid on the conformational conversion of non-mammalian PrPC remains to be explored. Herein, the effects of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) on full-length recombinant chicken PrP (ChPrP) 24-249 and murine PrP (MoPrP) 23-230 were investigated. Firstly, it was found that in the presence of chemical denaturant, POPG remarkably inhibited MoPrP amyloid fibril growth, while had slight effect on that of ChPrP as estimated by amyloid fibril growth and transmissible electronic microscope assays. Secondly, under physiological condition, POPG induced conformation changes in both MoPrP and ChPrP using Thioflavin T (ThT) fluorescence, circular dichroism, proteinase K digestion and transmission electron microscopy assays. With a POPG:PrP molar ratio of 30:1, the ThT fluorescence of MoPrP was found to be lower than that of ChPrP, however, the POPG-induced MoPrP had higher β-sheet content and was more proteinase K-resistant than POPG-induced ChPrP. In summary, the present results suggested that the effects of POPG on conformational conversion of MoPrP and ChPrP were different under both denaturation and physiological conditions.
Collapse
Affiliation(s)
- Li-Juan Wang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Xiao-Dan Gu
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Guo-Hua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan 364012, China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, China; Zibo Key Laboratory of New Drug Development of Neurodegenerative diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| |
Collapse
|
16
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
18
|
Cheng CJ, Koldsø H, Van der Kamp MW, Schiøtt B, Daggett V. Simulations of membrane-bound diglycosylated human prion protein reveal potential protective mechanisms against misfolding. J Neurochem 2017; 142:171-182. [PMID: 28407243 DOI: 10.1111/jnc.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
Prion diseases are associated with the misfolding of the prion protein (PrP) from its normal cellular form (PrPC ) to its infectious scrapie form (PrPSc ). Post-translational modifications in PrP in vivo can play an important role in modulating the process of misfolding. To gain more insight into the effects of post-translational modifications in PrP structure and dynamics and to test the hypothesis that such modifications can interact with the protein, we have performed molecular dynamics simulations of diglycosylated human PrPC bound to a lipid bilayer via a glycophosphatidylinositol anchor. Multiple simulations were performed at three different pH ranges to explore pH effects on structure and dynamics. In contrast to simulations of protein-only PrPC , no large effects were observed upon lowering the pH of the system. The protein tilted toward the membrane surface in all of the simulations and the putative PrPSc oligomerization sites became inaccessible, thereby offering a possible protective mechanism against PrPSc -induced misfolding of PrPC .
Collapse
Affiliation(s)
- Chin Jung Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Heidi Koldsø
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,Department of Chemistry, inSPIN and iNANO Centers, Aarhus University, Aarhus C, Denmark
| | - Marc W Van der Kamp
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Birgit Schiøtt
- Department of Chemistry, inSPIN and iNANO Centers, Aarhus University, Aarhus C, Denmark
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Singh RK, Chamachi NG, Chakrabarty S, Mukherjee A. Mechanism of Unfolding of Human Prion Protein. J Phys Chem B 2017; 121:550-564. [PMID: 28030950 DOI: 10.1021/acs.jpcb.6b11416] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Misfolding and aggregation of prion proteins are associated with several neurodegenerative diseases. Therefore, understanding the mechanism of the misfolding process is of enormous interest in the scientific community. It has been speculated and widely discussed that the native cellular prion protein (PrPC) form needs to undergo substantial unfolding to a more stable PrPC* state, which may further oligomerize into the toxic scrapie (PrPSc) form. Here, we have studied the mechanism of the unfolding of the human prion protein (huPrP) using a set of extensive well-tempered metadynamics simulations. Through multiple microsecond-long metadynamics simulations, we find several possible unfolding pathways. We show that each pathway leads to an unfolded state of lower free energy than the native state. Thus, our study may point to the signature of a PrPC* form that corresponds to a global minimum on the conformational free-energy landscape. Moreover, we find that these global minima states do not involve an increased β-sheet content, as was assumed to be a signature of PrPSc formation in previous simulation studies. We have further analyzed the origin of metastability of the PrPC form through free-energy surfaces of the chopped helical segments to show that the helices, particularly H2 and H3 of the prion protein, have the tendency to form either a random coil or a β-structure. Therefore, the secondary structural elements of the prion protein are only weakly stabilized by tertiary contacts and solvation forces so that relatively weak perturbations induced by temperature, pressure, pH, and so forth can lead to substantial unfolding with characteristics of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Reman K Singh
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| | - Neharika G Chamachi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| |
Collapse
|
20
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
21
|
Mukundan V, Maksoudian C, Vogel MC, Chehade I, Katsiotis MS, Alhassan SM, Magzoub M. Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation. Arch Biochem Biophys 2016; 613:31-42. [PMID: 27818203 DOI: 10.1016/j.abb.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Prion diseases are associated with conversion of cellular prion protein (PrPC) into an abnormally folded and infectious scrapie isoform (PrPSc). We previously showed that peptides derived from the unprocessed N-termini of mouse and bovine prion proteins, mPrP1-28 and bPrP1-30, function as cell-penetrating peptides (CPPs), and destabilize model membrane systems, which could explain the infectivity and toxicity of prion diseases. However, subsequent studies revealed that treatment with mPrP1-28 or bPrP1-30 significantly reduce PrPSc levels in prion-infected cells. To explain these seemingly contradictory results, we correlated the aggregation, membrane perturbation and cytotoxicity of the peptides with their cellular uptake and intracellular localization. Although the peptides have a similar primary sequence, mPrP1-28 is amyloidogenic, whereas bPrP1-30 forms smaller oligomeric or non-fibrillar aggregates. Surprisingly, bPrP1-30 induces much higher cytotoxicity than mPrP1-28, indicating that amyloid formation and toxicity are independent. The toxicity is correlated with prolonged residence at the plasma membrane and membrane perturbation. Both ordered aggregation and toxicity of the peptides are inhibited by low pH. Under non-toxic conditions, the peptides are internalized by lipid-raft dependent macropinocytosis and localize to acidic lysosomal compartments. Our results shed light on the antiprion mechanism of the prion protein-derived CPPs and identify a potential site for PrPSc formation.
Collapse
Affiliation(s)
- Vineeth Mukundan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christy Maksoudian
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marios S Katsiotis
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Saeed M Alhassan
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
22
|
Malishev R, Nandi S, Kolusheva S, Shaham-Niv S, Gazit E, Jelinek R. Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2208-2214. [DOI: 10.1016/j.bbamem.2016.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/29/2022]
|
23
|
Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein. PLoS One 2015; 10:e0130283. [PMID: 26090881 PMCID: PMC4474664 DOI: 10.1371/journal.pone.0130283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/18/2015] [Indexed: 01/03/2023] Open
Abstract
Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP) purified from E.coli into the infectious prion state (PrPSc) with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA) for generating PrPScde novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1’-rac-glycerol) (POPG) or phosphatidylethanolamine (PE), as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, α-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of α-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE.
Collapse
|
24
|
Pandiscia LA, Schweitzer-Stenner R. Coexistence of Native-like and Non-Native Partially Unfolded Ferricytochrome c on the Surface of Cardiolipin-Containing Liposomes. J Phys Chem B 2015; 119:1334-49. [DOI: 10.1021/jp5104752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leah A. Pandiscia
- Department
of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | | |
Collapse
|
25
|
Bychkova VE, Basova LV, Balobanov VA. How membrane surface affects protein structure. BIOCHEMISTRY (MOSCOW) 2015; 79:1483-514. [DOI: 10.1134/s0006297914130045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Chu NK, Shabbir W, Bove-Fenderson E, Araman C, Lemmens-Gruber R, Harris DA, Becker CFW. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes. J Biol Chem 2014; 289:30144-60. [PMID: 25217642 DOI: 10.1074/jbc.m114.587345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrP(C) into pathogenic PrP(Sc). Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23-231, FL_PrP), N-terminally truncated PrP (residues 90-231, T_PrP), and PrP missing its central hydrophobic region (Δ105-125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions.
Collapse
Affiliation(s)
- Nam K Chu
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - Erin Bove-Fenderson
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Can Araman
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - David A Harris
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Christian F W Becker
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria,
| |
Collapse
|
27
|
Hingant E, Fontes P, Alvarez-Martinez MT, Arnaud JD, Liautard JP, Pujo-Menjouet L. A micellar on-pathway intermediate step explains the kinetics of prion amyloid formation. PLoS Comput Biol 2014; 10:e1003735. [PMID: 25101755 PMCID: PMC4125056 DOI: 10.1371/journal.pcbi.1003735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
In a previous work by Alvarez-Martinez et al. (2011), the authors pointed out some fallacies in the mainstream interpretation of the prion amyloid formation. It appeared necessary to propose an original hypothesis able to reconcile the in vitro data with the predictions of a mathematical model describing the problem. Here, a model is developed accordingly with the hypothesis that an intermediate on-pathway leads to the conformation of the prion protein into an amyloid competent isoform thanks to a structure, called micelles, formed from hydrodynamic interaction. The authors also compare data to the prediction of their model and propose a new hypothesis for the formation of infectious prion amyloids. Understanding the mechanism of prions is an important issue. Indeed, it involves a mechanism modifying the structure of the proteins that are of high interest in theoretical biology. Knowing the underlying mechanism that leads to prion disease could help further investigations in the world of amyloid disease and for example the so-called Alzheimer's disease. The theory of prion, also known as Protein-Only, has been widely studied. Nevertheless no mathematical models are able to reproduce the phenomena in silico. This suggests a lack of information in the theory. Here we propose a new model, built with a new approach theory that fits experimental data in a very satisfactory way. This model, together with experiments, maintains the idea that an intermediate conformation of the protein helps the disease to spread. Besides, this work is an excellent example of a strong interaction between mathematical modelling and biological approach. Indeed, because of a strong discrepancy between theoretical results of the early original model and biological data on pathological prion formation, the team of biologists decided to investigate more closely their experiments. They came out with a new discovery: the crucial role of micelles in the pathological conformation of the prion protein.
Collapse
Affiliation(s)
- Erwan Hingant
- CIMA, Universidad de Concepción, Concepción, Chile
- * E-mail:
| | - Pascaline Fontes
- INSERM U710, Université Montpellier 2, Place E. Bataillon, 3eme étage, Montpellier, France
| | - Maria Teresa Alvarez-Martinez
- Etablissement Confiné d’Expérimentation, Plateforme RAM, UMS 3426-BioCampus, Place E. Bataillon, UM2, Montpellier, France
| | - Jacques-Damien Arnaud
- Etablissement Confiné d’Expérimentation, Plateforme RAM, UMS 3426-BioCampus, Place E. Bataillon, UM2, Montpellier, France
| | - Jean-Pierre Liautard
- Centre de Recherche sur les Pathogènes et Biologie pour la Santé, CPBS UMR5236, Université Montpellier 2, Place E. Bataillon, Montpellier, France
| | - Laurent Pujo-Menjouet
- Université de Lyon, CNRS, Université Lyon 1, Institut Camille Jordan UMR5208, Villeurbanne, France
- INRIA Team Dracula, Inria Center Grenoble Rhône-Alpes, France
| |
Collapse
|
28
|
Membrane-induced changes in the holomyoglobin tertiary structure: interplay with function. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:317-29. [DOI: 10.1007/s00249-014-0964-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 11/26/2022]
|
29
|
Nomura K, Harada E, Sugase K, Shimamoto K. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning. J Phys Chem B 2014; 118:2405-13. [PMID: 24517164 DOI: 10.1021/jp4124106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.
Collapse
Affiliation(s)
- Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences , 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| | | | | | | |
Collapse
|
30
|
Zurawel AA, Walsh DJ, Fortier SM, Chidawanyika T, Sengupta S, Zilm K, Supattapone S. Prion nucleation site unmasked by transient interaction with phospholipid cofactor. Biochemistry 2014; 53:68-76. [PMID: 24328062 DOI: 10.1021/bi4014825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infectious mammalian prions can be formed de novo from purified recombinant prion protein (PrP) substrate through a pathway that requires the sequential addition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and RNA cofactor molecules. Recent studies show that the initial interaction between PrP and POPG causes widespread and persistent conformational changes to form an insoluble intermediate species, termed PrP(Int1). Here, we characterize the mechanism and functional consequences of the interaction between POPG and PrP. Negative-stain electron microscopy of PrP(Int1) revealed the presence of amorphous aggregates. Pull-down and photoaffinity label experiments indicate that POPG induces the formation of a PrP(C) polybasic-domain-binding neoepitope within PrP(Int1). The ongoing presence of POPG is not required to maintain PrP(Int1) structure, as indicated by the absence of stoichiometric levels of POPG in solid-state NMR measurements of PrP(Int1). Together, these results show that a transient interaction with POPG cofactor unmasks a PrP(C) binding site, leading to PrP(Int1) aggregation.
Collapse
Affiliation(s)
- Ashley A Zurawel
- Departments of Biochemistry and ‡Medicine, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Miller MB, Wang DW, Wang F, Noble GP, Ma J, Woods VL, Li S, Supattapone S. Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013; 21:2061-8. [PMID: 24120764 DOI: 10.1016/j.str.2013.08.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 12/12/2022]
Abstract
The spread of misfolded proteins may occur in many neurodegenerative diseases. Mammalian prions are currently the only misfolded proteins in which high specific biological infectivity can be produced in vitro. Using a system that generates infectious prions de novo from purified recombinant PrP and conversion cofactors palmitoyl-oleoyl-phosphatidylglycerol (POPG) and RNA, we examined by deuterium exchange mass spectrometry (DXMS) the stepwise protein conformational changes that occur during prion formation. We found that initial incubation with POPG causes major structural changes in PrP involving all three α helices and one β strand, with subsequent addition of RNA rendering the N terminus highly exposed. Final conversion into the infectious PrP(Sc) form was accompanied by globally decreased solvent exposure, with persistence of the major cofactor-induced conformational features. Thus, we report that cofactor molecules appear to induce major structural rearrangements during prion formation, initiating a dynamic sequence of conformational changes resulting in biologically active prions.
Collapse
Affiliation(s)
- Michael B Miller
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li Y, Yan J, Zhang X, Huang K. Disulfide bonds in amyloidogenesis diseases related proteins. Proteins 2013; 81:1862-73. [DOI: 10.1002/prot.24338] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Juan Yan
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Xin Zhang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Kun Huang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
- Centre for Biomedicine Research; Wuhan Institute of Biotechnology; Wuhan Hubei People's Republic of China 430074
| |
Collapse
|
33
|
Giachin G, Biljan I, Ilc G, Plavec J, Legname G. Probing early misfolding events in prion protein mutants by NMR spectroscopy. Molecules 2013; 18:9451-76. [PMID: 23966072 PMCID: PMC6270549 DOI: 10.3390/molecules18089451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 01/17/2023] Open
Abstract
The post-translational conversion of the ubiquitously expressed cellular form of the prion protein, PrPC, into its misfolded and pathogenic isoform, known as prion or PrPSc, plays a key role in prion diseases. These maladies are denoted transmissible spongiform encephalopathies (TSEs) and affect both humans and animals. A prerequisite for understanding TSEs is unraveling the molecular mechanism leading to the conversion process whereby most α-helical motifs are replaced by β-sheet secondary structures. Importantly, most point mutations linked to inherited prion diseases are clustered in the C-terminal domain region of PrPC and cause spontaneous conversion to PrPSc. Structural studies with PrP variants promise new clues regarding the proposed conversion mechanism and may help identify "hot spots" in PrPC involved in the pathogenic conversion. These investigations may also shed light on the early structural rearrangements occurring in some PrPC epitopes thought to be involved in modulating prion susceptibility. Here we present a detailed overview of our solution-state NMR studies on human prion protein carrying different pathological point mutations and the implications that such findings may have for the future of prion research.
Collapse
Affiliation(s)
- Gabriele Giachin
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,Trieste I-34136, Italy; E-Mail:
| | - Ivana Biljan
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb HR-10000, Croatia; E-Mail:
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia; E-Mails: (G.I.); (J.P.)
- EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia; E-Mails: (G.I.); (J.P.)
- EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,Trieste I-34136, Italy; E-Mail:
| |
Collapse
|
34
|
Kyle LM, John TR, Schätzl HM, Lewis RV. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro. PLoS One 2013; 8:e66715. [PMID: 23825561 PMCID: PMC3692500 DOI: 10.1371/journal.pone.0066715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids.
Collapse
Affiliation(s)
- Leah M Kyle
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | | | | | | |
Collapse
|
35
|
Zhou Z, Xiao G. Conformational conversion of prion protein in prion diseases. Acta Biochim Biophys Sin (Shanghai) 2013; 45:465-76. [PMID: 23580591 DOI: 10.1093/abbs/gmt027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases are a group of infectious fatal neurodegenerative diseases. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion diseases pathology. Under normal conditions, the high-energy barrier separates PrP(C) from PrP(Sc) isoform. However, pathogenic mutations, modifications as well as some cofactors, such as glycosaminoglycans, nucleic acids, and lipids, could modulate the conformational conversion process. Understanding the mechanism of conformational conversion of prion protein is essential for the biomedical research and the treatment of prion diseases. Particularly, the characterization of cofactors interacting with prion protein might provide new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | |
Collapse
|
36
|
Abstract
The infectious agent of the transmissible spongiform encephalopathies, or prion diseases, has been the center of intense debate for decades. Years of studies have provided overwhelming evidence to support the prion hypothesis that posits a protein conformal infectious agent is responsible for the transmissibility of the disease. The recent studies that generate prion infectivity with purified bacterially expressed recombinant prion protein not only provides convincing evidence supporting the core of the prion hypothesis, that a pathogenic conformer of host prion protein is able to seed the conversion of its normal counterpart to the likeness of itself resulting in the replication of the pathogenic conformer and occurrence of disease, they also indicate the importance of cofactors, particularly lipid or lipid-like molecules, in forming the protein conformation-based infectious agent. This article reviews the literature regarding the chemical nature of the infectious agent and the potential contribution from lipid molecules to prion infectivity, and discusses the important remaining questions in this research area.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
37
|
Aidt FH, Hasholt LF, Christiansen M, Laursen H. Localization of A11-reactive oligomeric species in prion diseases. Histopathology 2013; 62:994-1001. [PMID: 23570304 DOI: 10.1111/his.12097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/13/2013] [Indexed: 12/16/2022]
Abstract
AIMS To investigate in prion diseases the in-situ localization of prion protein oligomers sharing a common epitope with amyloid oligomers involved in a range of neurodegenerative diseases. METHODS AND RESULTS We performed immunohistochemistry on sporadic Creutzfeldt-Jakob disease (sCJD) (n = 9) and hereditary Gerstmann-Sträussler-Scheinker disease (GSS) (n = 1) specimens with the anti-oligomer antibody A11 to determine the localization of reactive species. We found that A11 reactivity in the sCJD specimens was localized to the cerebral and cerebellar cortices both in spongiform and adjacent, non-spongiform areas, reminiscent of multicentric or diffuse plaques. In the GSS specimens, we found that staining was closely associated with kuru-like plaques, and that A11-reactive species colocalized with protease-resistant prion protein (Prp(Sc)). We also observed sporadic neuronal cytosolic staining in both types of specimen. CONCLUSIONS We confirm that intracellular and extracellular A11-reactive species are present in situ in sCJD cases and GSS, and that immunoreactivity for A11 and Prp(Sc) overlaps. We argue that the A11-reactive species are indeed composed of oligomeric Prp(Sc), and suggest that the toxic effects of Prp(Sc) oligomers could be related to the generic oligomeric conformation recognized by A11.
Collapse
Affiliation(s)
- Frederik H Aidt
- Section of Molecular Medicine, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
38
|
Burke KA, Yates EA, Legleiter J. Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front Neurol 2013; 4:17. [PMID: 23459674 PMCID: PMC3585431 DOI: 10.3389/fneur.2013.00017] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/09/2013] [Indexed: 11/13/2022] Open
Abstract
There are a vast number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases. Kinetic and thermodynamic studies indicate that significant conformational changes can be induced in proteins encountering surfaces, which can play a critical role in nucleating aggregate formation or stabilizing specific aggregation states. Surfaces of particular interest in neurodegenerative diseases are cellular and subcellular membranes that are predominately comprised of lipid components. The two-dimensional liquid environments provided by lipid bilayers can profoundly alter protein structure and dynamics by both specific and non-specific interactions. Importantly for misfolding diseases, these bilayer properties can not only modulate protein conformation, but also exert influence on aggregation state. A detailed understanding of the influence of (sub)cellular surfaces in driving protein aggregation and/or stabilizing specific aggregate forms could provide new insights into toxic mechanisms associated with these diseases. Here, we review the influence of surfaces in driving and stabilizing protein aggregation with a specific emphasis on lipid membranes.
Collapse
Affiliation(s)
- Kathleen A Burke
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown, WV, USA
| | | | | |
Collapse
|
39
|
Li H, Ye S, Wei F, Ma S, Luo Y. In situ molecular-level insights into the interfacial structure changes of membrane-associated prion protein fragment [118-135] investigated by sum frequency generation vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16979-16988. [PMID: 23116165 DOI: 10.1021/la302655p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein aggregation is associated with many "protein deposition diseases". A precise molecular detail of the conformational transitions of such a membrane-associated protein structure is critical to understand the disease mechanism and develop effective treatments. One potential model peptide for studying the mechanism of protein deposition diseases is prion protein fragment [118-135] (PrP118-135), which shares homology with the C-terminal domain of the Alzheimer's β-amyloid peptide. In this study, sum frequency generation vibrational spectroscopy (SFG-VS) has been applied to characterize interactions between PrP118-135 and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayer in situ. The conformation change and orientation of PrP118-135 in lipid bilayers have been determined using SFG spectra with different polarization combinations. It is found that low-concentration PrP118-135 predominantly adopts α-helical structure but with tiny β-sheet structure. With the PrP118-135 concentration increasing, the molecular number ratio of parallel β-sheet structure increases and reaches about 44% at a concentration of 0.10 mg/mL, indicating the formation of abnormally folded scrapie isoforms. The α-helical structure inserts into the lipid bilayer with a tilt angle of ~32° versus the surface normal, while the β-sheet structure lies down on the lipid bilayer with the tilt and twist angle both of 90°. The 3300 cm(-1) N-H stretching signal in psp spectra arises from α-helical structure at low PrP concentration and from the β-sheet structure at high PrP concentration. Results from this study will provide an in-depth insight into the early events in the aggregation of PrP in cell membrane.
Collapse
Affiliation(s)
- Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
| | | | | | | | | |
Collapse
|
40
|
Kaiser DM, Acharya M, Leighton PLA, Wang H, Daude N, Wohlgemuth S, Shi B, Allison WT. Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development. PLoS One 2012; 7:e51305. [PMID: 23236467 PMCID: PMC3517466 DOI: 10.1371/journal.pone.0051305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 01/12/2023] Open
Abstract
Genetic and biochemical mechanisms linking onset or progression of Alzheimer Disease and prion diseases have been lacking and/or controversial, and their etiologies are often considered independent. Here we document a novel, conserved and specific genetic interaction between the proteins that underlie these diseases, amyloid-β precursor protein and prion protein, APP and PRP, respectively. Knockdown of APP and/or PRNP homologs in the zebrafish (appa, appb, prp1, and prp2) produces a dose-dependent phenotype characterized by systemic morphological defects, reduced cell adhesion and CNS cell death. This genetic interaction is surprisingly exclusive in that prp1 genetically interacts with zebrafish appa, but not with appb, and the zebrafish paralog prp2 fails to interact with appa. Intriguingly, appa & appb are largely redundant in early zebrafish development yet their abilities to rescue CNS cell death are differentially contingent on prp1 abundance. Delivery of human APP or mouse Prnp mRNAs rescue the phenotypes observed in app-prp-depleted zebrafish, highlighting the conserved nature of this interaction. Immunoprecipitation revealed that human APP and PrP(C) proteins can have a physical interaction. Our study reports a unique in vivo interdependence between APP and PRP loss-of-function, detailing a biochemical interaction that considerably expands the hypothesized roles of PRP in Alzheimer Disease.
Collapse
Affiliation(s)
- Darcy M. Kaiser
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Moulinath Acharya
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L. A. Leighton
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - W. Ted Allison
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Messina F, El-Zohry AM, Mohammed OF, Chergui M. The Role of Site-Specific Hydrogen Bonding Interactions in the Solvation Dynamics of N-Acetyltryptophanamide. J Phys Chem B 2012; 116:10730-8. [DOI: 10.1021/jp305363y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fabrizio Messina
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide
(LSU), ISIC, Faculté des Sciences de Base, station 6, CH-1015
Lausanne-Dorigny, Switzerland
| | - Ahmed M. El-Zohry
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide
(LSU), ISIC, Faculté des Sciences de Base, station 6, CH-1015
Lausanne-Dorigny, Switzerland
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Omar F. Mohammed
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide
(LSU), ISIC, Faculté des Sciences de Base, station 6, CH-1015
Lausanne-Dorigny, Switzerland
| |
Collapse
|
42
|
Poli G, Corda E, Lucchini B, Puricelli M, Martino PA, Dall'ara P, Villetti G, Bareggi SR, Corona C, Vallino Costassa E, Gazzuola P, Iulini B, Mazza M, Acutis P, Mantegazza P, Casalone C, Imbimbo BP. Therapeutic effect of CHF5074, a new γ-secretase modulator, in a mouse model of scrapie. Prion 2012; 6:62-72. [PMID: 22453180 DOI: 10.4161/pri.6.1.18317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Transmissible Spongiform Encephalopathies (TSEs) and Alzheimer disease (AD) both misfolding and aggregation of specific proteins represent key features. Recently, it was observed that PrP (c) is a mediator of a synaptic dysfunction induced by Aβ oligomers. We tested a novel γ secretase modulator (CHF5074) in a murine model of prion disease. Groups of female mice were intracerebrally or intraperitoneally infected with the mouse-adapted Rocky Mountain Laboratory prions. Two weeks prior infection, the animals were provided with a CHF5074-medicated diet (375 ppm) or a standard diet (vehicle) until they showed neurological signs and eventually died. In intracerebrally infected mice, oral administration of CHF5074 did not prolong survival of the animals. In intraperitoneally-infected mice, CHF5074-treated animals showed a median survival time of 21 days longer than vehicle-treated mice (p < 0.001). In these animals, immunohistochemistry analyses showed that deposition of PrP (Sc) in the cerebellum, hippocampus and parietal cortex in CHF5074-treated mice was significantly lower than in vehicle-treated animals. Immunostaining of glial fibrillary acidic protein (GFAP) in parietal cortex revealed a significantly higher reactive gliosis in CHF5074-treated mice compared to the control group of infected animals. Although the mechanism underlying the beneficial effects of CHF5074 in this murine model of human prion disease is unclear, it could be hypothesized that the drug counteracts PrP (Sc ) toxicity through astrocyte-mediated neuroprotection. CHF5074 shows a pharmacological potential in murine models of both AD and TSEs thus suggesting a link between these degenerative pathologies.
Collapse
Affiliation(s)
- Giorgio Poli
- Microbiology and Immunology Unit, Department of Veterinary Pathology, Hygiene and Public Health, School of Veterinary Medicine, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sorice M, Mattei V, Tasciotti V, Manganelli V, Garofalo T, Misasi R. Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 2012; 6:354-8. [PMID: 22842913 DOI: 10.4161/pri.20479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cellular form of prion protein (PrP (c)) is a highly conserved cell surface GPI-anchored glycoprotein that was identified in cholesterol-enriched, detergent-resistant microdomains, named "rafts." The association with these specialized portions of the cell plasma membrane is required for conversion of PrP (c) to the transmissible spongiform encephalopathy-associated protease-resistant isoform. Usually, PrP (c) is reported to be a plasma membrane protein, however several studies have revealed PrP (c) as an interacting protein mainly with the membrane/organelles, as well as with cytoskeleton network. Recent lines of evidence indicated its association with ER lipid raft-like microdomains for a correct folding of PrP (c), as well as for the export of the protein to the Golgi and proper glycosylation. During cell apoptosis, PrP (c) can undergo intracellular re-localization, via ER-mitochondria associated membranes (MAM) and microtubular network, to mitochondrial raft-like microdomains, where it induced the loss of mitochondrial membrane potential and citochrome c release, after a contained raise of calcium concentration. We suggest that PrP (c) may play a role in the multimolecular signaling complex associated with cell apoptosis Lipid rafts and their components may, thus, be investigated as pharmacological targets of interest, introducing a novel and innovative task in modern pharmacology, i.e., the development of glycosphingolipid targeted drugs.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Sanghera N, Correia BEFS, Correia JRS, Ludwig C, Agarwal S, Nakamura HK, Kuwata K, Samain E, Gill AC, Bonev BB, Pinheiro TJT. Deciphering the molecular details for the binding of the prion protein to main ganglioside GM1 of neuronal membranes. ACTA ACUST UNITED AC 2012; 18:1422-31. [PMID: 22118676 DOI: 10.1016/j.chembiol.2011.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/15/2022]
Abstract
The prion protein (PrP) resides in lipid rafts in vivo, and lipids modulate misfolding of the protein to infectious isoforms. Here we demonstrate that binding of recombinant PrP to model raft membranes requires the presence of ganglioside GM1. A combination of liquid- and solid-state NMR revealed the binding sites of PrP to the saccharide head group of GM1. The binding epitope for GM1 was mapped to the folded C-terminal domain of PrP, and docking simulations identified key residues in the C-terminal region of helix C and the loop between strand S2 and helix B. Crucially, this region of PrP is linked to prion resistance in vivo, and structural changes caused by lipid binding in this region may explain the requirement for lipids in the generation of infectious prions in vitro.
Collapse
Affiliation(s)
- Narinder Sanghera
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mahalka AK, Code C, Rezaijahromi B, Kirkegaard T, Jäättelä M, Kinnunen PK. Activation of phospholipase A2 by Hsp70 in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2569-72. [DOI: 10.1016/j.bbamem.2011.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/12/2011] [Accepted: 06/02/2011] [Indexed: 11/16/2022]
|
46
|
Shen L, Ji HF. Mutation directional selection sheds light on prion pathogenesis. Biochem Biophys Res Commun 2011; 410:159-63. [PMID: 21679685 DOI: 10.1016/j.bbrc.2011.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
As mutations in the PRNP gene account for human hereditary prion diseases (PrDs), it is crucial to elucidating how these mutations affect the central pathogenic conformational transition of normal cellular prion protein (PrP(C)) to abnormal scrapie isoform (PrP(Sc)). Many studies proposed that these pathogenic mutations may make PrP more susceptible to conformational change through altering its structure stability. By evaluating the most recent observations regarding pathogenic mutations, it was found that the pathogenic mutations do not exert a uniform effect on the thermodynamic stability of the human PrP's structure. Through analyzing the reported PrDs-related mutations, we found that 25 out of 27 mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. Based on the triggering role reported by previous studies of facilitating factors in PrP(C) conversion, e.g., lipid and polyanion, we proposed that the mutation-induced changes may strengthen the interaction between PrP and facilitating factors, which will accelerate PrP conversion and cause PrDs.
Collapse
Affiliation(s)
- Liang Shen
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo 255049, PR China
| | | |
Collapse
|
47
|
Binding to lipid membrane induces conformational changes in RPE65: implications for its isomerohydrolase activity. Biochem J 2011; 436:591-7. [DOI: 10.1042/bj20110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The visual cycle is a multi-step pathway to recycle 11-cis retinal, the chromophore for both rod and cone visual pigments. The isomerohydrolase RPE65, a membrane-associated enzyme, converts atRE (all-trans-retinyl ester) to 11-cis-retinol, a key step in the visual cycle. Previously, it has been shown that membrane association of RPE65 is essential for its catalytic activity. Using purified recombinant chicken RPE65 and an in vitro liposome-based floatation assay, we present evidence that the RPE65 membrane-binding affinity was significantly facilitated by incorporation of atRE, the substrate of RPE65, into liposomal membrane. Using tryptophan emission fluorescence quenching and CD spectroscopy, we showed that, upon membrane binding, RPE65 undergoes conformational changes at both the tertiary and secondary structural levels. Specifically, tryptophan fluorescence quenching showed that the tertiary RPE65 structure became more open towards the hydrophilic environment upon its association with the membrane. Simultaneously, a decrease in the α-helix content of RPE65 was revealed upon binding with the lipid membrane containing atRE. These results demonstrated that RPE65's functional activity depends on its conformational changes caused by its association with the membrane.
Collapse
|
48
|
Molecular Basis for the Glycosphingolipid-Binding Specificity of α-Synuclein: Key Role of Tyrosine 39 in Membrane Insertion. J Mol Biol 2011; 408:654-69. [DOI: 10.1016/j.jmb.2011.03.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 11/23/2022]
|
49
|
Bazar E, Sheynis T, Dorosz J, Jelinek R. Heparin Inhibits Membrane Interactions and Lipid-Induced Fibrillation of a Prion Amyloidogenic Determinant. Chembiochem 2011; 12:761-7. [DOI: 10.1002/cbic.201000486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 12/22/2022]
|
50
|
Malchiodi-Albedi F, Paradisi S, Matteucci A, Frank C, Diociaiuti M. Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int J Alzheimers Dis 2011; 2011:906964. [PMID: 21331330 PMCID: PMC3038657 DOI: 10.4061/2011/906964] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 01/04/2023] Open
Abstract
Amyloid proteins constitute a chemically heterogeneous group of proteins, which share some biophysical and biological characteristics, the principal of which are the high propensity to acquire an incorrect folding and the tendency to aggregate. A number of diseases are associated with misfolding and aggregation of proteins, although only in some of them—most notably Alzheimer's disease (AD) and transmissible spongiform encephalopathies (TSEs)—a pathogenetic link with misfolded proteins is now widely recognized. Lipid rafts (LRs) have been involved in the pathophysiology of diseases associated with protein misfolding at several levels, including aggregation of misfolded proteins, amyloidogenic processing, and neurotoxicity. Among the pathogenic misfolded proteins, the AD-related protein amyloid β (Aβ) is by far the most studied protein, and a large body of evidence has been gathered on the role played by LRs in Aβ pathogenicity. However, significant amount of data has also been collected for several other amyloid proteins, so that their ability to interact with LRs can be considered an additional, shared feature characterizing the amyloid protein family. In this paper, we will review the evidence on the role of LRs in the neurotoxicity of huntingtin, α-synuclein, prion protein, and calcitonin.
Collapse
Affiliation(s)
- Fiorella Malchiodi-Albedi
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|