1
|
Cardioprotective Signaling Pathways in Obese Mice Submitted to Regular Exercise: Effect on Oxysterols. Int J Mol Sci 2022; 23:ijms231810840. [PMID: 36142751 PMCID: PMC9501447 DOI: 10.3390/ijms231810840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022] Open
Abstract
Exercise induces cardioprotection against myocardial infarction, despite obesity, by restoring pro-survival pathways and increasing resistance of mitochondrial permeability transition pore (mPTP) opening at reperfusion. Among the mechanisms involved in the inactivation of these pathways, oxysterols appear interesting. Thus, we investigated the influence of regular exercise on the reperfusion injury salvage kinase (RISK) pathway, oxysterols, and mitochondria, in the absence of ischemia-reperfusion. We also studied 7β-hydroxycholesterol (7βOH) concentration (mass spectrometry) in human lean and obese subjects. Wild-type (WT) and obese (ob/ob) mice were assigned to sedentary conditions or regular treadmill exercise. Exercise significantly increased Akt phosphorylation, whereas 7βOH concentration was reduced. Moreover, exercise induced the translocation of PKCε from the cytosol to mitochondria. However, exercise did not affect the calcium concentration required to open mPTP in the mitochondria, neither in WT nor in ob/ob animals. Finally, human plasma 7βOH concentration was consistent with observations made in mice. In conclusion, regular exercise enhanced the RISK pathway by increasing kinase phosphorylation and PKCε translocation and decreasing 7βOH concentration. This activation needs the combination with stress conditions, i.e., ischemia-reperfusion, in order to inhibit mPTP opening at the onset of reperfusion. The human findings suggest 7βOH as a candidate marker for evaluating cardiovascular risk factors in obesity.
Collapse
|
2
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
3
|
Adenosine-mediated inhibition of 5'-AMP-activated protein kinase and p38 mitogen-activated protein kinase during reperfusion enhances recovery of left ventricular mechanical function. J Mol Cell Cardiol 2012; 52:1308-18. [PMID: 22484620 DOI: 10.1016/j.yjmcc.2012.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 11/24/2022]
Abstract
Attenuation of excessive rates of myocardial glycolysis limits proton production and Ca(2+) overload during reperfusion and improves recovery of post-ischemic left ventricular (LV) function. In order to elucidate mechanisms underlying glycolytic inhibition by adenosine (ADO), this study tested the hypothesis that the beneficial effects of ADO are due to Ser/Thr protein phosphatase (PP)-mediated inhibition of 5'-AMP-activated protein kinase (AMPK) and phosphofructokinase-2 (PFK-2). In isolated perfused working rat hearts subjected to global ischemia (GI) and reperfusion, ADO (500μmol/l), added 5min prior to the onset of GI and present throughout reperfusion, inhibits glycolysis and proton production during reperfusion and improves post-ischemic LV work. These metabolic effects of ADO are also evident during aerobic perfusion. Assays of glycolytic intermediates show that ADO-induced glycolytic inhibition occurs at the step catalyzed by PFK-1, an effect mediated by reduced activation of PFK-2 by AMPK. The PP1 and PP2A inhibitors, cantharidin (5μmol/l) or okadaic acid (0.1μmol/l), added 10min prior to ADO prevent ADO-induced inhibition of glycolysis and AMPK, as well as ADO-induced cardioprotection. ADO also inhibits p38 MAPK phosphorylation during reperfusion in a cantharidin-sensitive manner, and pharmacological inhibition of p38 MAPK (by SB202190, 10μmol/l) during reperfusion also reduces glycolysis and is cardioprotective. These results indicate that attenuation of glycolysis during reperfusion and cardioprotection can be achieved by inhibition of the stress kinases, AMPK and p38 MAPK.
Collapse
|
4
|
Yang X, Liu Y, Yang XM, Hu F, Cui L, Swingle MR, Honkanen RE, Soltani P, Tissier R, Cohen MV, Downey JM. Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Res Cardiol 2011; 106:421-30. [PMID: 21399968 DOI: 10.1007/s00395-011-0165-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/09/2011] [Accepted: 02/18/2011] [Indexed: 01/28/2023]
Abstract
Cooling the ischemic heart by just a few degrees protects it from infarction without affecting its mechanical function, but the mechanism of this protection is unknown. We investigated whether signal transduction pathways might be involved in the anti-infarct effect of mild hypothermia (35°C). Isolated rabbit hearts underwent 30 min of coronary artery occlusion/2 h of reperfusion. They were either maintained at 38.5°C or cooled to 35°C just before and only during ischemia. Infarct size was measured. The effects of the protein kinase C inhibitor chelerythrine, the nitric oxide synthase inhibitor N (ω)-nitro-L: -arginine methyl ester (L: -NAME), the phosphatidylinositol 3-kinase antagonist wortmannin, or either of the mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitors PD98059 or U0126 on cooling's protection were examined. Myocardial ATP assays were performed and the level of phosphorylation of extracellular signal-regulated kinase (ERK) and MEK was examined by western blotting. To investigate an effect of cooling on protein phosphatase (PPase), a PPase inhibitor cantharidin was tested in the infarct model and the effect of mild hypothermia on PP2A activity in vitro was measured. Infarct size was 34.4 ± 2.2% of the ischemic zone in normothermic (38.5°C) hearts, but only 15.6 ± 8.7% in hearts cooled to 35°C during ischemia. Mechanical function was unaffected. Neither chelerythrine, L: -NAME, nor wortmannin had any effect, but both PD98059 and U0126 completely eliminated protection. Ischemia rather than reperfusion was the critical time when ERK had to be active to realize protection. Phosphorylation of ERK and MEK fell during normothermic ischemia, but during hypothermic ischemia phosphorylation of ERK remained high while that of MEK was increased. Cooling only slightly delayed the rate at which ATP fell during ischemia, and ERK inhibition did not affect that attenuation suggesting ATP preservation was unrelated to protection. Cantharidin, like cooling, also protected during ischemia but not at reperfusion, and its protection was dependent on ERK phosphorylation. However, mild hypothermia had a negligible effect on PP2A activity in an in vitro assay. Hence, mild hypothermia preserves ERK and MEK activity during ischemia which somehow protects the heart. While a PPase inhibitor mimicked cooling's protection, a direct effect of cooling on PP2A could not be demonstrated.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Physiology, University of South Alabama College of Medicine, Mobile, 36688, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fan WJ, van Vuuren D, Genade S, Lochner A. Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Res Cardiol 2010; 105:495-511. [PMID: 20127248 DOI: 10.1007/s00395-010-0086-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 11/30/2022]
Abstract
Activation of several protein kinases occurs during myocardial ischaemia and during subsequent reperfusion. In contrast to the intensive investigation into the significance of kinase activation in cardioprotection, relatively little is known about the role of the phosphatases in this regard. The aim of this study was to re-evaluate the putative roles of PP1 and PP2A in ischaemia/reperfusion and in triggering ischaemic preconditioning. Isolated perfused working rat hearts were subjected to sustained global (15 or 20 min) or regional ischaemia (35 min), followed by reperfusion. Hearts were preconditioned using global ischaemia (1 x 5 or 3 x 5 min, alternated with 5 min reperfusion). To inhibit both PP1 and PP2A cantharidin (5 muM) was used. To inhibit PP2A only, okadaic acid (7.5 nM) was used. The drugs were administered during the preconditioning protocol, before onset of sustained ischaemia (pretreatment) or during reperfusion. Endpoints were mechanical recovery during reperfusion, infarct size and activation of PKB/Akt, p38 MAPK and ERK p42/p44, as determined by Western blot. Pretreatment of hearts with okadaic acid or cantharidin caused a significant reduction in mechanical recovery after 15 or 20 min global ischaemia. Administration of the drugs during an ischaemic preconditioning protocol abolished functional recovery during reperfusion and significantly increased infarct size. Administration of the drugs during reperfusion had no deleterious effects and increased functional recovery in 3 x PC hearts. To find an explanation for the differential effects of the inhibitors depending on the time of administration, hearts were freeze-clamped at different time points during the perfusion protocol. Administration of cantharidin before 5 min ischaemia activated all kinases. Subsequent reperfusion for 5 min without the drug maintained activation of the kinases until the onset of sustained ischaemia. Cantharidin given during preconditioning was associated with activation of p38MAPK and PKB/Akt during reperfusion after sustained ischaemia. However, administration of the drug during reperfusion only after sustained ischaemia caused activation of both PKB/Akt and ERK p42/p44. Phosphatase inhibition immediately prior to the onset of sustained ischaemia or during preconditioning abolishes protection during reperfusion, while inhibition of these enzymes during reperfusion either had no effect or enhanced the cardioprotective effects of preconditioning. It is proposed that inhibition of phosphatases during reperfusion may prolong the period of RISK activation and hence protect the heart.
Collapse
Affiliation(s)
- W J Fan
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Health Sciences, University of Stellenbosch, Tygerberg, Republic of South Africa
| | | | | | | |
Collapse
|
6
|
Yu Z, Wang ZH, Yang HT. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 2009; 297:H735-42. [PMID: 19525372 DOI: 10.1152/ajpheart.01164.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent high-altitude (IHA) hypoxia-induced cardioprotection against ischemia-reperfusion (I/R) injury is associated with the preservation of sarcoplasmic reticulum (SR) function. Although Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and phosphatase are known to modulate the function of cardiac SR under physiological conditions, the status of SR CaMKII and phosphatase during I/R in the hearts from IHA hypoxic rats is unknown. In the present study, we determined SR and cytosolic CaMKII activity during preischemia and I/R (30 min/30 min) in perfused hearts from normoxic and IHA hypoxic rats. The left ventricular contractile recovery, SR CaMKII activity as well as phosphorylation of phospholamban at Thr(17), and Ca(2+)/CaM-dependent SR Ca(2+)-uptake activity were depressed in the I/R hearts from normoxic rats, whereas these changes were prevented in the hearts from IHA hypoxic rats. Such beneficial effects of IHA hypoxia were lost by treating the hearts with a specific CaMKII inhibitor, KN-93. I/R also depressed cytosolic CaMKII and SR phosphatase activity, but these alterations remained unchanged in IHA hypoxic group. Furthermore, we found that the autophosphorylation at Thr(287), which confers Ca(2+)/CaM-independent activity, was not altered by I/R in both groups. These findings indicate that preservation of SR CaMKII activity plays an important role in the IHA hypoxia-induced cardioprotection against I/R injury via maintaining SR Ca(2+)-uptake activity.
Collapse
Affiliation(s)
- Zhuo Yu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Ruijin Hospital, Shanghai, China
| | | | | |
Collapse
|
7
|
Totzeck A, Boengler K, van de Sand A, Konietzka I, Gres P, Garcia-Dorado D, Heusch G, Schulz R. No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol 2008; 295:H2106-12. [PMID: 18835920 DOI: 10.1152/ajpheart.00456.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac connexin 43 (Cx43) is involved in infarct propagation, and the uncoupling of Cx43-formed channels reduces infarct size. Cx43-formed channels open upon Cx43 dephosphorylation, and ischemic preconditioning (IP) prevents the ischemia-induced Cx43 dephosphorylation. In addition to the sarcolemma, Cx43 is also present in the cardiomyocyte mitochondria. We now examined the interaction of Cx43 with protein phosphatases PP1alpha, PP2Aalpha, and PP2Balpha and the role of such interaction for Cx43 phosphorylation in preconditioned myocardium. Infarct size (in %area at risk) in left ventricular anterior myocardium of Göttinger minipigs subjected to 90 min of low-flow ischemia and 120 min of reperfusion was 23.1 +/- 2.7 [n = 7, nonpreconditioned (NIP) group] and was reduced by IP to 10.0 +/- 3.2 (n = 6, P < 0.05). Mitochondrial and gap junctional Cx43 dephosphorylation increased after 85 min of ischemia in NIP myocardium, whereas Cx43 phosphorylation was preserved with IP. PP2Aalpha and PP1alpha, but not PP2Balpha, were detected by Western blot analysis in the left ventricular myocardium. Cx43 coprecipitated with PP2Aalpha but not with PP1alpha. Although the total PP2Aalpha immunoreactivity (confocal laser scan) was increased to 154 +/- 24% and 194 +/- 13% of baseline (P < 0.05) after 85 min of ischemia in NIP and IP myocardium, respectively, the PP2A activities were similar between the groups. The amount of PP2Aalpha coimmunoprecipitated with Cx43 remained unchanged. Only PP2Aalpha coprecipitates with Cx43 in pig myocardium. This interaction is not affected by IP, suggesting that PP2Aalpha is not involved in the prevention of the ischemia-induced Cx43 dephosphorylation by IP.
Collapse
Affiliation(s)
- Andreas Totzeck
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrabe 55, 45122, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Basu NK, Kole L, Basu M, Chakraborty K, Mitra PS, Owens IS. The major chemical-detoxifying system of UDP-glucuronosyltransferases requires regulated phosphorylation supported by protein kinase C. J Biol Chem 2008; 283:23048-61. [PMID: 18556656 PMCID: PMC2516997 DOI: 10.1074/jbc.m800032200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 05/23/2008] [Indexed: 12/13/2022] Open
Abstract
Finding rapid, reversible down-regulation of human UDP-glucuronosyltransferases (UGTs) in LS180 cells following curcumin treatment led to the discovery that UGTs require phosphorylation. UGTs, distributed primarily in liver, kidney, and gastrointestinal tract, inactivate aromatic-like metabolites and a vast number of dietary and environmental chemicals, which reduces the risk of toxicities, mutagenesis, and carcinogenesis. Our aim here is to determine relevant kinases and mechanism(s) regulating phosphorylation of constitutive UGTs in LS180 cells and 10 different human UGT cDNA-transfected COS-1 systems. Time- and concentration-dependent inhibition of immunodetectable [(33)P]orthophosphate in UGTs and protein kinase Cepsilon (PKCepsilon), following treatment of LS180 cells with curcumin or the PKC inhibitor calphostin-C, suggested UGT phosphorylation is supported by active PKC(s). Immunofluorescent and co-immunoprecipitation studies with UGT-transfected cells showed co-localization of UGT1A7His and PKCepsilon and of UGT1A10His and PKCalpha or PKCdelta. Inhibition of UGT activity by PKCepsilon-specific antagonist peptide or by PKCepsilon-targeted destruction with PKCepsilon-specific small interference RNA and activation of curcumin-down-regulated UGTs with typical PKC agonists verified a central PKC role in glucuronidation. Moreover, in vitro phosphorylation of nascent UGT1A7His by PKCepsilon confirms it is a bona fide PKC substrate. Finally, catalase or herbimycin-A inhibition of constitutive or hydrogen peroxide-activated-UGTs demonstrated that reactive oxygen species-related oxidants act as second messengers in maintaining constitutive PKC-dependent signaling evidently sustaining UGT phosphorylation and activity. Because cells use signal transduction collectively to detect and respond appropriately to environmental changes, this report, combined with our earlier demonstration that specific phospho-groups in UGT1A7 determined substrate selections, suggests regulated phosphorylation allows adaptations regarding differential phosphate utilization by UGTs to function efficiently.
Collapse
Affiliation(s)
- Nikhil K Basu
- Heritable Disorders Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-1830, USA
| | | | | | | | | | | |
Collapse
|
9
|
Weber T, Neumann J, Meissner A, Grosse Hartlage M, Van Aken H, Hanske G, Schmitz W, Boknik P. Reduced serine–16 and threonine–17 phospholamban phosphorylation in stunning of conscious dogs. Basic Res Cardiol 2005; 101:253-60. [PMID: 16369730 DOI: 10.1007/s00395-005-0577-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 10/19/2005] [Accepted: 11/07/2005] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cardiac stunning is the consequence of a brief cardiac ischemia. The underlying mechanism is not completely understood. METHODS Here we induced cardiac transient ischemia in conscious instrumented dogs by means of an occluder in the left anterior descending coronary artery (LAD). Contractile performance, monitored by ultrasound crystals, was reduced during and after ischemia in the LAD area. For control in the same animals cardiac performance was measured in the area of left circumflex coronary artery (Ramus circumflexus, RCx). In the RCx area, no decline in contractility was noted. Tissue was obtained from stunned LAD area and from control areas (RCx). RESULTS Phospholamban phosphorylation on both serine-16 and threonine-17 was reduced in LAD areas compared to RCx areas. Reduced phosphorylation of PLB is known to inhibit cardiac contractility. While phosphorylation of PLB was reduced, the activity of the appropriate protein phosphatases and protein kinases was not different between tissue obtained from LAD or RCx areas. CONCLUSION Reduced formation of cAMP might underlie the contractile dysfunction in myocardial stunning.
Collapse
Affiliation(s)
- Th Weber
- Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Albert-Schweitzer-Str. 33, 48149, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fenton RA, Dickson EW, Dobson JG. Inhibition of phosphatase activity enhances preconditioning and limits cell death in the ischemic/reperfused aged rat heart. Life Sci 2005; 77:3375-88. [PMID: 16098993 DOI: 10.1016/j.lfs.2005.05.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 05/25/2005] [Indexed: 11/28/2022]
Abstract
Brief, nonlethal episodes of ischemia in the mammalian heart provide cardioprotection against the detrimental effects of a longer duration ischemia. The manifestation of this preconditioning (PC) phenomenon is initiated by the enhanced phosphorylation state of signal transduction proteins. We reported previously that PC is decreased in the aged rat myocardium. Although the mechanism responsible for this loss is not understood, a reduction in the phosphorylation of critical proteins associated with PC may be postulated. Experiments were conducted to investigate whether PC in the aged heart can be restored with the inhibition of endogenous protein phosphatases thereby enhancing phosphorylation of signaling proteins. Levels of phosphatase activities were also assessed with adult heart aging. Hearts from young adult (3-4 mo.) and aged (21-22 mo.) Fischer-344 rats were perfused in the presence or absence of okadaic acid (OKA; 0.1 microM). Aged adult hearts were either not preconditioned or were preconditioned with two PC cycles (5 min ischemia/5 min reperfusion). Myocardial cellular death that developed with a subsequent ischemia was determined with triphenyltetrazolium. With PC, 55% of the aged heart after ischemia was no longer viable. OKA administered before or after ischemia reduced this ischemia-induced cellular death by 29%. Without PC, OKA reduced viability 18% only when present before and after the ischemic episode. OKA in the ischemic young heart during reperfusion reduced the loss of viability 31%. The Protein Phosphatase 2A (PP2A) activity was found to be up to 82% greater in ventricular myocardium of aged rats. In conclusion, aging-induced changes in protein dephosphorylation may be one mechanism reducing the manifestation of preconditioning in the aged heart.
Collapse
Affiliation(s)
- Richard A Fenton
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
11
|
Liem DA, Gho CC, Gho BC, Kazim S, Manintveld OC, Verdouw PD, Duncker DJ. The tyrosine phosphatase inhibitor bis(maltolato)oxovanadium attenuates myocardial reperfusion injury by opening ATP-sensitive potassium channels. J Pharmacol Exp Ther 2004; 309:1256-62. [PMID: 14993257 DOI: 10.1124/jpet.103.062547] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vanadate has been shown to inhibit tyrosine phosphatase, leading to an increased tyrosine phosphorylation state. The latter has been demonstrated to be involved in the signal transduction pathway of ischemic preconditioning, the most potent endogenous mechanism to limit myocardial infarct size. Furthermore, there is evidence that phosphatase inhibition may be cardioprotective when given late after the onset of ischemia, but the mechanism of protection is unknown. We tested the hypothesis that the organic vanadate compound bis(maltolato)oxovanadium (BMOV) limits myocardial infarct size by attenuating reperfusion injury and investigated the underlying mechanism. Myocardial infarction was produced in 112 anesthetized rats by a 60-min coronary artery occlusion, and infarct size was determined histochemically after 180 min of reperfusion. Intravenous infusion of BMOV in doses of 3.3, 7.5, and 15 mg/kg i.v. decreased infarct size dose-dependently from 70 +/- 2% of the area at risk in vehicle-treated rats down to 41 +/- 5% (P < 0.05 versus control), when administered before occlusion. Administration of the low dose just before reperfusion was ineffective, but administration of the higher doses was equally cardioprotective as compared with administration before occlusion. The cardioprotection by BMOV was abolished by the tyrosine kinase inhibitor genistein and by the ATP-sensitive potassium (K(+)(ATP)) channel blocker glibenclamide but was not affected by the ganglion blocker hexamethonium. We conclude that BMOV afforded significant cardioprotection principally by limiting reperfusion injury. The mode of action appears to be by opening of cardiac K(+)(ATP) channels via increased tyrosine phosphorylation.
Collapse
Affiliation(s)
- David A Liem
- Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Palaniappan N, Kim BS, Sekiyama Y, Osada H, Reynolds KA. Enhancement and selective production of phoslactomycin B, a protein phosphatase IIa inhibitor, through identification and engineering of the corresponding biosynthetic gene cluster. J Biol Chem 2003; 278:35552-7. [PMID: 12819191 DOI: 10.1074/jbc.m305082200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phoslactomycins (PLMs), potent and selective inhibitors of serine threonine phosphatases, are of interest for their antitumor and antiviral activity. Multiple analogs and low titers in the fermentation process have hampered the development of this class of natural products. The entire 75-kb PLM biosynthetic gene cluster of Streptomyces sp. HK-803 was cloned, sequenced, and analyzed. The loading domain and seven extension modules of the PLM polyketide synthase generate an unusual linear unsaturated polyketide chain containing both E- and Z-double bonds from a cyclohexanecarboxylic acid (CHC) primer. Hydroxylation of the CHC-derived side chain of the resulting PLM-B by PlmS2, and a subsequent esterification, produces the remaining PLM analogs. A new PCR targeting technology allowed rapid and facile allelic replacement of plmS2. The resulting mutant selectively produced the PLM-B, at 6-fold higher titers than the wild type strain. This mutant and the biosynthetic gene cluster will facilitate engineered microbial production of hybrid PLMs with improved properties.
Collapse
Affiliation(s)
- Nadaraj Palaniappan
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | |
Collapse
|
13
|
Nishimura M, Sugino T, Nozaki K, Takagi Y, Hattori I, Hayashi J, Hashimoto N, Moriguchi T, Nishida E. Activation of p38 kinase in the gerbil hippocampus showing ischemic tolerance. J Cereb Blood Flow Metab 2003; 23:1052-9. [PMID: 12973021 DOI: 10.1097/01.wcb.0000084251.20114.65] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ischemic tolerance is a phenomenon in which brief episodes of ischemia protect against the lethal effects of subsequent periods of prolonged ischemia. The authors investigated the activation of p38 mitogen-activated protein kinase (p38) in the gerbil hippocampus by Western blotting and immunohistochemistry to clarify the role of p38 kinase in ischemic tolerance. After the 2-minute global ischemia, immunoreactivity indicating active p38 was enhanced at 6 hours of reperfusion and continuously demonstrated 72 hours after ischemia in CA1 and CA3 neurons. Pretreatment with SB203580, an inhibitor of active p38 (0-30 micromol/l), 30 minutes before the 2-minute ischemia reduced the ischemic tolerance effect in a dose-dependent manner. Immunoblot analysis indicated that alteration of the phosphorylation pattern of p38 kinase in the hippocampus after subsequent lethal ischemia was induced by the preconditioning. These findings suggest that lasting activation of p38 may contribute to ischemic tolerance in CA1 neurons of the hippocampus and that components of the p38 cascade can be target molecules to modify neuronal survival after ischemia.
Collapse
Affiliation(s)
- Masaki Nishimura
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ladilov Y, Maxeiner H, Wolf C, Schäfer C, Meuter K, Piper HM. Role of protein phosphatases in hypoxic preconditioning. Am J Physiol Heart Circ Physiol 2002; 283:H1092-8. [PMID: 12181139 DOI: 10.1152/ajpheart.00318.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To find a protein kinase C (PKC)-independent preconditioning mechanism, hypoxic preconditioning (HP; i.e., 10-min anoxia and 10-min reoxygenation) was applied to isolated rat hearts before 60-min global ischemia. HP led to improved recovery of developed pressure and reduced end-diastolic pressure in the left ventricle during reperfusion. Protection was unaffected by the PKC inhibitor bisindolylmaleimide (BIM; 1 micromol/l). It was abolished by the inhibitor of protein phosphatases 1 and 2A cantharidin (20 or 5 micromol/l) and partially enhanced by the inhibitor of protein phosphatase 2A okadaic acid (5 nmol/l). In adult rat cardiomyocytes treated with BIM and exposed to 60-min simulated ischemia (anoxia, extracellular pH 6.4), HP led to attenuation of anoxic Na(+)/Ca(2+) overload and of hypercontracture, which developed on reoxygenation. This protection was prevented by treatment with cantharidin but not with okadaic acid. In conclusion, HP exerts PKC-independent protection on ischemic-reperfused rat hearts and cardiomyocytes. Protein phosphatase 1 seems a mediator of this protective mechanism.
Collapse
Affiliation(s)
- Yury Ladilov
- Physiologisches Institut, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Li PF, Li J, Müller EC, Otto A, Dietz R, von Harsdorf R. Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell 2002; 10:247-58. [PMID: 12191471 DOI: 10.1016/s1097-2765(02)00600-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Caspases play a central role in apoptosis, but their activity is under the control of caspase-inhibiting proteins. A characteristic of caspase-inhibiting proteins is direct caspase binding. It is yet unknown how the localization of caspase-inhibiting proteins is regulated and whether there are upstream signals controlling their function. Here we report that the function of ARC is regulated by protein kinase CK2. ARC at threonine 149 is phosphorylated by CK2. This phosphorylation targets ARC to mitochondria. ARC is able to bind to caspase-8 only when it is localized to mitochondria but not to the cytoplasm. Our results reveal a molecular mechanism by which a caspase-inhibiting protein requires phosphorylation in order to prevent apoptosis.
Collapse
Affiliation(s)
- Pei-Feng Li
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
[structure: see text] The title compound, a potent protein phosphatase inhibitor and anticancer agent, was prepared by an efficient, multiconvergent asymmetric synthesis. Key transformations include a ring forming olefin metathesis leading to the alpha,beta-unsaturated lactone and creation of the triene moiety via Suzuki cross-coupling.
Collapse
Affiliation(s)
- Y Krishna Reddy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| | | |
Collapse
|
17
|
duBell WH, Gigena MS, Guatimosim S, Long X, Lederer WJ, Rogers TB. Effects of PP1/PP2A inhibitor calyculin A on the E-C coupling cascade in murine ventricular myocytes. Am J Physiol Heart Circ Physiol 2002; 282:H38-48. [PMID: 11748045 DOI: 10.1152/ajpheart.00536.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calyculin A was used to examine the importance of phosphatases in the modulation of cardiac contractile magnitude in the absence of any neural or humoral stimulation. Protein phosphatase (PP)1 and PP2A activity, twitch contractions, intracellular Ca(2+) concentration ([Ca(2+)](i)) transients, action potentials, membrane currents, and myofilament Ca(2+) sensitivity were measured in isolated mouse ventricular myocytes. Calyculin A (125 nM) inhibited PP1 and PP2A by 50% and 85%, respectively, whereas it doubled the twitch magnitude and increased twitch duration by 50% in field-stimulated cells. Calyculin A-evoked increases in L-type Ca(2+) current (70%) and the resulting [Ca(2+)](i) transient (83%) explain the positive inotropic response. However, increases in twitch and action potential durations did not result from increased myofilament Ca(2+) sensitivity or K(+) current inhibition, respectively. Comparison of the effects of calyculin A and isoproterenol on [Ca(2+)](i) transients and twitch contractions revealed that calyculin A had a much smaller lusitropic effect than the beta-agonist, indicating that calyculin A did not significantly increase sarcoplasmic reticulum Ca(2+) reuptake. Thus while cardiac contractile magnitude is controlled by a steady-state kinase/phosphatase balance, this regulation is not equally operative at all of the steps in the excitation-contraction coupling pathway and may in fact be most important to the regulation of the L-type Ca(2+) channel.
Collapse
Affiliation(s)
- William H duBell
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Meldrum KK, Meldrum DR, Sezen SF, Crone JK, Burnett AL. Heat shock prevents simulated ischemia-induced apoptosis in renal tubular cells via a PKC-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2001; 281:R359-64. [PMID: 11404313 DOI: 10.1152/ajpregu.2001.281.1.r359] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heat shock produces cellular tolerance to a variety of adverse conditions; however, the protective effect of heat shock on renal cell ischemic injury remains unclear. Protein kinase C (PKC) has been implicated in the signaling mechanisms of acute preconditioning, yet it remains unknown whether PKC mediates heat shock-induced delayed preconditioning in renal cells. To study this, renal tubular cells (LLC-PK1) were exposed to thermal stress (43 degrees C) for 1 h and heat shock protein (HSP) 72 induction was confirmed by Western blot analysis. Cells were subjected to simulated ischemia 24 h after thermal stress, and the effect of heat shock (delayed preconditioning) on ischemia-induced apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling) and B cell lymphoma 2 (Bcl(2)) expression (Western) was determined. Subsequently, the effect of PKC inhibition on HSP72 induction and heat stress-induced ischemic tolerance was evaluated. Thermal stress induced HSP72 production, increased Bcl(2) expression, and prevented simulated ischemia-induced renal tubular cell apoptosis. PKC inhibition abolished thermal induction of HSP72 and prevented heat stress-induced ischemic tolerance. These data demonstrate that thermal stress protects renal tubular cells from simulated ischemia-induced apoptosis through a PKC-dependent mechanism.
Collapse
Affiliation(s)
- K K Meldrum
- Departments of Urology and Surgery, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | |
Collapse
|
19
|
Armstrong SC, Latham CA, Shivell CL, Ganote CE. Ischemic loss of sarcolemmal dystrophin and spectrin: correlation with myocardial injury. J Mol Cell Cardiol 2001; 33:1165-79. [PMID: 11444921 DOI: 10.1006/jmcc.2001.1380] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarcolemmal blebbing and rupture are prominent features of irreversible ischemic myocardial injury. Dystrophin and spectrin are sarcolemmal structural proteins. Dystrophin links the transmembrane dystroglycan complex and extracellular laminin receptors to intracellular F-actin. Spectrin forms the backbone of the membrane skeleton conferring an elastic modulus to the sarcolemmal membrane. An ischemic loss of membrane dystrophin and spectrin, in ischemically pelleted rabbit cardiomyocytes or in vivo 30--45 min permanently ischemic, LAD-ligated hearts, was detected by immunofluorescence with monoclonal antibodies. Western blots of light and heavy microsomal vesicles and Triton-extracted membrane fractions from ischemic myocytes demonstrated a rapid loss of dystrophin coincident with sub-sarcolemmal bleb formation, subsequent to a hypotonic challenge. The loss of spectrin from purified sarcolemma of autolysed rabbit heart, and both isolated membrane vesicles and Triton solubilized membrane fractions of ischemic cardiomyocytes correlated linearly with the onset of osmotic fragility as assessed by membrane rupture, subsequent to a hypotonic challenge. In contrast to the ischemic loss of dystrophin and spectrin from the membrane, the dystrophin-associated proteins, alpha-sarcoglycan and beta-dystroglycan and the integral membrane protein, sodium-calcium exchanger, were maintained in the membrane fraction of ischemic cells as compared to oxygenated cells. Preconditioning protected cells, but did not significantly alter ischemic dystrophin or spectrin translocation. This previously unrecognized loss of sarcolemmal dystrophin and spectrin may be the molecular basis for sub-sarcolemmal bleb formation and membrane fragility during the transition from reversible to irreversible ischemic myocardial injury.
Collapse
Affiliation(s)
- S C Armstrong
- Veterans Affairs Medical Center and Department of Pathology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
The first total synthesis of the potent antitumor agent fostriecin (CI-920) is described, confirming the relative and absolute stereochemistry assignments. Fostriecin is a unique phosphate monoester which exhibits weak topoisomerase II inhibition (IC(50) = 40 microM) and more potent and selective protein phosphatase 2A and 4 (PP2A and PP4) inhibition (IC(50) = 40-3 nM and 1.5 nM), resulting in mitotic entry checkpoint inhibition. Phase I clinical trials with fostriecin, which were the first to explore the potential of this novel mechanism of action, were halted even before therapeutic concentrations were reached or dose-limiting toxicity established due to problems of drug stability observed during storage of naturally derived material. The synthesis of fostriecin detailed herein is the first stage of efforts that may serve to address these limitations to the clinical examination of this or related promising new antitumor agents.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
21
|
Vondriska TM, Klein JB, Ping P. Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: the signaling module hypothesis. Am J Physiol Heart Circ Physiol 2001; 280:H1434-41. [PMID: 11247751 DOI: 10.1152/ajpheart.2001.280.4.h1434] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The characterization of biological processes on the basis of alterations in the cellular proteins, or "proteomic" analysis, is a powerful approach that may be adopted to decipher the signaling mechanisms that underlie various pathophysiological conditions, such as ischemic heart disease. This review represents a prospectus for the implementation of proteomic analyses to delineate the myocardial intracellular signaling events that evoke cardioprotection against ischemic injury. In concert with this, the manifestation of a protective phenotype has recently been shown to involve dynamic modulation of protein kinase C-epsilon (PKC epsilon) signaling complexes (Ping P, Zhang J, Pierce WM Jr, and Bolli R. Circ Res 88: 59--62, 2001). Accordingly, "the signaling module hypothesis" is formulated as a plausible mechanism by which multipurpose stress-activated proteins and signaling kinases may function collectively to facilitate the genesis of cardioprotection.
Collapse
Affiliation(s)
- T M Vondriska
- Department of Physiology and Biophysics, University of Louisville and Department of Veterans Affairs, Louisville, Kentucky 40202-1783, USA
| | | | | |
Collapse
|
22
|
Armstrong SC, Shivell LC, Ganote CE. Sarcolemmal blebs and osmotic fragility as correlates of irreversible ischemic injury in preconditioned isolated rabbit cardiomyocytes. J Mol Cell Cardiol 2001; 33:149-60. [PMID: 11133231 DOI: 10.1006/jmcc.2000.1288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis that irreversible ischemic injury is related to sub-sarcolemmal blebbing and an inherent osmotic fragility of the blebs was tested by subjecting isolated control and ischemically preconditioned (IPC) or calyculin A (CalA)-pretreated (protected) rabbit cardiomyocytes to ischemic pelleting followed by resuspension in 340, 170 or 85 mosmol medium containing trypan blue. At time points from 0-240 min, osmotic fragility was assessed by the percentage of trypan blue permeable cells. Membrane blebs were visualized with India ink preparations. Bleb formation, following acute hypo-osmotic swelling, developed by 75 min and increased with longer periods of ischemia. Osmotic fragility developed only after 75 min. Cells resuspended in 340 mosmol media did not form blebs and largely retained the ability to exclude trypan blue, even after 240 min ischemia. Although the latent tendency for osmotic blebbing preceded the development of osmotic fragility, most osmotically fragile cells became permeable without evident sarcolemmal bleb formation. The onset of osmotic fragility was delayed in protected cells, but protection did not reduce the bleb formation. It is concluded that blebbing and osmotic fragility are independent manifestations of ischemic injury. The principal locus of irreversible ischemic injury and the protection provided by IPC may lie within the sarcolemma rather than at sarcolemmal attachments to underlying adherens junctions.
Collapse
Affiliation(s)
- S C Armstrong
- Veterans Affairs Medical Center and Department of Pathology, East Tennessee State University, 37614, USA.
| | | | | |
Collapse
|
23
|
Napoli C, Pinto A, Cirino G. Pharmacological modulation, preclinical studies, and new clinical features of myocardial ischemic preconditioning. Pharmacol Ther 2000; 88:311-31. [PMID: 11337029 DOI: 10.1016/s0163-7258(00)00093-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The term "ischemic preconditioning (PC)" was first applied to canine myocardium subjected to brief episodes of ischemia and reperfusion that tolerated a more prolonged episode of ischemia better than myocardium not previously exposed to ischemia. Protective effect of myocardial ischemic PC was demonstrated in several animal species, resulting in the strongest endogenous form of protection against myocardial injury, jeopardized myocardium, infarct size, and arrhythmias other than early reperfusion. New onset angina before acute myocardial infarction, episodes of myocardial ischemia during coronary angioplasty or bypass surgery, and the "warm-up" phenomenon may represent clinical counterparts of the PC phenomenon in humans. Here, we have attempted to summarize pharmacological modulation, preclinical studies, and new clinical features of ischemic PC. To date, the pathophysiological basis of the "chemical PC" is still not well established, and "putting PC in a bottle" for clinical applications still remains a new pharmacological venture.
Collapse
Affiliation(s)
- C Napoli
- Department of Medicine, Federico II University of Naples, P.O. Box, Naples 80131, Italy.
| | | | | |
Collapse
|
24
|
Abstract
We report that okadaic acid (OA), a known inhibitor of Ser/Thr phosphatases, protects pig myocardium against ischemic injury in an in vivo model and stimulates the activities of stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). When OA was directly infused into the subsequently ischemic myocardium for 60 min before a 60-min period of coronary occlusion followed by reperfusion, infarct size was reduced from a control value of 83.4 +/- 2.8% of the risk region to 40.7 +/- 9.1%. When OA was infused for 10 min before a 5-min occlusion and during 45 min thereafter, infarct size was reduced to 26.5%. In a separate set of similar experiments, we pretreated pig hearts in vivo with the protein-synthesis inhibitor and known activator of SAPK/JNK, anisomycin (AN), and found that this compound also significantly reduced infarct size from 83.4 +/- 2.8.1% to 48.1 +/- 5.1%. For in vitro assays, OA (600 nM), AN (500 microM), or solvent (KHB) were locally infused into the left ventricular myocardium, and biopsies from in situ beating hearts were obtained after 10, 30, and 60 min of infusion. The activities of Ser/Thr phosphatases (PPases), especially PP-2A, were significantly decreased after OA infusion. OA infusion increased the activity (in-gel phosphorylation of N-terminal c-Jun1-135) of both 46- and 55-kDa SAPK/JNKs (twofold to threefold, 30 and 60 min of infusion), and this increase correlated well with the observed decrease of PPase activities. Western blot analysis with a phosphospecific SAPK/JNK (Thr 183/Tyr 185) antibody showed an increased content of the phosphorylated forms after OA treatment. We observed significant stimulation of SAPK/JNK activity also after AN treatment (threefold to fourfold, after 30 min of infusion). In contrast to the SAPK/JNKs, the infusion of both OA and AN did not significantly change the activities and phosphorylation of extracellular signal-related kinases (ERKs) and p38-MAPK. The findings that the protective effect of both OA and AN correlates with increased activity of SAPK/JNKs suggest the involvement of these enzymes in the mechanism of cardioprotection.
Collapse
Affiliation(s)
- M Barancik
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Germany
| | | | | |
Collapse
|
25
|
Przyklenk K, Simkhovich BZ, Bauer B, Hata K, Zhao L, Elliott GT, Kloner RA. Cellular mechanisms of infarct size reduction with ischemic preconditioning. Role of calcium? Ann N Y Acad Sci 1999; 874:192-210. [PMID: 10415532 DOI: 10.1111/j.1749-6632.1999.tb09236.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brief episodes of ischemia protect or "precondition" the heart and reduce infarct size caused by a subsequent sustained ischemic insult. Despite a decade of intensive investigation, the cellular mechanism(s) responsible for this paradoxical protection remain poorly understood. In this review, we focus on the emerging concept that alterations in intracellular calcium homeostasis may participate in either triggering and/or mediating infarct size reduction with preconditioning.
Collapse
Affiliation(s)
- K Przyklenk
- Heart Institute, Good Samaritan Hospital, Los Angeles, California 90017-2395, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation 1998; 97:1848-67. [PMID: 9603540 DOI: 10.1161/01.cir.97.18.1848] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R A Kloner
- Heart Institute, Good Samaritan Hospital, and University of Southern California, Los Angeles 90017, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Brief transient episodes of nonlethal myocardial ischemia protect or "precondition" the heart and render the myocardium resistant to a subsequent more sustained ischemic insult. The hallmark of this phenomenon--documented in virtually all species and experimental models evaluated to date in countless laboratories worldwide--is the profound reduction in infarct size seen in preconditioned groups versus time-matched controls. Efforts to identify the cellular mechanisms responsible for this paradoxical ischemia-induced cardioprotection, to expand the definition of ischemic preconditioning beyond infarct size reduction, and, perhaps most importantly, to evaluate the efficacy of preconditioning in disease models and in the clinical setting, are all topics of intensive ongoing investigation.
Collapse
Affiliation(s)
- K Przyklenk
- Heart Institute, Good Samaritan Hospital and Department of Medicine, University of Southern California, Los Angeles 90017-2395, USA
| | | |
Collapse
|