1
|
DiNicolantonio JJ, McCarty M. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase. Open Heart 2020; 7:openhrt-2020-001337. [PMID: 32532805 PMCID: PMC7298678 DOI: 10.1136/openhrt-2020-001337] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The high rate of thrombotic complications associated with COVID-19 seems likely to reflect viral infection of vascular endothelial cells, which express the ACE2 protein that enables SARS-CoV-2 to invade cells. Various proinflammatory stimuli can promote thrombosis by inducing luminal endothelial expression of tissue factor (TF), which interacts with circulating coagulation factor VII to trigger extrinsic coagulation. The signalling mechanism whereby these stimuli evoke TF expression entails activation of NADPH oxidase, upstream from activation of the NF-kappaB transcription factor that drives the induced transcription of the TF gene. When single-stranded RNA viruses are taken up into cellular endosomes, they stimulate endosomal formation and activation of NADPH oxidase complexes via RNA-responsive toll-like receptor 7. It is therefore proposed that SARS-CoV-2 infection of endothelial cells evokes the expression of TF which is contingent on endosomal NADPH oxidase activation. If this hypothesis is correct, hydroxychloroquine, spirulina (more specifically, its chromophore phycocyanobilin) and high-dose glycine may have practical potential for mitigating the elevated thrombotic risk associated with COVID-19.
Collapse
|
2
|
Yu X, Shang H, Jiang Y. ICAM-1 in HIV infection and underlying mechanisms. Cytokine 2019; 125:154830. [PMID: 31491723 DOI: 10.1016/j.cyto.2019.154830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a glycoprotein that participates in inflammatory and immune responses. Both cell surface and soluble ICAM-1 are significantly increased during human immunodeficiency virus (HIV) infection, and ICAM-1 has important functions in promoting inflammatory responses and enhancing HIV infectivity; however, a comprehensive summary these roles has yet to be elaborated. In this review we describe the general biological characteristics of ICAM-1, its association with HIV disease progression and promotion of HIV production, mechanisms inducing upregulation of ICAM-1, and possible intervention strategies, representing important insights in the context of HIV treatment.
Collapse
Affiliation(s)
- Xiaowen Yu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| |
Collapse
|
3
|
Grosicka-Maciąg E, Kurpios-Piec D, Woźniak K, Kowalewski C, Szumiło M, Drela N, Kiernozek E, Suchocki P, Rahden-Staroń I. Selol (Se IV) modulates adhesive molecules in control and TNF-α-stimulated HMEC-1 cells. J Trace Elem Med Biol 2019; 51:106-114. [PMID: 30466918 DOI: 10.1016/j.jtemb.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Selol, an organic selenitetrigliceride formulation containing selenium at +4 oxidation level, has been suggested as anticancer drug. One of the causes of several diseases including cancer may be inflammation. This study aimed at determining the activity of Selol via measuring its effect on reactive oxygen species (ROS) generation, nuclear factor kappa B (NF-κB) activation, intercellular cell adhesion molecules-1 (ICAM-1), vascular cell adhesive molecule-1 (VCAM-1), and plateled-endothelial cell adhesive molecule-1 (PECAM-1) levels on control and on tumor necrosis factor-α (TNF-α)-stimulated human microvascular endothelial cells (HMEC-1). Cells were treated either with Selol 5% (4 or 8 μgSe/mL) or TNF-α (10 ng/mL) alone or with Selol concomitant with TNF-α. Selol treatment resulted in ROS generation, activation of NF-κB, downregulation of PECAM-1, VCAM-1 and slight upregulation ICAM-1 expression on the cell surface. TNF-α treatment reflected in sharp NF-κB activation, upregulation of both ICAM-1 and VCAM-1 in parallel with the downregulation of PECAM-1 expression on cell surface. Exposure to both compounds upregulated ICAM-1 and VCAM-1, downregulated PECAM-1 level on cell surface in parallel with no changes in level of NF-κB activation as compared with effects mediated by TNF-α alone. These results points to new look at Selol action since it shows a pro-inflammatory activity in parallel with effects on CAMs expression on the cell surface of human microvascular endothelial cells. However, since Selol enhances CAMs expression level when is present concomitantly with TNF-α this fact might suggest that selenium present in the condition of inflammation will make it worse.
Collapse
Affiliation(s)
- Emilia Grosicka-Maciąg
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Dagmara Kurpios-Piec
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Katarzyna Woźniak
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warszawa, Koszykowa 82a, Poland.
| | - Cezary Kowalewski
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warszawa, Koszykowa 82a, Poland.
| | - Maria Szumiło
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Nadzieja Drela
- Immunology Department, Faculty of Biology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland.
| | - Ewelina Kiernozek
- Immunology Department, Faculty of Biology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland.
| | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| | - Iwonna Rahden-Staroń
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Banacha 1, Poland.
| |
Collapse
|
4
|
Atkinson T, Packwood W, Xie A, Liang S, Qi Y, Ruggeri Z, Lopez J, Davidson BP, Lindner JR. Assessment of Novel Antioxidant Therapy in Atherosclerosis by Contrast Ultrasound Molecular Imaging. J Am Soc Echocardiogr 2018; 31:1252-1259.e1. [PMID: 30213420 PMCID: PMC6218294 DOI: 10.1016/j.echo.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ultrasound molecular imaging was used to evaluate the therapeutic effects of antioxidant therapy with EUK-207, which has superoxide dismutase and catalase activities, on suppressing high-risk atherosclerotic features. METHODS Mice with age-dependent atherosclerosis produced by deletion of the low-density lipoprotein receptor and Apobec-1 were studied at 20 and 40 weeks of age. EUK-207 or vehicle was administered for the preceding 8 weeks. Therapy for 28 weeks was also studied for 40-week-old mice. Ultrasound molecular imaging of the thoracic aorta was performed with contrast agents targeted to endothelial P-selectin, von Willebrand factor A1-domain, and platelet glycoprotein Ibα or control agent. Aortic plaque area and macrophage content were assessed by histology. RESULTS In 20-week-old double-knockout mice, EUK-207 compared with sham therapy produced only nonsignificant trends for reduction in molecular imaging signal for endothelial P-selectin, von Willebrand factor A1-domain, and platelet adhesion. At 40 weeks, EUK-207 given for 8 or 28 weeks significantly (P < .05) reduced signal for all three endothelial-associated events essentially to background levels, with the exception of glycoprotein Ibα signal after 8 weeks (P = .06). On aortic histology, EUK-207 therapy for 8 weeks did not affect plaque area or macrophage content at either age. However, EUK-207 for 28 weeks almost completely suppressed plaque development (350 ± 258 vs 4 ± 6 × 103 μm2, P = .014) and macrophage content (136 ± 103 vs 3 ± 2 × 103 μm2, P = .002) compared with control mice at 40 weeks. CONCLUSIONS Molecular imaging can be used to assess vascular responses to antioxidants and has demonstrated that certain antioxidants reduce vascular endothelial activation and platelet adhesion, but reductions in plaque size and macrophage content occurs only with long-duration therapy that is started early.
Collapse
Affiliation(s)
- Tamara Atkinson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Portland VA Medical Center, Portland, Oregon
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Sherry Liang
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Zaverio Ruggeri
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| | | | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Portland VA Medical Center, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
5
|
Jiang Y, Li Y, Ding Y, Dai X, Ma X, Bao L, Zhang Z, Li Y. Grape seed proanthocyanidin extracts prevent high glucose-induced endothelia dysfunction via PKC and NF-κB inhibition. Biosci Biotechnol Biochem 2015; 79:1493-503. [DOI: 10.1080/09168451.2014.991679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
In our study, it has been detected in vivo and in vitro that GSPE reversed high glucose-induced the increase of ICAM-1 and VCAM-1. It is shown that by western blotting detection, GSPE significantly inhibited the activation of NF-κB induced by high glucose while there was significant decrease of the expression of PKC with GSPE intervention. By adding the NF-κB blocker PDTC and the PKC inhibitor peptide 19–31(10−6 M), no significant difference was found in the levels of VCAM-1 and ICAM-1 among GSPE group, the PKC inhibitor peptide 19–31-added GSPE group and the PDTC-added GSPE group. So the conclusion could be drawn that PKC inhibition must be involved in GSPE decreasing the level of ICAM-1 and VCAM-1.We proved for the first time that GSPE prevented high glucose-induced the increase of ICAM-1 and VCAM-1 by PKC and NF-κB inhibition. These findings show a novel mechanism of the action GSPE preventing endothelial dysfunction, which may have clinical application values.
Collapse
Affiliation(s)
- Yanfei Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yujie Li
- Center for Hygienic Assessment and Research, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaotao Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Lei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
6
|
Peshavariya HM, Taylor CJ, Goh C, Liu GS, Jiang F, Chan EC, Dusting GJ. Annexin peptide Ac2-26 suppresses TNFα-induced inflammatory responses via inhibition of Rac1-dependent NADPH oxidase in human endothelial cells. PLoS One 2013; 8:e60790. [PMID: 23637767 PMCID: PMC3634803 DOI: 10.1371/journal.pone.0060790] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/03/2013] [Indexed: 11/25/2022] Open
Abstract
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5–1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.
Collapse
Affiliation(s)
- Hitesh M. Peshavariya
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- * E-mail: (GJD); (HMP)
| | - Caroline J. Taylor
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Faculty of Health Sciences, The Australian Catholic University, Victoria, Australia
| | - Celeste Goh
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
| | - Guei-Sheung Liu
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Fan Jiang
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Elsa C. Chan
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Gregory J. Dusting
- O’Brien Institute, University of Melbourne, Fitzroy, Victoria, Australia
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
- * E-mail: (GJD); (HMP)
| |
Collapse
|
7
|
Riboflavin deprivation inhibits macrophage viability and activity – a study on the RAW 264.7 cell line. Br J Nutr 2013; 110:509-14. [DOI: 10.1017/s0007114512005351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Riboflavin, or vitamin B2, as a precursor of the coenzymes FAD and FMN, has an indirect influence on many metabolic processes and determines the proper functioning of several systems, including the immune system. In the human population, plasma riboflavin concentration varies from 3·1 nm(in a moderate deficiency, e.g. in pregnant women) to 10·4 nm(in healthy adults) and 300 nm(in cases of riboflavin supplementation). The purpose of the present study was to investigate the effects of riboflavin concentration on the activity and viability of macrophages, i.e. on one of the immunocompetent cell populations. The study was performed on the murine monocyte/macrophage RAW 264.7 cell line cultured in medium with various riboflavin concentrations (3·1, 10·4, 300 and 531 nm). The results show that riboflavin deprivation has negative effects on both the activity and viability of macrophages and reduces their ability to generate an immune response. Signs of riboflavin deficiency developed in RAW 264.7 cells within 4 d of culture in the medium with a low riboflavin concentration (3·1 nm). In particular, the low riboflavin content reduced the proliferation rate and enhanced apoptotic cell death connected with the release of lactate dehydrogenase. The riboflavin deprivation impaired cell adhesion, completely inhibited the respiratory burst and slightly impaired phagocytosis of the zymosan particles. In conclusion, macrophages are sensitive to riboflavin deficiency; thus, a low riboflavin intake in the diet may affect the immune system and may consequently decrease proper host immune defence.
Collapse
|
8
|
Liu Y, Davidson BP, Yue Q, Belcik T, Xie A, Inaba Y, McCarty OJT, Tormoen GW, Zhao Y, Ruggeri ZM, Kaufmann BA, Lindner JR. Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging 2012; 6:74-82. [PMID: 23239832 DOI: 10.1161/circimaging.112.975193] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In atherosclerosis, local generation of reactive oxygen species amplifies the inflammatory response and contributes to plaque vulnerability. We used molecular imaging to test whether inhibition of NADPH oxidase with apocynin would reduce endothelial inflammatory activation and endothelial-platelet interactions, thereby interrupting progression to high-risk plaque phenotype. METHODS AND RESULTS Mice deficient for both the low-density lipoprotein receptor and Apobec-1 were studied at 30 weeks of age and again after 10 weeks with or without apocynin treatment (10 or 50 mg/kg per day orally). In vivo molecular imaging of vascular cell adhesion molecule-1 (VCAM 1) P-selectin, and platelet glycoprotein-1bα (GPIbα) in the thoracic aorta was performed with targeted contrast-enhanced ultrasound molecular imaging. Arterial elastic modulus and pulse wave transit time were assessed using ultrahigh frequency ultrasound and invasive hemodynamic measurements. Plaque size and composition were assessed by histology. Molecular imaging in nontreated mice detected a 2-fold increase in P-selectin expression, VCAM-1 expression, and platelet adhesion between 30 and 40 weeks of age. Apocynin reduced all of these endothelial events in a dose-dependent fashion (25% and 50% reduction in signal at 40 weeks for low- and high-dose apocynin). Apocynin also decreased aortic elastic modulus and increased the pulse transit time. On histology, apocynin reduced total monocyte accumulation in a dose-dependent manner as well as platelet adhesion, although total plaque area was reduced in only the high-dose apocynin treatment group. CONCLUSIONS Inhibition of NADPH oxidase in advanced atherosclerosis reduces endothelial activation and platelet adhesion, which are likely responsible for the arrest of plaque growth and improvement of vascular mechanical properties.
Collapse
Affiliation(s)
- Yani Liu
- Division of Cardiovascular Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hurd TR, DeGennaro M, Lehmann R. Redox regulation of cell migration and adhesion. Trends Cell Biol 2011; 22:107-15. [PMID: 22209517 DOI: 10.1016/j.tcb.2011.11.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species (ROS), particularly hydrogen peroxide, and the proteins that regulate them play important roles in the migration and adhesion of cells. Stimulation of cell surface receptors with growth factors and chemoattractants generates ROS, which relay signals from the cell surface to key signaling proteins inside the cell. ROS act within cells to promote migration and also in nonmigrating cells to influence the behavior of migrating cells. Hydrogen peroxide has also been suggested to act as a chemoattractant in its own right, drawing immune cells to wounds. We discuss recent progress made towards understanding how organisms use ROS, and to what degree they depend on them, during the related processes of cell migration and adhesion.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
10
|
Stasi MA, Scioli MG, Arcuri G, Mattera GG, Lombardo K, Marcellini M, Riccioni T, De Falco S, Pisano C, Spagnoli LG, Borsini F, Orlandi A. Propionyl-
l
-Carnitine Improves Postischemic Blood Flow Recovery and Arteriogenetic Revascularization and Reduces Endothelial NADPH-Oxidase 4–Mediated Superoxide Production. Arterioscler Thromb Vasc Biol 2010; 30:426-35. [DOI: 10.1161/atvbaha.109.201533] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The beneficial effect of the natural compound propionyl-
l
-carnitine (PLC) on intermittent claudication in patients with peripheral arterial disease is attributed to its anaplerotic function in ischemic tissues, but inadequate information is available concerning action on the vasculature.
Methods and Results—
We investigated the effects of PLC in rabbit hind limb collateral vessels after femoral artery excision, mouse dorsal air pouch, chicken chorioallantoic membrane, and vascular cells by angiographic, Doppler flow, and histomorphometrical and biomolecular analyses. PLC injection accelerated hind limb blood flow recovery after 4 days (
P
<0.05) and increased angiographic quadriceps collateral vascularization after 7 days (
P
<0.001) Histomorphometry confirmed the increased vascular area (
P
<0.05), with unchanged intramuscular capillary density. PLC-induced dilatative adaptation, and growth was found associated with increased inducible nitric oxide synthase and reduced arterial vascular endothelial growth factor and intracellular adhesion molecule-1 expression. PLC also increased vascularization in air pouch and chorioallantoic membrane (
P
<0.05), particularly in large vessels. PLC increased endothelial and human umbilical vascular endothelial cell proliferation and rapidly reduced inducible nitric oxide synthase and NADPH-oxidase 4–mediated reactive oxygen species production in human umbilical vascular endothelial cells; NADPH-oxidase 4 also regulated NF-κB–independent intracellular adhesion molecule-1 expression.
Conclusion—
Our results provided strong evidence that PLC improves postischemic flow recovery and revascularization and reduces endothelial NADPH-oxidase–related superoxide production. We recommend that PLC should be included among therapeutic interventions that target endothelial function.
Collapse
Affiliation(s)
- Maria Antonietta Stasi
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Maria Giovanna Scioli
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Gaetano Arcuri
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Giovan Giuseppe Mattera
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Katia Lombardo
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Marcella Marcellini
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Teresa Riccioni
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Sandro De Falco
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Claudio Pisano
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Luigi Giusto Spagnoli
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Franco Borsini
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| | - Augusto Orlandi
- From General Pharmacology and Oncology Department (M.A.S., G.G.M., K.L., M.M., T.R., C.P., F.B.) Sigma-Tau, Pomezia, Rome, Italy; Anatomic Pathology (M.G.S., L.G.S., A.O.), Tor Vergata University, Rome, Italy; Experimental Medicine and Biochemical Sciences (G.A.), Tor Vergata University of Rome, Italy; Institute of Genetics and Biophysics (S.D.F.), CNR, Napoli, Italy
| |
Collapse
|
11
|
The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials 2010; 31:900-7. [DOI: 10.1016/j.biomaterials.2009.09.107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/29/2009] [Indexed: 01/02/2023]
|
12
|
An emerging role of deubiquitinating enzyme cylindromatosis (CYLD) in the tubulointerstitial inflammation of IgA nephropathy. Biochem Biophys Res Commun 2009; 390:307-12. [DOI: 10.1016/j.bbrc.2009.09.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/24/2022]
|
13
|
Ishizawa K, Yamaguchi K, Horinouchi Y, Fukuhara Y, Tajima S, Hamano S, Tomita S, Tsuchiya K, Tamaki T. Drug discovery for overcoming chronic kidney disease (CKD): development of drugs on endothelial cell protection for overcoming CKD. J Pharmacol Sci 2009; 109:14-9. [PMID: 19151535 DOI: 10.1254/jphs.08r08fm] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Chronic kidney disease (CKD) is becoming a major public health problem worldwide. It is important to protect endothelial function in CKD treatment because injury of the endothelium is a critical event for the generation and progression of CKD. Recently, clinical studies showed that nifedipine, an antihypertensive drug, acts as a protective agent of endothelial cells (ECs). Nifedipine is reported to partially decompose to a nitrosonifedipine that has high reactivity against lipid-derived radicals in vitro. However, it is still unclear whether nitrosonifedipine is a biologically active agent against endothelial injury. We observed that nitrosonifedipine was converted to radical form by reaction with cultured ECs. The cumene hydroperoxide mediated cytotoxity was reduced by nitrosonifedipine in cultured human glomerular ECs (HGECs). Also nitrosonifedipine suppressed the expression of TNF-alpha-induced intercellular cell adhesion molecule-1 in HGECs. Chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) caused systemic arterial hypertension, endothelial injury, and renal dysfunction. In L-NAME-induced hypertensive rats, nitrosonifedipine treatment improved not only the acetylcholine-induced vasodilation of the aortic rings, but also renal dysfunction such as increasing the levels of serum creatinine and urinary protein excretion. Our preliminary data suggest that nitrosonifedipine is a new and useful drug for the treatment of CKD involving ameliorating effects on EC disorder.
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pharmacology, The Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nicotinamide adenine dinucleotide phosphate (reduced form) oxidase is important for LPS-induced endothelial cell activation. Shock 2008; 29:553-9. [PMID: 18414230 DOI: 10.1097/shk.0b013e318157ebc8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the endothelium plays an important role in the innate immune response. This process is associated with an increase in the production of superoxide (O2-) by nicotinamide adenine dinucleotide phosphate (reduced form; NADPH) oxidase. Our objective was to determine if O2- from NADPH oxidase contributes to activation of human umbilical vein endothelial cells by LPS as it does for TNF-alpha. We used the adhesion molecule intracellular adhesion molecule 1 and cytokine IL-8 as indicators of human umbilical vein endothelial cell activation and measured O2- production with chemiluminescence. LPS increased baseline and NADPH-stimulated O2- production. The increase was reduced by tiron, a protein kinase C inhibitor (bisindolylmaleimide I hydrochloride), the flavin inhibitor (diphenylene iodonium), and by a short interfering RNA against the p22phox component of NADPH oxidase. Inhibition of NADPH oxidase with the short interfering RNA reduced the induction by LPS of intracellular adhesion molecule 1 mRNA, protein, and IL-8 release (by enzyme-linked immunosorbent assay). The production of O2- by NADPH oxidase contributes to intracellular signaling by LPS in endothelial cells as it does for TNF-alpha and helps turn on the innate immune response in these cells.
Collapse
|
15
|
Elahi MM, Matata BM. Free radicals in blood: Evolving concepts in the mechanism of ischemic heart disease. Arch Biochem Biophys 2006; 450:78-88. [PMID: 16620764 DOI: 10.1016/j.abb.2006.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 02/07/2023]
Abstract
There has been a considerable debate over past decade on how reactive oxidant species (ROS) in blood augment the cell signaling processes involved in the pathogenesis of coronary heart disease. In particular, it is not clear whether ROS is an important component of the cross-talk between blood and elements of the vasculature during the initial and latter stages of vascular injury and development of atherosclerotic lesions. Features like the recruitment of the circulating activated monocytes, T cells and granulocytes occur extensively in patients with acute coronary syndromes. It is not known what drives the infiltration of these cells into the vessel wall in the active stages of atherosclerosis and whether ROS plays an intermediate part. Currently, the thinking is that although inflammatory processes may be prompted by different etiological factors from that of coronary heart disease, the presence of ROS in circulating blood is the key intermediary related to vascular injury and organ dysfunction. We review, the clinical and experimental data of the mechanisms involved, and evaluate the wider implications of this concept.
Collapse
Affiliation(s)
- M M Elahi
- The Cardiothoracic Centre, Liverpool NHS Trust, Thomas Drive, Liverpool, L14 3PE, UK
| | | |
Collapse
|
16
|
Chen XL, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH, Kunsch C. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 2006; 290:H1862-70. [PMID: 16339837 DOI: 10.1152/ajpheart.00651.2005] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antioxidant response element (ARE) is a transcriptional control element that mediates expression of a set of antioxidant proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that activates ARE-containing genes. In endothelial cells, the ARE-mediated genes are upregulated by atheroprotective laminar flow through a Nrf2-dependent mechanism. We tested the hypothesis that activation of ARE-regulated genes via adenovirus-mediated expression of Nrf2 may suppress redox-sensitive inflammatory gene expression. Expression of Nrf2 in human aortic endothelial cells (HAECs) resulted in a marked increase in ARE-driven transcriptional activity and protected HAECs from H2O2-mediated cytotoxicity. Nrf2 suppressed TNF-α-induced monocyte chemoattractant protein (MCP)-1 and VCAM-1 mRNA and protein expression in a dose-dependent manner and inhibited TNF-α-induced monocytic U937 cell adhesion to HAECs. Nrf2 also inhibited IL-1β-induced MCP-1 gene expression in human mesangial cells. Expression of Nrf2 inhibited TNF-α-induced activation of p38 MAP kinase. Furthermore, expression of a constitutively active form of MKK6 (an upstream kinase for p38 MAP kinase) partially reversed Nrf2-mediated inhibition of VCAM-1 expression, suggesting that p38 MAP kinase, at least in part, mediates Nrf2's anti-inflammatory action. In contrast, Nrf2 did not inhibit TNF-α-induced NF-κB activation. These data identify the Nrf2/ARE pathway as an endogenous atheroprotective system for antioxidant protection and suppression of redox-sensitive inflammatory genes, suggesting that targeting the Nrf2/ARE pathway may represent a novel therapeutic approach for the treatment of inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Discovery Research, AtheroGenics, Incorporated, Alpharetta, GA 30004, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Schreiner EP, Oberhauser B, Foster CA. Inhibitors of vascular cell adhesion molecule-1 expression. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.2.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Zhang L, Cui R, Cheng X, Du J. Antiapoptotic Effect of Serum and Glucocorticoid-Inducible Protein Kinase Is Mediated by Novel Mechanism Activating IκB Kinase. Cancer Res 2005. [DOI: 10.1158/0008-5472.457.65.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Serum and glucocorticoid inducible protein kinase (SGK) plays a crucial role in promoting cell survival, but the mechanisms for this response are not clear. We show that SGK is involved in the regulation of apoptosis in breast cancer cells by modulating the transcriptional activity of nuclear transcription factor κB (NF-κB). High levels of SGK expression were observed in human breast cancer samples. When SGK was reduced the apoptotic rate increased, and increased SGK activity prevents serum withdrawal–induced apoptosis. SGK-induced cell survival was abolished by a dominant-negative form of IκB kinase β (IKKβ, K44A) or a null mutation of IKKβ in mouse embryonic fibroblast cells indicating involvement of the NF-κB pathway. Serum-induced SGK or increased expression of SGK activated NF-κB transcriptional activity, whereas small interference RNA to SGK blocked NF-κB activity. Coexpression of SGK and IKKβ significantly increased the activation of NF-κB (versus expression of IKKβ alone). Expression of dominant-negative IKKβ K44A, IκBα AA, and kinase-dead SGK (127KM) blocked the ability of SGK to stimulate NF-κB activity, suggesting that IKKβ is a target of SGK. We also show that SGK enhances the ability of IKKβ to phosphorylate endogenous IκBα in cells or recombinant glutathione S-transferase-IκBα in vitro and increases IκBα degradation; SGK physically associates with and activates IKKβ in MDA231 cells via phosphorylation of Ser181 in IKKβ. Taken together, we conclude that SGK acts as an oncogene in breast cancer cells through activation of the IKK-NF-κB pathway, thereby preventing apoptosis. Blocking SGK expression/activity represents a potential therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Jie Du
- 1Internal Medicine, Departments of
- 3Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
19
|
Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am J Physiol Lung Cell Mol Physiol 2004; 287:L486-96. [PMID: 15090367 DOI: 10.1152/ajplung.00389.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical strain triggers a variety of cellular responses, but the underlying mechanotransduction process has not been established. Endothelial cells (EC) respond to mechanical strain by upregulating adhesion molecule expression through a signaling process involving reactive oxygen species (ROS), but the site of their generation is unknown. Mitochondria anchor to the cytoskeleton and could function as mechanotransducers by releasing ROS during cytoskeletal strain. In human umbilical vein EC (HUVEC), ROS production increased 221 ± 17% during 6 h of cyclic strain vs. unstrained controls. Mitochondrial inhibitors diphenylene iodonium or rotenone abrogated this response, whereas inhibitors of nitric oxide (NO) synthase (l-nitroarginine), xanthine oxidase (allopurinol), or NAD(P)H oxidase (apocynin) had no effect. The antioxidants ebselen and diethyldithiocarbamate inhibited the increase in ROS, but the NO scavenger Hb had no effect. Thus strain induces ROS release from mitochondria. In other studies, HUVEC were rendered mitochondria deficient (ρ0EC) to determine the requirement for electron transport in the response to strain. Strain-induced 2′7′-dichlorofluorescein fluorescence was attenuated by >80% in ρ0EC compared with HUVEC (43 ± 7 vs. 221 ± 17%). Treatment with cytochalasin D abrogated strain-induced ROS production, indicating a requirement for the actin cytoskeleton. Cyclic strain (6 h) increased VCAM-1 expression in wild-type but not ρ0EC. Increases in NF-κB activation and VCAM-1 mRNA expression during strain were prevented by antioxidants. These findings demonstrate that mitochondria function as mechanotransducers in endothelium by increasing ROS signaling, which is required for strain-induced increase in VCAM-1 expression via NF-κB.
Collapse
|
20
|
Nooteboom A, van der Linden CJ, Hendriks T. Modulation of adhesion molecule expression on endothelial cells after induction by lipopolysaccharide-stimulated whole blood. Scand J Immunol 2004; 59:440-8. [PMID: 15140053 DOI: 10.1111/j.0300-9475.2004.01413.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relative contribution of the pro-inflammatory cytokines tumour necrosis factor (TNF)-alpha and interleukin (IL)-1 beta and the lipopolysaccharide (LPS)-induced pathways that result in endothelial activation during sepsis are not fully understood. We have examined the effects of plasma obtained from LPS-treated human whole blood on the expression of E-selectin and intercellular adhesion molecule-1 (ICAM-1) on human endothelial cells. Stimulation of blood with 10 pg/ml of LPS is sufficient to produce plasma that induces E-selectin and ICAM-1 expression, while direct induction by LPS alone requires a 100-fold higher concentration. Characteristics for the plasma-induced adhesion molecule expression were similar to the LPS-induced production of TNF-alpha and IL-1 beta in blood. A complete inhibition of E-selectin and ICAM-1 expression was observed when antibodies against TNF-alpha and IL-1 beta were added to plasma prior to the incubation to endothelial cultures. Significant inhibition was even observed if antibodies were added to the cultures up until 3 h after LPS-conditioned plasma. The plasma-induced adhesion molecule response could also be prevented with inhibitors of nuclear factor (NF)-kappaB, such as pyrollidine dithiocarbamate. These findings emphasize the central role of TNF-alpha and IL-1 beta in LPS-induced endothelial activation and suggest that simultaneous neutralization of these cytokines or their common pathways may, even after the initial stimulus, prevent endothelial response during sepsis.
Collapse
Affiliation(s)
- A Nooteboom
- Department of Surgery, University Medical Center Nijmegen, Nijmegen, the Netherlands
| | | | | |
Collapse
|
21
|
Chen XL, Zhang Q, Zhao R, Medford RM. Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am J Physiol Heart Circ Physiol 2003; 286:H1001-7. [PMID: 14576080 DOI: 10.1152/ajpheart.00716.2003] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) play an important but not yet fully defined role in the expression of inflammatory genes such as monocyte chemoattractant protein (MCP)-1. We used complementary molecular and biochemical approaches to explore the roles of specific ROS and their molecular linkage to inflammatory signaling in endothelial cells. Adenovirus-mediated expression of superoxide dismutase and catalase inhibited TNF-alpha-induced MCP-1 gene expression, suggesting important roles of superoxide (O(2)(-).) and H(2)O(2) in MCP-1 gene activation. In addition, the iron chelator 1,2-dimethyl-3-hydroxypyridin-4-one and the hydroxyl radical scavengers dimethylthiourea and dimethyl sulfoxide inhibited TNF-alpha-induced MCP-1 expression, suggesting important roles of iron and hydroxyl radicals in inflammatory signal activation. In contrast, scavenging of peroxynitrite with 5,10,15,20-tetrakis-(4-sulfonatophenyl)prophyrinato iron (III) chloride had no effect on TNF-alpha-induced MCP-1 expression. Inhibition of NADPH oxidase, the major oxidase responsible for O(2)(-). generation, with diphenylene iodonium suppressed TNF-alpha-induced MCP-1 mRNA accumulation. Rac1 is an upstream signaling molecule for the activation of NADPH oxidase and O(2)(-). generation. Expression of dominant negative N17Rac1 by adenovirus suppressed TNF-alpha-induced MCP-1 mRNA levels and MCP-1 protein secretion. Expression of N17Rac1 inhibited TNF-alpha-induced MCP-1 and NF-kappaB transcriptional activity. These data suggest that ROS such as superoxide and H(2)O(2) derived from Rac1-activated NADPH oxidase mediate TNF-alpha-induced MCP-1 expression in endothelial cells.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Athero-Genics, Inc., 8995 Westside Parkway, Alpharetta, GA 30004, USA.
| | | | | | | |
Collapse
|
22
|
Noguchi N, Hanyu R, Nonaka A, Okimoto Y, Kodama T. Inhibition of THP-1 cell adhesion to endothelial cells by alpha-tocopherol and alpha-tocotrienol is dependent on intracellular concentration of the antioxidants. Free Radic Biol Med 2003; 34:1614-20. [PMID: 12788481 DOI: 10.1016/s0891-5849(03)00216-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vitamin E analogs such as alpha-tocopherol and alpha-tocotrienol have been shown to reduce endothelial expression of adhesion molecules. The reactivity of alpha-tocopherol and alpha-tocotrienol in inhibiting lipid peroxidation in vitro was essentially identical but the inhibition of adhesion of THP-1 cells, a monocytic-"like" cell line, to endothelial cells differs substantially. To determine the mechanism underlying this response, human umbilical vein endothelial cells (HUVECs) were assessed for their ability to accumulate vitamin E analogs. alpha-Tocotrienol accumulated in HUVECs to levels approximately 10-fold greater than that of alpha-tocopherol. The decrease in expression of vascular cell adhesion molecule-1 (VCAM-1) and the adhesion of THP-1 cells to HUVECs by alpha-tocopherol and alpha-tocotrienol was also determined. Both alpha-tocopherol and alpha-tocotrienol suppressed VCAM-1 expression and adhesion of THP-1 cells to HUVECs in a concentration-dependent manner. The efficacy of tocotrienol for reduction of VCAM-1 expression and adhesion of THP-1 cells to HUVECs was also 10-fold higher than that of tocopherol. The inhibitory effects of vitamin E analogs on the adhesiveness of endothelial cells clearly correlated with their intracellular concentrations. The data demonstrated that, in assessing the biological responses of antioxidants, intracellular accumulation and metabolism were additional important factors that must be considered.
Collapse
Affiliation(s)
- Noriko Noguchi
- Laboratory of Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan. .-tokyo.ac.jp
| | | | | | | | | |
Collapse
|
23
|
Chen XL, Zhang Q, Zhao R, Ding X, Tummala PE, Medford RM. Rac1 and superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factor-alpha in endothelial cells. J Pharmacol Exp Ther 2003; 305:573-80. [PMID: 12606638 DOI: 10.1124/jpet.102.047894] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative signals play an important role in the regulation of endothelial cell adhesion molecule expression. Small GTP-binding protein Rac1 is activated by various proinflammatory substances and regulates superoxide generation in endothelial cells. In the present study, we demonstrate that adenoviral-mediated expression of dominant negative N17Rac1 (Ad.N17Rac1) suppresses tumor necrosis factor-alpha (TNF-alpha)-induced vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin gene expression in a dose-dependent manner. Ad.N17Rac1 did not inhibit TNF-alpha-induced activation of nuclear factor-kappaB (NF-kappaB) binding activity or inhibitor of NF-kappaB-alpha degradation. In contrast, Ad.N17Rac1 inhibited TNF-alpha-induced NF-kappaB-driven HIV(kappaB)(4)-CAT and p288VCAM-Luc promoter activity, suggesting that N17Rac1 inhibits TNF-alpha-induced VCAM-1, E-selectin, and ICAM-1 through suppressing NF-kappaB-mediated transactivation. In addition, expression of superoxide dismutase by adenovirus suppressed TNF-alpha-induced VCAM-1, E-selectin, and ICAM-1 mRNA accumulation. However, adenoviral-mediated expression of catalase only partially inhibited TNF-alpha-induced E-selectin gene expression and had no effect on VCAM-1 and ICAM-1 gene expression. These data suggest that Rac1 and superoxide play crucial roles in the regulation of expression of cell adhesion molecules in endothelial cells.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Discovery Research, AtheroGenics, Inc., 8995 Westside Parkway, Alpharetta, GA 30004, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, Wasserman MA, Medford RM, Jaiswal AK, Kunsch C. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 2003; 278:703-11. [PMID: 12370194 DOI: 10.1074/jbc.m203161200] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherosclerotic lesions preferentially develop in areas of the vasculature exposed to nonlaminar blood flow and low fluid shear stress, whereas laminar flow and high fluid shear stress are athero-protective. We have identified a set of genes including NAD(P)H:quinone oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), ferritin (heavy and light chains), microsomal epoxide hydrolase, glutathione S-transferase, and gamma-glutamylcysteine synthase, whose expression is induced by exposure to prolonged physiological levels of steady laminar flow (shear stress = 20 dyn/cm(2)) in endothelial cells (EC). These genes contain an antioxidant response element (ARE) or ARE-like transcriptional regulatory sequence in their promoters and generally function to protect cells against oxidant stress. We demonstrate that exposure of EC to laminar flow activates ARE-mediated transcriptional activity. Mutation of the ARE from either the NQO1 or HO-1 promoter abolished laminar flow-induced NQO1 and HO-1 transcriptional activation. Expression of antisense Nrf2 (a transcriptional factor for ARE), a dominant negative Nrf2, or the cytoplasmic inhibitor of Nrf2 (Keap1/INrf2) inhibited laminar flow-induced NQO1 promoter activation in EC. In addition, expression of NQO1 or Nrf2 inhibited tumor necrosis factor-alpha-induced activation of VCAM-1 (vascular cell adhesion molecule-1) gene expression in EC. These data define the ARE as a novel endothelial shear stress response element. Furthermore, laminar flow activation of antioxidant genes via an ARE-dependent transcriptional mechanism may represent a novel athero-protective and anti-inflammatory mechanism in the vasculature.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Discovery Research, AtheroGenics, Inc., Alpharetta, Georgia 30004, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
A catalytic antioxidant, AEOL 10113, was used in a murine model of asthma to test the hypothesis that oxidants contribute to the pathogenesis of asthma. Balb/c mice were immunized and challenged with ovalbumin. AEOL 10113 was administered to the mice by intratracheal instillation during ovalbumin challenges. Enhanced pause as an indicator of airway reactivity and differential cell count of lavage cells as an indicator of airway inflammation were assessed. Lung expressions of the adhesion molecules VCAM-1 and ICAM-1 were measured. We found that treatment of ovalbumin-challenged mice with AEOL 10113 drastically reduced the severity of airway inflammation as evidenced by the reduced numbers of eosinophils, neutrophils, and lymphocytes found in bronchoalveolar lavage fluid. Inhibition of ovalbumin-induced airway inflammation is associated with inhibited expression of VCAM-1, which is a key adhesion molecule responsible for the recruitment of inflammatory cells into the lungs of ovalbumin-challenged mice. In addition, treatment with AEOL 10113 reduced the magnitude of ovalbumin-induced airway hyperreactivity to methacholine. These results suggest that oxidative stress is an important factor in the pathogenesis of asthma and that a synthetic catalytic antioxidant could be effective in the treatment of asthma.
Collapse
Affiliation(s)
- Ling-Yi Chang
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | |
Collapse
|
26
|
Abstract
OBJECTIVE The endothelium is normally subjected to mechanical deformation resulting from shear stress and from strain associated with stretch of the vessel wall. These stimuli are detected by a mechanosensor that initiates a variety of signaling systems responsible for triggering the functional responses. The identity of the mechanosensor has not been established. This article discusses the different mechanisms of mechanosensing that have been proposed and reviews the literature with respect to signaling systems that are activated in response to stress and strain in endothelium. DATA SOURCES Published literature related to mechanotransduction, signal transduction pathways initiated by strain in endothelium, and pathophysiologic effects of abnormal shear forces in diseases. DATA EXTRACTION AND SYNTHESIS Proposed mechanisms of mechanosensing include stretch-sensitive ion channels, protein kinases associated with the cytoskeleton, integrin-cytoskeletal interactions, cytoskeletal-nuclear interactions, and oxidase systems capable of generating reactive oxygen species. However, the molecular identity of the mechanosensor is not known, nor is it clear whether multiple sensing mechanisms exist. CONCLUSIONS Many responses are initiated in cells subjected to mechanical deformation, including alterations in ion channel conductance, activation of signal transduction pathways, and altered expression of specific genes. Future progress in this field will require a critical distinction between cell systems that become activated during mechanical strain and the identity of the cellular mechanosensor that triggers subsequent responses.
Collapse
Affiliation(s)
- Mir H Ali
- University of Chicago, Pulmonary and Critical Care Medicine, 5841 South Maryland Avenue, Chicago, IL, USA
| | | |
Collapse
|
27
|
Joussen AM, Poulaki V, Mitsiades N, Kirchhof B, Koizumi K, Döhmen S, Adamis AP. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J 2002; 16:438-40. [PMID: 11821258 DOI: 10.1096/fj.01-0707fje] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukocyte adhesion to the diabetic retinal vasculature results in blood-retinal barrier breakdown, capillary nonperfusion, and endothelial cell injury and death. Intercellular adhesion molecule-1 (ICAM-1) and the leukocyte integrin CD18 are required for these processes. Diabetes was induced in Long Evans rats, resulting in a two- to threefold increase in retinal leukocyte adhesion. Following one week of diabetes, neutrophil CD11a, CD11b, and CD18 expression was increased significantly, as were retinal ICAM-1 levels. Animals were treated with aspirin, a cyclooxygenase 2 (COX-2) inhibitor (meloxicam), or a soluble tumor necrosis factor alpha (TNF-alpha) receptor/Fc construct (TNFR-Fc, etanercept). High-dose aspirin, etanercept, and high-dose meloxicam each reduced leukocyte adhesion and suppressed blood-retinal barrier breakdown. High-dose aspirin also reduced the expression of CD11a, CD11b, and CD18, whereas meloxicam and etanercept did not. High-dose aspirin, etanercept, and high-dose meloxicam each reduced retinal ICAM-1 expression. Aspirin and meloxicam both lowered retinal TNF-alpha levels. Notably, aspirin, meloxicam, and etanercept did not change retinal vascular endothelial growth factor levels. High-dose aspirin, etanercept and high-dose meloxicam, each suppressed the retinal expression of eNOS and the DNA-binding capacity of retinal nuclear factor-kappaB. High-dose aspirin also suppressed Erk kinase activity, which is involved in CD18 up-regulation. Taken together, these data identify COX-2 and TNF-alpha as operative in the early signature pathologies of diabetic retinopathy, a newly recognized inflammatory disease.
Collapse
Affiliation(s)
- Antonia M Joussen
- Retina Research Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Cayatte AJ, Rupin A, Oliver-Krasinski J, Maitland K, Sansilvestri-Morel P, Boussard MF, Wierzbicki M, Verbeuren TJ, Cohen RA. S17834, a new inhibitor of cell adhesion and atherosclerosis that targets nadph oxidase. Arterioscler Thromb Vasc Biol 2001; 21:1577-84. [PMID: 11597929 DOI: 10.1161/hq1001.096723] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
microdant stress is involved in the events that accompany endothelial cell expression of adhesion molecules and leukocyte adherence in many disease states, including atherosclerosis. A recently discovered benzo(b)pyran-4-one derivative, S17834 (10 to 50 micromol/L), reduced tumor necrosis factor-stimulated vascular cell adhesion molecule-1 (VCAM) mRNA accumulation and protein expression in human umbilical vein endothelial cells. Intercellular cell adhesion molecule-1 and E-selectin were also inhibited by S17834, but platelet endothelial cell adhesion molecule-1 was not. Adherence of U937 monocytic cells to the endothelial cells as well as to plastic plates coated with soluble VCAM, intercellular cell adhesion molecule-1, P-selectin, and E-selectin was also decreased. Consistent with an antioxidant mechanism of action, S17834 (10 to 50 micromol/L) inhibited tumor necrosis factor-stimulated release of superoxide from endothelial cells measured by cytochrome c reduction. S17834 had no effect on superoxide produced by xanthine oxidase, indicating that rather than by acting as a scavenger of superoxide anion, the drug acts by inhibiting the production of free radicals. Indeed, S17834 inhibited NADPH oxidase activity of endothelial cell membranes. The ability to inhibit superoxide anion production appears to be key in the effect of S17834 on superoxide anion production and VCAM expression, because these actions were mimicked by adenovirus-mediated overexpression of superoxide dismutase. Furthermore, these actions may be relevant in vivo, because S17834 reduced aortic superoxide anion levels by 40% and aortic atherosclerotic lesions by 60% in apolipoprotein E-deficient mice. These results indicate that S17834 inhibits adhesion molecule expression and adherence of leukocytes to endothelial cells as well as aortic atherogenesis and that perhaps these effects can be explained by its ability to inhibit endogenous superoxide anion production.
Collapse
Affiliation(s)
- A J Cayatte
- Vascular Biology Unit, Boston University Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|